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Abstract 23 

Life history tradeoffs are one of the central tenets of evolutionary demography. Tradeoffs, 24 

depicting negative covariances between individuals’ life history traits, can arise from genetic 25 

constraints, or from a finite amount of resources that each individual has to allocate in a zero-26 

sum game between somatic and reproductive functions. While theory predicts that tradeoffs are 27 

ubiquitous, empirical studies have often failed to detect such negative covariances in wild 28 

populations. One way to improve the detection of tradeoffs is by accounting for the 29 

environmental context, as tradeoff expression may depend on environmental conditions. 30 

However, current methodologies usually search for fixed covariances between traits, thereby 31 

ignoring their context dependence. Here, we present a hierarchical multivariate ‘covariance 32 

reaction norm’ model, adapted from Martin (2023), to help detect context dependence in the 33 

expression of life-history tradeoffs using demographic data. The method allows continuous 34 

variation in the phenotypic correlation between traits. We validate the model on simulated data 35 

for both intraindividual and intergenerational tradeoffs. We then apply it to empirical datasets 36 

of yellow-bellied marmots (Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-37 

concept showing that new insights can be gained by applying our methodology, such as detecting 38 

tradeoffs only in specific environments. We discuss its potential for application to many of the 39 

existing long-term demographic datasets and how it could improve our understanding of tradeoff 40 

expression in particular, and life history theory in general. 41 

 42 

Introduction 43 



 

Demographic tradeoffs, which are characterized as negative covariances between fitness 44 

components such as somatic or reproductive traits, are central to life history theory (Stearns, 45 

1989), and are thought to constrain and organize much of the life history diversity that exists 46 

(Bielby et al., 2007; Healy et al., 2019; Salguero-Gómez et al., 2016; Stearns, 1984). They originate 47 

from the basic fact that the total amount of resources or energy acquired by any one individual 48 

is limited, and has to be shared among several of the individual’s fitness-related traits. In such a 49 

zero-sum game and in the absence of change in the total amount of resources acquired, any 50 

increase in the allocation of resources towards a specific fitness component will have to be at the 51 

expense of another fitness component. While tradeoffs stem from individual processes, these 52 

covariances can scale up to different levels of organization (Agrawal, 2020; Bliard et al., 2024). If 53 

tradeoffs did not exist, selection would maximize all fitness-related traits simultaneously and 54 

would lead to the impossible “darwinian demons” (Law, 1979). Therefore, tradeoffs should be 55 

faced by all organisms and are, in theory, ubiquitous (Stearns, 1989, 1992; Williams, 1966). They 56 

can come in several forms (Stearns, 1989), being either intraindividual (traits involved relate to 57 

the fitness of the same individual) or intergenerational (traits involved relate to the fitness of a 58 

parent-offspring pair; e.g., offspring quantity-quality tradeoff). Despite their expected 59 

universality and being sought-after by evolutionary ecologists and biodemographers alike, life-60 

history tradeoffs have been surprisingly hard to detect in wild populations (Chang et al., 2023; 61 

Metcalf, 2016; van Noordwijk & de Jong, 1986), with successful probes too often confined to 62 

experimental approaches.   63 

Several reasons could explain why tradeoffs are hard to detect in wild populations. First, 64 

we often expect traits to covary in a simple bivariate manner following the Y-model of resource 65 



 

allocation, where any resources diverted from a trait will be allocated to the other one (de Jong 66 

& van Noordwijk, 1992). Thus while we are often analyzing a single pair of traits at a time, tradeoff 67 

structures are often more complex. For instance, many more than two traits are likely to be 68 

involved in the resource allocation process (Cressler et al., 2017; de Jong, 1993; Pease & Bull, 69 

1988), sometimes leading to complex hierarchical allocation trees, potentially resulting in some 70 

pairs of traits not covarying negatively (Gascoigne et al., 2022). Second, life history traits can 71 

covary at different levels. While tradeoffs result from individuals’ resource allocation processes, 72 

biodemographers often study tradeoffs as the temporal correlations among demographic rates 73 

at the population level (Compagnoni et al., 2016; Fay et al., 2020; Fay, Hamel, et al., 2022; van 74 

Tienderen, 1995). Tradeoffs can occasionally scale up to cause negative temporal covariances at 75 

the population level (van Tienderen, 1995), but in most cases these covariances are the results 76 

of environmental stochasticity and demographic reaction norms to shared ecological drivers (Fay, 77 

Hamel, et al., 2022; Knops et al., 2007; Paniw et al., 2020). Third, even though tradeoffs might be 78 

present, individual heterogeneity can mask their presence among individuals. This specific 79 

ecological version of Simpson’s paradox (Simpson, 1951) has been demonstrated by van 80 

Noordwijk and de Jong (1986): when the among-individual variance in resource acquisition is 81 

greater than the among-individual variance in resource allocation, the tradeoff is not expressed 82 

among individuals — even though it is theoretically present within individuals. In addition, 83 

expression of a tradeoff among individuals can also be influenced if the allocation and acquisition 84 

processes are not independent (Descamps et al., 2016; Fischer et al., 2009; Robinson & 85 

Beckerman, 2013). Altogether, this makes the detection of tradeoffs in wild populations difficult. 86 



 

 How much individuals vary in acquisition and allocation of resources determines if a 87 

tradeoff is detected among individuals (Metcalf, 2016; Reznick et al., 2000; van Noordwijk & de 88 

Jong, 1986). Part of this variance might be fixed, stemming from genetic, developmental, or 89 

consistent behavioral differences that constrain how much resources are acquired and allocated 90 

to somatic vs. reproductive functions (Réale et al., 2007; Wilson & Nussey, 2010). The remaining 91 

variance is likely to be plastic (Spigler & Woodard, 2019), where acquisition vs. allocation likely 92 

depends on the environmental context (Cohen et al., 2020; Sgrò & Hoffmann, 2004; Stearns et 93 

al., 1991). For instance, in several species, no tradeoffs were found among captive animals fed 94 

ad libitum (Kengeri et al., 2013; Landes et al., 2019; Ricklefs & Cadena, 2007). Similarly, controlled 95 

laboratory experiments on several species have shown that tradeoffs detection and strength 96 

were dependent on resource abundance (Gebhardt & Stearns, 1988; Messina & Fry, 2003; 97 

