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 7 

ABSTRACT 8 

Species delimitation is the process of distinguishing between populations of the same 9 

species and distinct species of a particular group of organisms. Various methods exist for 10 

inferring species limits, with most of them being rooted in Coalescent Theory. Their 11 

primary goal is to identify independently evolving lineages that should represent separate 12 

species. Coalescent models have improved species delimitation by enabling explicit 13 

testing of hypotheses regarding evolutionary independence among lineages. However, 14 

they have some limitations, especially regarding complex evolutionary scenarios, large 15 

datasets, and varying genetic data types. In this context, machine learning (ML) can be 16 

considered as a promising analytical tool, and clearly provides an effective way to explore 17 

dataset structures when species-level divergences are hypothesised. In this review, we 18 

examine the use of ML in species delimitation and provide an overview and critical 19 

appraisal of existing workflows. We also provide simple explanations on how the main 20 

types of ML approaches operate, which should help researchers and students interested 21 

in the field. While current ML methods designed to infer species limits are analytically 22 

powerful, they also present specific limitations and should not be considered as definitive 23 

alternatives to traditional coalescent methods for species delimitation. For instance, there 24 

are clear limitations regarding the utilisation of simulated data, especially in supervised 25 
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and deep learning approaches, and the type of data representation used by each ML 26 

approach. We then discuss the strengths and weaknesses of existing pipelines, propose 27 

best practices for the use of ML methods in species delimitation, and offer insights into 28 

potential future applications. Generative adversarial networks and domain adaptation 29 

techniques, for instance, could be used to partially address the misspecification issue 30 

related to simulating genetic data. Besides, integrating ML methods into the hypothesis 31 

testing process, alongside available coalescent-based methods, could enable a more 32 

comprehensive exploration of evolutionary models and parameters, improving the 33 

accuracy and biological interpretability of species delimitation analyses. Additionally, we 34 

suggest guidelines for enhancing the accessibility, effectiveness, and objectivity of ML 35 

in species delimitation processes, aiming to offer a transformative perspective on this 36 

subject. 37 

Key words: bioinformatics, molecular data, speciation, phylogenetics, phylogenomics, 38 

artificial intelligence, deep learning. 39 
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 54 

I. INTRODUCTION 55 

Species represent fundamental entities across all biological disciplines. 56 

Consequently, the review, categorisation, and characterisation of taxa within this level 57 

constitute a pivotal aspect of biodiversity research (Bortolus, 2008; Vink et al., 2012; Ely 58 

et al., 2017). The process of identifying, characterising, and defining a species is both 59 

data-intensive and entails various practical dimensions. This complexity arises from 60 

managing extensive biological data and dealing with a range of theoretical elements, from 61 

the establishment of homologies, to taxon-specific traits, and the very philosophical 62 

notion of species. Estimating the number of species in a particular biological system is 63 

challenging not only due to the great number of yet-undescribed species (Strain, 2011; 64 

Locey & Lennon, 2016), but also because species limits often lack clarity (see Rannala, 65 

2015; Larsen et al., 2017; Rannala & Yang, 2020). Furthermore, some conceptual issues 66 

surrounding the definition of species concepts still attract debates among taxonomists and 67 

evolutionary biologists (Pante et al., 2015; Zachos, 2018). 68 

Despite considerable empirical and theoretical progress, it is noteworthy that 69 

debates concerning species definition criteria remain prevalent today (de Queiroz, 2007; 70 

Saikia et al., 2008; Sangster, 2013; Zachos, 2018). A multitude of operational criteria are 71 

employed to characterise species, whether they pertain to the particular species concept 72 

adopted within each empirical study or the delineation of species themselves (see de 73 

Queiroz, 2007). Interestingly, while a clear relationship exists between these components, 74 

namely the species concept and species delimitation, scientific endeavours have 75 



4 
 

historically focused on the former (see Sites Jr & Marshall, 2004; Wiens, 2007; de 76 

Queiroz, 2011; Hausdorf, 2011). Only within the past two decades has the field seen an 77 

increased emphasis on theoretical considerations related to species delimitation, 78 

accompanied by the introduction of new criteria and associated statistical methods 79 

(Lukhtanov, 2019; Rannala & Yang, 2020). 80 

In practice, identifying species limits demands methods that precisely determine 81 

which individuals or populations should be assigned to existing species names and which 82 

entities constitute new species. Traditionally, species assignment and description, 83 

whether for recognised species or higher taxonomic categories (e.g., genus, family), have 84 

primarily relied on morphological characters (Rannala, 2015; Rannala & Yang, 2020), 85 

usually based on specific levels of morphological similarity to delineate species. 86 

However, this becomes especially problematic as morphological characters can exhibit 87 

significant plasticity and be influenced by environmental factors that do not necessarily 88 

reflect genetic or evolutionary relationships among lineages (Price et al., 2003; Wake et 89 

al., 2011; Jarvis et al., 2014).  90 

Species delimitation and identification involve some degree of subjectivity, 91 

particularly in determining the levels of difference required for systematic and taxonomic 92 

classification. This time-consuming process demands high specialisation from 93 

researchers, and involves both delimiting evolutionary lineages and subsequently creating 94 

a formal diagnosis and nomenclature system (Jörger & Schrödl, 2013). Hence, semi-95 

automated processes, in which experts primarily verify and refine results obtained from 96 

genomic data and computer algorithms, present an appealing alternative (Rannala & 97 

Yang, 2020). Typically, the delimitation process is initiated with a null hypothesis 98 

regarding the recognised species, and the evidence required to refute this hypothesis can 99 

sometimes be more substantial than that needed to justify a new species discovery (Sites 100 
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& Marshall, 2004; Camargo, 2013; Carstens et al., 2013). This emphasis on evidence is 101 

crucial as this process must be grounded in sound data, considering the population genetic 102 

structure, and integrating information from multiple sources to understand aspects like 103 

the species phylogenetic relationships, and the extent of hybridisation with closely-related 104 

lineages (Rannala & Yang, 2020). 105 

Modern species delimitation methods (SDMs) aiming at identifying evolutionary 106 

units (Tautz et al., 2003; Vogler & Monaghan, 2007) are primarily based on the 107 

generalized species concept (de Queiroz, 1999; 2007), and mostly operate with molecular 108 

data under the principles of Coalescent Theory, notably, the multi-species coalescent 109 

(MSC; Rannala & Yang, 2003; Degnan & Rosenberg, 2009). Its use has grown due to 110 

advancements in statistical frameworks for phylogenetic inference (Edwards, 2009; 111 

O'Meara, 2012), along with Molecular Biology tools (e.g., next-generation sequencing 112 

(NGS); Slatko et al., 2018) and Bioinformatics (Searls, 2010). Nonetheless, researchers 113 

face many challenges when using SDM's in empirical systems, related to the vast amount 114 

of data generated by NGS platforms, and to inferential challenges Using SDMs with 115 

genetic data may fail to distinguish population structure from species-level divergence 116 

(Sukumaran & Knowles, 2017), and be affected by other issues associated with the 117 

reliance on the MSC model (Rannala & Yang, 2003; Degnan & Rosenberg, 2009; 118 

Edwards, 2009; Fujita et al., 2012). These can arise from conflicts among different gene 119 

trees, stemming from introgression events, incomplete lineage sorting (terms in bold are 120 

defined in the Glossary available in the Supplementary Material) and mixing between 121 

groups that constitute potential species (Rannala & Yang, 2010; Leaché et al., 2014; 122 

Jackson et al., 2017), and also from potential errors in phylogenetic inference (Carstens 123 

et al., 2013; Jacobs et al., 2018). 124 
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Consequently, some methods have their functionality limited to situations in 125 

which gene flow ceases immediately after population divergence, corresponding to an 126 

allopatric model of speciation (Fujita et al., 2012; Smith & Carstens, 2020). Simulations 127 

have also shown that ignoring gene flow leads the MSC to overestimate population sizes 128 

and underestimate divergence times (e.g. Leaché et al., 2014). Hence, despite the clear 129 

usefulness of the MSC framework, its usefulness is still limited, to some extent, when 130 

additional processes influence divergence during speciation (Smith & Carstens, 2020). 131 

Different SDMs have varying capabilities to address each of these potential difficult 132 

scenarios (Camargo et al., 2012; Giarla et al., 2014; Luo et al., 2018). While some studies 133 

have examined the impact of various parameters (under various models of divergence, 134 

gene flow, and speciation) on species delimitation, further research should extend these 135 

comparisons to include MSC methods and alternatives based on different analytical 136 

frameworks (e.g. Camargo et al., 2012; Jackson et al., 2017; Luo et al., 2018). Besides, 137 

considering the intricate nature of the speciation process, it is unrealistic to anticipate that 138 

the use of specific models or metrics alone will result in error-free species delimitation 139 

(Burbrink & Ruane, 2021). 140 

Machine learning (ML), a branch of artificial intelligence (AI) known for its 141 

computational efficiency and predictive accuracy, gained popularity mainly due to its 142 

ability to analyse and process large, complex, and high-dimensional datasets (Chicco, 143 

2017; Borowiec et al., 2022; Fountain-Jones et al., 2021; Greener et al., 2021; Morimoto 144 

et al., 2021). Many ML algorithms are known to be extremely useful in various aspects 145 

of biology. This includes photo-based species identification (Wäldchen & Mäder 2018), 146 

morphology-based species delimitation and description (Domingos et al., 2014; Breitman 147 

et al., 2018), biodiversity monitoring (McClure et al., 2020), behavioural studies (Valletta 148 

et al., 2017; Wang, 2019), DNA sequencing (Libbrecht & Noble, 2015; Liu, 2019), 149 
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population genetics (Sheehan & Song 2016; Schrider & Kern, 2018), ecology (Christin 150 

et al., 2019; Pichler et al., 2020; Lürig et al., 2021), medicine (Sidey-Gibbons & Sidey-151 

Gibbons, 2019), microbiology (Qu et al., 2019), and more (see Borowiec et al., 2022; 152 

