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ABSTRACT 8 

Species delimitation is the process of distinguishing between populations of the 9 

same species and distinct species of a particular group of organisms. Various 10 

methods exist for inferring species limits, whether based on morphological, 11 

molecular, or other types of data. In the case of methods based on DNA 12 

sequences, most of them are rooted in the coalescent theory. However, 13 

coalescence-based models have limitations, especially regarding complex 14 

evolutionary scenarios, large datasets, and varying genetic data types. In this 15 

context, machine learning (ML) can be considered as a promising analytical tool, 16 

and provides an effective way to explore dataset structures when species-level 17 

divergences are hypothesized. In this review, we examine the use of ML in 18 

species delimitation and provide an overview and critical appraisal of existing 19 

workflows. We also provide simple explanations on how the main types of ML 20 

approaches operate, which should help uninitiated researchers and students 21 

interested in the field. Our review suggests that while current ML methods 22 

designed to infer species limits are analytically powerful, they also present 23 

specific limitations and should not be considered as definitive alternatives to 24 

coalescent methods for species delimitation. On the other hand, such variability 25 
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might also represent an advantage, highlighting the flexibility of ML algorithms. 26 

Future enterprises should consider the constraints related to the use of simulated 27 

data, as in other model-based methods relying on simulations. We also propose 28 

best practices for the use of ML methods in species delimitation, offering insights 29 

into potential future applications. We expect that the proposed guidelines will be 30 

useful for enhancing the accessibility, effectiveness, and objectivity of ML in 31 

species delimitation. 32 

Key words: bioinformatics, molecular data, speciation, phylogenetics, artificial 33 

intelligence, deep learning. 34 

 35 

1. Introduction 36 

1.1. Inferring species limits 37 

Species represent fundamental entities across all biological disciplines. 38 

Consequently, the review, categorization, and characterization of taxa within this 39 

level constitute a pivotal aspect of biodiversity research (Bortolus, 2008; Vink et 40 

al., 2012; Ely et al., 2017). The process of identifying, characterizing, and defining 41 

a species is data-intensive and entails various practical dimensions. This 42 

complexity arises from managing extensive biological data and dealing with a 43 

range of theoretical elements, from the establishment of homologies, to taxon-44 

specific traits, and the very philosophical notion of species. Furthermore, 45 

conceptual issues surrounding the definition of species concepts still attract 46 

debates among taxonomists and evolutionary biologists (Pante et al., 2015; 47 

Zachos, 2016). These discussions reach the realms of philosophy, because a 48 

multitude of data and methodologies will probably not fully solve many 49 

fundamental questions surrounding the nature of species (Zachos, 2016; Wilkins 50 
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et al., 2022), or the ‘species ontology’ (what a species really is or represents). A 51 

complete resolution on this subject remains elusive, as it intertwines the empirical 52 

evidence biologists are able to extract from nature with philosophical definitions 53 

surrounding species concepts (Pigliucci, 2003). 54 

One of the most popular modern definitions is the 'Biological Species 55 

Concept' (de Queiroz, 2005a; Zachos, 2016), which defines species as 56 

interbreeding populations reproductively isolated from others (Mayr, 1969; 1996; 57 

2000). Yet, many challenges to this concept emerged throughout the years as 58 

empirical data clearly shows that the history of life on Earth does not fit into a 59 

bifurcating process (Edwards et al., 2016; Mallet et al., 2016), and a clear 60 

delineation of reproductive barriers is hindered by instances of asexual 61 

reproduction, natural hybridization and gene flow (Arnold, 1992; Shurtliff, 2013; 62 

Gompert et al., 2017). Hence, taxonomists and evolutionary biologists must 63 

recognize that multiple species definitions will coexist in the practice of species 64 

delimitation, and these are usually chosen based on the biological context of the 65 

organisms under study. 66 

Another important concept, the General Lineage Concept (GLC), diverges 67 

from many others by prioritizing the recognition of independently evolving 68 

lineages over specific biological criteria such as reproduction or morphology (de 69 

Queiroz, 1998; 1999; 2007). According to the GLC, a species is defined as an 70 

independently evolving metapopulation lineage, emphasizing each species' 71 

unique evolutionary identity across time and space (de Queiroz, 2007). While 72 

unique morphological, ecological, or any other biological trait might be considered 73 

relevant in supporting the investigation of the speciation process, they are not 74 

mandatory criteria for species definition under the GLC perspective, but rather 75 
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additional evidence supporting lineage separation (de Queiroz, 2007). Thus, this 76 

concept accounts for the contingent nature of the speciation process, where 77 

different biological properties may support species limits in varying degrees. It 78 

also emphasizes the need for multiple lines of evidence to corroborate 79 

hypotheses of species divergence, aligning with Integrative Taxonomy 80 

approaches (Wiens & Penkrot, 2002; Dayrat, 2005; Padial et al., 2010; Fujita et 81 

al., 2012). 82 

The GLC also provides a theoretical distinction between the 'species 83 

ontology problem' (what a species is) and the 'delimitation problem' (how to 84 

operationally distinguish among putative species) (de Queiroz, 2007).  85 

Interestingly, while a clear relationship exists between these components, namely 86 

the species concept and species delimitation, historically, a significant part of the 87 

scientific efforts has focused on the former (see Sites Jr and Marshall, 2004; 88 

Wiens, 2007; de Queiroz, 2011; Hausdorf, 2011). The development of theoretical 89 

considerations related to species delimitation, in particular that based on 90 

molecular data, occurred mainly in the last two decades, accompanied by the 91 

introduction of new criteria and statistical methods (Lukhtanov, 2019; Rannala 92 

and Yang, 2020). Historically, identifying species limits, and describing new 93 

species, have primarily relied on morphological data (Wiens, 2007; Rannala, 94 

2015; Rannala and Yang, 2020). However, morphological traits can be influenced 95 

by environmental factors, leading to convergence or divergence without 96 

necessarily reflecting genetic or evolutionary relationships between lineages 97 

(Price et al., 2003; Wake et al., 2011; Jarvis et al., 2014). Thus, genomic data 98 

has emerged as a crucial tool for inferring species limits, offering a more objective 99 
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approach for species delimitation (Fujita et al., 2012), while complementing 100 

traditional morphological methods (Jörger and Schrödl, 2013). 101 

Modern species delimitation methods (SDMs) aiming at identifying 102 

evolutionary units (Tautz et al., 2003; Vogler and Monaghan, 2007) mostly 103 

operate with molecular data under the principles of Coalescent Theory, notably, 104 

the multispecies coalescent (MSC; Rannala and Yang, 2003; Degnan and 105 

Rosenberg, 2009). The MSC analytical framework addresses various 106 

evolutionary assumptions while also managing different types of problems, such 107 

as conflicts among different gene trees, incomplete lineage sorting (terms in 108 

bold are defined in the Glossary, available in Appendix A), and errors in 109 

phylogenetic inference (Knowles & Carstens, 2007; Carstens et al., 2013; Jacobs 110 

et al., 2018). The use of modern SDMs has also grown due to advancements in 111 

statistical frameworks for phylogenetic inference (Edwards, 2009; O'Meara, 112 

2012), along with Molecular Biology tools (e.g., next-generation sequencing 113 

(NGS); Slatko et al., 2018) and Bioinformatics (Searls, 2010).  114 

Nonetheless, using SDMs with genetic data may fail to distinguish 115 

population structure from species-level divergence (Sukumaran and Knowles, 116 

2017), and may also be affected by other issues associated with the reliance on 117 

the MSC model (Rannala and Yang, 2003; Degnan and Rosenberg, 2009; 118 

Edwards, 2009; Fujita et al., 2012). Some methods also have their functionality 119 

and performance compromised in scenarios when there is introgression between 120 

groups that constitute potential species (Rannala and Yang, 2010; Leaché et al., 121 