Messina & Slade, 1999; Spigler & Woodard, 2019). However, despite evidence that tradeoff 98 

expression depends on the environmental context, statistical methods to detect this context 99 

dependence in wild populations have, to date, rarely been applied. 100 

 Multivariate models are commonly employed to detect tradeoffs in wild populations 101 

(Cam et al. 2002, 2013; Hamel et al. 2018; Paterson et al. 2018; Fay et al. 2022a). In quantitative 102 

genetics, such models allow for the simultaneous analysis of multiple dependent variables like 103 

fecundity, growth, and survival (Kruuk et al. 2008; Wilson et al. 2010). These variables each have 104 

their own predictors, and the models estimate the correlated residual variances unaccounted for 105 

by the primary predictors. These models can be used to study residual correlations between traits 106 

at different levels, such as among-year correlation and among-individual correlation. For 107 

example, after accounting for primary predictors, such models quantify whether years with high 108 



 

survival in a population are also years with high recruitment; or whether individuals with higher 109 

fecundity have lower or higher growth rates. However, these correlations among residual 110 

variances are estimated as fixed. Estimating fixed correlations might not necessarily be 111 

problematic in the case of experimental work, in which environmental conditions can be held 112 

constant within each treatment. However, wild populations are unlikely to experience fixed 113 

conditions, as the environmental context will vary in a continuous fashion, hence influencing the 114 

expression of tradeoffs. Therefore, there is a need to analyse and predict continuous variation of 115 

phenotypic correlations. 116 

Here, we repurpose a hierarchical multivariate ‘covariance reaction norm’ (hereafter 117 

CRN) model recently developed by Martin (2023), which allows the incorporation of continuous 118 

predictors directly on the covariance matrix, for application to sampling designs typical in 119 

population ecology, enabling the study of the context-dependent expression of tradeoffs. As a 120 

proof-of-concept, we first validate this model on two simulated datasets, respectively focusing 121 

on an intergenerational tradeoff and an intraindividual tradeoff. We then apply our model on 122 

two empirical datasets of wild populations of yellow-bellied marmots Marmota flaviventer and 123 

Soay sheep Ovis aries. Prior studies have explored tradeoffs between vital rates in both species 124 

(Kroeger et al., 2020; Tavecchia et al., 2005). For instance, in yellow-bellied marmots, a quality-125 

quantity tradeoff in offspring has been observed for older mothers. In Soay sheep, the costs of 126 

reproduction have been particularly evident for breeding ewes in high-density populations or 127 

following harsh winters. However, the environmental context-dependence of these tradeoffs has 128 

yet to be studied explicitly. In the marmots, which inhabit high-altitude, highly seasonal 129 

environments, and the sheep, which face severe winter storms and fluctuating population 130 



 

densities, we hypothesize that tradeoffs are more likely to manifest under unfavorable ecological 131 

conditions (Cohen et al., 2020; Sgrò & Hoffmann, 2004). 132 

Methods 133 

The model 134 

In this study, we employ a newly introduced CRN model (Martin, 2023), which has been 135 

developed as a quantitative genetic model to predict continuous changes in trait associations 136 

when either genetic data or repeated individual measurements are available for all phenotypes 137 

of interest. A key assumption of multivariate models thus far has been that phenotypic 138 

correlations caused by tradeoffs are fixed through time or space (Cam et al., 2002; Hamel et al., 139 

2018). The CRN approach provides a solution to this general challenge, by allowing for phenotypic 140 

covariances to vary in response to variation in the environment, for example, estimating under 141 

which conditions among-individual variance in resources allocation is larger than among-142 

individual variance in acquisition (van Noordwijk & de Jong, 1986). In the present study, we 143 

extend application of this general CRN approach to the detection of context-dependent tradeoffs 144 

(here defined as among-individual correlations even though both are not always equivalent) 145 

between life history traits, with special consideration to sampling conditions typical of long-term 146 

field research in population ecology. Specifically, we examine the use of bivariate CRN models to 147 

test for the presence of phenotypic tradeoffs when repeated individual measurements are 148 

lacking in a given environmental context (e.g., during a specific sampling event such as a breeding 149 

season or a year). These are typical situations in field research that motivate further development 150 

of the quantitative genetic models proposed by Martin (2023). 151 



 

Before delving into the specifics of the model, note that in all the following models 152 

presented, measurements of the same individuals observed in different contexts are considered 153 

independent (see supplementary materials Section S1 for more details). This necessary 154 

simplification has potential consequences when searching for the phenotypic manifestation of 155 

tradeoffs, as fixed heterogeneity across ecological contexts cannot be properly disentangled from 156 

context-dependent heterogeneity, which might lead to issues especially in long-lived species that 157 

are observed across many different contexts. Nonetheless, this simplification does not impede 158 

our ability to detect context-dependence of among-individual correlations (supplementary 159 

materials Section S1). Consider a CRN model investigating how environmental contexts 𝐶 and 160 

individual factors affect the phenotypic means of 𝛽𝜇1and 𝛽𝜇2 and among-individual correlations 161 

𝛽!  between two Gaussian life history trait measures z1 and z2 with repeated individual 162 

measurements in each environmental context. X1 and X2 are N x P matrices of N measurements 163 

of P predictors. We begin by focusing on linear models to simplify notation and aid 164 

comprehension, with generalized models for non-Gaussian distributions discussed further below. 165 

Following Martin (2023) in the absence of genetic data, our bivariate phenotypic model is given 166 

by 167 

 168 



 

Trait values are expressed as a function of the average effects 𝜷𝝁1 and 𝜷𝝁2 of X1 and X2 on each 169 

phenotype, as well as among-individual effects 𝜶1(C) and 𝜶2(C) that are repeatable across 170 

measurements and within-individual effects 𝜺1(C) and 𝜺1(C) that are variable across measurements. 171 

