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Abstract 

Monitoring wildlife is crucial for making informed conserva�on and land-management decisions. 
Remotely triggered cameras are widely used for this, but the resul�ng 'big data' are laborious to 
process. Ar�ficial intelligence (AI) offers a solu�on to this botleneck, but it has been challenging for 
ecologists and prac��oners to tailor current approaches to their specific use cases. Generic, online 
offerings also have issues of ongoing costs and data privacy. Here we present an open-source, 
scalable, modular, cross-pla�orm workflow, deployed using Docker, which leverages deep learning 
for wildlife-image classifica�on. Run via a user-friendly command-line interface, our workflow 
democra�ses the implementa�on of AI for wildlife-image classifica�on enabling end-users without 
specialised technical exper�se to execute a full range of tasks—from animal detec�on to species 
predic�on—on local or cloud GPU-accelerated machines. It integrates seamlessly with the widely 
used open-source camera-trapping so�ware ‘Camelot’, wri�ng AI-classifica�on data directly to image 
metadata and to CSV files, ready for either expert verifica�on or direct data analysis. The end result 
is an advanced but accessible pipeline for wildlife-image classifica�on. A case study with Tasmanian 
wildlife demonstrates the u�lity of our end-to-end pipeline, from classifier training to inference. 
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Introduc�on 

Monitoring wildlife popula�ons is crucial for research on popula�on and community dynamics, 
habitat occupancy and suitability, conserva�on recovery and management, and control of invasive 
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species (Pollock et al., 2002). An increasingly used tool for this purpose is the ‘camera trap’. The 
number of studies using these remotely triggered cameras has increased rapidly, with a recent 
review documen�ng coverage at 160,000 unique camera sites globally (Steenweg et al., 2017). 
However, this increase in camera-trap use has also led to data-handling constraints (Borowiec et al., 
2022). A typical study involving a network of dozens to hundreds of field cameras, deployed for 
months at a �me, can generate huge volumes of imagery (and some�mes video), which must be 
sorted and labelled before it can be used for ecological inference (Greenberg et al., 2019).  

Two main botlenecks occur during image processing. First, false triggers (e.g., blank images caused 
by wind-blown vegeta�on or light reflec�ons) and unwanted ‘by-catch’ (e.g., human hikers, vehicles, 
etc.) must be separated from the animal detec�ons. Second, the animal images must be classified by 
a human, usually to species level. Both steps in this ‘hand labelling’ approach are tedious, repe��ve, 
and prone to operator error, par�cularly due to fa�gue (Falzon et al., 2020). It is also costly, in �me 
and financial terms: properly trained personnel are a scarce and valuable resource. In this scenario 
data management, rather than data collec�on becomes the limi�ng factor in the comple�on of 
research projects (Bubnicki et al., 2016). Despite rapid data acquisi�on in monitoring efforts, the 
cataloguing and classifica�on frequently lag, leaving many datasets either unprocessed or 
underu�lized (Young et al., 2018). This inefficiency not only risks data loss, detrimental to both 
science and conserva�on management, but also leads to limited applica�ons, such as searching 
solely for target species while overlooking others. Given that the applica�on of camera trapping as 
the primary field-based approach for vertebrate monitoring is set to con�nue—and indeed expand in 
the environments and spa�al extents sampled—the demand for solu�ons to these problems is high 
(Boitani, 2016). In short, there is a need for the data-processing workflow for camera traps to be 
reliable, cost effec�ve and easy to use.  

Recently, the informa�on-technology community has been working with ecological data to develop 
applied ar�ficial intelligence (AI) methods for wildlife-image processing (Nguyen et al., 2017). 
Building on the outstanding success of deep-learning approaches to consumer-based computer-
vision applica�ons (Nguyen et al., 2017; Chris�n et al., 2019), a range of AI solu�ons are now 
available for detec�ng and classifying wildlife (Tabak et al., 2019). For object localisa�on—finding 
and coun�ng animals against complex backgrounds—this includes the open source ‘MegaDetector’, 
developed by Microso�’s AI Earth team (Beery et al., 2019). For automated species classifica�on—
providing suggested labels prior to final human-expert verifica�on—one of the most widely used 
op�ons is the commercial website ‘Wildlife Insights’, sponsored by Google (Ahumada et al., 2020). A 
plethora of private consultancy companies now also offer AI-assisted data-iden�fica�on services, and 
there are also many classifiers published in the scien�fic literature (e.g., Falzon et al., 2020), with 
their code available for download and customisa�on. 

However, the above-described image-processing op�ons offer solu�ons that are incomplete or 
challenging to implement for most wildlife ecologists and prac��oners (Young et al., 2018; Vélez et 
al., 2023). The commercial offerings are easy to use, but obviously involve ongoing costs, either via a 
subscrip�on model or pay-per-image data processing, and the data is hosted by a third-party 
provider, which can raise legal ques�ons about whom owns the uploaded data. This can also result in 
an accumula�on of significant ongoing costs when there is a high-volume throughput. Further, 
because they service a general (regional or global) customer base, the local fidelity of their 
classifica�on models is typically constrained by a lack of specific training data (Schneider et al., 2020). 
This problem worsens if human-labelled data are used automa�cally to train the underlying classifier, 
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without prior quality-control checks on the model-input data. In addi�on, web-hosted services like 
Wildlife Insights requires high-speed internet connec�vity to undertake the expert classifica�ons, 
and it uses global AI models that typically include many irrelevant species (i.e., those not found in the 
study area). Consultancies can involve long wait �mes for data transfer and processing, and a high 
per-unit cost. However, the alterna�ve—customising and fi�ng in-house deep-learning models using 
a public code base—currently requires a level of exper�se in programming and a familiarity with the 
complexi�es of computer vision that few ecologists or conserva�on prac��oners possess. 

Here we present a solu�on that breaks through these constraints by using a free, open-source, and 
easy-to-implement wildlife-classifica�on workflow, suitable for use by ecologists, conserva�on 
managers, and ci�zen scien�sts in any system or environmental context. Our goals were to: 

i) Leverage cu�ng-edge developments in computer vision, but leave the details behind-
the-scenes, and use a system-agnos�c distribu�on pla�orm (Docker1) for deployment.  

ii) Implement a scalable, modular, "code-free" image-data prepara�on and AI-model-
training pipeline, controlled by a simple command-line interface. 

iii) Make the workflow easy for non-specialists to use, completely reproducible, and yet 
ensure that it is powerfully flexible for expert-level fine-tuning or expansion.  

iv) Seamlessly integrate the AI classifica�on with an exis�ng, free wildlife-image-database 
(Camelot2), to streamline label verifica�on and data analysis. 

v) Demonstrate both local (desktop PC) and cloud-computer (Virtual machine) use cases, in 
both cases giving the user full control over their data privacy. 

Our core advance is the crea�on of a user-friendly workflow that reframes deep-learning AI for 
image classifica�on as being something comfortably within the reach of ecologists, natural-resource 
managers, and ci�zen scien�sts. The use of Docker images allows for a significant layer of abstrac�on 
that removes much of the technical overhead usually required to implement deep-learning solu�ons 
for wildlife classifica�on. This overturns its current percep�on by ecologists as an ‘arcane art’ 
needing specialist data-science and programming skills to implement (even if the underlying 
mo�va�ons for AI deployment are understood). We demonstrate the applica�on of the workflow 
using a diverse labelled dataset of wildlife images from Tasmania. 