2014; Jackson et al., 2017), and are more reliable in situations where gene flow 122 

ceases immediately after population divergence (Fujita et al., 2012; Smith and 123 

Carstens, 2020). Also, simulations have shown that ignoring gene flow leads the 124 
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MSC to overestimate population sizes and underestimate divergence times 125 

(e.g., Leaché et al., 2014). Hence, the effectiveness of the MSC framework is 126 

limited, to some extent, when additional processes influence divergence during 127 

speciation (Smith and Carstens, 2020). In any case, different SDMs have varying 128 

capabilities to address difficult evolutionary scenarios, and while such methods 129 

may introduce biases in certain situations, they are not inherently useless.  130 

 131 

1.2. Machine learning, evolutionary biology, and species delimitation 132 

Machine learning (ML), a branch of artificial intelligence (AI) known for its 133 

computational efficiency and predictive accuracy, has recently gained popularity 134 

in Evolutionary Biology mainly due to its ability to analyze and process large, 135 

complex, and high-dimensional datasets (Chicco, 2017; Borowiec et al., 2022; 136 

Fountain-Jones et al., 2021; Greener et al., 2021; Morimoto et al., 2021). In 137 

general terms, ML can be defined as a group of computational programs that can 138 

learn through experience (E) with respect to a class of tasks (T), and an 139 

evaluation measure (P), if its performance on the tasks of T, evaluated by P, 140 

increases with E (Mitchell, 1997). Many ML algorithms are known to be extremely 141 

useful in various aspects of biology. This includes photo-based species 142 

identification (Wäldchen and Mäder 2018), morphology-based species 143 

delimitation and description (Domingos et al., 2014; Breitman et al., 2018), 144 

biodiversity monitoring (McClure et al., 2020), behavioural studies (Valletta et al., 145 

2017; Wang, 2019), DNA sequencing (Libbrecht and Noble, 2015; Liu, 2019), 146 

population genetics (Sheehan and Song 2016; Schrider and Kern, 2018; Fonseca 147 

& Carstens, 2024), ecology (Christin et al., 2019; Scalon et al., 2020; Pichler et 148 

al., 2020; Lürig et al., 2021; Silva et al., 2024), medicine (Sidey-Gibbons and 149 
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Sidey-Gibbons, 2019), microbiology (Qu et al., 2019), and more (see Borowiec 150 

et al., 2022; Fountain-Jones et al., 2021; Morimoto et al., 2021). 151 

Therefore, its potential in evolutionary biology, and particularly in species 152 

delimitation, is evident (Karbstein et al., 2023). Specific examples can already be 153 

found in studies involving model selection in demography and phylogeography 154 

(Pudlo et al., 2016; Fonseca et al., 2021), speciation (Blischak et al., 2021), 155 

phylogenetics (Suvorov et al., 2020; Solis-Lemus et al., 2022 preprint; Smith & 156 

Hahn, 2023; Zaharias et al., 2022; Mo et al., 2024), and species delimitation (Pei 157 

et al., 2018; Derkarabetian et al., 2019; Smith & Carstens, 2020; Pyron et al., 158 

2023), with the last one forming the primary focus of this review. 159 

In the following sections, we provide an overview of ML applications in the 160 

context of species delimitation, with an emphasis on those that operate using 161 

molecular data. 162 

 163 

2. Current ML applications for species delimitation 164 

 In the same way that there are two primary categories of ML, namely 165 

supervised and unsupervised learning (SML and UML, respectively), species 166 

delimitation methods can also be broadly categorized into two main groups: 167 

discovery and validation (see Carstens et al., 2013; Rannala, 2015). Discovery 168 

approaches involve grouping samples without prior information (Pons et al., 169 

2006; O'Meara, 2010; Huelsenbeck et al., 2011), while validation approaches 170 

require researchers to first assign the samples to potential lineages (species 171 

hypotheses) before testing them (Flouri et al., 2018; Sukumaran et al., 2021). 172 

This draws a conceptual parallel between traditional discovery approaches and 173 

UML methods, and between validation methods and supervised algorithms (Fig. 174 
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1). Also, it is important to note that ML methods are likelihood-free species 175 

delimitation approaches, offering several advantages over likelihood-based 176 

approaches, such as eliminating the need for complex statistical calculations, 177 

making them computationally efficient and suitable for analyzing large datasets 178 

with many taxa. 179 

 180 

 181 

Fig. 1. Comparative diagram categorizing species delimitation methods and machine learning 182 
algorithms, along with some of their key characteristics. Species delimitation methods can be 183 
broadly categorized as discovery and validation methods, akin to unsupervised and supervised 184 
machine learning algorithms, respectively. 185 
 186 

 187 
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Below, we present a comprehensive overview of recently applied ML 188 

methods in the domain of molecular species delimitation, emphasizing their 189 

computational attributes and underlying assumptions. Our selection process 190 

involved a thorough search across scientific literature repositories, databases, 191 

and online journals, with a specific emphasis on studies featuring ML methods 192 

and workflows explicitly designed for species limits inference. We prioritized 193 

research projects that either introduced novel methodologies (see Table 1) or 194 

enhanced and tested existing techniques in this context (Table A.1 in Appendix 195 

B). In our selection process, we focused exclusively on projects directly dedicated 196 

to species delimitation, despite the abundant literature on ML within related fields 197 

such as demography, population genetics, and phylogeography. Additionally, our 198 

emphasis is on methods designed for analyzing DNA sequence data. The 199 

categorized methods include SML, UML, and deep learning. While the backend 200 

processes may differ among such ML categories, their main goal when it comes 201 

to species delimitation usually remains the same: to analyze a given set of test 202 

data and classify it into distinct outcomes that define the species represented 203 

within the data. 204 

Some studies applied ML techniques using other types of data rather than 205 

molecular information, such as morphology or ecology, for species delimitation 206 

and integrative taxonomy. A brief exploratory section regarding these particular 207 

studies can be found in Appendix B. 208 

 209 

 210 
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Table 1. List of proposed ML applications specifically designed to work on inferences about species limits. 211 

Reference Languages Category Algorithms Simulator Input Data representation 

CLADES: A Classification-based 

Machine Learning Method for 

Species Delimitation from 

Population Genetic Data (Pei et 

al., 2018)1 

python SML Support vector machines MCcoal 

Multiple sequence 

alignment (MSA) or 

SNP matrix 

Population genetics summary statistics 

A demonstration of unsupervised 

machine learning in species 

delimitation (Derkarabetian et 

al., 2019)2 

R/python UML 

Variational autoencoders 

and t-Distributed Stochastic 

Neighbor Embedding 

NA SNP data matrix 

One-hot-encoding of the SNP data matrix and 

axis from a discriminant analysis of principal 

components 

Process-based species 

delimitation leads to 

identification of more biologically 

relevant species (Smith & 

Carstens, 2020)3 

python SML Random forest fastsimcoal SNP data matrix 
Folded multi- 

dimensional SFS 

Coalescent-based species 

delimitation meets deep 

learning: Insights from a highly 

fragmented cactus system 

(Perez et al., 2021)4 

python 
Deep 

learning 

Convolutional neural 

networks 
ms SNP data matrix 

Matrices (as images), with genotypes encoded as 

higher or lower frequency states 

Speciation Hypotheses from 

Phylogeographic Delimitation 

Yield an Integrative Taxonomy 

for Seal Salamanders 

(Desmognathus monticola) 