The model matrix W (an N x J matrix for J subjects) structures the among-individual effects 𝜶(C) 172 

across repeated measurements. (Co)variances between independent among- and within-173 

individual effects are respectively described by P and 𝚺 covariance matrices. To detect context-174 

dependent tradeoff expression, we use environmental information in X3 (an C x P matrix of C 175 

environmental contexts of P predictors) to predict the among-individual trait covariance matrix 176 

P(C). 177 

 178 

where the inverse hyperbolic tangent function atanh(r)=logit([𝑟 + 1]/2)/2 is used as a link 179 

function to model additive environmental effects 𝜷r on the logit scale while retaining the [-1,1] 180 

scaling of the correlation coefficient r. This is akin to a logistic regression with bounds in [-1,1] 181 

instead of [0,1]. The same approach can be taken to describe changes in within-individual 182 

variation across environmental contexts. 183 

 184 

Direct prediction of the transformed correlation coefficient is useful because we are 185 

principally interested in r(C) as an indicator of putative tradeoffs, rather than the covariance  186 

𝑃1,2($) = r(C)𝜎1𝜎2 per se. Changes in the scale 𝜎1𝜎2 of life history trait variation may occur 187 



 

independently of changes in positive or negative trait association among individuals, but these 188 

effects will be confounded together in the covariance 𝑃1,2($). In contrast, the correlation 189 

coefficient r(C) is standardized relative to the scale of each phenotype, providing a more robust 190 

quantity for directly predicting and comparing estimates of life history tradeoffs across 191 

phenotypes and species. Our model also assumes that phenotypic variances can vary across 192 

environmental contexts, but no predictions are made on this variation. Greater plasticity is 193 

instead expected in the strength of tradeoff expression caused by fluctuating environmental 194 

factors (e.g., environmental harshness, resource availability, local predator density). See Martin 195 

(2023) for further details on relaxing these assumptions to model environmental effects on 196 

among- and within-individual variances. 197 

Non-repeated measures 198 

Estimating Eq 1 with empirical data requires multiple measurements of the same subjects 199 

to effectively partition trait correlations due to sources of among- P(C) and within-individual 𝚺(C) 200 

phenotypic variation, relative to a given window of sampling (i.e., a given environmental context 201 

𝐶). Repeated individual measurements are often inconsistent or unavailable in a given 202 

environmental context (e.g., a single fecundity measurement for individuals in a given year) in 203 

long-term field studies, which otherwise provide invaluable datasets for investigating context-204 

specific tradeoffs in the wild. Fortunately, we can still take advantage of long-term environmental 205 

variation in such studies to detect variation in tradeoff expression without repeated 206 

measurements in a given environmental context. This requires simplifying the CRN model to 207 

predict observation-level phenotypic associations across environmental contexts.  208 



 

 209 

Here, the lack of repeated measurements mean that we cannot decompose the variance 210 

between among- and within-individual variation. Therefore, o1(C) = 𝜶1(C) + 𝜺1(C) and o2(C) = 𝜶2(C) + 211 

𝜺2(C) are observation-level random effects aggregating variation due to among- and within-212 

individual differences across measurements, within a given environmental context defined by 𝐶 213 

(e.g., a given year, position in space, level of resource abundance). Note that the W matrix from 214 

Eq 1 is no longer necessary in Eq 2 in the absence of repeated measurements. As a consequence, 215 

we expect that the observation-level correlation 𝑟&($) between these random effects to reflect 216 

the combined effect of the among- and within-individual correlations between life history traits, 217 

weighted by the geometric mean of their repeatability R (Dingemanse & Dochtermann, 2013; 218 

Searle, 1961). 219 

 220 

Where phenotypic variances are adjusted for the mean effects of X1𝜷𝝁1 and X2𝜷𝝁2. We can see 221 

that inferences about among-individual tradeoffs from the non-repeated measures model (Eq. 222 

2) will be at greatest risk of bias when sign(𝑟')≠sign(𝑟() and $𝑅1𝑅2 	<< $(1−𝑅1)(1−𝑅2)	. 223 

Figure 1 shows these general relationships across correlation and repeatability ranges, identifying 224 



 

regions of sign bias. Fortunately, researchers will generally be able to judge their risk of inferential 225 

bias based on a priori knowledge about the repeatability of life history traits, which tends to be 226 

medium to high (Dingemanse et al., 2021). For example, observation-level correlations of 227 

behavioral traits will tend to be dominated by within-individual associations (Bell et al., 2009; 228 

Cauchoix et al., 2018; Holtmann et al., 2017), while morphological associations will tend to be 229 

dominated by among-individual variation (Dingemanse et al., 2021). We reiterate that our 230 

models consider measurements of the same individuals observed in different contexts as 231 

independent (see supplementary materials Section S1). In addition, our model considers no 232 

measurement errors, as we are not able to disentangle it from true within-individual variation 233 

using non-repeated measures. Such considerations regarding trait repeatability and 234 

measurement error should be explicit when interpreting results without repeated measures. 235 

Hybrid scenarios 236 

Variation in repeated sampling is also likely to occur across phenotypes due to factors such as 237 

difficulty of measurement and the rate of trait expression. While a single measure of age at first 238 

reproduction or fecundity in a given environmental context may be available per individual, 239 

multiple individual measures may be available for traits such as offspring quality. Such scenarios 240 

require a hybrid modeling approach. For example, consider a model with a single predictor for 241 

an intergenerational tradeoff between fecundity (e.g., clutch size) and offspring quality, but other 242 

traits could equally be studied. The model structure for offspring quality z1 (depicted as offspring 243 

body mass), a gaussian trait, is given by 244 

 245 



 

The linear predictor for z1 (mass of an offspring of a given mother) in year 𝐶 includes a year-246 

specific mother random effect 𝜶1(C) and 𝜺1(C) being the within-brood/litter variance. 247 

The model for fecundity z2 follows the same basic structure, with a single fecundity measurement 248 

per female per year. We can use a Poisson distribution where we model the expected rate of 249 

offspring production using a log link function, but other distributions could equally be used. 250 