 

Methods 

Implemen�ng deep-learning systems for classifying wildlife images can be complex, technical, and 
�me consuming to set up, especially for those who use camera-trap data but lack specialised 
exper�se and in-depth knowledge of data-science principles, Python programming, and graphics 
processor unit (GPU) library func�ons (Nguyen et al., 2017; Tabak et al., 2019). The new approach we 
detail below is therefore quite significant because it allows non-experts to develop customized 
species classifiers within an intui�ve, user-friendly, modular, and easily deployable workflow. In brief, 
it lets ecologists undertake all development stages within one, high-level framework: detec�ng 
individual animals from images, training an AI classifier model, doing the bulk classifica�on tasks, 
facilita�ng expert review, and predic�ng species (or other) classes on new camera-trap data.  

 
1 htps://www.docker.com 
2 htps://gitlab.com/camelot-project/camelot 
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The design goal in developing this system was to ensure that it was easy to learn and apply, and 
flexible such that it could generalise to a wide range of contexts. Further, the system requirements 
and configura�on steps are much simpler than typical for this type of project, such that they can be 
set up on new (or virtual) machines with GPU accelera�on, by a non-IT expert, in a short space of 
�me. To do this, the pipeline for image-processing and classifica�on is built around the Docker 
Container engine, using modern so�ware-engineering techniques and consists of a repeatable series 
of steps, with all assets (code, scripts, etc.) packaged for seamless ‘behind the scenes’ distribu�on.  

(i) Development of the classifier and inference pipelines 

There are three main stages to the workflow, each implemented as a Docker module (details in 
sec�on below, and Fig. 1 schema�c): animal detec�on, classifier training and field-service predic�on. 
We call this framework ‘MEWC’ (the Mega-Efficient Wildlife Classifier): a playful riff on the use of 
MegaDetector for image segmenta�on and EfficientNet for image classifica�on. The en�re pipeline 
can be run in sequence, or any step can be run as a separate module, depending on the use case. For 
example, if a trained model is already available and one simply wants to classify a new tranche of 
field data, the Classifier Training step can be skipped. 

Animal Detection: This involves two chained steps, ‘Detect’, followed by ‘Snip’.  

For Detect, we leverage exis�ng efforts on image segmenta�on for wildlife imagery. Specifically, we 
use MegaDetector—a free, open-source, system-agnos�c object-detec�on model that uses the YOLO 
deep-learning architecture. It was trained in PyTorch on millions of hand-labelled bounding boxes 
from camera-trap imagery drawn from a wide variety of contexts (Beery et al., 2019). Within MEWC 
we use MegaDetector v5a3 to locate the animal in the camera-trap image (determining the �ghtest 
possible bounding-box coordinates). It also labels the images as one of four broad categories: animal, 
blank, vehicle and humans.  

For snip, each of the bounding-box coordinates from Detect are then cut out of the original image 
and re-sized to a standard 600- × 600-pixel dimension (upscaling or downscaling as required). This 
snipping has the dual effect of focusing on the target of interest (the animal) whilst discarding the 
background, thereby greatly mi�ga�ng any site specificity that might otherwise confuse the classifier. 

Classifier Training: This is the approach to fi�ng and tes�ng the AI wildlife-species classifier model.  

The approach we use herein is supervised training of a deep convolu�on neural network (CNN) 
model (LeCun and Bengio, 1995; Krizhevsky et al., 2012). By default, we offer in MEWC a choice of 
four CNN models from the EfficientNet v2 family (Tan and Le, 2021), of increasing size: B0 (6.0 Millon 
parameters), V2S (20.4 M), V2M (53.2 M) and V2L (117.8 M). In general, the larger the model size 
and input scale of the images, the slower it is to train, the more compute (GPU, RAM) is required, 
and the more training examples it needs to process for op�mal performance. The trade-off is, if all of 
these needs are met, the larger models typically yield higher generalisa�on accuracy, although they 
might require stronger regularisa�on regimes to avoid overfi�ng on smaller datasets (Chollet, 2021). 
Beyond the EfficientNet CNN, however, a wide range of other pre-trained models (both CNN and the 

 
3 htps://github.com/agentmorris/MegaDetector 



Brook et al. 2023. A user-friendly AI workflow for customised wildlife-image classification. EcoEvoRxiv. 

 
 

5 
 

alterna�ve vision-transformer architecture) are available via Python’s Keras-Tensorflow libraries4, as 
well as other frameworks like PyTorch5; MEWC can be readily adapted to use these as an alterna�ve.  

 

 

Figure 1. The MEWC workflow. Each step in the camera-trap-image processing pipeline has an 
associated Docker container. The Expert Annota�ons (species labels for the training images) provide 
the basis for building a supervised classifica�on model (see Appendix details on this step). Detec�on 
data are combined with predic�on data (inferred from the classifier) to produce the red-boxed 
images and final classifica�on data. The classifica�on data includes basic informa�on writen to 
metadata fields of the images, and a detailed CSV file (one image per row) that can be used for direct 
analyses or import into a dedicated camera-trap database like Camelot for rapid expert valida�on. 

 

The Classifier Training phase starts with the ‘Train Base’ stage for ini�al fast, supervised training of 
the top DenseNet layers (e.g., a compression layer, dropout layer, and a classifier layer of fully 
connected neurons), set up in a sequen�al CNN model with a frozen pre-trained ImageNet (Deng et 
al., 2009) model base. This allows the user to take advantage of transfer learning for lower-level 
features (Huh et al., 2016). Once stabilised, the system can then fine-tune a par�ally (or fully) 
unfrozen model, with the number of CNN blocks unfrozen being dependent on how much new data 
is available for re-training and fine-tuning. This approach also means that new expert-iden�fied snips 
can be easily incorporated into the workflow, to improve upon exis�ng pre-trained classifier models 
progressively using mul�ple stages of transfer learning. We demonstrate the features of this 
approach using an example data set from our own work: see (iv) Case Study and (v) Vignetes, below. 

We include two forms of regularisa�on to mi�gate over-fi�ng (Santos and Papa, 2022). First, 
stochas�c dropout is used to promote model generalisa�on by randomly se�ng a subset of outputs 
in a layer to zero during training. Second, we use random image augmenta�on techniques to 
increase the diversity of the training data (Xu et al., 2023). These techniques include cropping, 
zooming, flipping, adding noise, blurring, and adjus�ng brightness and contrast, as well as applying 

 
4 htps://www.tensorflow.org/guide/keras 
5 htps://pytorch.org 
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affine transforma�ons. In the MEWC configura�on file, formated in YAML6, these regularisa�on 
techniques can be staged across epochs. This allows for progressively intensifica�on of the 
regularisa�on as the model training advances, par�cularly as the training loss decreases and the risk 
of over-fi�ng increases. Many other model parameters can also be specified in the YAML file which 
can be simply overridden by se�ng environment variables, as detailed in the Vignete examples (see 
below). 

Field-Service Prediction: These steps are cri�cal for the transla�on and interpreta�on of the classified 
images to their use and analysis. For this phase we have defined three chained steps: ‘Predict’, ‘Box’ 
and ‘Annotate’. ‘Predict’ uses the trained classifica�on model to output categorical predic�ons for 
each animal snip. ‘Box’ and ‘Annotate’ then draw coloured bounding boxes around animals on the 
original camera-trap images, and also add model predic�ons (writen to the EXIF image metadata), 
respec�vely. This prepares the images for import into camera-trap organisa�onal so�ware. Predict 
also writes all classifica�on data to a .CSV file in a form suitable for analysis in, for example, R. 

(ii) Docker Containers for deployment and distribution 

We use Docker to underpin the MEWC pipeline. Docker is a free-to-use, open-source so�ware-
management system that automates the deployment of applica�ons inside portable containers 
(Miell and Sayers, 2019). It is cross-pla�orm and handles all of the so�ware and code dependencies 
automa�cally, which greatly simplifies to use of complex so�ware-installa�on setups. It can be run 
using simple commands. Using Docker, all libraries, and drivers (such those requiring the NVIDIA 
CUDA development kit7 for harnessing the power of GPUs), can be deployed as needed in the 
background, rather than requiring the user to follow a series of highly technical installa�on steps and 
compa�bility checks. Docker allows applica�ons to be distributed as downloadable Docker image 
files, hosted via Docker Hub, which are then instan�ated and run locally as containers—lightweight 
so�ware layers that contain all dependencies, code, and configura�on required to run an applica�on.  