Fountain-Jones et al., 2021; Morimoto et al., 2021). Therefore, its potential in 153 

evolutionary biology, and particularly in species delimitation, is evident. Specific 154 

examples can already be found in studies involving model selection in demography and 155 

phylogeography (Pudlo et al., 2016; Fonseca et al., 2021), speciation (Blischak et al., 156 

2021), phylogenetics (Suvorov et al., 2020; C. Solis-Lemus, S. Yang, L. Zepeda-Nunez 157 

unpublished data; Smith & Hahn, 2023; Zaharias et al., 2022; Y.K. Mo, M. Hahn, M.L. 158 

Smith unpublished data), and species delimitation (Pei et al., 2018; Derkarabetian et al., 159 

2019; Smith & Carstens, 2020; Pyron et al., 2023), with the last one forming the primary 160 

focus of this review. In the following sections, we provide a brief overview of ML 161 

applications in the context of species delimitation. 162 

 163 

II. MACHINE LEARNING 164 

 165 

(1) Supervised learning 166 

Supervised machine learning (SML) algorithms offer valuable solutions for 167 

statistical inference in diverse contexts. They enable predictions of new data points using 168 

a training set containing labelled data (often simulated) with known response variable 169 

values. This capacity is particularly significant in Evolutionary Biology, where obtaining 170 

large empirical datasets with high-confidence labels is challenging. Additionally, certain 171 

SML pipelines can effectively handle high-dimensional input data, mitigating issues 172 

related to the curse of dimensionality (see Schrider & Kern, 2018), unlike some coalescent 173 

or Bayesian approximation methods, which face increasing challenges when estimating 174 
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functions as the number of input variables rises. Nevertheless, while SML approaches 175 

have already transformed various fields, their application in phylogeographic and 176 

population genetic inference is relatively recent (e.g., Schrider & Kern, 2016; Sheehan & 177 

Song, 2016; Smith & Carstens, 2020; Fonseca et al., 2021; Smith & Hahn, 2023). 178 

In analytical terms, SML involves using a dataset comprising predictor variables 179 

(input) and response variables (output) to establish and predict the relationship between 180 

them. Formally, SML methods employ a function, denoted here as f, to predict a response 181 

variable, y, based on a feature vector, x, containing n input variables. This relationship 182 

is expressed as y = f(x) within a typical analytical framework. When y represents a 183 

categorical variable, such as a specific evolutionary scenario, it constitutes a 184 

classification problem. Conversely, if y is continuous, the task becomes a regression 185 

problem, applicable, for instance, in estimating population genetic parameters. In 186 

supervised learning, the objective is to optimize y = f(x) using a labelled training set, 187 

where response variable values are known. Besides, the dataset comprises values from a 188 

feature vector, which is a multidimensional representation of any point in the initial 189 

dataset or features extracted from it. 190 

A workflow for applying any SML method to population genetic data comprises 191 

multiple steps, especially in the genomic scale. These include data simulation for various 192 

evolutionary scenarios, encoding both simulated and observed genetic data into feature 193 

vectors, training the algorithm, applying it to new observed data points, and assessing its 194 

predictive performance through error calculations and accuracy estimates (Fig. 1). 195 

Crucially, the use of simulated genetic data based on known evolutionary models is 196 

essential, given the scarcity of adequately sized datasets with high-confidence labels. 197 

However, it introduces concerns, primarily related to potential inaccuracies in model 198 

specifications (Schrider & Kern, 2018; Callier, 2022). Essentially, the entire process of 199 
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training and applying ML algorithms is influenced by the assumptions made about the 200 

underlying evolutionary processes, such as population size, selection strength, and gene 201 

flow. Consequently, the reliability of results obtained from SML methods hinges on the 202 

resemblance between the training data (typically simulated) and the real biological data 203 

used for posterior inferences. 204 

Numerous SML algorithms are efficient in classification or regression tasks when 205 

it comes to Evolutionary Biology (refer to Schrider & Kern, 2018 and Greener et al., 2021 206 

for reviews). Generally, the initial step in SML analysis is designing a training set (Fig. 207 

1A). This training set can consist of data simulated across various scenarios, with 208 

parameter values drawn from prior distributions (Fig. 1B). At this point, it is important to 209 

consider that such data may not always be readily available, as some scenarios cannot be 210 

efficiently simulated, or may lack certain desired characteristics necessary for training 211 

and analysing specific evolutionary models. Besides, depending on the research goals, 212 

the simulated data can be characterised using a set of summary statistics or represented 213 

in another relevant biological format (Fig. 1C). In the context of Evolutionary Biology, 214 

this is particularly crucial given the challenges of acquiring high-quality data for testing 215 

complex hypotheses. Besides, one should also consider the need of acquiring a fine 216 

balance during the training phase of an SML algorithm, between achieving accuracy 217 

through the trained model and ensuring the model's ability to generalize its learning when 218 

faced with a test set or new empirical data (see Korfmann et al., 2023). 219 

 220 
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 221 

Fig. 1 - Diagram illustrating a potential SML workflow for species delimitation, inspired by the work of 222 

Smith & Carstens (2020). a) The initial step involves designing priors for the evolutionary models 223 

considered in the study. b) Simulated data is generated for each model, typically ranging from 1,000 to 224 

10,000 simulations per model, using relevant simulation software. c) The data is represented according to 225 
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the requirements of the chosen ML tool. d) Following data simulation and representation, ML model 226 

training begins, involving various preliminary steps like data pre-processing, dataset division, feature 227 

selection, and algorithm choice. e) Model performance (both in terms of biological accuracy and 228 

computationally) is assessed using statistical metrics, allowing for retraining and adjustment based on the 229 

results. f) Once the model is adequately trained and evaluated, it can be used to predict species categories 230 

for new data, which can be either newly simulated data or empirical data consistent with the model's 231 

proposal, determining how many species exist in that particular biological system. 232 

 233 

Supervised algorithms offer the advantage of extracting maximum information 234 

from a set of diverse metrics (e.g., various summary statistics) within the feature vector. 235 

This eliminates the need for arbitrary subset selection, a practice often employed in 236 

methods like Approximate Bayesian computation (ABC; Collin et al., 2021). 237 

Consequently, SML mitigates issues related to inference accuracy, as its performance 238 

remains stable even when the number of variables increases, contrasting with traditional 239 

methods such as ABC (Raynal et al., 2019; Collin et al., 2021). This is partially due to 240 

the ability of SML’s algorithms to utilise all simulations during the training phase, which 241 

enables the mapping of an entire dataset regarding different scenarios and parameters 242 

(Collin et al., 2021). Additionally, it's essential to note that SML algorithms are highly 243 

effective in handling large, intricate datasets, as many of them can create a high-244 

dimensional hyperplane to differentiate between various classes across multiple features. 245 

Consequently, adding extra features is unlikely to cause analytical issues.  246 

Moreover, SML algorithms demand a significantly smaller training set compared 247 

to other methods, resulting in reduced computational effort (e.g., a few thousand 248 

simulated datasets versus hundreds of thousands of simulations per scenario in most ABC 249 

approaches; Csilléry et al., 2010; Pudlo et al., 2016; Raynal et al., 2019). Given the 250 

growing dimensionality of genetic data from NGS technologies, SML methods have 251 

emerged as a suitable choice for researchers seeking to analyse complex scenarios and 252 

large datasets, especially in the context of selecting evolutionary scenarios and 253 
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demographic estimates. These characteristics underscore SML’s enormous potential to 254 

revolutionise genetic data analysis in the near future. 255 

 256 

(2) Unsupervised learning 257 

 SML algorithms require some initial human intervention for proper sample 258 

labelling and perform well in several dataset scenarios, as they do not necessitate a large 259 

labelled training set for achieving reliable results (Libbrecht & Noble, 2015; Shen et al., 260 

2022). Semi-supervised learning (SEMI-ML) is another approach used when only part of 261 

the input data is labelled, and has proved advantageous in situations where labelling data 262 

is challenging, either due to the time required for labelling or uncertainties associated 263 

with assigning labels. Even so, while SML and SEMI-ML approaches are powerful and 264 

widely applicable, there are situations where unsupervised machine learning (UML) 265 

becomes a more viable option. Unlike SML and SEMI-ML, UML relies solely on the 266 

inherent data structure to group samples. Consequently, UML algorithms operate without 267 

predefined assumptions about the data's underlying structure, population parameters, 268 

species numbers, or sample categorisation, making them particularly suitable for species 269 

delimitation where no prior hypotheses are put forward about these aspects. 270 

 UML algorithms generally fall into three problem categories: clustering, 271 

association, and dimensionality reduction (Hastie et al., 2009; Libbrecht & Noble, 2015; 272 

Dike et al., 2018). Clustering methods group input data into subsets or clusters, where 273 

samples with high similarities are placed in the same cluster and exhibit less or no 274 

similarity with samples in other clusters. Conversely, association algorithms uncover 275 

relationships between variables within the dataset by employing various metrics to assess 276 

interdependencies among variables, effectively partitioning them into groups based on 277 

meaningful associations. Dimensionality reduction techniques focus on compressing data 278 
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to identify a smaller, distinct set of variables that could capture essential features of the 279 

original data while minimising information loss. When combined with clustering 280 

approaches, UML dimensionality reduction may provide intuitive data visualisation and 281 

accommodate various data types (Libbrecht & Noble, 2015). In sum, UML is another 282 

promising option for species delimitation, as such algorithms enable the simultaneous use 283 

of diverse data types, extracting and condensing the necessary information to try to 284 

identify the limits of biological groups. 285 

However, because UML methods do not rely on preconceived notions on the 286 

nature of the data, researchers using it for species delimitation must ensure that the 287 

analyses are effectively operating at the species level (Derkarabetian et al., 2019). Either 288 

way, in species delimitation practices, UML dimensionality reduction algorithms are 289 

generally employed (Fig. 2), having demonstrated effectiveness in cases where coalescent 290 

methods tend to split potential species too narrowly, particularly when there is species-291 

level divergence but not significant population structure (Derkarabetian et al., 2019). 292 

Also, as mentioned before, UML approaches might even be able to accommodate diverse 293 

data types commonly found in integrative taxonomic studies, including genetic, 294 

morphometric, continuous, and categorical data (Pyron, 2023; Pyron et al., 2023). 295 