(Pyron et al., 2023)5 

R UML 
Self-organizing maps 

(SOMs) 
NA SNP data matrix 

SNP matrix, in which the rows 

are individual specimens, the columns are the 2-4 

possible states at each SNP locus, and the 

entries are the frequency of that state 

Online repositories where it is possible to find more information about the currently existing platforms. 1 https://github.com/pjweggy/CLADES; 212 
2https://www.sciencedirect.com/science/article/abs/pii/S1055790319301721; 3https://github.com/meganlsmith/delimitR; 4https://github.com/manolofperez/CNN_spDelimitation_Piloso; 213 
5https://github.com/kyleaoconnell22/Pyron_et_al_UML_sp_delim/tree/main 214 

https://github.com/pjweggy/CLADES
https://www.sciencedirect.com/science/article/abs/pii/S1055790319301721
https://github.com/meganlsmith/delimitR
https://github.com/manolofperez/CNN_spDelimitation_Piloso
https://github.com/kyleaoconnell22/Pyron_et_al_UML_sp_delim/tree/main
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2.1 Discovery and unsupervised methods 215 

 Unsupervised machine learning (UML) relies solely on the inherent data structure to 216 

find patterns within the data, whether by clustering similar data points together, reducing the 217 

dimensionality of the data while retaining essential information, or by identifying unusual 218 

patterns or outliers, which may indicate errors or novel phenomena (Hastie et al., 2009; 219 

Libbrecht and Noble, 2015; Dike et al., 2018). Consequently, UML algorithms operate 220 

without predefined assumptions about the dataset underlying structure, population 221 

parameters, species numbers, or sample categorization, making them particularly suitable 222 

for species delimitation where no prior hypotheses are put forward. 223 

 In terms of delimiting species, clustering or dimensionality reduction UML algorithms 224 

are generally employed (Fig. 2). Clustering methods group input data into subsets, where 225 

samples with high similarities are placed in the same cluster and exhibit less similarity with 226 

samples in other clusters. Dimensionality reduction focuses on compressing data to identify 227 

a smaller distinct set of variables that could capture essential features of the original data, 228 

while minimizing information loss. Thus, UML dimensionality reduction may provide intuitive 229 

data visualization and accommodate various data types (Libbrecht and Noble, 2015), being 230 

particularly effective when coalescent methods tend to oversplit potential species 231 

(Derkarabetian et al., 2019). In sum, UML algorithms enable the simultaneous use of diverse 232 

data types, mainly by extracting and condensing the necessary information to identify limits 233 

between biological groups (Pyron, 2023; Pyron et al., 2023).  234 

 235 

 236 
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 237 
Fig. 2. Diagram outlining a potential UML workflow for species delimitation, utilizing the t-SNE algorithm 238 
(inspired by Derkarabetian et al., 2019). a) Data representation is the initial step, and it varies depending on 239 
the chosen ML tool, which may work with sequence data, SNP matrices, or population genetics metrics 240 
extracted from them. b) t-SNE, as a dimensionality reduction technique, iteratively finds a lower-dimensional 241 
representation of the original data. It identifies local similarity spaces between sample pairs by analyzing 242 
Gaussian and lower-dimensional distributions, such as the Cauchy or t-student with one degree of freedom. 243 
c) The algorithm's goal is to align the new similarity matrix with the original data by iteratively moving data 244 
points closer to their nearest neighbors in the higher-dimensional space and away from more distant ones. 245 
This process continues until the maximum number of iterations is reached or no further improvements can be 246 
made, resulting in the proper grouping of samples based on their similarities (e.g., individuals or populations 247 
assigned to a species based on the chosen data representation). 248 
 249 
 250 
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Derkarabetian et al. (2019) conducted a study to assess the performance of UML and 251 

deep learning methods for species delimitation. Their research highlighted the effectiveness 252 

of variational autoencoder (VAE) and t-Distributed Stochastic Neighbor Embedding (t-SNE) 253 

algorithms for accurately identifying species clusters. In the case of VAE, single-nucleotide 254 

polymorphism (SNP) matrices were converted via 'one-hot coding', where nucleotides were 255 

transformed into binary variables (e.g., A = [1, 0, 0, 0]; C = [0, 1, 0, 0], and so on), including 256 

ambiguous bases (e.g., M = [0.5, 0.5, 0.0, 0.0]). This VAE approach employed multiple 257 

layers of encoding to compress high-dimensional input data, followed by the reconstruction 258 

of data through successive decoding layers. The latent variables, represented as a normal 259 

distribution with mean (µ) and standard deviation (σ), offered a two-dimensional depiction of 260 

the SNP matrix, facilitating a clear visualization that accounted for the uncertainty 261 

surrounding groupings due to standard deviations among samples and groups. In the case 262 

of t-SNE, data derived from a principal component analysis (PCA) was used as input 263 

variables, followed by clustering tests using the output from the UML algorithms. Both 264 

approaches yielded more readily interpretable outcomes compared to other methods 265 

assessed by the authors, revealing distinct species groupings in a two-dimensional space 266 

(Derkarabetian et al., 2019). Notably, the identified groups in this study corresponded to 267 

those of an integrative taxonomy approach considered by the researchers in their 268 

comparisons, suggesting that the limits identified by UML algorithms might correspond to 269 

species-level divergence rather than population structure (Derkarabetian et al., 2019). 270 

Pyron et al. (2023) introduced a novel UML approach designed for delineating 271 

species limits from extensive genomic datasets, primarily grounded in self-organizing 272 

maps (SOMs). This approach produces discrete outcomes rather than continuous ones, 273 

grouping genotypes based on similarity, and is posited as more advantageous than prior 274 

workflows. Additionally, the authors propose determining the number of species by 275 

analyzing the degree of grid occupancy in the SOM output. This quantification establishes 276 
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how many units, representing distinct clusters of genotypes, have been effectively mapped 277 

from the original SNP matrix. Subsequently, the method estimates the cumulative distances 278 

from each sample to its immediate neighbors. To effectively separate these candidate 279 

species, Pyron et al. (2023) recommend performing cluster analyses, such as k-means. The 280 

determination of the optimal number of classes or species in the dataset is achieved by 281 

selecting the value that maximizes the sequential reduction in the weighted sum of squares 282 

from k to k + 1. Also, we highlight that this technique is rooted in the assessment of similarity 283 

rather than dissimilarity. An extension of this method has been proposed in the form of a 284 

SuperSOM approach, incorporating the possibility of using several trait classes 285 

simultaneously, such as alleles, morphological and ecological variables (Pyron, 2023). 286 