In prac�cal terms, this means ecologists using our AI pipeline, whether for model training or just 
classifica�on using a default model, only need to download and install a single applica�on: Docker. 
For the command-line interface, the user can choose from PowerShell (Windows) or bash (Linux, 
Mac) to act as a simple, flexible, yet powerful and customisable interface to the Docker components. 
In its default form, MEWC via Docker requires the user to issue only a few simple, reproducible 
commands, to trigger the orchestra�on scripts, which then do all the required work for the user. 

While each of the Docker containers (for Detec�on, Snipping, Training, Inference, and Predic�on) are 
self-contained, a run of the en�re pipeline can be orchestrated from a PowerShell or bash script. In 
this way a single script command iterates through a full field service consis�ng of mul�ple 
sites/cameras, iden�fies any animals in the images, reports classifica�on predic�ons, and annotates 
the camera-trap images that contain animals by drawing bounding boxes and adding AI-predic�on 
informa�on. The end result of using this container system is that all a user (ecologist, natural-
resource manager, ci�zen scien�st) needs to do to create and run a sophis�cated, customised deep-
learning classifier is to: (i) set some configura�on files (or accept the defaults), (ii) supply the training 
images in labelled folders and the path to these, and (iii) click-to-run a PowerShell or Bash script.  

 
6 htps://yaml.org 
7 htps://developer.nvidia.com/cuda-toolkit 
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Both the code, developed in Python and PowerShell/Bash, and applica�ons which are managed and 
distributed seamlessly by Docker, are made available for download and non-commercial modifica�on 
from publicly accessible repositories (GitHub for code: htp://github.com/zaandahl/mewc, and a 
delivery-and-update mode for applica�on containers via Docker Hub; see Appendix). 

We have also included the ability to run MEWC on a virtual machine (VM), to take advantage of high-
performance cloud compu�ng (Fig. 2). We used as our exemplar the Australian Research Data 
Commons ‘Nectar’ Research Cloud8, but it would work with any similar government/research or pay-
per-use commercial infrastructure (e.g., Azure, AWS, Lambda etc.). To deploy the MEWC pipeline, we 
use two Infrastructure-as-Code tools: (i) Terraform9, to provision the VM and set up the networking, 
storage, etc., and then (ii) Ansible10, to install Docker on the VM and pull the Docker images. Both 
tools are used in tandem to create a robust, automated deployment pipeline. In our vignete 
(Supplementary Informa�on), we provide a full worked example from the user’s perspec�ve. 

 

 

Figure 2. Workflow for the MEWC infrastructure pipeline, illustra�ng how this allows for a seamless 
deployment to a local or Virtual Machine (VM), for both model training and field-service inference. 
The process for a typical user is high-level and therefore very straigh�orward. Behind the scenes, the 
developer uses GitHub Ac�ons as a con�nuous integra�on / con�nuous deployment pipeline for 
pushing code and version changes to GitHub, which are then drawn on to build an up-to-date Docker 
image. With new code updates (e.g., v1.0.1 in the example), the Docker image is pushed to 
DockerHub, where it is public and available to be pulled down by the user, to either a local GPU-
enabled computer or a cloud-based resource (a VM) on a service such as Nectar (in Australia) or 
Amazon Web Services (commercial). From there, the user can undertake classifier training or service 
predic�on. The code-as-infrastructure tools Terraform and Ansible are used to build and tear down 

 
8 htps://ardc.edu.au/services/ardc-nectar-research-cloud 
9 htps://www.terraform.io 
10 htps://www.ansible.com 

http://github.com/zaandahl/mewc
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remote-cloud environments as required, thereby minimising costs by ensuring that images are never 
le� to idly consume compute resources. See text for specific defini�ons of packages and services. 

 

(iii) Integration of MEWC with the Camelot Database 

Camelot is an open-source camera-trapping so�ware tool for wildlife researchers and 
conserva�onists (Hendry and Mann, 2018). Camelot serves as a widely used database for viewing 
and expert-tagging camera-trap photos, tracking site-species data, and facilita�ng preliminary data 
analyses. Its compa�bility with various opera�ng systems (Windows, MacOS, Linux) and its user-
friendly interface makes it a favoured choice for integra�on with MEWC. Our solu�on exploits 
Camelot’s ability to read and search image metadata tags, by wri�ng the AI-classifica�on informa�on 
to each image’s EXIF. This eliminates the need for any modifica�ons to the Camelot so�ware and 
streamlines the process of moving from AI-based classifica�on to expert verifica�on to data analysis.  

In brief, once images are processed and labelled by the MEWC pipeline, the data from each service 
and site can be imported into Camelot as usual. The classifica�ons are automa�cally read and can be 
recovered simply by searching within Camelot for the relevant metadata field. We chose three 
numerical EXIF fields for this purpose: photo-iso-setting for classifica�on (represented by a 
unique integer for each species), photo-exposure-value for confidence, expressed as an integer 
from 01 to 99 (represen�ng the rela�ve percentage confidence that the image is of the target class), 
and photo-fnumber-setting for the number of MegaDetector animal detec�ons (integer). 

Importantly, this integra�on offers a value-added workflow that not only leverages the advanced 
machine-learning capabili�es of MEWC but also benefits from the robust database management, 
ini�al analysis features, and output forma�ng of Camelot. For the user, this means a comprehensive, 
‘full-stack solu�on’ for camera-trap-based wildlife monitoring, all within an open-source ecosystem. 

(iv) Case Study: Building a Classifier and Processing a Camera Service for Tasmanian Wildlife 

We demonstrate the en�re MEWC workflow using an example camera-trap dataset collected and 
curated by two of the authors (BWB and JCB) from Tasmania, Australia11. These images are drawn 
from a wide variety of environmental contexts (dry and wet temperate eucalypt forest, woodland, 
and grasslands) using white-, infra-red (IR) and no-glow flash types from Cuddeback, Reconyx, Swi� 
and Bushnell cameras. The following species or aggregated classes are represented in the dataset: 
Tasmanian Pademelon (Thylogale billardierii), Bennets Wallaby (Notamacropus rufogriseus), 
Tasmanian Devil (Sarcophilus harrisii), Feral Cat (Felis catus), Bare-nosed Wombat (Vombatus 
ursinus), Brushtail Possum (Trichosurus vulpecula), Fallow Deer (Dama dama), Southern Brown 
Bandicoot (Isoodon obesulus), Currawong (Black: Strepera fuliginosa, Grey: S. versicolor) and 
Bronzewing (Brush: Phaps elegans, Common: P. chalcoptera). The later two classes are birds, each of 
which consist of an aggrega�on of two species within a genus; the former eight are mammals. 
Images of each of these species is shown in Fig. 3, bounded by red detec�on boxes. 

For implemen�ng the classifier training, we provide 4 000 train and 1 000 test images for each of 10 
different classes, for a total of 50 000 expert-labelled snips (each sized at 600- × 600-pixel, a�er being 
extracted from their original images using the MEWC-Snip tool). Then, for demonstra�ng the 
detec�on, inference, and post-processing pipelines (EXIF wri�ng and image sor�ng), we provide a 

 
11 htps://dx.doi.org/10.25959/wm5g-b990 
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sequence of 100 images for each of four field cameras that were not used in training, located on the 
lead author’s rural property in southern Tasmania: C3: IR flash, C7: white flash, C15: no-glow flash 
and C21: inbuilt IR flash. Other than the target wildlife, these images include some representa�ons of 
blank images, humans (the lead author), and vehicles (trail-bike motorcycle), to demonstrate the four 
broad classes designated by the MegaDetector prior to classifica�on on the animal images. 