 251 

Without repeated measures, the random effect o2(C) is specified at the observation-level, 252 

accounting for any overdispersion in the Poisson process across measurements of each female. 253 

The context-dependent tradeoff will be estimated between the among-mother random effect in 254 

offspring quality and the observation-level random effect in fecundity. 255 

 256 

Reducing Eq. 3, the correlation 𝑟$  between the individual- 𝜶1(C) and observation-level o2(C) effects 257 

will necessarily be proportional to the among-individual correlation across life history traits. 258 

 259 

Note that this method does not allow the inclusion of non-continuous traits (e.g., Bernoulli traits) 260 

in the absence of repeated measurements within a given environmental context 𝐶 (e.g., a given 261 

year). 262 

 263 



 

Validation on simulated datasets 264 

We validated the CRN model on two different types of tradeoffs. First, we used the hybrid CRN 265 

model to study an intergenerational tradeoff between fecundity and quality. The hybrid model 266 

is well suited because fecundity (i.e., clutch/litter size) has a single measurement per mother per 267 

year, while offspring quality (i.e., offspring mass) has repeated measurements per mother per 268 

year (one measurement for each offspring produced). Second, we used the non-repeated 269 

measures CRN model to study an intraindividual tradeoff between fecundity (clutch/litter size) 270 

and parental growth (the change of mass from a year to the next). The non-repeated measures 271 

CRN model is well suited as both traits are expressed only a single time per year (one fecundity 272 

and one parental growth measure per individual per year). Note that tradeoffs are described as 273 

intergenerational or intraindividual depending on which traits are studied (as explained in 274 

Stearns, 1989), and both type of tradeoff can be decomposed into among- and within-individual 275 

covariation. We simulate data for these two tradeoffs using the individual-based simulation 276 

described in Bliard et al. (2024), whereby the among-individual correlation between life history 277 

traits can be made dependent on the environmental context. The code to generate data from 278 

the individual-based simulation can be found on github 279 

(https://github.com/lbiard/detecting_tradeoffs_crn_models). This model validation is only 280 

intended to show that context-dependent among-individual correlations (i.e., context dependent 281 

tradeoffs) can be successfully recovered. For a more extensive simulation-based calibration of 282 

CRN models over a broad range of parameter values, see Martin (2023). 283 

Intergenerational tradeoff (offspring quantity-quality) 284 



 

We first focused on an intergenerational tradeoff between offspring quantity and quality (hybrid 285 

CRN model). This quantity-quality tradeoff has been the focus of numerous studies since Lack’s 286 

pioneering work on bird clutch sizes (Einum & Fleming, 2000; Fischer et al., 2011; Gillespie et al., 287 

2008; Lack, 1947; Williams, 1966). We simulate 30 years of individual-based data in which 25 new 288 

individuals enter the population each year, reproduce with an average clutch/litter size of 2.5, 289 

and then have a probability to survive to next year of 0.6. This yielded a final simulated dataset 290 

of 750 individuals, totaling 1578 reproductive events and 4783 offspring. An observation-level 291 

correlation was included between offspring mass and clutch size, and this correlation was made 292 

dependent on a single climatic predictor. The same climatic predictor was also included to 293 

influence both clutch size and offspring mass. 294 

Intraindividual tradeoff (fecundity-growth) 295 

We then simulated data for an intraindividual tradeoff between fecundity and growth (non-296 

repeated measures CRN model). This simulated dataset is also made of 30 years and 750 297 

individuals, for a total of 1974 reproductive events, with a variable observation-level correlation 298 

between individual growth and fecundity, which is itself dependent on a single climatic predictor. 299 

 300 

Study systems and application on empirical datasets 301 

Marmots 302 

We applied the hybrid CRN model (one trait with repeated individual measurements within a 303 

year and one trait without) on data from a yellow-bellied marmot population monitored at the 304 

Rocky Mountain Biological Laboratory in Gothic, Colorado (38°57ʹN, 106°59ʹW) during the 305 

summer season each year, whereby extensive individual-based data is collected (Armitage, 2014; 306 



 

Blumstein, 2013). In Alpine marmots Marmota marmota, an offspring quality-quantity tradeoff 307 

has been found (Berger et al., 2015), while it remained mostly elusive in yellow-bellied marmots, 308 

being only found for older mothers (Kroeger et al., 2020), whereby within-cohort selection has 309 

likely reduced the amount of among-individual variance in resource acquisition, thus making the 310 

tradeoff visible (Kendall et al., 2011; van Noordwijk & de Jong, 1986). Therefore, we searched for 311 

an intergenerational tradeoff between mothers’ fecundity and offspring estimated mass 312 

(offspring quality-quantity tradeoff). We used repeated measurements of offspring mass for each 313 

mother (one mass estimate for each offspring in a given litter). The offspring weaning mass was 314 

imputed based on the date of emergence for each litter and mass measurements from captures 315 

later in the season, following the method of Ozgul et al. (2010). We considered two measures 316 

quantifying environmental conditions for a given year. First, the total amount of snow during the 317 

preceding winter, with years of little overwinter snow considered harsher for marmots as it offers 318 

limited thermal insulation during the hibernation (Barash, 1973; Cordes et al., 2020; Wells et al., 319 

2022). Second, the average daily maximum temperature during the month of June, with warmer 320 

summer temperatures considered unfavorable conditions for marmots as they are prone to 321 

overheating, hence limiting the time that can be allocated to foraging (Cordes et al., 2020; Krajick, 322 

2004; Melcher et al., 1990). Note that we used temperature in June and not July as commonly 323 

used in this system (Cordes et al., 2020), because this is more likely to represent the conditions 324 

experienced for most offspring before emergence and weaning, since most offspring emerge in 325 

July. We expected tradeoffs to be more strongly expressed among individuals in years with little 326 

overwinter snow or high summer temperature. In total, we used 2540 offspring mass from 597 327 

reproductive events, from 279 females across 42 years. 328 



 