 287 

2.2. Validation and supervised methods 288 

While UML approaches are powerful and widely applicable, there are situations 289 

where supervised machine learning (SML) will offer analytical advantages. Unlike UML, a 290 

workflow for applying any SML method to population genetic data generally include data 291 

simulation for various evolutionary scenarios, encoding both simulated and observed 292 

genetic data into feature vectors, training the algorithm, assessing its predictive 293 

performance through accuracy estimates, and applying it to new observed data points (Fig. 294 

3). Thus, the use of simulated genetic data based on known evolutionary models is 295 

essential, given the scarcity of adequately sized datasets with high-confidence labels in 296 

Evolutionary Biology.  297 

 298 
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 299 
Fig. 3. Diagram illustrating a potential SML workflow for species delimitation (inspired by the work of Smith and 300 
Carstens, 2020). a) The initial step involves designing priors for the evolutionary models considered in the 301 
study. b) Simulated data is generated for each model, typically ranging from 1,000 to 10,000 simulations per 302 
model, using relevant simulation software. c) The data is represented according to the requirements of the 303 
chosen ML tool. d) Following data simulation and representation, ML model training begins, involving various 304 
preliminary steps like data pre-processing, dataset division, feature selection, and algorithm choice. e) Model 305 
performance (both in terms of biological accuracy and computationally) is assessed using statistical metrics, 306 
allowing for retraining and adjustment based on the results. f) Once the model is adequately trained and 307 
evaluated, it can be used to predict species categories for new data, which can be either newly simulated data 308 
or empirical data consistent with the model's proposal, determining how many species exist in that particular 309 
biological system. 310 

 311 

The process of training and applying ML algorithms is influenced by the assumptions 312 

of the underlying evolutionary processes, such as population size, selection strength, and 313 

gene flow. Thus, the reliability of results obtained from SML methods rely on the 314 

resemblance between the training data (typically simulated) and the actual biological data. 315 

Anyhow, SML algorithms generally demand a significantly smaller amount of simulated data 316 
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compared to other methods based on simulations, such as Approximate Bayesian 317 

Computation (ABC), resulting in reduced computational effort (e.g., a few thousand 318 

simulated datasets versus hundreds of thousands of simulations per scenario in most ABC 319 

approaches; Csilléry et al., 2010; Pudlo et al., 2016; Raynal et al., 2019).  320 

CLADES (Pei et al., 2018), for example, is a SML approach designed for species 321 

delimitation, utilizing classification models trained and evaluated on multilocus sequence 322 

data. Notably, this study introduced the application of support vector machines (SVM) for 323 

species delimitation. For model training, datasets at the population level were simulated, 324 

with and without gene flow. Within this framework, species delimitation is framed as a 325 

classification task, where the goal is to classify pairs of populations as either belonging to 326 

the same or different species. Each training sample was represented as a list of summary 327 

statistics, and a SVM regression is calculated, through iterative training, to minimize the 328 

misclassification cost. Subsequently, the SVM classifier computed the probability of the 329 

training samples belonging to each potential grouping. 330 

The training dataset was simulated based on a two-species model (A and B) where 331 

both species diverged at time τ with identical population size parameters (θA = θB = θ). Each 332 

species further consisted of two populations that recently split at time τp. Migration between 333 

species A and B was allowed at a rate of M = Nm migrants per generation, with m 334 

representing the migration rate per generation. The MCcoal software (Rannala and Yang, 335 

2003) was used to simulate multilocus sequence data of length L under various parameter 336 

combinations for training. For each possible parameter combination (θ, τ, M), sequences 337 

were simulated for 100 loci with a length of L = 100Kbp for all populations. For each locus, 338 

40 sequences were sampled, with 10 sequences per population. Additionally, symmetrical 339 

migration between species A and B was assumed before the populations of the species split 340 

at time τp. All training samples were combined to train a global classifier, enabling it to adapt 341 

to various values of θ and M instead of assuming fixed parameters. Longer loci improved 342 
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CLADES' efficiency, and it was robust to different modeling structures, accommodating 343 

various demographic events and evolutionary parameters. 344 

Smith and Carstens (2020) introduced delimitR, a SML approach designed to conduct 345 

species delimitation in a model selection task; delimitR employs the multidimensional site 346 

frequency spectrum (mSFS) with a binning strategy as a predictor variable for a Random 347 

Forest (RF) classifier. Working with data summarized through the mSFS, delimitR facilitates 348 

the evaluation of models that vary in terms of lineage numbers. In essence, this framework 349 

aims to discriminate between various divergence models compatible with virtually any 350 

species concept, as asserted by the authors. Given its supervised nature, delimitR demands 351 

researchers to define reasonable priors, such as divergence times or migration rates, and 352 

to make decisions about the inclusion of models within the set (Smith and Carstens, 2020). 353 

For each model, Smith and Carstens (2020) simulated 10,000 mSFS. A RF classifier was 354 

constructed using 1,000 decision trees to accommodate the extensive number of models. 355 

delimitR's performance improved with larger SNP matrices and increasing divergence times. 356 

Compared to ABC methods, delimitR showed lower error rates, even though the detection 357 

of migration becomes challenging in cases of recent divergence between lineages (Smith 358 

and Carstens, 2020). The authors acknowledge that further research is needed to elucidate 359 

the association between the model space, number of parameters, and delimitation accuracy. 360 

 361 

2.3. Deep learning 362 

 Artificial neural networks (ANNs) are increasingly employed in Evolutionary 363 

Biology, often referred to as 'deep learning' (Sheehan and Song, 2016). Deep learning 364 

techniques have found success in various fields in the Biological Sciences (Angermueller et 365 

al., 2016; Sheehan and Song, 2016; Schrider and Kern, 2018). However, its adoption in 366 

Evolutionary Biology is relatively recent (see Angermueller et al., 2016; Sheehan and Song, 367 

2016; Blischak et al., 2021; Yelmen and Jay, 2023). The popularity of ANNs can be attributed 368 
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to their highly flexible data input and output structure, allowing networks trained for one task 369 

to be repurposed for another by modifying their final layers, for instance, through transfer 370 

learning approaches. This versatility enables the resolution of intricate tasks that might 371 

prove challenging for shallow learning algorithms. Conversely, deep learning often 372 

demands meticulous and more specific fine-tuning compared to shallow learning methods. 373 

The fundamental stages involved in creating a supervised shallow learning 374 

framework for species delimitation can be paralleled with the primary phases found in a deep 375 

learning workflow. These encompass data simulation and representation, model training 376 

and optimization, all the way to predicting the relevant categories from empirical data (Fig. 377 

3). For a detailed description of how neural networks work, and their general structure, see 378 