This case-study is not meant to be representa�ve of most real-world cases (e.g., typically there will 
be more species to classify within a study region, and with an unbalanced number of images per 
species). It is sufficient, however, to showcase all of the major features of the MEWC framework and 
can be used as a template for users to get a hands-on experience of classifier training. Moreover, it 
demonstrates that the default configura�on se�ngs for the classifier will produce robust results ‘out 
of the box’, whilst acknowledging that dedicated hyper-parameter tuning might further improve 
results. The training, test and inference data for the case study is available on the UTas Data 
repository, with a link on the GitHub site (see footnotes above). 

 

 

Figure 3. Images of wildlife from camera traps in Tasmania (the 10-species Case Study). Shown, le�-
to-right, are top:  Tasmanian Devil (na�ve predator), Feral Cat (introduced predator), Tasmanian 
Pademelon, Bennets Wallaby and Bare-Nosed Wombat (na�ve herbivores); botom: Fallow Deer 
(introduced herbivore), Southern Brown Bandicoot and Brushtail Possum (na�ve omnivores), Grey 
Currawong and Brush Bronzewing (na�ve birds). Red bounding boxes are imprinted on the image 
a�er running the ‘MegaDetector’ wildlife detector. See main text for scien�fic names. 

 

(v) Vignette 

We include, as an Appendix, a short vignete that guides users on how to implement a basic MEWC 
training and inference workflow, using the case-study data as the example. Other more detailed 
examples are provided on MEWC’s GitHub site, which demonstrate how to: (a) use a labelled 
collec�on of snipped images (sorted into species folders) to train and deploy a customised image-
classifier model, and (b) set up a VM and infrastructure in the ARDC Nectar Cloud, for efficient model 
training and inference. We note that the training procedure on a cloud server are nearly iden�cal to 
training on a local GPU machine set up as a VM with Linux (na�vely or with WSL12). 

 

 
12 htps://learn.microso�.com/en-us/windows/wsl 
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Results 

Here we demonstrate the results of applying MEWC to the case-study dataset. This is simply meant 
to be illustra�ve of the level of performance one might expect by using the system on a typical 
camera-trap dataset: in this case, a balanced dataset of 10 species and 50 000 labelled images. 
Models trained on smaller datasets and/or more speciose communi�es (especially with closely 
related taxa and many rare species) are likely to be less reliable at generalising to new contexts, 
whereas those that can leverage even larger number of expert-classified images (e.g., from past 
efforts at manual classifica�on) would likely yield even beter outcomes than we report. 

Classifier Training and Validation 

We trained four CNN models (EfficientNet’s B0, V2S, V2M and V2L) on two computer systems:  

System A is a mid-range desktop machine-learning setup, now a few years out-of-date (as of 2023), 
but nonetheless typical of what many users might have available. It consists of 8 × i7-9700K CPU 
cores, 16 GB RAM and 2 × NVIDIA RTX 2080 GPUs, each with 8 GB of onboard RAM (these are the 
most meaningful specifica�ons for deep learning). Note that when training the classifier or doing 
inference, MEWC can take advantage of mul�ple GPU run in parallel via hierarchical mirroring in 
TensorFlow. However, the other step that uses a GPU (detect) can only use one GPU per instance.  

System B is hosted on a virtual machine (ARDC Nectar Cloud), with 64 × VCPUs (Intel Xenon Icelake), 
128 GB RAM, and a single NVIDIA A100 GPU with 40 GB of on-board RAM. 

The compara�ve results are detailed in Table 1. Mini-batch sizes for System A needed to be reduced 
from the baseline of 128 images as model size increased, due to GPU-RAM limita�ons, whereas for 
System B only the largest model required a reduc�on in mini-batch size. System B typically trained 
the models five to six �mes faster than System A, illustra�ng the value of having access to high-
performance cloud infrastructure, with fewer computa�onal botlenecks. Yet even with the rela�vely 
modest System A, a high-performing model could be trained on 50 000 images in less than a day. 

 

Table 1. Training performance of the MEWC classifier on two different computer systems, using 40 
000 images from the Case Study dataset. System A is a mid-range GPU-equipped desktop computer, 
and B is a high-performance cloud-based virtual machine. The ini�al convolu�onal neural network 
(CNN) weights come from ImageNet pre-training, a form of transfer learning. Size (px) is the input 
image size in pixels (a square crop), Batch is the mini-batch size used during training (larger is faster 
but more memory intensive), Frozen is the �me in seconds required for each epoch (a pass over the 
en�re dataset) for the first stage of training when only the top classifier is trained to stabilisa�on and 
the base CNN model (an EfficientNet variant) has its weights frozen (run for 5 to 10 epochs: a full 
pass of the data). Train is the second stage when the top two convolu�on blocks are unfrozen, such 
that these neurons can be trained at a low learning rate so as to fine-tune the final model weights. 
Best Epoch is the that which resulted in the lowest valida�on loss, and Total Training is the length of 
�me required to complete the Frozen epochs and the Train epochs up to the Best Epoch. 

EfficientNet CNN   Epoch time (s)   
A: 2 × RTX 2080 GPU1 Size (px) Batch  Frozen Train Best Epoch Total Training 
B0 224 128 108 133 42 1h 51m 6s 
V2S 300 48 228 472 44 6h 24m 8s 
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V2M 384 32 589 951 35 10h 52m 55s 
V2L 480 12 1331 3213 31 1d 7h 21m 53s 

       
B: A100 GPU2       
B0 224 128 11 24 42 18m 38s 
V2S 300 128 45 103 44 1h 23m 2s 
V2M 384 128 131 219 35 2h 29m 35s 
V2L 480 64 351 594 31 6h 5m 24s 

       
1Alienware PC: 2 × NVIDIA RTX 2080 GPU (8 GB RAM each), 16 × i7 CPU, 16 GB system RAM 
2ARDC Nectar Virtual Machine: NVIDIA A100 GPU (40 GB RAM), 64 VCPU, 128 GB RAM 

 

As illustrated in Table 2, all models formed well on the 10 000 held-out test images of the case-study 
dataset. The best-performing was the moderately sized V2S, with an input-image size (snip) of 300 
pixels, and 20.4 million parameters. Its lowest valida�on loss came a�er 44 epochs of training (an 
epoch is a full pass over all training data) and resulted in a 99.53% classifica�on accuracy based on 
the. The smaller B0 model was underfit (as revealed by its lower test accuracy), whereas the 
addi�onal representa�onal power offered by the wider and deeper neural networks of V2M and V2L 
could not be sufficiently leveraged by a dataset the size of the case study (i.e., they were overfit, 
despite regularisa�on via stochas�c dropout and random augmenta�ons). This result underscores 
the u�lity of even modest-sized CNNs for the task of wildlife classifica�on, and of matching the 
model choice to the quan�ty and quality of the available informa�on. That said, further tuning of the 
regularisa�on hyper-parameters would likely improve the results for all the models. 

 

Table 2. Test performance of each trained EfficientNet convolu�onal neural network model (see 
Table 1), using 10 000 images from the Case Study that were held back from model training. Size (px) 
is the dimensions in pixels of the input image (cropped by the MegaDetector). Test loss func�on is 
categorical focal loss (lower is beter), and the test accuracy is the propor�on of images where the 
correct species (out of 10 possible candidates) was the top-ranked selec�on. 