We modeled offspring mass using a normal distribution (Eq. 6.1), and we included as 329 

covariates (i.e., in X1) the total amount of snow during the winter, June average maximum 330 

temperature, age of the mother and its quadratic effect, and mother’s estimated mass in early 331 

June as a proxy of mother’s quality. A year random effect δ1 was also included. 332 

 333 

With 𝑎1()) being a year-specific mother random effect and 𝜖1()) the within-litter variance. 334 

We modeled the second trait, fecundity (i.e., litter size), using a Poisson distribution (Eq. 6.2), as 335 

a function of the same covariates (X2), except June average maximum temperature, since it 336 

cannot affect fecundity as pregnancies mostly occur before this period. A year random effect δ2 337 

was also included. 338 

 339 

For the observation-level correlation (Eq. 6.3), the two environmental variables (winter snow and 340 

June temperature) were added as covariates (X3). 341 

 342 

We performed posterior predictive checks, showing a good concordance between the litter size 343 

data, and data generated under the model (see Figure S3). However, the model slightly 344 

underestimates the variance in offspring mass. Overall, posterior predictive checks highlight that 345 



 

the use of a Normal distribution to model offspring mass, and a Poisson distribution with an 346 

observation random effect to model litter size, were appropriate in this system. 347 

 348 

Soay sheep 349 

We applied the non-repeated measures CRN model on Soay sheep data, as we have no repeated 350 

individual measurement within a given year available for neither of the traits studied. We used 351 

data from an unmanaged population of feral sheep in the Village Bay area of the island of Hirta 352 

(57°48ʹN, 8°37ʹW), which has been monitored since 1985 (Clutton-Brock & Pemberton, 2004). In 353 

Soay sheep, survival costs of reproduction were found for breeding ewes, particularly in 354 

populations at high densities or following stormy winters (Tavecchia et al., 2005). Therefore, we 355 

searched for an intraindividual tradeoff between ewes’ fecundity defined as the number of lambs 356 

born in Spring (ranging from 0 to 2) and their log mass in the following summer, with both traits 357 

conditional on ewes surviving the winter. We considered two environmental variables to 358 

characterize the ecological harshness faced by the sheep in a given year: population density and 359 

NAO (North Atlantic Oscillation) in the winter preceding parturition, with high NAO values 360 

corresponding to wet and stormy winters (Coulson et al., 2001; Regan et al., 2022). In total, we 361 

used data from 2497 reproductive events across 37 years, for 861 ewes with known mass in the 362 

summer preceding the reproductive event, as well as known mass in the following summer. We 363 

expected tradeoffs to be more strongly expressed in years of high population density or high 364 

NAO. 365 

As ewes’ fecundity in a given year is restricted to [0,2], we could not use a Poisson 366 

regression. This is due to the count data being underdispersed relative to a Poisson distribution. 367 



 

We therefore modeled the ewe’s fecundity using an ordinal regression (also called cumulative 368 

logistic regression; Eq. 7.1), and we included as covariates (X1) the individual’s log mass preceding 369 

the reproductive event as a proxy of quality, age and its quadratic effect, and population density. 370 

 371 

Where the cumulative probability of having at most i offspring is given as a function of the 372 

threshold 𝜃*  and the matrix of covariates X1, as well as a year random effect δ1 and a year specific 373 

observation random effect 𝑜1()). 374 

We modeled the ewe’s log mass in the following summer using a normal distribution (Eq. 7.2), 375 

and included in X2 the same covariates as in X1, as well as NAO in the winter preceding parturition. 376 

A year random effect δ2 was also included.  377 

 378 

For the observation-level correlation (Eq. 7.3), the two ecological variables (winter NAO and 379 

density) were added as covariates (X3). 380 

 381 

The posterior predictive checks we performed highlighted a good fit between the data and data 382 

generated under the model. This confirms that using a normal distribution to model ewe’s mass, 383 

and using a cumulative logistic regression to model ewe’s number of offspring, were appropriate 384 

(see Figure S4). 385 



 

 386 

Model implementation 387 

We implemented all multivariate models described above in a Bayesian framework using the Stan 388 

statistical language (Carpenter et al., 2017), through the software R (R Core Team, 2021) using 389 

the R package CmdStanR (Gabry & Češnovar, 2020). Stan was preferred for model 390 

implementation because of its flexibility. Common regularizing priors were used for all model 391 

parameters: normal distributions of mean 0 and standard deviation of 1 for intercepts and slopes 392 

coefficients, and exponential distributions of rate 2 for variance parameters. Each model ran on 393 

3 chains, with a burn-in period of 1000 iterations, sampling for 3000 iterations, keeping all the 394 

sampled iterations (Link & Eaton, 2012). Convergence of parameter estimates was assessed 395 

visually and using the Gelman-Rubin diagnostic (Gelman & Rubin, 1992). We report the full 396 

posterior distributions, alongside their mean, 50%, and 89% credible intervals (McElreath, 2020). 397 

The Stan code to implement all the CRN models presented in this study is archived on GitHub 398 

(https://github.com/lbiard/detecting_tradeoffs_crn_models) and Zenodo 399 

(https://doi.org/10.5281/zenodo.12800618). 400 

 401 

Results 402 

The model validation performed on simulated datasets showed that parameters were correctly 403 

recovered for both intergenerational tradeoffs (Figure 2) and intraindividual tradeoffs (Figure 3). 404 

While these simulation examples do not quantify bias of estimations (more details from a 405 

simulation-based calibration of CRN models are available in Martin (2023)), they still confirm that 406 



 

the model presented in the methods is able to detect context-dependence in the expression of 407 

tradeoffs. 408 

The model applied to yellow-bellied marmot data shows trends towards tradeoffs being 409 

more strongly expressed in years with harsh environmental conditions, albeit with high 410 

uncertainty in the estimates (Figure 4). We found a positive mean effect of the amount of 411 

overwinter snow on the correlation (Figure 4), meaning that the tradeoff between fecundity and 412 

offspring quality was more strongly expressed after winters with little snow. We also found a 413 

negative mean effect of the average maximum June temperature on the correlation (Figure 4), 414 

where females with more offspring were more likely to have lighter offspring during warmer 415 

summers. Estimated effects of covariates on either fecundity or offspring mass can be found in 416 