 296 
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 297 

Fig. 2 - Diagram outlining a potential UML workflow for species delimitation, utilizing the t-SNE algorithm 298 

(inspired by Derkarabetian et al., 2019). a) Data representation is the initial step, and it varies depending 299 

on the chosen ML tool, which may work with sequence data, SNP matrices, or population genetics metrics 300 

extracted from them. b) t-SNE, as a dimensionality reduction technique, iteratively finds a lower-301 
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dimensional representation of the original data. It identifies local similarity spaces between sample pairs 302 

by analysing Gaussian and lower-dimensional distributions, such as the Cauchy or t-student with one degree 303 

of freedom. c) The algorithm's goal is to align the new similarity matrix with the original data by iteratively 304 

moving data points closer to their nearest neighbours in the higher-dimensional space and away from more 305 

distant ones. This process continues until the maximum number of iterations is reached or no further 306 

improvements can be made, resulting in the proper grouping of samples based on their similarities (e.g., 307 

individuals or populations assigned to a species based on the chosen data representation). 308 

 309 

(3) Deep learning 310 

 Artificial neural networks (ANNs) are increasingly employed in Evolutionary 311 

Biology, often referred to as 'deep learning' (Sheehan & Song, 2016). Deep learning 312 

techniques have found success in various fields in Biological Sciences (Angermueller et 313 

al., 2016; Sheehan & Song, 2016; Kamilaris & Prenafeta-Boldú, 2018; Mobadersany et 314 

al., 2018; Schrider & Kern, 2018). However, its adoption in Evolutionary Biology is 315 

relatively recent (see Blischak et al., 2021; Yelmen & Jay, 2023). The recent popularity 316 

of ANNs can be mostly attributed to their highly flexible data input and output structure, 317 

allowing networks trained for one task to be repurposed for another by modifying their 318 

final layers. For instance, a network originally trained for inferring population size 319 

history can theoretically be adapted to identify optimal population genetics parameters 320 

within various demographic scenarios. Transfer learning approaches, for example, can 321 

be useful when limited training data are available from a new domain, with reduced 322 

computational expenses compared to training an algorithm from scratch. Additionally, 323 

the knowledge acquired during the initial task could improve the new network, reducing 324 

errors and enhancing learning efficiency (Sanchez et al., 2021). Also, ANNs possess a 325 

unique capability to establish parameterised functions that facilitate non-linear mappings 326 

from one parameter space to another. This versatility enables the resolution of intricate 327 

tasks that might prove challenging for shallow learning algorithms.  328 
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Similar to traditional machine learning, neural networks are trained by adjusting 329 

their parameters using a training set, typically composed of pairs of known or simulated 330 

inputs and desired outputs. Optimisation relies on minimizing the value of a loss function 331 

that gauges the degree of error in the network's performance based on the current 332 

parameters. Parameter adjustments are executed through an optimisation algorithm driven 333 

by gradient descent and backpropagation. This process typically necessitates a 334 

substantial volume of training data to ensure effective learning and generalisation, 335 

enabling the network to perform well when faced with previously unseen data (Sanchez 336 

et al., 2021). In essence, a deep learning algorithm aims to project a function, embodied 337 

as a neural network, which can be conceptualised as a differentiable computational graph 338 

organised into a series of stacked linear and non-linear layers (Angermueller et al., 2016; 339 

Sanchez et al., 2021). These layers are replete with numerous trainable parameters, from 340 

thousands to trillions, depending on the case. Within the neural network, each layer 341 

receives inputs from the preceding layer(s), causing every node in the layer to execute a 342 

linear combination of these inputs. This is succeeded by a non-linear transformation (the 343 

activation function), culminating in the calculated value being forwarded to the 344 

subsequent layer. ANNs can vary in their architecture, encompassing the number of 345 

layers and nodes, as well as the connections between nodes. In light of this context, the 346 

design of the neural network architecture holds paramount importance when employing 347 

deep learning techniques. A suboptimal design can result in reduced inferential 348 

capabilities, information loss, issues like underfitting or overfitting, and unnecessary 349 

complexities, all of which can negatively influence the training process (Cartwright, 350 

2008; Angermueller et al., 2016; Sanchez et al., 2021). 351 

Conversely, deep learning methods come with their share of intricacies and often 352 

demand meticulous and more specific fine-tuning compared to shallow learning methods. 353 
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This includes defining the number of layers in the neural network, configuring network 354 

hyperparameters, and exploring the control parameters of the loss function. In this 355 

regard, it is reasonable to assert that simpler machine learning algorithms remain 356 

competitive, especially when detailed parameter adjustment is unfeasible or unwarranted. 357 

This is particularly applicable in scenarios where an extensive volume of data or variables 358 

is not necessary to study a particular phenomenon, favouring the simplicity of shallow 359 

learning over the inherent complexity that neural networks typically entail. Nevertheless, 360 

the fundamental stages involved in creating a supervised shallow learning framework for 361 

species delimitation can be broadly paralleled with the primary phases found in a deep 362 

learning workflow. These encompass data simulation and representation, model training 363 

and optimisation, all the way to predicting the relevant categories from empirical data 364 

(Fig. 3). 365 

 366 
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 367 

Fig. 3 – Diagram illustrating a potential deep learning workflow applied in the context of species 368 

delimitation, using CNNs (inspired by Perez et al., 2021). a) The process typically begins with the 369 

simulation of biological data under various evolutionary models, considering factors like topology, 370 

population size, gene flow, and more, similar to SML. b) Next, data representation is crucial. For CNNs, 371 
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SNP matrices are often converted into arrays or image files, where pixel contrast reflects differences in 372 

minor and major frequencies between samples. c) With the simulated and properly represented data, the 373 

network training phase can commence. The parameter configuration and network architecture may vary, 374 

depending on the specific study's requirements. d) Once each model is trained and its performance is 375 

rigorously evaluated, the final stage of the workflow involves predicting categories for new data. This can 376 

include using new simulated data with slight parametric modifications, still within the trained model's 377 

limits, as well as empirical data whose evolutionary history aligns with the proposed model. In both cases, 378 

the goal is to determine which delimitation model best applies to the biological system being investigated. 379 

 380 

III. CURRENT ML APPLICATIONS FOR SPECIES DELIMITATION 381 

 In the same way that there are two primary categories of ML (excluding deep 382 

learning), species delimitation methods can also be broadly categorised into two main 383 

groups: discovery and validation (see Carstens et al., 2013; Rannala, 2015). Discovery 384 

approaches involve grouping samples without prior information (Pons et al., 2006; 385 

O'Meara, 2010; Huelsenbeck et al., 2011), while validation approaches require 386 

researchers to first assign the samples to potential lineages (species hypotheses) (Flouri 387 

et al., 2018; Sukumaran et al., 2021). This draws a conceptual parallel between traditional 388 

discovery approaches and UML methods, as well as between validation methods and 389 

supervised algorithms (Fig. 4). In practice, UML delimitation approaches typically use 390 

clustering or dimensionality reduction techniques (e.g. Derkarabetian et al., 2019), while 391 

SML approaches often involve using simulated datasets to train a classifier, which is then 392 

used to label new datasets accurately. 393 

 394 
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 395 

Fig. 4 - Comparative diagram categorising species delimitation methods and machine learning algorithms, 396 

along with some of their key characteristics. Species delimitation methods can be broadly categorised as 397 

discovery and validation methods, akin to unsupervised and supervised machine learning algorithms, 398 

respectively. 399 

 400 

Below, we present a comprehensive overview of recently applied ML methods in 401 

the domain of species delimitation, emphasising their computational attributes and 402 

underlying assumptions. Our selection process involved a thorough search across 403 

scientific literature repositories, databases, and online journals, with a specific emphasis 404 

on studies featuring ML methods and workflows explicitly designed for species limits 405 

inference. We prioritised research projects that either introduced novel methodologies 406 
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(see Table 1) or enhanced and tested existing techniques in this context (Supplementary 407 

Material). In our selection process, we focused exclusively on projects directly dedicated 408 

to species delimitation, despite the abundant literature on ML within related fields such 409 

as demography, population genetics, and phylogeography. Additionally, our emphasis is 410 

on methods designed for analysing DNA sequence data. The categorised methods include 411 

SML, UML, and deep learning. Also, there are some studies utilizing ML techniques and 412 

other types of data rather than molecular information, such as morphology or ecology, for 413 

species delimitation and integrative taxonomy. A brief exploratory section regarding 414 

these particular studies can be found in the Supplementary Material. 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 
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Table 1. List of proposed ML applications specifically designed to work on inferences about species limits. 429 

Reference Languages Category Algorithms Simulator Input Data representation 

CLADES (Pei et al., 2018)1 python SML Support vector machines MCcoal 

Multiple sequence 

alignment (MSA) 

or SNP matrix 

Population genetics summary 

statistics 

A demonstration of 

unsupervised machine 

learning in species 

delimitation (Derkarabetian 

et al., 2019)2 

R/python UML 

Variational autoencoders 

and t-Distributed 

Stochastic Neighbour 

Embedding 

NA SNP data matrix 

One-hot-encoding of the SNP 

data matrix and axis from a 

discriminant analysis of principal 

components 

delimitR (Smith & Carstens, 

2020)3 
python SML Random forest fastsimcoal SNP data matrix 

Folded multi- 

dimensional SFS 

Coalescent-based species 

delimitation meets deep 

learning: Insights from a 

highly fragmented cactus 

system (Perez et al., 2021)4 

python 
Deep 

learning 

Convolutional neural 

networks 
ms SNP data matrix 

NumPy matrices (as images), with 
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Seal Salamanders 

(Desmognathus monticola) 

(Pyron et al., 2023)5 
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Self-organizing maps 