EfficientNet CNN Size (px) Test Loss Test acc. 
B0 224 0.0085 0.9878 
V2S 300 0.0043 0.9953 
V2M 384 0.0055 0.9941 
V2L 480 0.0056 0.9911 
V2L-Frozen 480 0.0250 0.9588 

 

Note also that one of the fastest model op�ons to train was actually V2L when only the final 
classifica�on layer (the ‘model top’) was fit to the case-study dataset, with all of the deeper CNN 
layers being le� ‘frozen’ from their ImageNet baseline. On system B this could be trained for 5 
epochs at 351 seconds per epoch, for a total training �me of ~30 minutes, and yet this s�ll yielded a 
test classifica�on accuracy of 95.88 %. This highlights the boost given by model pre-training and 
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corresponding transfer learning. Wildlife-image classifica�on need never start from scratch. But the 
final result for V2S nonetheless underscores the value of fine-tuning the deeper CNN blocks. 

Detection and Inference 

Applying MEWC’s detec�on-inference workflow to the example field cameras (4 × 100 images): 

(i) MegaDetector correctly iden�fied 394 animals, 16 blank images, 11 people and 3 vehicles. All 
animal images with more than one individual present were correctly located (26 images). There was 
1 image falsely labelled as a blank, and 2 animals missed by the detector in two mul�-animal images 
(the other target was correctly detected). In one case a person was misatributed to the animal class, 
because only the boots were detected. The sensi�vity of MegaDetector can be changed in the YAML 
configura�on file, acknowledging the trade-off between misses and false detec�ons. 

(ii) For the 394 valid animal detec�ons, the 10-species ENv2S model made 6 errors (with never more 
than two errors per class), for an overall classifica�on accuracy of 98.5% on the new camera-service 
data. Most errors were difficult ‘edge cases’, where neither a human expert nor a machine-learning 
model will do well due to insufficient image clarity, and this resulted in typically low classifica�on 
probabili�es for these images (Fig. 4). Each error is also documented (with image name) in the 
Appendix (vignete). One image contained a species not represented in the training data (an echidna, 
Tachyglossus aculeatus): this was assigned to the Bronzewing class, with low probability (0.39). This 
shows that when input data are out-of-scope, the ‘next best’ classifica�on will be chosen. 

 

Figure 4. Examples of the few detector and classifier errors on the four field-camera datasets, which 
had 100 images per camera. (i) The animal (a Tasmanian pademelon) was not detected, probably due 
to the obscuring mist. (ii) The front bird (a bronzewing) was detected, but the back one was not. (iii) 
Misclassifica�on, due to most of the animal being missing (was classified as a bare-nosed wombat, 
which has a flat face, instead of a Tasmanian pademelon). (iv) Misclassifica�on, probably because the 
brushtail possum has alopecia on the tail, making it resemble that of a Tasmanian devil tail. (v) 
Misclassifica�on, with the fallow deer nose being too close to the camera and appearing similar to a 
Bennet’s wallaby nose. (vi) Boots worn by the person checking the camera, falsely classed by 
MegaDetector as an animal, and then assigned as a currawong (a black bird) by the classifier. 
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Table 3. Example of the CSV file generated a�er running the detec�on, snip, and inference steps of MEWC, shown here for one of the evalua�on dataset of 
field cameras (HR-C3). The subscript a�er the ‘filename’ allows for mul�ple snips per image (indexed from 0 and listed one per row). The ‘class_id’ is an 
integer classifica�on writen to the ISO field of the image’s metadata, and ‘prob’ is the deep-learning model’s probability of the classifica�on (rela�ve to all 
other possible classes), writen to the metadata’s Exposure field as a two-digit integer (e.g., 99). Also given is the ‘class name’ (specified, along with the 
class_id, in a configura�on YAML file), a ‘rand_name’ assigned to each snip (random combina�on of ASCII characters, to allow for snip pooling for later use in 
classifier training, without duplicate filenames), the date-�me of the original image ‘date_�me_orig’, and the MegaDetector confidence of the bounding-box 
object ‘conf’. Note that the user can specify whether to show only the top-ranked class, or to show the probabili�es for all classes in the model (which 
provides for more fine-grained classifica�on informa�on, at the cost of a larger file size). 

 

filename class_id prob class_name rand_name date_time_orig conf 
hr_c3_1-0.JPG 1 0.990756 tasmanian_pademelon Sz3E6hbA72Z4LvIq.JPG 2023:05:14 02:48:26 0.926 
hr_c3_2-0.JPG 4 0.998375 brushtail_possum 8QF1G8NfJaoHBTNp.JPG 2023:05:14 18:26:48 0.934 
hr_c3_3-0.JPG 1 0.992052 tasmanian_pademelon izYy2Ok3oPDpf3sm.JPG 2023:05:16 05:05:12 0.947 
hr_c3_4-0.JPG 1 0.996194 tasmanian_pademelon g9vajIa26vFXrjXK.JPG 2023:05:16 17:50:40 0.881 
hr_c3_5-0.JPG 1 0.914644 tasmanian_pademelon evThO27qscaHh1TX.JPG 2023:05:17 04:04:12 0.792 
hr_c3_6-0.JPG 2 0.998748 bennetts_wallaby wAMGyn3AdrxFgLzO.JPG 2023:05:17 06:37:16 0.938 
hr_c3_7-0.JPG 4 0.998264 brushtail_possum RU1V5BmrruZ0S04b.JPG 2023:05:17 23:08:52 0.964 
hr_c3_8-0.JPG 6 0.999578 bare_nosed_wombat mjipciLeV28lEoBa.JPG 2023:05:18 00:05:26 0.891 
hr_c3_9-0.JPG 4 0.999596 brushtail_possum vkvqhVoL3FNosyne.JPG 2023:05:18 20:44:28 0.948 
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Figure 5. Example screenshot from the Camelot camera-trap database so�ware, showing the use of the MEWC-encoded meta-data to automa�cally sort the 
images by species. This allows for efficient viewing and bulk valida�on by human experts following the preliminary machine classifica�on (if deemed 
necessary). In this example the species code (#3) for the Tasmanian Devil is writen to the ISO field of the metadata and can be searched in Camelot without 
any modifica�ons to this so�ware. This system also works well in other popular image-tagging so�ware such as ExifPro13 or Timelapse14. 

 

 
13 htps://www.exifpro.com 
14 htps://saul.cpsc.ucalgary.ca/�melapse 
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Table 3 gives an example of the model-proposed classifica�on informa�on for each image, writen to 
a CSV file by the inference step. This can be useful for impor�ng into ecological so�ware (e.g., a R 
script) for direct analysis. It is also used in the annotate step of MEWC, wherein the classifica�on 
data are writen to the image metadata. This metadata informa�on is then available for searching 
within the Camelot camera-trap image management database, as illustrated in Fig. 5, wherein the 
user is offered a preliminary classifica�on of each image, which can then be expert-verified. 

 

Discussion 

As the use of automated sensors becomes increasingly prevalent in ecology, there is a concomitant 
need to develop efficient ways collate and label the resul�ng large datasets (Steenweg et al., 2017; 
Borowiec et al., 2022). For wildlife monitoring, camera traps have become indispensable tools for 
capturing ‘big data’ on habitat occupancy, popula�on dynamics, and conserva�on efforts (Hampton 
et al., 2013; Chris�n et al., 2019). Although useful ar�ficial-intelligence-driven solu�ons for 
automa�cally processing camera-trap data are now available (e.g., Wildlife Insights: Ahumada et al., 
2020), there are many circumstances where this third-party offering, delivered via a universal online 
portal, is not ideal (Vélez et al., 2023). Reasons include ongoing cost, data-privacy constraints, and a 
lack of flexibility, such as the inability to train custom classifiers that can be tailored to specific 
wildlife communi�es. Here we have described a user-friendly but extensible AI approach (MEWC) 
that addresses all of these concerns. Its open-source pipeline leverages advanced computer-vision 
techniques for object detec�on and classifica�on, but it also keeps the details abstracted away for 
most users. Not only is MEWC easy to use and train with typical camera-trap datasets—as 
demonstrated in the fully replicable case study—it also offers a flexibility in deployment; capable of 
running on local desktops or cloud-based virtual machines. At its core, MEWC democra�ses the use 
of deep learning in wildlife-image processing, by delivering a solu�on that is accessible to a broad 
audience: professional ecologists, prac��oners, and ci�zen scien�sts. 