Figure 4, as well as in Figure S5. 417 

 Estimated effects of covariates on the correlation also had high uncertainty in the Soay 418 

sheep dataset (Figure 5). Overall, we found that the correlation tended to be negative across 419 

most environments, which means that ewe’s growth was lower for the ones that weaned 420 

offspring (Figure 5). Contrary to our expectations, while we hypothesized that the tradeoffs 421 

should be more strongly expressed in wet and stormy winters (high NAO index), we found a 422 

positive effect of winter NAO on the correlation between fecundity and growth (Figure 5). We 423 

also found a positive effect of population density on the expression of the tradeoff (Figure 5). 424 

Estimated effects of covariates on either fecundity or ewe’s mass can be found in Figure 5, as 425 

well as in Figure S6. 426 

  427 

Discussion 428 



 

Our proof-of-concept study demonstrates that hierarchical multivariate CRN models (Martin, 429 

2023) can be used successfully to detect and estimate context-dependent changes in tradeoff 430 

expression, though estimation uncertainty can be large. In agreement with theoretical 431 

predictions and despite large uncertainty, we found that reproductive tradeoffs in yellow-bellied 432 

marmots tend to be more strongly expressed under unfavorable climatic conditions. In Soay 433 

sheep, we found some context-dependence in the expression of the tradeoff, but effect 434 

directions were opposite to our initial prediction. This hierarchical model has the potential to be 435 

used on many long-term individual-based datasets and could help improve our understanding of 436 

tradeoff expression and life history theory. 437 

 Although the initial motivation to use this method partly rested on the observed difficulty 438 

of finding tradeoffs in empirical datasets, we found that in both sheep and marmots, the 439 

tradeoffs tend to be expressed across most environments, with mean phenotypic correlations 440 

being negative overall. Thus, ironically, in these two empirical datasets, tradeoffs might have 441 

been detected using simpler multivariate methods without the need for context dependence. 442 

However, this should not come as a surprise for Soay sheep, as this negative correlation between 443 

growth and fecundity was already found on a smaller dataset (Fung et al., 2022). Nonetheless, 444 

the results still highlight that context-dependence has the potential to hinder our ability to detect 445 

tradeoffs in some cases. For instance, when marmots experience favorable environmental 446 

conditions, the average correlation is closer to null with credibility intervals nearing or 447 

overlapping zero (Figure 4), while this intergenerational tradeoff is found to be more strongly 448 

expressed during harsh years. In Soay sheep, context dependence appears to be marked for the 449 

expression of the tradeoff, but opposite to our predictions. Indeed, we found a positive 450 



 

correlation between growth and fecundity only under the harshest environmental conditions 451 

(high population density and high winter NAO, Figure 5). Since ewes’ mass is measured in the 452 

following summer and not directly after parturition, harsh winter conditions are expected to 453 

increase overwinter mortality (Milner et al., 1999), lowering spring population density and 454 

reducing competition. This could potentially help surviving ewes to recover their body condition 455 

between spring and summer, which is the period of greatest grass growth, hence potentially 456 

explaining our counter-intuitive results. We can also speculate that the result could have arisen 457 

from two potential pitfalls due to idiosyncrasies of the Soay sheep data. First, among-individual 458 

variation in fecundity is limited in sheep, ranging from no offspring to twins, potentially making 459 

it more complicated for the model to estimate variances accurately (Fay, Authier, et al., 2022; 460 

Kain et al., 2015). Second, both ewes’ growth and fecundity are conditional on survival in the 461 

data, hence individuals who suffered most from the cost of reproduction and did not survive are 462 

not present in the analysis, potentially biasing the results (Hadfield, 2008). Finally, while we 463 

expected more negative phenotypic correlations under harsh conditions, where among-464 

individual variance in resource allocation is greater than among-individual variance in acquisition, 465 

it is theoretically possible that in population facing adverse conditions, a few robust individuals 466 

monopolize most resources, thus increasing the among-individual variance in resource 467 

acquisition (Chambert et al., 2013), hence leading to positive estimates of phenotypic 468 

correlations. 469 

Despite the potential of this modeling approach to study context-dependent tradeoffs, a 470 

few methodological limitations are to be considered. A recent study conducted by Fay et al. 471 

(2022) highlighted that multivariate models with correlated random effects for Bernoulli traits 472 



 

performed rather poorly, resulting in a potentially large bias and imprecise estimates of variances 473 

and covariances. This is in part because Bernoulli traits contain less information than continuous 474 

variables, making estimations of variances complicated (Fay, Authier, et al., 2022), but also 475 

because the data available to estimate individual heterogeneity is usually scarce (Browne et al., 476 

2007). The model we present suffers from this limitation, and even more so when there is only a 477 

single individual observation per individual per sampling occasion (e.g., parental survival), and 478 

when the trait is not repeatable (death can only occur once). This issue renders the model, as 479 

well as any other multilevel model, unable to meaningfully estimate distinct mean and variance 480 

parameters for Bernoulli traits, due to the fact that the mean p of a Bernoulli variable determines 481 

its variability p(1-p) without scope for overdispersion. Therefore, environmental effects on the 482 

mean of Bernoulli measures will necessarily change their variances (Skrondal & Rabe-Hesketh, 483 

2007). However, when repeated Bernoulli observations or a binomial measure are available 484 

within each sampling occasion (e.g., survival of each offspring within a litter), the CRN model can 485 

then be used to partition distinct environmental effects on trait means and (co)variances. As we 486 

have shown in the present study, despite this limitation, the CRN remains applicable to single 487 

measures of continuous traits and count measures (e.g., growth, fecundity, phenology, 488 

behavioral traits), as well as proportions and various other kinds of non-Gaussian measures. 489 