(SOMs) 
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are individual specimens, the 
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states at each SNP locus, and the 

entries are the frequency of that 
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Online repositories where it is possible to find more information about the currently existing platforms. 1 https://github.com/pjweggy/CLADES; 430 
2 https://www.sciencedirect.com/science/article/abs/pii/S1055790319301721; 3 https://github.com/meganlsmith/delimitR; 431 
4 https://github.com/manolofperez/CNN_spDelimitation_Piloso; 5https://github.com/kyleaoconnell22/Pyron_et_al_UML_sp_delim/tree/main 432 

https://github.com/pjweggy/CLADES
https://www.sciencedirect.com/science/article/abs/pii/S1055790319301721
https://github.com/meganlsmith/delimitR
https://github.com/manolofperez/CNN_spDelimitation_Piloso
https://github.com/kyleaoconnell22/Pyron_et_al_UML_sp_delim/tree/main
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Derkarabetian et al. (2019) conducted a study to assess the performance of UML 433 

and deep learning methods in the context of species delimitation. Their research 434 

highlighted the effectiveness of variational autoencoder (VAE) and t-Distributed 435 

Stochastic Neighbour Embedding (t-SNE) algorithms in particular scenarios for 436 

accurately identifying species clusters and estimating the correct number of species. In 437 

the case of VAE, SNP matrices were converted via 'one-hot coding,' where nucleotides 438 

were transformed into binary variables (e.g., A = [1, 0, 0, 0]; C = [0, 1, 0, 0], and so on), 439 

including ambiguous bases (e.g., M = [0.5, 0.5, 0.0, 0.0]). A custom script was developed 440 

to perform this transformation (Derkarabetian et al., 2019). This VAE approach employed 441 

multiple layers of encoding to compress high-dimensional input data, followed by the 442 

reconstruction of data through successive decoding layers. The latent variables, 443 

represented as a normal distribution with mean (µ) and standard deviation (σ), offered a 444 

two-dimensional depiction of the SNP matrix, facilitating a clear visualisation that 445 

accounted for the uncertainty surrounding groupings due to standard deviations among 446 

samples and groups. In the case of t-SNE, data derived from a discriminant analysis of 447 

principal components (DAPC) was used as input variables, preceded by clustering tests 448 

using SNP matrices. Both approaches yielded more readily interpretable outcomes 449 

compared to other methods assessed by the authors, revealing distinct species groupings 450 

in a two-dimensional space (Derkarabetian et al., 2019). Notably, the identified groupings 451 

in this study aligned with the species delimitation results achieved through an integrative 452 

taxonomy approach, demonstrating a high degree of concordance between the datasets, 453 

suggesting that the limits identified by UML algorithms indeed correspond to species-454 

level divergence rather than population structure (Derkarabetian et al., 2019). 455 

Smith & Carstens (2020) introduced delimitR, a SML approach designed to frame 456 

species delimitation as a model selection challenge; delimitR employs the 457 
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multidimensional site frequency spectrum (mSFS) with a binning strategy as a 458 

predictor variable for a Random Forest (RF) classifier. Working with data summarised 459 

through the mSFS, delimitR facilitates the evaluation of models that vary in terms of 460 

lineage numbers. In essence, this framework aims to discriminate between various 461 

divergence models compatible with virtually any species concept, as asserted by the 462 

authors. Given its supervised nature, delimitR demands researchers to define reasonable 463 

priors, such as divergence times or migration rates, and to make decisions about the 464 

inclusion of models within the set (Smith & Carstens, 2020). Moreover, delimitR offers 465 

users the flexibility to customize the parameter space by incorporating custom models 466 

generated using fastsimcoal (Excoffier et al., 2021) and integrating them into the R 467 

workflow. 468 

In the context of Smith & Carstens' (2020) study, each model was used to simulate 469 

10,000 mSFS. These sets of simulated mSFS were subsequently summarised and 470 

observed by binning into four classes per population. A RF classifier was constructed 471 

using 1,000 decision trees to accommodate the extensive number of models. delimitR's 472 

performance demonstrates an improvement with larger SNP matrices and increasing 473 

divergence times. Also, compared to traditional ABC methods, the RF approach 474 

implemented in delimitR demonstrates lower error rates, even though the detection of 475 

migration becomes more challenging in cases of recent divergence between lineages 476 

(Smith & Carstens, 2020). However, the authors acknowledge that further research is 477 

needed to elucidate the association between the model space, number of parameters, and 478 

delimitation accuracy. Also, one of the fundamental principles underlying delimitR is the 479 

encouragement of explicit predictions based on hypotheses. This approach necessitates 480 

researchers to articulate the species concept employed in their data analysis, enhancing 481 
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transparency and repeatability in species delimitation studies, by connecting biological 482 

units with the evolutionary processes that gave rise to them. 483 

CLADES (Pei et al., 2018) is another SML approach designed for species 484 

delimitation, utilizing classification models trained and evaluated on multilocus sequence 485 

data. Notably, this study introduced the application of the support vector machines 486 

(SVM) algorithm to species delimitation. For model training, genetic datasets at the 487 

population level were simulated, with and without gene flow (although only the dataset 488 

without gene flow was shared by the authors). To manage computational complexity, five 489 

summary statistics were employed instead of raw sequence data. Also, in contrast to other 490 

existing methods, CLADES eliminate the need for users to supply guide trees or priors 491 

related to divergence time and population size (Pei et al., 2018). Within this framework, 492 

species delimitation is framed as a classification task, where the goal is to classify pairs 493 

of populations as either belonging to the same species or different species, using new 494 

observations based on training data derived from simulations conducted by the authors, 495 

across various evolutionary scenarios. Each training sample was represented as a list of 496 

summary statistics, and a SVM regression is calculated using these statistics. Through 497 

iterative training, the classification weights for each statistic were adjusted to minimise 498 

the misclassification cost. Being a SVM, it is assumed that the training data fell within a 499 

standard range, so all summary statistics were normalised to a range between 0 and 1. 500 

Subsequently, the SVM classifier computed the probability of the training samples 501 

belonging to each potential grouping. 502 

To create the training dataset, the authors conducted simulations based on a two-503 

species model (A and B) where both species diverged at time τ with identical population 504 

size parameters (θA = θB = θ). Each species further consisted of two populations that 505 

recently split at time τp. Migration between species A and B was allowed at a rate of M 506 
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= Nm migrants per generation, with m representing the migration rate per generation. The 507 

MCcoal software (Rannala & Yang, 2003) was used to simulate multilocus sequence data 508 

of length L under various parameter combinations for training. For each possible 509 

parameter combination (θ, τ, M), sequences were simulated at 100 loci with a length of L 510 

= 100Kbp for all populations. For each locus, 40 sequences were sampled, with 10 511 

sequences per population. Additionally, symmetrical migration between species A and B 512 

was assumed before the populations of the species split at time τp. Following this 513 

parameter configuration, a classifier was trained on the simulated data for each parameter 514 

configuration, with cross-validation used to assess accuracy. Subsequently, all training 515 

samples were combined to train a global classifier, enabling it to adapt to various values 516 

of θ and M and not assume fixed parameters. Regarding its performance, Pei et al. (2018) 517 

demonstrated that longer loci sequences improved CLADES' efficiency. Moreover, 518 

CLADES exhibited robustness to different modelling structures because it can 519 

accommodate various demographic events and evolutionary parameters, and achieved 520 

reasonable delimitation results even in the presence of gene flow (Pei et al., 2018). 521 

Perez et al. (2021) propose a species delimitation approach that combines 522 

coalescent-based methods with model selection using CNNs. The initial step involves 523 

simulating genetic data for each delimitation hypothesis, with the study encompassing 524 

10,000 simulations per model (the alignments of empirical and simulated data are 525 

accessible on GitHub). Subsequently, the simulated data is transformed into images, 526 

where black pixels represent alleles with the highest frequency, and white pixels represent 527 

those with the lowest frequency at each segregating site. These images of simulated data 528 

are used to train a neural network capable of recognising simulations generated from each 529 

model. The network can predict the associated probability using CNNs when tested with 530 

new empirical data. In the same study, the authors conducted a comparison between their 531 

https://github.com/manolofperez/CNN_spDelimitation_Piloso/tree/master/Pilosocereus
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model selection approach and ABC to assess various species delimitation hypotheses 532 

within the Pilosocereus aurisetus cactus species group. To validate the new method, they 533 

also employed a previously published dataset consisting of two pairs of Drosophila 534 

species. It's worth noting that while CNNs used 10,000 simulations per model, ABC 535 

required 100,000 simulations per model. The CNNs consistently demonstrated superior 536 

performance in distinguishing between the simulated demographic scenarios, 537 

outperforming ABC in all cases, with fewer simulations and faster execution times (Perez 538 

et al., 2021). 539 

Pyron et al. (2023) introduced a novel UML approach designed for delineating 540 

species limits from extensive genomic datasets. Their method is primarily grounded in 541 

self-organizing maps (SOMs), which aim to arrange multidimensional data into a two-542 

dimensional configuration to maximise similarity between the input data's distance matrix 543 

and the output data. Notably, it produces discrete outcomes rather than continuous ones, 544 

as it groups genotypes based on shared descent or state. This approach is posited as more 545 

advantageous than prior workflows, such as those presented by Derkarabetian et al. 546 

(2019). Additionally, the authors propose determining the number of species by analyzing 547 

the degree of grid occupancy in the SOM output. This quantification establishes how 548 

many units, representing distinct genotypes, have been effectively mapped from the 549 

original SNP matrix. Subsequently, the method estimates the cumulative distances from 550 

each sample to its immediate neighbours. Notably, these distances should show an 551 

increase near to class limits, which correspond to the demarcation between different 552 

candidate species. To effectively separate these candidate species, Pyron et al. (2023) 553 

recommend performing cluster analyses, such as k-means. The determination of the 554 

optimal number of classes or species in the dataset is achieved by selecting the value that 555 

maximises the sequential reduction in the weighted sum of squares from k to k + 1. Also, 556 
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we highlight that this technique is rooted in the assessment of similarity rather than 557 

dissimilarity. Besides, recently an extension of this method has been proposed in the form 558 

of a SuperSOM approach, incorporating the possibility of utilising several trait classes 559 

simultaneously, such as alleles, morphological and ecological variables (Pyron, 2023). 560 