For anything beyond basic tasks, the capacity to tailor so�ware to specific research aims is a 
necessity (Nowak et al., 2018; Fordham et al., 2021). With its modular architecture, MEWC is 
designed such that each component—from image pre-processing to final classifica�on and expert 
valida�on—can be plugged in or out, lending itself to high adaptability for a wide range of tasks 
associated with processing camera-trap imagery. For instance, se�ng configura�on via environment 
variables enables users to calibrate object detec�on se�ngs or use progressive fine-tuning to adapt 
the model to new data to meet specialised needs, all by simply modifying a single text file of se�ngs. 
Customisa�on is thus not confined to those proficient in programming: it offers intui�ve controls, 
and its "code-lite" approach bypasses the otherwise daun�ngly steep learning curve associated with 
implemen�ng customised AI-classifier workflows from scratch. Our commitment to accessibility 
extends beyond MEWC’s user interface. Deployment is straigh�orward, thanks to Docker containers 
that encapsulate all dependencies, ensuring it works within nearly any modern compu�ng 
environment. Moreover, MEWC is fully compa�ble with the free Camelot database (Hendry and 
Mann, 2018), allowing for a straigh�orward data-exchange process. This interoperability underscores 
MEWC’s role as not just a stand-alone applica�on, but as a part of a broader open-source toolkit. 

Cost-effec�veness and scalability are key features of MEWC. While commercial solu�ons for image 
analysis offer ease of use, they lack the ‘agile’ adaptability and affordability central to MEWC's lean 
design. Indeed, their price structure o�en proves unsustainable. For example, for-profit 
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consultancies typically charge 1 cent per image processed (irrespec�ve of animal or blank)15, which 
for a typical camera study amassing 100-500 thousand (K) images monthly, can escalate to an annual 
expenditure in the range of $10K-$50K. For comparison, MEWC can operate on a mid-range 
dedicated GPU-enabled desktop PC cos�ng ~$5K, with maintenance electricity costs of <$1K yearly. 
The payback period under this scenario is strikingly brief, in the range of 1-6 months. Beyond its 
obvious cost benefits, MEWC does not compromise on technical robustness. Compa�ble with NVIDIA 
GPUs, the system allows accelerated model fi�ng and inference. It also integrates seamlessly with 
arbitrarily expandable cloud-compute pla�orms. This includes both na�onal high-performance 
compu�ng infrastructure (like Nectar in Australia, which is free for research projects that meet 
priority goals, such as environmental sustainability) and commercial offerings for Amazon Web 
Services, Microso� Azure, Lambda, etc., which offer scalability while maintaining cost efficiency. 
When training or inference is run on a cloud provider, we have, by default, configured Terraform and 
Ansible to build the virtual machine on demand, and tear it down immediately upon job comple�on. 
This avoids any unexpected ongoing costs that can be incurred by idle so�ware as infrastructure. 
Performance metrics further bolster its appeal. While exact figures will depend on specific 
configura�ons and ecological foci, MEWC’s combina�on of speed, accuracy, and customisability (see 
Case Study)—for tasks ranging from fine-tuning classifiers based on curated local species lists (to 
avoid misclassifica�ons of irrelevant species) or even for ‘mining’ historical camera-trap data—sets it 
apart from online portals. This is cri�cal for projects where nuanced detec�on can significantly 
inform conserva�on strategies. If using cloud deployment, the system’s architecture permits mul�ple 
users within an organisa�on to deploy it simultaneously without encountering botlenecks.  

Released under a CC-BY-NC 4.0 crea�ve commons license16, we have made MEWC an open-source 
project to encourage community-driven enhancements—enabling an evolving, synergis�c solu�on 
far removed from the rigidity of commercial alterna�ves. This also allows for full transparency in 
project maintenance, release of so�ware updates, and ongoing capability improvements (Fitzgerald, 
2006). These will be informed by end-user feedback and seek to incorporate new technical 
developments as they arise, ensuring that MEWC remains at the cu�ng-edge while maintaining its 
user-friendly ethos. Both the code and pre-built containerised applica�ons are publicly available for 
download and customisa�on, from GitHub for the code base, to Docker Hub for distribu�on. This 
architecture ensures that even individuals with no specialised programming skills or knowledge of 
deep-learning can effec�vely engage with the system to classify and label their extensive camera-
trap datasets. It also allows researchers to retain full control over their data, ameliora�ng concerns 
over data privacy and jurisdic�on. As such, MEWC represents a pragma�c and holis�c solu�on, 
merging performance, customisability, and financial accessibility, in one robust package. 

Beyond its primary role in mul�-species classifica�on tasks, MEWC could also be used to develop 
further automated data breakdowns, such as within-species categorisa�on based on visual 
morphology. For example (Chen et al., 2019; Ferreira et al., 2020; Clapham et al., 2022), computer 
vision can be effec�ve for automa�cally iden�fying an individual’s gender (for sexually dimorphic 
species), diagnosing infec�on status for diseases with visibly diagnos�c symptoms (e.g., alopecia, 
Devil Facial Tumour Disease), determining colour or patern morphs for species with dis�nct 
markings, or tracking prey use for invasive species (e.g., denning female cats will carry small prey 

 
15 A $ figure like this can be obtained by reques�ng quotes for bulk image processing from various commercial 
opera�ons; however, our inten�on here is not to target specific companies, so we have not cited any specifics. 
16 htps://crea�vecommons.org 
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items back to their kitens). All that is required to undertake these tasks with MEWC is to train a 
classifier with labelled examples of these feature categories, and then the species and state 
classifiers can be daisy-chained to achieve the desired hierarchical classifica�on. New modules could 
be readily added to MEWC to allow the system to alterna�vely train a mul�-output model that does 
both classifica�ons simultaneously, or to automa�cally do ecological analysis on the CSV output files. 

There will be cases where no (or few) labelled training data exist for a new classifica�on task. In such 
cases, MEWC can s�ll bootstrap new-image labelling, using an approach called ac�ve learning 
(Norouzzadeh et al., 2021). For example, a sample of raw camera data can be run through the detect 
and snip modules (see Fig. 1) to create a pre-formated batch of snips. These can then be manually 
sorted by bulk viewing them in an image browser and using drag-and-drop to allocate them into 
labelled folders. If tagged images are available (with the tags writen, for instance, to a text file or the 
image metadata), then a Python or Bash/PowerShell script can be used to pre-sort the images and 
then detect-and-snip can be used to extract the final training images. Online biodiversity databases 
like gbif.org, inaturalist.org and ebird.org also contain many suitable labelled images that can be used 
to kick-start a customised classifier. Therea�er, a preliminary classifier model can be used to classify 
new data and suggest classifica�ons for another round of snips, allowing for a semi-supervised 
approach facilita�ng a rapid expansion of the pool of labelled training data, in an itera�ve fashion.  