Sheehan and Song (2016), Borowiec et al. (2022), and Korfmann et al. (2023). 379 

 380 
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 381 
Fig. 4. Diagram illustrating a potential deep learning workflow applied in the context of species delimitation, 382 
using CNNs (inspired by Perez et al., 2021). a) The process typically begins with the simulation of biological 383 
data under various evolutionary models, considering factors like topology, population size, gene flow, and 384 
more, similar to SML. b) Next, data representation is crucial. For CNNs, SNP matrices are often converted into 385 
arrays or image files, where pixel contrast reflects differences in minor and major frequencies between 386 
samples. c) With the simulated and properly represented data, the network training phase can commence. 387 
The parameter configuration and network architecture may vary, depending on the specific study's 388 
requirements. d) Once each model is trained and its performance is rigorously evaluated, the final stage of the 389 
workflow involves predicting categories for new data. This can include using new simulated data with slight 390 
parametric modifications, still within the trained model's limits, as well as empirical data whose evolutionary 391 
history aligns with the proposed model. In both cases, the goal is to determine which delimitation model best 392 
applies to the biological system being investigated. 393 
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Perez et al. (2021) propose a species delimitation approach that accommodates the 394 

integration of coalescence-based methods with model selection using convolutional 395 

neural networks (CNNs). Briefly, this approach can combine models from coalescent 396 

analyses, such as using BPP (Flouri et al., 2018; 2020), allowing for the comparison of 397 

different evolutionary scenarios. Thus, it allows for the test of species limits by integrating 398 

data from various sources, including the possibility of incorporating knowledge from both 399 

genetic analyses using coalescence-based methods and morphological hypotheses 400 

reflecting diverse taxonomic arrangements. The initial steps involve simulating genetic data 401 

for each delimitation hypothesis, with the study encompassing 10,000 simulations per 402 

model, and transforming them into images. These images of simulated data are used to train 403 

a neural network capable of recognizing simulations generated from each model. Then, 404 

each species hypothesis probability can be predicted through CNNs using a test set. In the 405 

same study, the authors conducted a comparison between their model selection approach 406 

and ABC using empirical data. It is worth noting that while CNNs used 10,000 simulations 407 

per model, ABC required 100,000 simulations per model. The CNNs consistently 408 

demonstrated superior performance in distinguishing between the simulated demographic 409 

scenarios, outperforming ABC in all cases, with fewer simulations and faster execution times 410 

(Perez et al., 2021). 411 

 412 

2.4 How has machine learning changed our approach to delimit species so far? 413 

 To date, relatively few studies (<20, also see Appendix B) have specifically explored 414 

ML techniques for species delimitation, particularly when focusing on molecular data. 415 

Among these, only five introduced novel ML approaches for species delimitation, providing 416 

comprehensive details from initial simulations to statistical performance evaluations (Pei et 417 

al., 2018; Derkarabetian et al., 2019; Smith and Carstens, 2020; Perez et al., 2021; Pyron 418 

et al., 2023). These approaches, and also other ML frameworks applied in phylogeography 419 
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and demographic inferences, are often advocated by the researchers and developers 420 

themselves on the following arguments: i) challenges and limitations associated with the 421 

assumptions of coalescent methods (Derkarabetian et al., 2019; Smith and Carstens, 2020; 422 

Blischak et al., 2021; Martin et al., 2021; Derkarabetian et al., 2022); ii) ML computational 423 

efficiency and the capacity of handling complex evolutionary models (Pei et al., 2018; Martin 424 

et al., 2021; Perez et al., 2021; Derkarabetian et al., 2022; Pyron et al., 2023); and iii) ML 425 

acting as a likelihood-free approach, enabling the consideration of models where likelihood 426 

computation would be intractable (Smith and Carstens, 2020; Martin et al., 2021; Perez et 427 

al., 2021; Sanchez et al., 2020). While ML algorithms are often used similarly to simulation-428 

based approaches like ABC, additional steps are generally incorporated, such as: i) 429 

selecting a more informative subset of summary statistics based on specific criteria (Smith 430 

and Carstens, 2020; Martin et al., 2021), and ii) handling larger or more complex genetic 431 

datasets compared to what Bayesian methods can do in a reasonable amount of time 432 

(Ghirotto et al., 2021; Smith and Carstens, 2020; Collin et al., 2021). 433 

 434 

2.5. What types of species ML methods might be detecting? 435 

A significant part of the studies we analyzed were philosophically based on species 436 

concepts grounded on evolutionary or genealogical independence criteria. This might stem 437 

from our focus on workflows using molecular data, which generally aims at identifying 438 

lineages and genetic clusters characterized by significant levels of genetic divergence and 439 

restricted amounts of gene flow. Also, some studies specifically model parameters like 440 

migration, which make them in line with concepts focused on reproductive criteria. While 441 

evolutionary and genealogical independence evidence (or reproductive criteria) may have 442 

their limitations in investigating species limits, results generated by ML methods in this 443 

context can still serve as hypotheses for further investigations (e.g., Fujita et al., 2012), 444 

aligning with the GLC perspective (de Queiroz, 1998; 1999; 2005b). 445 
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In this context, it is reasonable to assert that ML-based delimitation methods, just as 446 

coalescence-based methods, might not always be identifying species per se, but rather: i) 447 

incompletely separated (or incipient) species, which may eventually be classified as distinct 448 

(Burbrink et al., 2021), or even as 'subspecies' (de Queiroz, 2020); or ii) population or 449 

phylogeographic variation (Rosenblum et al., 2012; Sukumaran et al., 2021). Consequently, 450 

while ML methods hold increasing promise for species boundaries inference, it is necessary 451 

to evaluate the extent to which the ML methods could effectively discern evolutionary 452 

independence among metapopulation lineages. So far, there are no definitive coalescent-453 

based solutions to differentiate between population structure and species (Sukumaran & 454 

Knowles, 2017; Leaché et al., 2019). Thus, while model-based evolutionary lineage 455 

structure detected through ML can be biologically relevant for species delimitation, additional 456 

data and an evolutionary process-based perspective are crucial to discern the nature of the 457 

inferred biological entities (Smith & Carstens, 2020; Sukumaran et al., 2021). 458 

Inferring species limits from molecular data and integrating phenotypic data can be a 459 

solution in some cases, but robust species delimitation still requires mechanistic hypotheses 460 

about the speciation process itself (Padial & De la Riva, 2021; Pyron et al., 2023; Pyron et 461 

al., 2024), because distinguishing between population structure and actively diverging or 462 

collapsing species require explicit hypotheses and quantifiable tests (Sukumaran & 463 

Knowles, 2017; Derkarabetian et al., 2019; Huang, 2020; Pyron et al., 2024). Just as 464 

phenotypic, ecological, or other biological attributes are not mandatory criteria for 465 

designating an evolutionary lineage as a species (de Queiroz, 2007; Pyron et al., 2023), 466 

genetic or genealogical groupings identified using ML-based delimitation methods can be 467 

similarly interpreted. Within this context, while the primary criterion for recognizing a species 468 

can still be evolutionary independence, other characteristics may serve as secondary 469 

evidence of divergence and could be also analyzed using ML frameworks. 470 
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Due to its great versatility in handling diverse data types, ML future applications to 471 

infer species limits may also focus on evaluating which of the different biological properties 472 

could be most effectively integrated into the species hypotheses testing process. They may 473 

be useful in discerning between patterns of population structure and species-level 474 

divergence, especially through the integration of distinct traits, such as genomic divergence, 475 

gene flow, ecological adaptation, and phenotypic differentiation (Freedman et al., 2023; 476 

Prates et al., 2023; Pyron et al., 2024). Again, this approach aligns with de Queiroz's GLC 477 

(1998; 1999; 2005), providing a deeper understanding of the speciation processes through 478 

multiple biological perspectives. 479 

Only a few detailed ML pipelines have been proposed so far to explore the 480 

relationships between evolutionary models and divergence scenarios in terms of distinct 481 

characteristics, whether genetic, phenotypic, geographic or ecological. For example, Yang 482 

et al. (2022) introduced a CNN method that successfully integrates morphological and 483 

molecular data for species identification. Pyron (2023), on the other hand, implemented a 484 