 561 

IV. ADVANTAGES, LIMITATIONS AND FUTURE PERSPECTIVES 562 

 In general, it is reasonable to assert that the ML methods applied to infer species 563 

limits offer some advantages over coalescent or traditional Bayesian computation 564 

methods. Despite some constraints, ML algorithms perform as well as or even outperform 565 

model selection methods like ABC and coalescent-based methods (Pei et al., 2018; Smith 566 

& Carstens, 2020; Perez et al., 2021; Derkarabetian et al., 2021). Moreover, they are 567 

computationally more efficient and generally can be trained on models that are at times 568 

too intricate for formal statistical estimators (Pei et al., 2018; Kuzenkov et al., 2020; 569 

Smith & Carstens, 2020; Suvorov et al., 2020; Martin et al., 2021; Perez et al., 2021). 570 

Some of these algorithms also have proven to be highly efficient in complex evolutionary 571 

scenarios, including situations involving gene flow (Pei et al., 2018; Perez et al., 2021). 572 

 It is reasonable to anticipate that the introduction of new ML approaches for 573 

species delimitation will increasingly enhance researchers' ability to make biologically 574 

precise decisions particularly when these methods are purpose-built, from conception to 575 

implementation, for the specific task of delimiting evolutionary lineages. As a 576 

consequence, a critical step in any study at the intersection of ML approaches and species 577 

delimitation methods involves selecting the methods to be employed. This decision can 578 

be quite challenging due to the broad array of coalescent-based and ML methods available 579 

in the modern Evolutionary Biology toolkit (Schrider & Kern, 2018; Smith & Carstens, 580 

2020; Greener et al., 2021; Yelmen & Jay, 2023). With this multitude of possibilities, the 581 
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ideal choice should not only consider an appropriate fit with the biological problem under 582 

investigation, but also a statistical evaluation and performance optimisation (Greener et 583 

al., 2021; Morimoto et al., 2021), under various diversification scenarios, while 584 

estimating historical parameters like divergence time, population size, and migration 585 

rates. 586 

In this regard, one primary advantage of ML approaches over some formal 587 

Bayesian or maximum likelihood methods is their efficiency in testing complex 588 

demographic models, including scenarios with migration events or population size 589 

fluctuations (Perez et al., 2021). This efficiency does not compromise the ability to 590 

distinguish between different models (Smith et al., 2017). Even simple SML methods 591 

provide high selection accuracy when comparing multiple models in a single analysis (M. 592 

Gehara, G.G. Mazzochinni, F. Burbrink, unpublished data). In sum, different empirical 593 

studies using simulated data have demonstrated that ML algorithms can perform at least 594 

as effectively as coalescent-based species delimitation methods and, in certain scenarios, 595 

they can be more efficient in delineating species limits, especially when lineages continue 596 

to exhibit gene flow. Additionally, studies have indicated that deep learning methods, 597 

such as convolutional neural networks (CNNs), show promise as effective tools for 598 

model selection in evolutionary biology (Fonseca et al., 2021), being applicable even in 599 

complex evolutionary scenarios involving hidden genetic diversity, gene flow between 600 

populations, and changes in effective population size over time. Thus, even when ML 601 

methods such as these are not designed as delimitations approaches per se, they can 602 

function as one depending on its application, for instance in a transfer learning approach. 603 

However, it is essential to consider that certain algorithms, especially those in 604 

SML or deep learning, can be overly specialised. Modern ML methods are proficient at 605 

interpolating within the observed range of values in the training data, even in cases where 606 
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specific values haven't been encountered before, being adaptive and not solely reliant on 607 

memorising specific training instances. Even so, because such algorithms are typically 608 

trained on simulated data with specific values of evolutionary parameters, such as θ and 609 

M, their performance might be compromised when applied far outside the training 610 

parameter space (Schrider & Kern, 2018; Borowiec et al., 2022). Besides, ML algorithms 611 

such as those used in the studies described in the previous section do exhibit some degree 612 

of inductive bias, leading to potential inaccuracies in this context (Hüllermeier et al., 613 

2013). Therefore, exploring in further details the association between training capacity 614 

and predictive power should be a priority for future studies.  615 

Machine Learning is certainly becoming more prevalent in Evolutionary Biology 616 

due to its extensive use of simulated data for training classification and regression models 617 

(Yuan et al., 2012; Yelmen & Jay, 2022; Korfmann et al., 2023), as modern computer 618 

simulators can efficiently generate substantial amounts of labeled data in diverse 619 

evolutionary scenarios (Haller & Messer, 2019; Baumdicker et al., 2021). Methods 620 

relying on a substantial volume of simulated data across diverse evolutionary scenarios 621 

need to consider the careful design of prior distributions to simulate models that closely 622 

resemble the real biological system under investigation. However, this model 623 

specialisation might yield models that lack generalisability and transferability across 624 

different studies or data types, an area warranting further empirical exploration (Schrider 625 

& Kern, 2018; Borowiec et al., 2021). This challenge becomes more pronounced for non-626 

model organisms, where data availability may severely limit the quality of parameter 627 

estimates (Tagu et al., 2014; Fonseca et al., 2016; Cerca et al., 2021; Jorna et al., 2021). 628 

Furthermore, it may be unfeasible to simulate data or train an ML algorithm across 629 

an entire parameter space, especially in complex evolutionary models (Rannala & Yang, 630 

2020). Limited information is available regarding the asymptotic statistical performance 631 
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of most ML methods applied for species delimitation, and important phenomena may be 632 

entirely missing from the simulations (e.g. background selection, Mo & Siepel (2023), or 633 

missing data Arnab et al. (2023)). This leads to an inherent challenge in avoiding some 634 

degree of misspecification in the training data, even considering the variety of powerful 635 

genetic data simulators currently available, such as SLiM (Messer, 2013), discoal (Kern 636 

& Schrider, 2016), msprime (Baumdicker et al., 2021), and fastsimcoal2 (Excoffier et al., 637 

2021). In the context of species delimitation, formal statistical methods based on 638 

coalescence still offer the means to address such issues. These methods possess optimality 639 

and iterability properties that span a reasonable portion of the parameter space, albeit at 640 

a considerable computational cost (e.g., Flouri et al., 2018; Sukumaran et al., 2021). 641 

Regarding ML itself, one approach to mitigate the effects of misspecification 642 

during simulation involves designing or using a simulator that enforces greater 643 

compatibility between simulated and actual data. Generative adversarial networks 644 

(GANs), a type of deep learning algorithm commonly used for creating synthetic images 645 

and voices (Chadha et al., 202), have shown promise in this regard (see Callier, 2022; 646 

Wang et al., 2021). GANs operate with two networks, the generator and the discriminator, 647 

trained together (Goodfellow et al., 2014). While the generator generates simulated data, 648 

the discriminator distinguishes between real and fake data. Over the course of training, 649 

the generator network becomes more adept at producing realistic examples, and the 650 

discriminator network becomes more skilled at distinguishing between real and synthetic 651 

data. Once training is complete, the generator network can be utilised to generate new 652 

examples that are indistinguishable from real data, providing a reliable way to work with 653 

labelled data where ground truth is known. Researchers have already assessed the utility 654 

of GANs in various fields, including genomics, phylogenetics, and population genetics 655 

(Booker et al., 2023; L. Nesterenko, B. Boussau, L. Jacob unpublished data; Yelmen & 656 
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Jay, 2023). Smith & Hahn (2023), for instance, introduced phyloGAN, a workflow that 657 

takes a concatenated alignment (or a set of alignments) as input and infers a phylogenetic 658 

tree, potentially accounting for gene tree heterogeneity. 659 

While such approaches perform effectively in relatively straightforward scenarios, 660 

challenges still emerge as the complexity of evolutionary model spaces increases. This 661 

complexity might stem from more variables in evolutionary models or larger trees and 662 

alignments, resulting in potential issues related to accuracy and execution time (L. 663 

Nesterenko, B. Boussau, L. Jacob unpublished data; Smith & Hahn, 2023; Zaharias et al., 664 

2022). Even so, it's important to recognise that applications of GANs in the field of 665 

evolutionary biology are still in the early stages of development. To fully harness the 666 

potential of this tool in species delimitation, further efforts are required to refine estimates 667 

of genetic and population parameters (e.g., Wang et al., 2021). Additionally, future 668 

advancements in GANs within the realm of evolutionary biology should focus, for 669 

instance, on enhancing the efficiency of exploring parameter spaces, reducing 670 

computational training times, and accommodating more complex models (Smith & Hahn, 671 

2023). 672 

Besides, some researchers argue that issues related to potential errors in data 673 

simulation can be likened to a "domain adaptation" problem, where a model trained on 674 

one data distribution is applied to a dataset originating from a different distribution 675 

(Farahani et al., 2021; Mo & Siepel, 2023). Such problems often arise in scenarios 676 

involving extensive and diverse datasets, where generating adequately representative 677 

labelled training examples can be challenging. A classic illustration of domain adaptation 678 

is found in image classification. Consider a situation in which a recognition model needs 679 

to identify different dog breeds from photographs ("target domain"), but there is an 680 

abundance of labelled training data available only in cartoon drawings of dogs ("source 681 
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domain").  In such cases, a ML model must be trained on one dataset with the expectation 682 

of performing well on another, even in the presence of systematic differences between 683 

the two distributions. 684 

 Domain adaptation techniques encompass a broad array of methods historically 685 

prevalent in fields like computer vision and natural language processing (Li 2012; Xu et 686 

al., 2019; Farahani et al., 2021). Recent approaches typically involve learning a "domain-687 

invariant" data representation through a feature extractor neural network. This is 688 

accomplished by minimising domain disparities (Rozantsev et al., 2018), utilizing 689 

adversarial networks (Ganin & Lempitsky, 2015; Liu & Tuzel, 2016; Bousmalis et al., 690 

2017), or employing auxiliary reconstruction tasks (Ghifary et al., 2016). It is noteworthy 691 

that domain adaptation techniques have found applications in fields such as genomics 692 