The prac�cal demand for a system like MEWC is clearly high (Steenweg et al., 2017; Vélez et al., 
2023). From the external end-user perspec�ve, many agencies are seeking to adopt new approaches, 
to enhance the cost-effec�veness of their �me-sensi�ve efforts in conserva�on monitoring (e.g., for 
threatened species detec�on, community composi�on, or turnover across sites in different 
landscape contexts, or for invasive-species management) (Nowak et al., 2018). Natural Resource 
Management organisa�ons now rou�nely use camera traps for responding to suspected incursions 
of invasive vertebrates, as a follow-up tool to confirm eradica�on, for general site surveillance, and 
for confirma�on of rare species’ presence. To make use of wildlife cameras in these monitoring roles, 
the major botleneck has been the expert �me required for image labelling (Nguyen et al., 2017). An 
easy-to-deploy AI-based approach like MEWC, which can be custom built for each task, offers the 
capacity to rapidly extract and automa�cally analyse ecological informa�on from bulk collec�ons of 
raw image data. This holds enormous poten�al rapid responses, as the data-processing step a�er 
retrieval of field imagery becomes almost instantaneous, yet robust (Whytock et al., 2021). 

Conclusion 

The MEWC workflow is a modern tool for ecological and conserva�on research, offering a 
comprehensive, customisable, and freely available solu�on for classifying wildlife-image data. 
Bridging the latest AI tools in computer vision with an intui�ve user experience, its modular design 
and cloud-compu�ng compa�bility invite scalability and adaptability. Beyond immediate applica�ons 
in species classifica�on, MEWC's architecture is future-proofed, capable of accommoda�ng new 
analy�cal modules for nuanced tasks, from within-species breakdowns to disease surveillance. Our 
commitment to open-source development ensures that MEWC will con�nue to evolve through 
community input, promo�ng highly customisable approaches to working with camera-trap data sets. 

 

  



Brook et al. 2023. A user-friendly AI workflow for customised wildlife-image classification. EcoEvoRxiv. 

 
 

18 
 

Acknowledgements 

This work was funded by the Australian Research Council through projects FT160100101 and 
CE170100015 to BWB. Hardware and virtual machine Infrastructure support was provided through 
Australian Research Data Commons Nectar Research Cloud, funded by the Australian government 
and the University of Tasmania’s High Performance Compu�ng facility (tpac.org.au). 

 

Code and Data Availability 

Code (open source): htp://github.com/zaandahl/mewc 

Data: Brook, B, Buettel, J (2023) Mega-Efficient Wildlife Classifier (MEWC) Case Study. 
https://dx.doi.org/10.25959/wm5g-b990    
 

Author Contribu�ons 

BWB wrote the manuscript, collected the primary data, generated the results and co-designed / co-
wrote the code. JCB co-conceived the project, collected the data, and commented on the 
manuscript. RZA lead the code development and commented on the manuscript. 

 

References 

Ahumada, J. A., Fegraus, E., Birch, T., Flores, N., Kays, R., O’Brien, T. G., Palmer, J., Schutler, S., Zhao, 
J. Y. & Jetz, W. (2020) Wildlife insights: A pla�orm to maximize the poten�al of camera trap 
and other passive sensor wildlife data for the planet. Environmental Conservation, 47, 1-6. 

Beery, S., Morris, D. & Yang, S. (2019) Efficient pipeline for camera trap image review. arXiv preprint 
arXiv:1907.06772. 

Boitani, L. (2016) Camera trapping for wildlife research. Pelagic Publishing Ltd. 
Borowiec, M. L., Dikow, R. B., Frandsen, P. B., McKeeken, A., Valen�ni, G. & White, A. E. (2022) Deep 

learning as a tool for ecology and evolu�on. Methods in Ecology and Evolution, 13, 1640-
1660. 

Bubnicki, J. W., Churski, M. & Kuijper, D. P. (2016) Trapper: An open source web-based applica�on to 
manage camera trapping projects. Methods in Ecology and Evolution, 7, 1209-1216. 

Chen, R., Litle, R., Mihaylova, L., Delahay, R. & Cox, R. (2019) Wildlife surveillance using deep 
learning methods. Ecology and Evolution, 9, 9453-9466. 

Chollet, F. (2021) Deep learning with Python. Simon and Schuster. 
Chris�n, S., Hervet, É. & Lecomte, N. (2019) Applica�ons for deep learning in ecology. Methods in 

Ecology and Evolution, 10, 1632-1644. 
Clapham, M., Miller, E., Nguyen, M. & Van Horn, R. C. (2022) Mul�species facial detec�on for 

individual iden�fica�on of wildlife: a case study across ursids. Mammalian Biology, 102, 943-
955. 

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. & Fei-Fei, L. (2009) Imagenet: A large-scale hierarchical 
image database. 2009 IEEE conference on computer vision and pattern recognition, pp. 248-
255. Ieee. 

Falzon, G., Lawson, C., Cheung, K.-W., Vernes, K., Ballard, G. A., Fleming, P. J. S., Glen, A. S., Milne, H., 
Mather-Zardain, A. & Meek, P. D. (2020) ClassifyMe: A Field-Scou�ng So�ware for the 
Iden�fica�on of Wildlife in Camera Trap Images. Animals, 10, 58. 

http://github.com/zaandahl/mewc
https://dx.doi.org/10.25959/wm5g-b990


Brook et al. 2023. A user-friendly AI workflow for customised wildlife-image classification. EcoEvoRxiv. 

 
 

19 
 

Ferreira, A. C., Silva, L. R., Renna, F., Brandl, H. B., Renoult, J. P., Farine, D. R., Covas, R. & Doutrelant, 
C. (2020) Deep learning-based methods for individual recogni�on in small birds. Methods in 
Ecology and Evolution, 11, 1072-1085. 

Fitzgerald, B. (2006) The transforma�on of open source so�ware. MIS quarterly, 587-598. 
Fordham, D. A., Haythorne, S., Brown, S. C., Buetel, J. C. & Brook, B. W. (2021) poems: R package for 

simula�ng species' range dynamics using patern-oriented valida�on. Methods in Ecology 
and Evolution, 12, 2364-2371. 

Greenberg, S., Godin, T. & Whi�ngton, J. (2019) Design paterns for wildlife-related camera trap 
image analysis. Ecology and Evolution, 9, 13706-13730. 

Hampton, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, A. E., Batcheller, A. L., Duke, C. S. 
& Porter, J. H. (2013) Big data and the future of ecology. Frontiers in Ecology and the 
Environment, 11, 156-162. 

Hendry, H. & Mann, C. (2018) Camelot—intui�ve so�ware for camera-trap data management. Oryx, 
52, 15. 

Huh, M., Agrawal, P. & Efros, A. A. (2016) What makes ImageNet good for transfer learning? arXiv 
preprint arXiv:1608.08614. 

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012) Imagenet classifica�on with deep convolu�onal 
neural networks. Advances in neural information processing systems, 25. 

LeCun, Y. & Bengio, Y. (1995) Convolu�onal networks for images, speech, and �me series. The 
handbook of brain theory and neural networks, 3361, 1995. 

Miell, I. & Sayers, A. (2019) Docker in practice. Simon and Schuster. 
Nguyen, H., Maclagan, S. J., Nguyen, T. D., Nguyen, T., Flemons, P., Andrews, K., Ritchie, E. G. & 

Phung, D. (2017) Animal recogni�on and iden�fica�on with deep convolu�onal neural 
networks for automated wildlife monitoring. 2017 IEEE international conference on data 
science and advanced Analytics (DSAA), pp. 40-49. IEEE. 

Norouzzadeh, M. S., Morris, D., Beery, S., Joshi, N., Jojic, N. & Clune, J. (2021) A deep ac�ve learning 
system for species iden�fica�on and coun�ng in camera trap images. Methods in Ecology 
and Evolution, 12, 150-161. 

Nowak, J. J., Lukacs, P. M., Hurley, M. A., Lindbloom, A. J., Robling, K. A., Gude, J. A. & Robinson, H. 
(2018) Customized so�ware to streamline rou�ne analyses for wildlife management. Wildlife 
Society Bulletin, 42, 144-149. 