Another limitation of the proposed method is that sample sizes needed are likely to be large, 490 

with enough individuals in each environmental context, and importantly enough sampling 491 

occasions across which to estimate the context dependence of tradeoff expression. Nonetheless, 492 

many long-term individual-based studies should have enough data to fulfill these requirements 493 

(de Villemereuil et al., 2020). 494 



 

Despite the abovementioned caveats and limitations of the methodology in the absence 495 

of repeated measurements, this new model is a development that could be useful for many 496 

datasets. Thanks to its implementation in a Bayesian framework using Stan (Carpenter et al., 497 

2017), it offers great flexibility and can be easily repurposed and modified to fit the idiosyncrasies 498 

of a given dataset or species life history. It is also straightforward to extend the model by adding 499 

a pedigree for quantitative genetic analysis (see Martin, 2023), even though phenotypic 500 

correlations should be good approximations of genetic correlations in most cases (Cheverud, 501 

1988; Dochtermann, 2011; Roff, 1995). While we presented a bivariate model, this model is not 502 

necessarily limited to two traits, and more continuous traits and their covariances could also be 503 

analyzed simultaneously. We also restricted our proof-of-concept study to the reaction norm of 504 

the correlation between traits, but researchers interested in the canalization of traits variances 505 

as a response to the environmental context could also benefit from this modeling approach 506 

(Péron et al., 2016). 507 

 Life history tradeoffs have long been sought after, but difficult to detect in observational 508 

data due to individual heterogeneity (Metcalf, 2016; Reznick et al., 2000; van Noordwijk & de 509 

Jong, 1986). Previous studies have also highlighted that life history tradeoffs could be expressed 510 

only under unfavorable ecological conditions (Cohen et al., 2020; Stearns, 1989). Yet, despite our 511 

knowledge of the issues hindering tradeoff detection, we still lacked a statistical framework that 512 

permits the detection of context-dependence in tradeoff expression. Our proof-of-concept study 513 

shows that this context dependence can be detected. This method has the potential to be applied 514 

by demographers and evolutionary ecologists having long-term individual-based datasets at 515 

hands, with many study systems having the required data (Culina et al., 2021; de Villemereuil et 516 



 

al., 2020). Altogether, this method has the potential to help us improve our understanding of life 517 

history theory, and in part resolve van Noordwijk and de Jong’s (1986) conundrum of tradeoff 518 

detection, by accounting for the context-dependence of their expression. 519 
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Figures 539 

 540 

Figure 1: General relationships across correlations and repeatability ranges based on Eq 3 for a 541 

non-repeated measures CRN (model of Eq 2), identifying the magnitude of correlation bias and 542 

the regions of sign bias. The bias is here defined as the difference between the observation-level 543 

correlation and the among-individual correlation, using the latter as a reference. Parameter 544 

spaces in gray represent the regions of sign bias, where the observation-level correlation has a 545 

sign opposite to the among-individual correlation. This highlights that the observation-level 546 

correlation is mostly influenced by the among-individual correlation for traits with high 547 

repeatability, while it is mostly influenced by the within-individual correlation for traits with low 548 

repeatability. 549 

 550 

 551 

 552 

 553 



 

 554 

Figure 2: Left panel: estimated vs. simulated observation-level correlation between litter size and 555 

offspring mass as a function of climate, after accounting for the effect of climate on both traits. 556 

The regression line indicates the mean effect of climate on the correlation, while the shaded 557 

areas depict the 50% and 89% credible intervals predicted by the model. Each black dot 558 

represents the simulated observation-level correlation between both traits in a given year 559 

depending on climate. Right panel: estimated vs. simulated intercepts and slopes for the 560 

offspring mass and litter size sub-models. Dashed lines represent the value used to simulate the 561 

data, while the distributions and intervals represent the posterior distributions estimated by the 562 

model, alongside the median, 50%, 89% credible intervals. Litter size estimates are presented on 563 

the log scale. 564 

 565 



 

 566 

Figure 3: Left panel: estimated vs. simulated observation-level correlation between fecundity and 567 

growth as a function of climate, after accounting for the effect of climate on both traits. The 568 

regression line indicates the mean effect of climate on the correlation, while the shaded areas 569 

depict the 50% and 89% credible intervals predicted by the model. Each black dot represents the 570 

simulated observation-level correlation between both traits in a given year depending on climate. 571 

Right panel: estimated vs. simulated intercepts and slopes for the growth and fecundity sub-572 

models. Dashed lines represent the value used to simulate the data, while the distributions and 573 

intervals represent the posterior distributions estimated by the model, alongside the median, 574 

50%, 89% credible intervals. Fecundity estimates are presented on the log scale.  575 



 

 576 

Figure 4: Observation-level correlation between litter size and offspring mass in marmots as a 577 

function of the total amount of snow in the preceding winter at high and low temperature (top 578 

left panel) and the maximum daily June temperature of the year at high and low snow cover (top 579 

right panel). Estimated effects of standardized predictors (bottom panel) on offspring mass, 580 



 

fecundity, and the observation-level correlation between both traits in marmots. The regression 581 

line indicates the median estimated effect, while the shaded areas depict the 50% and 89% 582 

credible intervals predicted by the model. 583 

 584 



 

Figure 5: Observation-level correlation between fecundity and mothers’ mass in the following 585 

year in Soay sheep as a function of the winter NAO at high and low density (top left panel), and 586 

as a function of the population density at high and low winter NAO values (top right panel). 587 

Estimated effects (bottom panel) of standardized predictors on mother’s mass in the following 588 

year, fecundity, and the observation-level correlation between both traits in Soay sheep. The 589 

figure displays the posterior distributions estimated by the model, alongside the median, 50%, 590 

and 89% credible intervals. 591 
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Supplementary materials 893 

Section S1: fixed individual heterogeneity 894 

The models presented in the main text do not include distinct parameters for fixed individual 895 

heterogeneity across environmental contexts, hence considering observations from the same 896 

individual but in different environmental contexts as independent. Here, we illustrate why this 897 

limitation is needed to correctly estimate context-dependent covariation. Using simulated data, 898 

we illustrate that it is not possible to estimate the among-individual variation across context, 899 

while at the same time estimating among- and within- individual variation within context. 900 