(Cochran et al., 2022) and population genetics (Mo & Siepel, 2023), particularly as an 693 

unsupervised domain adaptation problem. In this context, initial simulations generated 694 

substantial amounts of meticulously labelled training data in the source domain; 695 

subsequently, the trained model was deployed on unlabelled real data in the target domain 696 

to explicitly consider the disparities between these domains during model training. 697 

Through extensive simulation studies, Mo & Siepel (2023) convincingly demonstrated 698 

that their domain-adapted models significantly outperformed standard networks across 699 

various simulation misspecification scenarios. This outcome underscores the potential of 700 

domain adaptation techniques as a promising avenue for developing more robust deep 701 

learning models in the realm of population genetic inference (Mo & Siepel, 2023), 702 

potentially including species delimitation. 703 

Another crucial perspective to consider is that numerous studies, whether focusing 704 

on species delimitation, population demography, or genetics, incorporate ML for 705 

inferences based on summary statistics (Pei et al., 2018; Smith & Carstens, 2020; Collin 706 
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et al., 2021; Ghirotto et al., 2021). Furthermore, there are methodologies tailored for 707 

handling data derived from SNP matrices (Derkarabetian et al., 2019; Sanchez et al., 708 

2020; Smith & Carstens, 2020; Blischak et al., 2021; Fonseca et al., 2021; Martin et al., 709 

2021; Perez et al., 2021) or raw sequence data (Pei et al., 2018; Ghirotto et al., 2021), 710 

and only a few pipelines offer extensibility to various genetic markers (e.g., Collin et al., 711 

2021). Notably, deep learning techniques are valuable tools in this context, offering the 712 

capability to analyse both raw genetic data and summary statistics (Korfmann et al., 713 

2023). Either way, it is crucial to recognize that this diversity in data representation is a 714 

notable constraint when employing ML for species delimitation, as ML approaches 715 

typically handle the delimitation problem differently than traditional coalescent methods 716 

like BPP, which base their inferences on parameters directly derived from DNA 717 

sequences (Flouri et al., 2018; 2020). 718 

While summary statistics can also be derived from the original genetic data and 719 

are valuable for distinguishing between simulated models, it is crucial to recognize that 720 

not all summary statistics may be suitable for making inferences about species limits. The 721 

practical implementation of summary statistics on the detection of specific evolutionary 722 

processes often encounters confounding factors that can mimic similar effects on gene 723 

histories (Flagel et al., 2019). For example, Tajima's D is a statistic sensitive to both 724 

positive selection and changes in population size (Simonsen et al., 1995). Moreover, since 725 

different studies often employ their specific set of summary statistics, comparing the 726 

results of ML applications is not always straightforward, or feasible, without 727 

acknowledging the significant nuances tied to the biological context considered in each 728 

approach. Thus, the tendency of some ML algorithms to rely on specific representations 729 

of data rather than the complete dataset can be seen as a drawback in certain scenarios. 730 

Unless we precisely know which type of data is truly sufficient to represent the target 731 
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data, an approach solely based on a particular set of summary statistics can inevitably 732 

result in a degree of information loss (Rannala & Yang, 2020). 733 

Thus, the challenge in species delimitation context extends beyond the selection 734 

and optimisation of ML algorithms; it encompasses the development of workflows that 735 

effectively represent the input data's information, translating evolutionary processes 736 

under a given biological signal into testable hypotheses about species limits. Particularly, 737 

an alternative to learning from summary statistics is to consider the alignment itself as 738 

input, as demonstrated in the CNNs approach introduced by Perez et al. (2021). 739 

Remarkably, CNNs, along with other deep learning techniques, implicitly enable 740 

dimensionality reduction while capturing structures within the input data. This capacity 741 

facilitates accurate and efficient classification or regression tasks, as observed in studies 742 

by Sanchez et al. (2020), Fonseca et al. (2021), Perez et al. (2021), and Borowiec et al. 743 

(2022), thus holding promise in future species delimitation studies. Even so, while it 744 

might be feasible to compare results across different approaches, it is important to 745 

recognise that such comparisons could be somewhat misleading due to the variability in 746 

the biological foundations employed in each ML workflow. In other words, it is not 747 

always reasonable to strictly compare results produced by different ML approaches, as 748 

they are generally trained on specific parameterisations and ways of representing data. 749 

Comparisons should be performed considering the statistical properties of the used ML 750 

algorithms, such as how the workflows manipulate the data attributes, and the different 751 

types of input and output data.  752 

This issue gains further significance when we consider that ML techniques are 753 

primarily lauded for their adaptability, especially in transfer learning frameworks. It is 754 

reasonable to assume that a neural network initially trained for a specific task can be 755 

repurposed for different learning contexts with the simple modification of some of its 756 
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layers. As an example, a deep learning architecture originally trained for inferring 757 

historical population sizes can be repurposed for classifying demographic scenarios (Pan 758 

& Yang, 2010). Moreover, when coupled with its capacity to simultaneously address 759 

phenotypic, ecological, and phylogeographic variables, the integration of ML analyses 760 

into species delimitation contributes to the construction of more profound and 761 

enlightening insights into taxonomical and speciation processes (e.g., Yang et al., 2022). 762 

Interestingly, this kind of approach of ML for species delimitation would also align with 763 

de Queiroz's generalized species concept (1998; 1999), mainly due to ML's capability to 764 

accommodate diverse data types. Within this context, while the primary criterion for 765 

recognising a species would still be evolutionary independence, other characteristics may 766 

serve as secondary evidence of divergence and could be also analysed using ML 767 

approaches. 768 

 769 

V. OPTIMISING THE USE OF ML IN THE CONTEXT OF SPECIES 770 

DELIMITATION 771 

While it is undeniable that the development of new ML-based methods (or the 772 

adaptation of methods from other fields) contributed to the species delimitation literature, 773 

it is crucial for researchers in this field to maintain a set of guiding questions. In this 774 

regard, we present a basic framework for the selection and assessment of ML workflows 775 

in the context of species delimitation (Fig. 5). Our aim is not to comprehensively outline 776 

all steps for implementing a broad ML project (for a broader overview, refer to Chicco et 777 

al., 2017; Fountain-Jones et al., 2021; Greener et al., 2021; Lee et al., 2022), but rather 778 

to propose key considerations for ML applications targeted at species limits inference. To 779 

accomplish this, we drew upon and adapted certain questions from Greener et al. (2021), 780 

which addressed the critical aspects to contemplate when reading or reviewing articles 781 
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employing ML on biological data. Furthermore, the proposed framework acknowledges 782 

the potential use of both ML and coalescent-based methods. 783 

 Choosing a ML method should not be grounded on popularity but on its suitability 784 

for the specific data and research questions at hand (Greener et al., 2021). It is crucial for 785 

researchers to thoroughly assess how new proposed methods truly differ from existing 786 

ones. While developing a new method for species delimitation is undoubtedly a valuable 787 

endeavour, it is equally important to consider the extent to which it contributes to the 788 

current literature, given the existing diversity of methods. Many of these, despite their 789 

limitations, have historically demonstrated their utility and effectiveness in tackling 790 

various biological challenges. In the context of considering ML as an alternative to 791 

coalescent methods, it is important to assess whether there are specific evolutionary 792 

scenarios where fully coalescent methods exhibit limitations, and whether a new ML 793 

workflow might outperform others in terms of performance. Additionally, users and 794 

developers should bear in mind that many ML frameworks still rely on coalescent 795 

principles, as many genetic simulators used in SML and deep learning approaches, 796 

operate within the framework of Coalescent Theory (Hoban et al., 2012; Hoban, 2014; 797 

Peng et al., 2015). 798 

An evaluation should encompass both the algorithm's biological predictions and 799 

computational performance. Thus, a comprehensive analysis of its characteristics, 800 

advantages, disadvantages, and overall performance compared to existing SDMs, 801 

especially coalescent ones, is desired. For instance, Smith & Cartens (2020) argue that 802 

traditional methods like BPP can accurately infer the number of species but may overlook 803 

significant processes, such as secondary contact, something that ML workflows like 804 

delimitR could be more efficient in dealing with. Also, one must consider that ML's 805 

ability to efficiently compare a wide range of models using large datasets in less 806 
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computational time could provide a significant advantage over traditional model 807 

comparison approaches. The primary computational load typically involves simulating 808 

the training dataset, which can be alleviated by using multiple processors or graphical 809 

processing units. 810 

A thorough description of the ML method, without a detailed reference to the 811 

dataset, can lead to significant issues within the workflow (Chicco, 2017; Greener et al., 812 

2021). The same rationale extends to the availability of the trained models. Consequently, 813 

one of the initial steps within this process involves evaluating the dataset itself. For 814 

instance, is the dataset adequately described in terms of its structure and biological 815 

representation for species delimitation purposes? For example, Derkarebetian et al. 816 

(2022) assessed a ML approach's capability to delimit cryptic species, and constructed a 817 

"customised" training dataset from a well-studied lineage with biological characteristics 818 

akin to their focal taxon. In cases like these, where a specific ML classifier has been 819 

designed and trained with a particular dataset based on a specific evolutionary model's 820 

parameters, it is important to ensure both the dataset and the classifier are meticulously 821 

described and made accessible to the public. Furthermore, it is always pertinent to 822 

question the adequacy of the test set for addressing each biological problem, as it must be 823 

comprehensive enough to yield results congruent with the spectrum of examples 824 

encompassed in the training set. 825 

Furthermore, especially within deep learning structures, where discerning the 826 

actual knowledge acquired by the neural network is challenging, achieving accurate 827 

predictions does not equate to learning a causal mechanism, even when the predictions 828 

are precise (Lee et al., 2022). Deep learning frameworks are intricate statistical models 829 

trained on high-dimensional data, and caution should be taken to avoid overinterpretation. 830 

Considering that tools employed for testing hypotheses regarding species limits span a 831 
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spectrum from interpretability to inferential power, deep learning workflows often find 832 

themselves at the extremes – offering high inferential power but limited interpretability. 833 

All of these factors accentuate the need for researchers to exercise prudence within this 834 

domain, bearing in mind the idiosyncrasies associated with each method and the specific 835 

biological or evolutionary models under investigation. 836 

Once these considerations weigh in favour of developing or adapting a new ML 837 

method, it is imperative to plan its statistical evaluation and comparison to existing 838 

methods, whether coalescent-based or not, primarily focusing on predictive performance. 839 