Pollock, K. H., Nichols, J. D., Simons, T. R., Farnsworth, G. L., Bailey, L. L. & Sauer, J. R. (2002) Large 
scale wildlife monitoring studies: sta�s�cal methods for design and analysis. Environmetrics: 
The official journal of the International Environmetrics Society, 13, 105-119. 

Santos, C. F. G. D. & Papa, J. P. (2022) Avoiding overfi�ng: A survey on regulariza�on methods for 
convolu�onal neural networks. ACM Computing Surveys (CSUR), 54, 1-25. 

Schneider, S., Greenberg, S., Taylor, G. W. & Kremer, S. C. (2020) Three cri�cal factors affec�ng 
automated image species recogni�on performance for camera traps. Ecology and Evolution, 
10, 3503-3517. 

Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton, C., Townsend, S. E., 
Carbone, C., Rowcliffe, J. M. & Whi�ngton, J. (2017) Scaling-up camera traps: Monitoring 
the planet's biodiversity with networks of remote sensors. Frontiers in Ecology and the 
Environment, 15, 26-34. 

Tabak, M. A., Norouzzadeh, M. S., Wolfson, D. W., Sweeney, S. J., VerCauteren, K. C., Snow, N. P., 
Halseth, J. M., Di Salvo, P. A., Lewis, J. S. & White, M. D. (2019) Machine learning to classify 
animal species in camera trap images: Applica�ons in ecology. Methods in Ecology and 
Evolution, 10, 585-590. 

Tan, M. & Le, Q. (2021) Efficientnetv2: Smaller models and faster training. International conference 
on machine learning, pp. 10096-10106. PMLR. 



Brook et al. 2023. A user-friendly AI workflow for customised wildlife-image classification. EcoEvoRxiv. 

 
 

20 
 

Vélez, J., McShea, W., Shamon, H., Cas�blanco-Camacho, P. J., Tabak, M. A., Chalmers, C., Fergus, P. 
& Fieberg, J. (2023) An evalua�on of pla�orms for processing camera-trap data using 
ar�ficial intelligence. Methods in Ecology and Evolution, 14, 459-477. 

Whytock, R. C., SŚwieżewski, J., Zwerts, J. A., Bara-Słupski, T., Koumba Pambo, A. F., Rogala, M., 
Bahaa-el-din, L., Boekee, K., Britain, S. & Cardoso, A. W. (2021) Robust ecological analysis of 
camera trap data labelled by a machine learning model. Methods in Ecology and Evolution, 
12, 1080-1092. 

Xu, M., Yoon, S., Fuentes, A. & Park, D. S. (2023) A comprehensive survey of image augmenta�on 
techniques for deep learning. Pattern Recognition, 109347. 

Young, S., Rode-Margono, J. & Amin, R. (2018) So�ware to facilitate and streamline camera trap data 
management: A review. Ecology and Evolution, 8, 9947-9957. 

 

  



Brook et al. 2023. A user-friendly AI workflow for customised wildlife-image classification. EcoEvoRxiv. 

 
 

21 
 

Appendix: Vignette with Tasmanian wildlife data 

Below is a step-by-step example workflow for using the Mega Efficient Wildlife Classifier (MEWC) to 
train a wildlife classification model and use it to make inferences on a new camera service.  
 
In this vignette, we us the Linux operating system (natively, or as a Virtual Machine) for the 
demonstration, where $ represents the Linux command-line prompt. MEWC can, however, also be 
run in Windows PowerShell, or macOS Terminal (Bash), with minor system-appropriate changes.  
 
A full exposition of options is provided at the GitHub site: https://github.com/zaandahl/mewc   
 
Source the data: 
1. Setup the Environment:  
Provision a Nectar A100 GPU cloud instance, or a commercial cloud-compute provider (e.g., 
Lambda), or use your local GPU machine.  
Scripts for Nectar cloud setup can be found at https://github.com/zaandahl/mewc-infrastructure    
 
2. Retrieve and Unpack the Tasmanian Wildlife example dataset:  
Data can be obtained from the UTAS datastore: https://dx.doi.org/10.25959/wm5g-b990 
 
For this example, training and service data are extracted using tar under /mnt/mewc-volume/train/ 
and /mnt/mewc-volume/predict respectively.   
  
Train the classifier model: 
1. Override Default Configuration as Needed:  
Use env variables to override the default EN-B0 model to a more powerful EN-V2S model.  
$ cd /mnt/mewc-volume/train  
 
$ vi params.env  
 
MODEL=EN-V2S # Select EN model to use 
CLW=512 # Set the compression bottleneck size (default 512) 
LUF=360 # Layers to Unfreeze (leave unless you know what you’re doing) 
SHAPES=300,300,300 # Image shape (pixels) per training progression 
BATCH_SIZES=128,128,128 # Reduce to 64, 32 or 16 if memory issues 
 
2. Pull the Latest Docker Image and Initiate Training:  
$ docker pull zaandahl/mewc-train  
 
$ docker run --env CUDA_VISIBLE_DEVICES=0 --gpus all --env-file params.env 
\  
--volume /mnt/mewc-volume/train/data:/data zaandahl/mewc-train  
 
3. Retrieve the Output:  
Post-training files are stored in /data/output: class_list.yaml and the trained model. The model 
filename in this example is: mewc_model_300px_final.h5  
  
  

https://github.com/zaandahl/mewc
https://github.com/zaandahl/mewc-infrastructure
https://dx.doi.org/10.25959/wm5g-b990
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Inference over a new camera service using the trained model:  
1. Copy Model Training Outputs, Pull Docker Images:  
$ cp ./train/data/output/class_list.yaml ./predict/  
 
$ cp ./train/data/output/mewc_model_300px_final.h5 ./predict  
 
$ docker pull zaandahl/mewc-detect; docker pull zaandahl/mewc-snip; docker 
pull zaandahl/mewc-predict; docker pull zaandahl/mewc-exif; docker pull 
zaandahl/mewc-box  
 
$ cd predict  
 
2. Run the Five Stages of the Docker Inference Pipeline on the First Camera in the Service:  
$ docker run --env CUDA_VISIBLE_DEVICES=0 --gpus all \  
--volume /mnt/mewc-volume/predict/Service/HR-C15:/images zaandahl/mewc-
detect  
 
$ docker run --volume /mnt/mewc-volume/predict/Service/HR-C15:/images 
zaandahl/mewc-snip  
 
$ docker run --env CUDA_VISIBLE_DEVICE=0 --env TARGET_SIZE=300 --gpus all 
\  
--volume /mnt/mewc-volume/predict/Service/HR-C15/:/images \  
--volume /mnt/mewc-volume/predict/mewc_model_300px_final.h5:/code/model.h5 
\  
--volume /mnt/mewc-volume/predict/class_list.yaml:/code/class_list.yaml 
zaandahl/mewc-predict  
 
$ docker run --volume /mnt/mewc-volume/predict/Service/HR-C15:/images 
zaandahl/mewc-exif  
 
$ docker run --volume /mnt/mewc-volume/predict/Service/HR-C15:/images 
zaandahl/mewc-box  
  
3. Repeat Step 2 for each Camera in the Service Directory.  
 
Iterative expansion of the training dataset 
The new snips derived from inference over a camera-service data can thereafter be manually 
checked by a human expert (e.g., via drag-and-drop sorting into labelled folders), or else pre-sorted 
with the assistance of the original trained model in a semi-supervised framework and checked by the 
expert for any errors: a much faster process than manual sorting on a randomised set of raw images. 
These new snips can then be used to fine-tune or re-train the classifier with more data, allowing for 
an iterative cycle of ongoing model refinement, as additional labelled training data accumulate. 