UML method using SOMs for learning high-dimensional associations between observations 485 

(e.g., specimens) across a wide set of input features (e.g., genetics, geography, 486 

environment, and phenotype). Future methodologies could further explore this integration of 487 

multiple sources of information, both regarding species delimitation and integrative 488 

taxonomy.  489 

 490 

3. Advantages, limitations and future perspectives 491 

3.1. Strengths and benefits of using ML to delimit species 492 

 In general, ML methods applied to infer species limits offer some advantages over 493 

coalescent or traditional simulation-based methods. Despite particular constraints, ML 494 

algorithms can perform as well as or even outperform (in terms of biological accuracy) 495 

traditional model selection tools and likelihood-based species delimitation methods (Pei et 496 
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al., 2018; Smith and Carstens, 2020; Perez et al., 2021; Derkarabetian et al., 2022). 497 

Moreover, being likelihood-free, they are computationally more efficient and generally can 498 

be trained on models that are at times too intricate for formal statistical estimators (Pei et 499 

al., 2018; Kuzenkov et al., 2020; Smith and Carstens, 2020; Suvorov et al., 2020; Martin et 500 

al., 2021; Perez et al., 2021). Some of these algorithms have proven to be highly efficient in 501 

complex evolutionary scenarios, including situations involving gene flow or population size 502 

fluctuations (Pei et al., 2018; Perez et al., 2021). This efficiency does not compromise the 503 

ability to distinguish between different models (Smith et al., 2017), and even simple SML 504 

methods provide high selection accuracy when comparing multiple models in a single 505 

analysis (Gehara et al., 2020 preprint). 506 

Specifically, when it comes to deep learning, a major advantage is their capacity to 507 

automatically extract information from alignments (commonly treated as images), as 508 

opposed to relying on summary statistics typically required by other ML methods. This 509 

facilitates accurate and efficient classification or regression tasks, as observed in studies by 510 

Sanchez et al. (2020), Fonseca et al. (2021), Perez et al. (2021), and Borowiec et al. (2022), 511 

thus holding promise in future species delimitation studies. Besides, especially in supervised 512 

approaches, which often use explicit speciation models to validate species (e.g., Smith and 513 

Carstens, 2020), ML enables a more in-depth exploration of the speciation and 514 

phylogeographic processes that underlie the formation of independent evolutionary 515 

lineages. Thus, given that properly sampled genomic datasets can offer sufficient data for 516 

analyzing complex evolutionary models, ML might serve a dual role: providing primary 517 

evidence for examining species limits patterns, and assisting in the investigation and 518 

reconstruction of the evolutionary processes responsible for these patterns. 519 

 520 

 521 

 522 
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3.2. Constraints regarding ML and species delimitation 523 

Certain algorithms, especially those in SML or deep learning, can be overly 524 

specialized. Modern ML methods are proficient at interpolating within the observed range of 525 

values in the training data, even in cases where specific values have not been encountered 526 

before, being adaptive and not solely reliant on memorizing specific training instances. Even 527 

so, because such algorithms are typically trained on simulated data with specific values of 528 

evolutionary parameters, such as θ and M, their performance might be compromised when 529 

applied far outside the training parameter space (Schrider and Kern, 2018; Borowiec et al., 530 

2022). Besides, ML algorithms have some degree of inductive bias (Hüllermeier et al., 531 

2013). Therefore, exploring in further details the association between training capacity and 532 

predictive power should be a priority for future studies.  533 

Methods relying on a substantial volume of simulated data across diverse 534 

evolutionary scenarios need to consider the careful design of prior distributions to simulate 535 

models that closely resemble the real biological system under investigation. This challenge 536 

becomes more pronounced for non-model organisms, where data availability may severely 537 

limit the quality of parameter estimates (Tagu et al., 2014; Fonseca et al., 2016; Cerca et 538 

al., 2021; Jorna et al., 2021). Nonetheless, these simulation problems are not exclusive to 539 

ML-based workflows, as model selection frameworks such as ABC also employ simulated 540 

data (Beaumont et al., 2002; Bertorelle et al., 2010). All model-based methods depend on 541 

the specified models and its parameters, whether they are used for simulations or for direct 542 

likelihood estimation. Thus, traditional species delimitation methods that do not require 543 

simulations remain important alternatives for addressing delimitation challenges, in 544 

particular when there is no clear reference for simulations. Coalescence-based inferential 545 

methods are also limited in terms of their coverage of different evolutionary scenarios, but 546 

they possess optimality and iterability properties that span a reasonable portion of the 547 

parameter space, albeit at a considerable computational cost (e.g., Flouri et al., 2018; 548 
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Sukumaran et al., 2021). Nevertheless, methods not reliant on simulations can also be 549 

sensitive to model misspecification, as the MSC deals with assumptions that may not be 550 

appropriate for many biological systems. 551 

Either wat, it may be unfeasible to simulate data or train an ML algorithm across an 552 

entire parameter space, especially in complex evolutionary models (Rannala and Yang, 553 

2020). Limited information is available regarding the asymptotic statistical performance of 554 

most ML methods applied for species delimitation, and important phenomena may be 555 

entirely missing from the simulations (e.g., background selection, Mo and Siepel (2023), or 556 

missing data Arnab et al. (2023)). Thus, such models may never be comprehensive enough, 557 

have limitations in representing real data, and demand substantial computational resources 558 

(Arenas, 2012; Mangul et al., 2019a; Zaharias et al., 2022). This leads to an inherent 559 

challenge in avoiding some degree of misspecification in the training data, even considering 560 

the variety of powerful genetic data simulators currently available, such as SLiM (Messer, 561 

2013), discoal (Kern and Schrider, 2016), msprime (Baumdicker et al., 2021), and 562 

fastsimcoal2 (Excoffier et al., 2021). 563 

Another crucial perspective to consider is that numerous studies, whether focusing 564 

on species delimitation, demography, or population genetics, incorporate ML for inferences 565 

based on summary statistics (Pei et al., 2018; Smith and Carstens, 2020; Collin et al., 2021; 566 

Ghirotto et al., 2021). There are methodologies tailored for handling data derived from SNP 567 

matrices (Derkarabetian et al., 2019; Sanchez et al., 2020; Smith and Carstens, 2020; 568 