The appropriate statistical metrics for assessing the algorithm's ability to predict species 840 

limits should be determined (see Moses, 2017; Ramsundar et al., 2019). For example, it 841 

is common for researchers to evaluate the ML model's performance using genetic datasets 842 

of varying sizes, such as matrices containing 1,000, 5,000, and 10,000 SNPs, or 843 

alignments of different dimensions. Clearly, the quantity and quality of data significantly 844 

influence the effectiveness of ML applications. ML analyses conducted on larger, well-845 

filtered datasets consistently yield better results (Pei et al., 2018; Smith & Carstens, 2020; 846 

Martin et al., 2021; Derkarebetian, et al., 2022). This effect is particularly pronounced in 847 

UML approaches, as they tend to be more susceptible to data-related issues (Martin et al., 848 

2021). Additionally, it is essential to devise strategies to prevent overfitting. This 849 

becomes particularly significant when we consider that current ML methods are 850 

addressing various challenges (such as performance, handling of missing data, prevention 851 

of overfitting, and manipulation of evolutionary model parameters) in diverse ways. 852 

While nearly all ML methods incorporate error or noise estimates in classification 853 

tasks (Pei et al., 2018; Smith & Carstens, 2020; Martin et al., 2021; Derkarabetian et al., 854 

2022), there is substantial variation in the metrics and evaluation methods chosen by 855 

researchers, something that can further complicate comparisons among studies. There 856 
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have been limited comparisons among ML methods used in species delimitation, and the 857 

limitations of those already found in the literature are still not completely understood. 858 

Besides, it is challenging to compare existing ML methods, as they often operate on 859 

different data transformations in terms of their biological representation and are generally 860 

trained with specific parameters tailored to the study's aims. Thus, it is prudent for 861 

researchers to question the appropriateness of prioritising one method over another, and 862 

to consider that an integrative framework encompassing various methods may also offer 863 

a sensible approach. 864 

From a practical perspective, evaluating the suitability of an ML tool for species 865 

delimitation also involves assessing its accessibility, particularly when compared to 866 

established traditional methods. To promote the widespread adoption of ML tools in 867 

species delimitation, it is crucial to ensure that analyses are accessible and reproducible. 868 

This minimises the need to construct entirely new workflows for each study, involving 869 

tasks such as data simulation, model training, and the selection of evaluation metrics, 870 

enabling researchers to evaluate and enhance the method without needing to start from 871 

scratch (Greener et al., 2021; Heil et al., 2021). This reasoning, similar to that applied to 872 

the use of deep learning in Population Genetics (Korfmann et al., 2023), emphasizes the 873 

importance of making ML applications more user-friendly. Several factors can facilitate 874 

the integration of ML into a broader range of datasets, whether for species delimitation 875 

or other applications. For example, providing well-documented workflows, pre-trained 876 

models, and clear parameterisation details enables users to tailor model settings to the 877 

specific requirements of their biological systems. Likewise, the adoption of open-source 878 

software and programs, which is common practice in the field of ML, plays an important 879 

role in enhancing accessibility (Chicco, 2017; Heil et al., 2021). 880 
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Finally, it is essential to consider the diversity of programming environments used 881 

by different ML tools, as this can either facilitate or hinder researchers' usage, depending 882 

on their familiarity with specific coding structures or computing environments. In the 883 

studies we reviewed, Python and R workflows were the most commonly employed 884 

programming languages (Table 1; Pei et al., 2018; Derkarabetian et al., 2019; Smith & 885 

Carstens, 2020; Martin et al., 2021; Perez et al., 2021; Derkarabetian et al., 2021). This 886 

is not surprising, given the widespread adoption of Python and R in the biological sciences 887 

(Ekmekci et al., 2016; Perkel, 2021). Also, access to adequate computing resources 888 

remains a challenge for many researchers in species delimitation and various scientific 889 

disciplines (Veretnik et al., 2008; Truong et al., 2012; Helmy et al., 2016; Mangul et al., 890 

2019b). Efforts to provide resources like graphics processing units, cloud storage, and 891 

computational clusters are all crucial steps toward making ML more accessible and 892 

inclusive for scientists across diverse domains of knowledge. We echo the existing 893 

literature's call (Chicco, 2017; Greener et al., 2022; Korfmann et al., 2023) and emphasise 894 

the importance of integrating and broadening ML in terms of equity and inclusion within 895 

the field of Evolutionary Biology as a whole, including increased training opportunities 896 

and participation in scientific events. As these conditions are increasingly met, ML is 897 

poised to become an integral part of the toolkit used by scientists not only in the field of 898 

species delimitation, but for various Evolutionary Biology applications worldwide. 899 

 900 

 901 
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 902 

Fig. 5. Important considerations when evaluating, analysing, or creating machine learning (ML) approaches for inferring species limits involve several crucial steps. First, assessing a 903 
new ML method’s potential contribution in species delimitation is key, especially in comparison to existing efficient methods across different evolutionary scenarios. A detailed 904 
understanding of the ML workflow, including data representation, model parameterisation, and training procedures is fundamental. Robust statistical evaluations of the ML method's 905 
performance, both computationally and in predicting species limits, are imperative. Additionally, emphasis should be placed on ensuring reproducibility and accessibility by 906 
documenting platforms and sharing data and models for broader utilisation. Finally, promoting inclusivity and encouraging broader participation of ML developers and researchers 907 
within the field of Evolutionary Biology should be a priority. 908 
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VI. DISCUSSION 909 

 Coalescence-based methods are robust tools for inferring species limits, but their 910 

predictive capacity can be limited, particularly in scenarios where gene flow rapidly halts 911 

post-population divergence (Fujita et al., 2012; Smith & Carstens, 2020). While certain 912 

coalescent approaches can identify populations as distinct species even with moderate 913 

gene flow (Jackson et al., 2017; Leaché et al., 2019; Flouri et al., 2020), these species 914 

delimitation approaches should be used with caution when additional demographic 915 

processes influence lineage divergence during speciation (Smith & Carstens, 2020). 916 

Complexities like these suggest that using a single analytical approach, whether 917 

coalescent or otherwise, is unlikely to fully explore the intricate parameter space required 918 

for accurate species boundary inference. In this context, ML applications have emerged 919 

as a promising alternative. To date, relatively few studies (<20, see Supplementary 920 

Material) have specifically explored ML techniques for species delimitation, particularly 921 

when focusing on molecular data. While the potential for ML to revolutionise species 922 

delimitation, akin to its impact in various areas of Evolutionary Biology, is promising, 923 

this transformation will only be feasible with a comprehensive understanding of the 924 

diverse methodologies in existence. Among the studies examined here, only five 925 

introduced novel ML approaches for species delimitation, providing comprehensive 926 

details for researchers to follow—from initial simulations to statistical performance 927 

evaluations (Pei et al., 2018; Derkarabetian et al., 2019; Smith & Carstens, 2020; Perez 928 

et al., 2021; Pyron et al., 2023). 929 

Such approaches, also including some applied in phylogeography and 930 

demographic inferences, are often justified on the following arguments: i) challenges with 931 

coalescent method assumptions, as some researchers turn to ML techniques due to 932 

limitations associated with the assumptions of coalescent methods (Derkarabetian et al., 933 
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2019; Smith & Carstens, 2020; Blischak et al., 2021; Martin et al., 2021; Derkarabetian 934 

et al., 2021); ii) computational efficiency and handling complex models, both in terms of 935 

computational efficiency and model adaptability (Pei et al., 2018; Martin et al., 2021; 936 

Perez et al., 2021; Derkarabetian et al., 2021; Pyron et al., 2023); and iii) integration with 937 

ABC methods, as ML can be combined with or used as an alternative to ABC methods 938 

(Sanchez et al., 2020; Smith & Carstens, 2020; Martin et al., 2021; Perez et al., 2021). 939 

This integration is often achieved through methods such as: i) adapting traditional 940 

summary statistics or selecting a more informative subset based on specific criteria (Smith 941 

& Carstens, 2020; Martin et al., 2021); and ii) incorporating ML techniques (e.g., RF) 942 

into the ABC framework to handle a larger number of summary statistics (Ghirotto et al., 943 

2020; Smith & Carstens, 2020; Collin et al., 2021). 944 

It is also notable that the criterion of evolutionary independence among 945 

metapopulation lineages (de Queiroz, 1998; 1999; 2005) takes precedence over other 946 

operational methods for species delimitation when it comes to ML frameworks. This 947 

preference may stem from our focus on workflows using molecular data, which aim to 948 

define evolutionary lineages and genetic groupings characterised by significant genetic 949 

divergence and restricted gene flow. While these criteria may have their limitations in 950 

investigating species limits, the results generated by ML methods in this context can serve 951 

as strong hypotheses for further investigations (e.g., Fujita et al., 2012). In cases where 952 

the independent evolutionary lineages or genetic groupings identified through ML 953 

methods may not precisely correspond to distinct species, these methods can still be 954 

adapted to analyse the same subjects using additional data sources. Consequently, there 955 

are scenarios where an integrative approach that builds upon methods with distinct 956 

statistical properties while comparing results and implications regarding species limits 957 
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will be appropriate. Robust and well-designed methods comparisons will help determine 958 

which methods are most suitable for particular biological questions. 959 

Especially in SML or deep learning approaches, which often use explicit 960 

speciation models to validate species (e.g., Smith & Carstens, 2020), ML enables a more 961 

in-depth exploration of the speciation and phylogeographic processes that underlie the 962 

formation of independent evolutionary lineages. Thus, given that properly sampled 963 

genomic datasets can offer sufficient data for analysing complex evolutionary models, 964 

ML might serve a dual role: providing primary evidence for examining species limits 965 

patterns while aiding in the formulation of initial hypotheses, and assisting in the 966 

investigation and reconstruction of the processes responsible for these patterns. To 967 

empirically evaluate these methods for estimating unknown evolutionary parameters, a 968 

practical approach involves simulating data under various evolutionary models. However, 969 

data simulation carries significant limitations, particularly in complex evolutionary 970 

scenarios: the models may never be comprehensive enough, have limitations in 971 

representing real data, and demand substantial computational resources (Arenas, 2012; 972 