However, it is important to note that not accounting for fixed individual heterogeneity should 901 

not have any consequences regarding the accuracy of the estimation of the context-dependent 902 

correlations. 903 

For this purpose, we simulate demographic data with a tradeoff between parental growth 904 

and fecundity, suitable for the non-repeated measures CRN (model of equation 2). We include a 905 

fixed heterogeneity component (context-independent individual random effect), as well as the 906 

context-dependent component (context-dependent individual random effect) to make the 907 

correlation vary across contexts. The data is similar to what is presented in the “validation on 908 

simulated datasets” section, with the addition of the fixed heterogeneity component. We then 909 

analyze this simulated dataset either with a model that estimates only the context-dependent 910 

covariation (model presented in the manuscript, equation 2), or a model that does include fixed 911 

(context-invariant) individual random effects in addition to the context-dependent covariation 912 

(model of equation 2 with the addition of a context-independent individual random effect).  913 



 

The figures for both scenarios are presented below, with Figure S1 highlighting that the 914 

inclusion of a fixed among-individual random effect in the model leads to an erroneous 915 

estimation of the context-dependent correlation. This is because the inclusion of this fixed 916 

among-individual random effect captures part of the variation from the context-dependent 917 

random effects, and therefore the context-dependent term will then only estimate deviations of 918 

individuals from the fixed heterogeneity term. However, Figure S2 highlights that not including a 919 

fixed among-individual random effect allows the model to properly recover the context-920 

dependent correlation.  921 

Our results here reflect a more general theoretical point about the biological 922 

interpretation of reaction norms. For any reaction norm model, there will not be a distinct 923 

component of fixed individual heterogeneity separated from the process of phenotypic plasticity 924 

shaping individual heterogeneity across environments. With simple linear reaction norms, 925 

empiricists often conceptualize the intercept of the model as reflecting a fixed, environmentally 926 

invariant component of the response, separate from the plastic effects described by reaction 927 

norm slopes. However, while this can be heuristically useful for some purposes, it is in a strict 928 

sense misleading, as the reaction norm intercept simply describes the variation expected when 929 

the environmental variable defining the slope is fixed to 0 (e.g., in the average environment for 930 

a mean-centered predictor or in the absence of an environmental exposure). Therefore, the value 931 

of the intercept is no more fixed than the expected value at any other position along the slope 932 

with respect to a fixed value of the environmental gradient.  This thinking applies to the CRN and 933 

any other reaction norm model. When sufficient data is available, individual random slopes could 934 

also be estimated, which can be used to directly quantify the degree to which individuals’ rank 935 



 

order may shift across environments (Mitchell & Houslay, 2021). However, the depth of repeated 936 

sampling required to fit such models for present purposes is unlikely to be achieved by many 937 

currently existing datasets, motivating our CRN approach. Moreover, these random individual 938 

slopes will generally be of less interest for detecting demographic tradeoffs, as compared to the 939 

average shift in among-individual trait covariance across the population as determined by the 940 

fixed CRN slopes. 941 

Taking a CRN approach to one’s data thus requires taking seriously that there may not be 942 

any biologically meaningful sense in which there is a fixed level of individual heterogeneity 943 

irrespective of the environment (for traits that exhibit phenotypic plasticity). Rather, there is 944 

simply the amount of individual heterogeneity given a particular environment, prior to exposure 945 

to the environment, averaged across environments, and/or in the average environment. The 946 

parameters from the CRN can always be used to predict any such quantities of interest. For 947 

instance, applying the inverse link function to the intercept of the CRN (the first element of 𝛽𝒓 ) 948 

will describe the expected trait correlation under the average environmental conditions. 949 

 950 



 

Figure S1: Estimated context-dependent correlation when a fixed individual-random effect is 951 

included. The regression line indicates the mean effect of climate on the correlation, while the 952 

shaded areas depict the 50% and 89% credible intervals predicted by the model. Each black dot 953 

represents the simulated observation-level correlation between both traits in a given year 954 

depending on climate. This highlights that the inclusion of a fixed individual random effect leads 955 

to a biased estimation of the context-dependent correlation. 956 

 957 

 958 

Figure S2: Estimated context-dependent correlation without the inclusion of a fixed individual-959 

random effect in the model. The regression line indicates the mean effect of climate on the 960 

correlation, while the shaded areas depict the 50% and 89% credible intervals predicted by the 961 

model. Each black dot represents the simulated observation-level correlation between both traits 962 

in a given year depending on climate. This highlights that not including a fixed individual random 963 

effect leads to an appropriate estimation of the context-dependent correlation. 964 

 965 
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Section S2: posterior predictive checks 973 

 974 

Figure S3: Posterior predictive checks showing the concordance between the distribution of the 975 

data (y) and the distribution of data generated under the statistical model (yrep), for litter size 976 

(left panel) and offspring mass (right panel). This highlights a good fit for the litter size model. It 977 

also highlights that there is a slight overdispersion in offspring mass that is not accounted for by 978 

the model. 979 



 

 980 

Figure S4: Posterior predictive checks showing the concordance between the distribution of the 981 

data (y) and the distribution of data generated under the statistical model (yrep), for number of 982 

offspring (left panel) and ewe’s mass in the following summer (right panel). This highlights a good 983 

fit for both the litter size and mass models. 984 

Section S3: associations between the covariates and traits studied 985 



 

 986 

Figure S5: Top row: Association estimated by the model between the amount of winter snow, 987 

age, and mass (panels from left to right) with litter size. Bottom row: Association estimated by 988 

the model between summer temperature, the amount of winter snow, age, and mass (panels 989 

from left to right) with offspring mass. 990 

 991 



 

 992 

Figure S6: Top row: Association estimated by the model between population density, age, and 993 

mass (panels from left to right) with fecundity. Bottom row: Association estimated by the model 994 

between winter NAO, population density, age, and mass (panels from left to right) with mass at 995 

t+1. 996 