Blischak et al., 2021; Fonseca et al., 2021; Martin et al., 2021; Perez et al., 2021) or raw 569 

sequence data (Pei et al., 2018; Ghirotto et al., 2021), and only a few pipelines offer 570 

extensibility to various genetic markers (e.g., Collin et al., 2021). Notably, deep learning 571 

techniques are valuable tools in this context, offering the capability to analyze both raw 572 

genetic data and summary statistics (Korfmann et al., 2023). 573 
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While summary statistics can also be derived from the original genetic data and are 574 

valuable for distinguishing between simulated models, not all of them may be suitable for 575 

making inferences about species limits. The practical implementation of such statistics on 576 

the detection of specific evolutionary processes often encounters confounding factors that 577 

can mimic similar effects on gene histories (Flagel et al., 2019). For example, Tajima's D is 578 

a statistic sensitive to both positive selection and changes in population size (Simonsen et 579 

al., 1995). Moreover, since different studies often employ their specific set of summary 580 

statistics, comparing the results of ML applications is not always straightforward, or feasible, 581 

without acknowledging the significant nuances tied to the biological context considered in 582 

each approach. Thus, the tendency of some ML algorithms to rely on specific 583 

representations of data rather than the original dataset can be seen as a drawback in certain 584 

scenarios. Unless we precisely know which type of data is truly sufficient to represent the 585 

target data, an approach solely based on a particular set of summary statistics can inevitably 586 

result in a degree of information loss (Rannala and Yang, 2020). 587 

An alternative to learning from summary statistics is to consider the alignment itself 588 

as input, as demonstrated in the CNNs approach introduced by Perez et al. (2021). Along 589 

with other deep learning techniques, CNNs implicitly enable dimensionality reduction while 590 

capturing structures within the input data. Thus, comparing different ML approaches might 591 

be misleading due to the variability in the biological foundations employed in each workflow. 592 

In other words, it is not always reasonable to strictly compare results produced by different 593 

ML approaches, as they are generally trained on specific parameters and data 594 

representation. 595 

 596 

3.3. Possible avenues and prospects for future studies 597 

Regarding ML, one approach to mitigate the effects of misspecification during 598 

simulation involves designing or using a simulator that enforces greater compatibility 599 



19 
 

between simulated and actual data. Generative adversarial networks (GANs), a type of deep 600 

learning algorithm commonly used for creating synthetic images and voices (Chadha et al., 601 

2021), have shown promise in this regard (see Callier, 2022; Wang et al., 2021). GANs 602 

operate with two networks, the generator and the discriminator, trained together (Goodfellow 603 

et al., 2014). While the generator generates simulated data, the discriminator distinguishes 604 

between real and fake data. Over the course of training, the generator network becomes 605 

more powerful at producing realistic examples, and the discriminator network becomes 606 

more skilled at distinguishing between real and synthetic data. Once training is complete, 607 

the generator network can be utilized to generate new examples that are indistinguishable 608 

from real data, providing a reliable way to work with labeled data. Researchers have already 609 

assessed the utility of GANs in various fields, including genomics, phylogenetics, and 610 

population genetics (Booker et al., 2023; Nesterenko et al., 2022 preprint; Yelmen and Jay, 611 

2023). Smith and Hahn (2023), for instance, introduced phyloGAN, a workflow that takes a 612 

concatenated alignment (or a set of alignments) as input and infers a phylogenetic tree, 613 

potentially accounting for gene tree heterogeneity. 614 

While such approaches perform effectively in relatively straightforward scenarios, 615 

challenges still emerge as the complexity of evolutionary model space increases. This 616 

complexity might stem from more variables in evolutionary models or larger trees and 617 

alignments, resulting in potential issues related to accuracy and execution time (Nesterenko 618 

et al., 2022 preprint; Smith and Hahn, 2023). Consequently, it is important to recognize that 619 

applications of GANs in the field of Evolutionary Biology are still in the early stages of 620 

development. To fully harness the potential of this tool in species delimitation, further efforts 621 

are required to refine estimates of genetic population parameters (e.g., Wang et al., 2021). 622 

Future advancements in GANs within the realm of evolutionary biology should focus, for 623 

instance, on enhancing the efficiency of exploring parameter spaces, reducing 624 
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computational training times, and accommodating more complex models (Smith and Hahn, 625 

2023). 626 

Besides, issues related to potential errors in data simulation can be likened to a 627 

"domain adaptation" problem, where a model trained on one data distribution is applied to a 628 

dataset originating from a different distribution (Farahani et al., 2021; Mo and Siepel, 2023). 629 

A classic illustration of domain adaptation is found in image classification. Consider a 630 

situation in which a recognition model needs to identify different dog breeds from 631 

photographs ("target domain"), but there is an abundance of labeled training data available 632 

only in cartoon drawings of dogs ("source domain"). In such cases, a ML model must be 633 

trained on one dataset with the expectation of performing well on another, even in the 634 

presence of systematic differences between the two distributions.  635 

 Recent approaches typically involve learning a "domain-invariant" data 636 

representation through a feature extractor neural network. This is accomplished by 637 

minimizing domain disparities (Rozantsev et al., 2018), utilizing adversarial networks (Ganin 638 

and Lempitsky, 2015; Liu and Tuzel, 2016; Bousmalis et al., 2017), or employing auxiliary 639 

reconstruction tasks (Ghifary et al., 2016). Domain adaptation techniques have found 640 

applications in fields such as genomics (Cochran et al., 2022) and population genetics (Mo 641 

and Siepel, 2023), particularly as an unsupervised domain adaptation problem. Through 642 

extensive simulation studies, Mo and Siepel (2023) convincingly demonstrated that their 643 

domain-adapted models significantly outperformed standard networks across various 644 

simulation misspecification scenarios. This outcome underscores the potential of domain 645 

adaptation techniques as a promising avenue for developing more robust deep learning 646 

models in the realm of population genetic inference (Mo and Siepel, 2023), potentially 647 

including species delimitation.  648 

In addition to the limitations regarding simulations and training models in specific 649 

parameter spaces, there is the issue associated with the manipulation of data attributes and 650 
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different types of input data. This becomes even more relevant considering that ML 651 

techniques are lauded for their adaptability, especially considering transfer learning 652 

frameworks. A neural network initially trained for a specific task can be repurposed for 653 

different learning contexts with the simple modification of some of its layers, even though 654 

reusing trained models can be very challenging due to differences in data dimensionality 655 

(Sanchez et al., 2020). As an example, a deep learning architecture originally trained for 656 

inferring historical population sizes can be repurposed for classifying demographic 657 

scenarios (Pan and Yang, 2010). Also, deep learning methods used for phylogeographic 658 

model selection (Fonseca et al., 2021) could be easily applied to species limits issues with 659 

minimal adaptations. 660 

 661 

4. Optimizing the use of ML in the context of species delimitation 662 

4.1. Enhancing Species Delimitation through accessible and purpose-built ML 663 

The introduction of new ML approaches will increasingly enhance researchers' ability 664 

to make biologically precise decisions, especially when these methods are purpose-built, 665 

from conception to implementation, for the specific task of delimiting evolutionary lineages. 666 

A critical step in any species delimitation study is to select the appropriate methods to be 667 

employed, considering the available data and putative evolutionary scenarios. With a 668 

multitude of possibilities in the modern Evolutionary Biology toolkit, the ideal choice should 669 

not only consider an appropriate fit with the biological problem under investigation, but also 670 

a statistical evaluation and performance optimization (Greener et al., 2021; Morimoto et al., 671 

2021), under various diversification scenarios, while estimating historical parameters like 672 

divergence time, population size, and migration rate. It is important to assess in which 673 

specific evolutionary scenarios coalescent methods might exhibit strong limitations, and 674 

whether a new ML workflow might outperform others in terms of performance. Thus, a 675 
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comprehensive analysis of the methods characteristics, advantages, disadvantages, and 676 

overall performance compared to existing SDMs is desired. 677 

Such evaluation should also encompass both the algorithm's biological predictions 678 

and computational performance. Comparisons should be performed considering the 679 

inherent properties of the used ML algorithms, such as how the workflows manipulate the 680 

data attributes, and the different types of input and output data. In nearly all studies using 681 