Mangul et al., 2019a; Zaharias et al., 2022).  973 

While these issues are not unique to ML-based workflows (inferential frameworks 974 

like ABC also employ simulated data; Beaumont et al., 2002; Bertorelle et al., 2010), 975 

simulations in this context appear to pose additional challenges. To address uncertainties 976 

related to the data simulation process, especially in Population Genetics studies, several 977 

solutions have been proposed. These include training networks on multiple "mis 978 

specified" models (Flagel et al., 2019; Torada et al., 2019; Adrion et al., 2020), 979 

employing GANs (Booker et al., 2023; L. Nesterenko, B. Boussau, L. Jacob unpublished 980 

data; Smith & Hahn, 2023; Yelmen & Jay, 2023), as well as utilising domain adaptation 981 

techniques (Cochran et al., 2022; Mo & Siepel, 2023). Furthermore, the increasing 982 
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availability of trained models in the literature, particularly those with comprehensive 983 

documentation and trained under various parameterisations, is likely to facilitate future 984 

implementations. Concerns also arise regarding the true nature of species as identified by 985 

ML-based delimitation methods. As most of the approaches we presented rely on SNP 986 

data or in particular population genetics metrics, it is valid to question whether these 987 

methods genuinely discern species or primarily detect population structure (Sukumaran 988 

& Knowles, 2017; Huang, 2020). 989 

Although some ML approaches incorporate tests to deal with such limitations, 990 

ML-based delimitation methods, just as some coalescent-based methods, might not 991 

always be identifying species per se, but rather: i) incompletely separated (or incipient) 992 

species, which may eventually be classified as distinct ones (Burbrink et al., 2022), or 993 

even as "subspecies" (de Queiroz, 2020); ii) ephemeral population or phylogeographic 994 

variation (Rosenblum et al., 2012; Sukumaran et al., 2021). Consequently, while ML 995 

methods hold increasing promise for species limits inference, even under the Generalized 996 

Lineage Concept of Species (de Queiroz, 1998; 1999; 2007), it is necessary to evaluate 997 

the extent to which the ML methods (just as coalescent-based ones) could effectively 998 

discern evolutionary independence among metapopulation lineages. Results obtained 999 

from these methods may not always provide definitive support for species delimitation 1000 

hypotheses, but additional evidence for taxonomic decisions. Just as phenotypic, 1001 

ecological, or other attributes are not mandatory criteria for designating an evolutionary 1002 

lineage as a species (de Queiroz, 2007; Pyron et al., 2023), genetic or genealogical 1003 

groupings identified using ML-based delimitation methods can be similarly interpreted. 1004 

All models, while inherently limited in representing the underlying nature of 1005 

species diversification and, hence, of the current species limits among the tested entities, 1006 

will be more or less useful depending on their effectiveness in extracting relevant 1007 
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evolutionary information from the available data. The choice on which species 1008 

delimitation method to use should be done before hypothesis-testing, considering the 1009 

nature of the available data, and possibly prior relevant biological information regarding 1010 

the evolution of organisms, such that the best available model for the specific situation 1011 

could be used. However, since ML methods for species delimitation are still in their 1012 

infancy, this would be a difficult task for non-model organisms, and those for which no 1013 

information on their diversification process is available. Thus, integrating coalescent-1014 

based methods into the hypothesis-testing process, alongside available ML methods, 1015 

could enable a more comprehensive exploration of genetic and evolutionary models and 1016 

parameters, improving the accuracy and biological interpretability of species delimitation 1017 

analyses, and pave the way for the future use and applicability of ML methods. 1018 

Currently, by leveraging the strengths of both of those powerful analytical 1019 

approaches, researchers will be able to construct a more reliable and defensible process 1020 

for hypothesis testing in species delimitation, while accumulating evidence on the 1021 

particular strengths of the methods. One particular type of approach that would benefit 1022 

greatly from the combination of coalescence-based methods and machine learning 1023 

algorithms, and that could shape the future direction of genetic-based species 1024 

delimitation, involves the empirical validation of speciation-based models, which can 1025 

provide a nuanced understanding of the speciation process. Different speciation-based 1026 

delimitation models, whether relying on ML, coalescence, or a combination of both, could 1027 

be employed to capture different facets of the process of evolutionary divergence, with 1028 

model formulation serving as a means to articulate expert knowledge to statistical tools 1029 

for hypothesis testing.  1030 

In addition to that, due to its great versatility in handling diverse data types, ML's 1031 

future applications to infer species limits may also focus on evaluating which of the 1032 
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different biological properties could be most effectively integrated into the species 1033 

hypotheses testing process. This approach would also strongly align with de Queiroz's 1034 

generalized species concept (1998; 1999; 2005), providing a deeper understanding of 1035 

speciation processes through multiple biological perspectives. ML applications for 1036 

species delimitation may serve as a robust tool for developing integrative taxonomy 1037 

approaches by accommodating various types of input data, something that is fundamental 1038 

in the light of the complex nature and variability observed within species. This becomes 1039 

particularly appealing as AI-assisted approaches can be employed not only to test 1040 

delimitation hypotheses, but also to analyse the relationships between evolutionary 1041 

models and phylogeographic scenarios in terms of distinct characteristics, whether 1042 

genetic, phenotypic, or ecological. While combining morphological and ecological 1043 

analysis with molecular approaches can enhance inference quality (Wahlberg et al., 2005; 1044 

Edwards & Knowles, 2014; Derkarabetian et al., 2022), relying solely on either method 1045 

poses challenges. Only a few detailed ML pipelines have been proposed to address this 1046 

challenge so far. For example, Yang et al. (2022) introduced a CNN method that 1047 

successfully integrates morphological and molecular data for species identification. Pyron 1048 

(2023), on the other hand, implemented a UML method using SOMs for learning high-1049 

dimensional associations between observations (e.g., individual specimens) across a wide 1050 

set of input features (e.g., genetics, geography, environment, and phenotype). Future 1051 

methodologies could explore this integration of multiple sources of information, both 1052 

regarding species delimitation and integrative taxonomy.  1053 

Species delimitation is an increasingly challenging enterprise due to the growing 1054 

availability of large-scale genomic data and the necessity to examine diverse evolutionary 1055 

scenarios. While currently no universally superior species delimitation method exists, ML 1056 

algorithms offer promising prospects for their integration into systematic protocols 1057 
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tailored for species delimitation. Moving forward, it is imperative to conduct research on 1058 

the performance of ML applications in terms of their adaptability to various 1059 

parameterisations and the representation of genetic data. We suggest that ML species 1060 

delimitation methods should follow a thorough evaluation of its strengths and weaknesses 1061 

concerning the specific biological problem at hand, and preferably in comparison with 1062 

coalescent-based approaches. Even if a particular ML algorithm is identified as a potential 1063 

solution for addressing complex evolutionary problems, traditional coalescent methods 1064 

could at least be used for benchmarking the ML algorithm's performance. As issues like 1065 

these are solved, ML should progressively become a more practical, objective and robust 1066 

alternative, paving the way for more concrete advancements when it comes to species 1067 

delimitation. 1068 

 1069 

VII. CONCLUSIONS 1070 

(1) Relatively few studies have explored ML techniques for species delimitation using 1071 

molecular data so far. They are generally employed due to coalescent-based methods 1072 

specific assumptions and limitations. Besides, they are computationally efficient, can be 1073 

easily integrated with Bayesian approximation methods, and clearly provides a concrete 1074 

and robust way to explore dataset structures when species-level divergences are 1075 

hypothesised. 1076 

(2) ML approaches and coalescent-based methods provide a wide array of choices, 1077 

necessitating careful selection considering multiple factors. Particularly, ML algorithms 1078 

offer promising prospects but require thorough evaluation, comparison, and adaptation to 1079 

specific biological problems, potentially in combination with traditional SDMs. Besides, 1080 

selecting an appropriate ML method for species delimitation should prioritize suitability 1081 

for specific data and research questions over popularity. This assessment includes 1082 
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biological predictions, computational performance, and comparisons to existing methods, 1083 

even considering that comparing existing methods can be challenging. Either way, there's 1084 

a need for better comparative studies among ML methods and consideration of an 1085 

integrative approach encompassing various methods. 1086 

(3) Some specific challenges can be highlighted regarding the utilisation of ML 1087 

frameworks to infer species limits. For example, overly specialised algorithms might 1088 

perform well within observed ranges of evolutionary parameters but can struggle outside 1089 

the training space. This gains importance as ML applications in Evolutionary Biology 1090 

rely heavily on simulated data. Besides, model specialisation for simulated data can 1091 

hinder generalisability and transferability across different studies or data types. To 1092 

address this issue, there are some potential solutions and emerging approaches. For 1093 

example, GANs enable the creation of more realistic simulated data, and domain 1094 

adaptation techniques to transfer knowledge across datasets with systematic differences. 1095 

Another challenge relies on handling data derived from distinct genetic markers, posing 1096 

a significant challenge in comparing different ML approaches. 1097 

 (4) Just as some coalescent-based methods, ML-based delimitation methods may not 1098 

always discern species, but might identify incompletely separated species or ephemeral 1099 

population variations, offering strong hypotheses for further investigations. Therefore, 1100 

ML should be progressively developed and used alongside coalescent-based methods to 1101 

enhance objectivity and robustness in species delimitation processes, combining the 1102 

strengths of both for hypothesis testing. Also, future applications of ML methods in 1103 

species delimitation may focus on integrating various biological properties into species 1104 

hypothesis testing, aiding in understanding speciation processes, accommodating 1105 

different types of input data, and dealing more effectively with problems associated with 1106 

data simulation. Besides, there is potential in utilizing ML methods in Integrative 1107 
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Taxonomy approaches, as combining morphological, ecological, and molecular data, is 1108 

crucial for robust species delimitation and may benefit from the flexibility of these AI-1109 

based approaches. 1110 
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