ML methods to infer species limits, at least a minimal approach to estimating error or noise 682 

is typically employed (Pei et al., 2018; Smith & Carstens, 2020; Martin et al., 2021; 683 

Derkarabetian et al., 2022). For example, it is common for researchers to evaluate the ML 684 

model's performance using genetic datasets of varying sizes, or alignments of different 685 

dimensions. Then, the quantity and quality of data clearly influence the effectiveness of ML 686 

applications, as analyses conducted on larger, well-filtered datasets consistently yield better 687 

results (Pei et al., 2018; Smith & Carstens, 2020; Martin et al., 2021; Derkarebetian, et al., 688 

2022). This effect is pronounced in UML approaches, as they tend to be more susceptible 689 

to data-related issues (Martin et al., 2021).  690 

From a practical perspective, evaluating the suitability of an ML tool for species 691 

delimitation also involves assessing its accessibility, particularly when compared to 692 

traditional SDMs. To promote the widespread adoption of ML tools in species delimitation, 693 

it is crucial to ensure that analyses are accessible and reproducible. For example, a 694 

thorough description of the ML method, but without a detailed reference to the dataset, can 695 

lead to significant issues within the workflow (Chicco, 2017; Greener et al., 2021). The same 696 

rationale extends to the availability of the trained models. For example, Derkarebetian et al. 697 

(2022) assessed a ML approach's capability to delimit cryptic species, and constructed a 698 

"customized" training dataset from a well-studied lineage with biological characteristics akin 699 

to their focal taxon. In cases like these, where a specific ML classifier has been designed 700 

and trained with a particular dataset based on a specific evolutionary model's parameters, 701 
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it is also important to ensure both the dataset and the classifier are meticulously described 702 

and made accessible to the public. Such precautions minimize the need to construct entirely 703 

new workflows for each study, involving tasks such as data simulation, model training, and 704 

the selection of evaluation metrics, enabling researchers to evaluate and enhance the 705 

method without needing to start from scratch (Greener et al., 2021; Heil et al., 2021). 706 

Additionally, ML's ability to efficiently compare a wide range of models using large 707 

datasets in less computational time provides an important advantage over traditional model 708 

comparison approaches. Nonetheless, access to adequate computing resources remains a 709 

challenge for many researchers in species delimitation and various scientific disciplines 710 

(Veretnik et al., 2008; Truong et al., 2012; Helmy et al., 2016; Mangul et al., 2019b). Then, 711 

efforts to provide resources like graphics processing units, cloud storage, and computational 712 

clusters are all crucial steps toward making ML more accessible and inclusive for scientists 713 

across diverse domains of knowledge, including species delimitation. 714 

 715 

4.2. Combining analytical frameworks to investigate complex delimitation models 716 

All models, while inherently limited in representing the underlying nature of species 717 

diversification and, hence, of the current species limits among the tested entities, will be 718 

more or less useful depending on their effectiveness in extracting relevant evolutionary 719 

information from the available data. Accordingly, in some systems, certain methods should 720 

be prioritized based on the processes driving divergence, and using multiple methods with 721 

similar biases might not always enhance biological interpretability. For instance, Smith and 722 

Cartens (2020) argue that traditional methods like BPP can accurately infer the number of 723 

species but may overlook significant processes, such as secondary contact, something that 724 

ML workflows like delimitR could be more efficient in dealing with. In this context, the choice 725 

on which species delimitation method to use should be done before hypothesis-testing, 726 



24 
 

considering the nature of the available data, and possibly prior relevant biological 727 

information regarding the evolution of the organisms. 728 

One approach that would greatly benefit from the combination of coalescence-based 729 

methods and ML algorithms, and that could shape the future direction of genetic-based 730 

species delimitation, involves the empirical validation of speciation-based models, which can 731 

provide a nuanced understanding of the speciation process. Different speciation-based 732 

delimitation models, whether relying on ML, coalescence, or a combination of both, can be 733 

employed to capture different facets of the evolutionary divergence process, and to test 734 

different increasingly complex scenarios, with model validation serving as the means to 735 

articulate expert knowledge and the available statistical tools for hypothesis testing. In sum, 736 

while currently no universally superior species delimitation method exists, ML algorithms 737 

offer promising prospects for their integration into systematic protocols tailored for species 738 

delimitation.  739 

 740 

5. Conclusions 741 

Relatively few studies have explored ML techniques for species delimitation using 742 

molecular data so far. They are generally employed due to coalescence-based methods’ 743 

specific assumptions and limitations. Besides, they are computationally efficient, can be 744 

easily integrated with traditional methods, and clearly provides a concrete and robust way 745 

to explore dataset structures when species-level divergences are hypothesized. The 746 

flexibility of ML-based methods allows them to accommodate complex evolutionary 747 

scenarios. Furthermore, likelihood-free approaches such as ML can provide more accurate 748 

estimates of species limits and population parameters, particularly in cases where traditional 749 

methods may struggle to converge or produce biased results. 750 

Both ML approaches and coalescence-based methods provide a wide array of 751 

choices, necessitating careful selection considering multiple factors. Particularly, ML 752 
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algorithms offer promising prospects but require thorough evaluation, comparison, and 753 

adaptation to specific biological problems. Besides, selecting an appropriate ML method for 754 

species delimitation should prioritize suitability for specific data and research questions over 755 

popularity. This assessment includes biological predictions, computational performance, 756 

and comparisons to existing methods, even considering that comparing existing methods 757 

can be challenging. 758 

Some specific challenges can be highlighted regarding the utilization of ML 759 

frameworks to infer species limits. For example, overly specialized algorithms might perform 760 

well within observed ranges of evolutionary parameters but can struggle outside the training 761 

space. This gains importance as ML applications in Evolutionary Biology rely heavily on 762 

simulated data. Besides, model specialization for simulated data can hinder generalizability 763 

and transferability across different studies or data types. To address this issue, there are 764 

some potential solutions and emerging approaches. For example, GANs enable the creation 765 

of more realistic simulated data, and domain adaptation techniques to transfer knowledge 766 

across datasets with systematic differences. Another challenge relies on handling data 767 

derived from distinct genetic markers, hindering the comparison of different ML approaches. 768 

Just as some coalescence-based methods, ML-based delimitation methods may not 769 

always discern species, but might identify incompletely separated species or ephemeral 770 

population variations. Therefore, ML should be progressively developed and used alongside 771 

traditional methods to enhance objectivity and robustness in species delimitation processes, 772 

combining the strengths of distinct analytical structures for hypothesis testing. This approach 773 

may allow for the accurate estimation of the speciation process, facilitating a clearer 774 

differentiation between population structure and evolutionary independence. Also, future 775 

applications of ML methods in species delimitation may focus on integrating various 776 

biological properties into species hypothesis testing. Finally, there is potential in utilizing ML 777 

methods in Integrative Taxonomy approaches, as combining morphological, ecological, and 778 
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molecular data, is crucial for robust species delimitation and may benefit from the flexibility 779 

of these AI-based approaches. As these conditions are increasingly met, ML is poised to 780 

become an integral part of the toolkit used by scientists not only in the field of species 781 

delimitation, but for various Evolutionary Biology applications worldwide. 782 
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