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Abstract 23 

Life history tradeoffs are one of the central tenets of evolutionary demography. Tradeoffs, 24 

depicting negative phenotypic or genetic covariances between individuals’ demographic rates, 25 

arise from a finite amount of resources that each individual has to allocate in a zero-sum game 26 

between somatic and reproductive functions. While theory predicts that tradeoffs are 27 

ubiquitous, empirical studies have often failed to detect such negative covariances in wild 28 

populations. One way to improve the detection of tradeoffs is by accounting for the 29 

environmental context, as tradeoff expression may depend on environmental conditions. 30 

However, current methodologies usually search for fixed covariances between traits, thereby 31 

ignoring their context dependence. Here, we present a hierarchical multivariate ‘covariance 32 

reaction norm’ model, adapted to help detect context dependence in the expression of 33 

demographic tradeoffs. The method allows continuous variation in the phenotypic correlation 34 

between traits. We validate the model on simulated data for both intraindividual and 35 

intergenerational tradeoffs. We then apply it to empirical datasets of yellow-bellied marmots 36 

(Marmota flaviventer) and Soay sheep (Ovis aries) as a proof-of-concept showing that new 37 

insights can be gained by applying our methodology, such as detecting tradeoffs only in specific 38 

environments. We discuss its potential for application to many of the existing long-term 39 

demographic datasets and how it could improve our understanding of tradeoff expression in 40 

particular, and life-history theory in general. 41 

  42 

  43 

 44 



 

Introduction 45 

Demographic tradeoffs, which are characterized as negative covariances between fitness 46 

components such as somatic or reproductive traits, are central to life-history theory (Stearns, 47 

1989), and are thought to drive much of the life-history diversity that exists (Bielby et al., 2007; 48 

Healy et al., 2019; Salguero-Gómez et al., 2016; Stearns, 1984). They originate from the basic fact 49 

that the total amount of resources or energy acquired by any one individual is limited, and has 50 

to be shared among several of the individual’s fitness-related traits. In such a zero-sum game and 51 

in the absence of change in the total amount of resources acquired, any increase in the allocation 52 

of resources towards a specific fitness component will have to be at the expense of another 53 

fitness component. If tradeoffs did not exist, selection would maximize all fitness-related traits 54 

simultaneously and would lead to the impossible “darwinian demons” (Law, 1979). Therefore, 55 

demographic tradeoffs should be faced by all organisms and are, in theory, ubiquitous (Stearns, 56 

1989, 1992; Williams, 1966). They can come in several forms (Stearns, 1989), being either 57 

intraindividual (traits involved relate to the fitness of the same individual) or intergenerational 58 

(traits involved relate to the fitness of a parent-offspring pair; e.g., offspring quantity-quality 59 

tradeoff). Despite their expected universality and being sought-after by evolutionary ecologists 60 

and biodemographers alike, life-history tradeoffs have been surprisingly hard to detect in wild 61 

populations (Metcalf, 2016), with successful probes too often confined to experimental 62 

approaches.   63 

Several reasons could explain why tradeoffs are hard to detect in wild populations. First, 64 

while we often expect traits to covary in a simple bivariate manner by analyzing a single pair of 65 

demographic rates (note that demographic or vital rates, phenotypes, traits, fitness components 66 



 

can all be used interchangeably) at a time, tradeoff structures are often more complex. For 67 

instance, many more than two traits are likely to be involved in the resource allocation process 68 

(Cressler et al., 2017; de Jong, 1993; Pease & Bull, 1988), sometimes leading to complex 69 

hierarchical allocation trees, potentially resulting in some pairs of traits not covarying negatively 70 

(Gascoigne et al., 2022). Second, life-history traits can covary at different levels. While tradeoffs 71 

result from individuals’ resource allocation processes, biodemographers often study tradeoffs as 72 

the temporal correlations among demographic rates at the population level (Compagnoni et al., 73 

2016; Fay et al., 2020; Fay, Hamel, et al., 2022; van Tienderen, 1995). Tradeoffs can occasionally 74 

scale up to cause negative temporal covariances at the population level (van Tienderen, 1995), 75 

but in most cases these covariances are the results of environmental stochasticity and 76 

demographic reaction norms to shared ecological drivers (Fay, Hamel, et al., 2022; Knops et al., 77 

2007; Paniw et al., 2020). Third, even though tradeoffs might be intrinsically present, individual 78 

heterogeneity can mask their presence among individuals. This specific ecological version of 79 

Simpson’s paradox (Simpson, 1951) has been demonstrated by van Noordwijk and de Jong 80 

(1986): when the among-individual variance in resource acquisition is greater than the among-81 

individual variance in resource allocation, the tradeoff is not expressed among individuals — even 82 

though it is theoretically present within individuals. In addition, expression of a tradeoff among 83 

individuals can also be influenced if the allocation and acquisition processes are not independent 84 

(Descamps et al., 2016; Fischer et al., 2009; Robinson & Beckerman, 2013). Altogether, this makes 85 

the detection of tradeoffs in wild populations difficult. 86 

 How much individuals vary in acquisition and allocation of resources determines if a 87 

tradeoff is detected among individuals (Metcalf, 2016; Reznick et al., 2000; van Noordwijk & de 88 



 

Jong, 1986). Part of this variance might be fixed, stemming from genetic, developmental, or 89 

consistent behavioral differences that constrain how much resources are acquired and allocated 90 

to somatic vs. reproductive functions (Réale et al., 2007; Wilson & Nussey, 2010). The remaining 91 

variance is likely to be plastic (Spigler & Woodard, 2019), where investment in acquisition vs. 92 

allocation likely depends on the environmental context (Cohen et al., 2020; Sgrò & Hoffmann, 93 

2004; Stearns et al., 1991). For instance, in several species, no tradeoffs were found among 94 

captive animals fed ad libitum (Kengeri et al., 2013; Landes et al., 2019; Ricklefs & Cadena, 2007). 95 

Similarly, controlled laboratory experiments on several species have shown that tradeoffs 96 

detection and strength were dependent on resource abundance (Gebhardt & Stearns, 1988; 97 

Messina & Fry, 2003; Messina & Slade, 1999; Spigler & Woodard, 2019). However, despite 98 

evidence that tradeoff expression depends on the environmental context, statistical methods to 99 

detect this context dependence in wild populations have, to date, rarely been applied. 100 

 Multivariate models are commonly employed to detect tradeoffs in wild populations 101 

(Cam et al. 2002, 2013; Hamel et al. 2018; Paterson et al. 2018; Fay et al. 2022a). In quantitative 102 

genetics, such models allow for the simultaneous analysis of multiple dependent variables like 103 

fecundity, growth, and survival (Kruuk et al. 2008; Wilson et al. 2010). These variables each have 104 

their own predictors, and the models estimate the correlated residual variances unaccounted for 105 

by the primary predictors. These models can be used to study residual correlations between traits 106 

at different levels, such as among-year or among-individual correlations. For example, after 107 

accounting for primary predictors, such models quantify whether years with high survival in a 108 

population are also years with high recruitment; or whether individuals with higher fecundity 109 

have lower or higher growth rates. However, these correlations among residual variances are 110 



 

estimated as fixed. Estimating fixed correlations might not necessarily be problematic in the case 111 

of experimental work, in which environmental conditions can be held constant within each 112 

treatment. However, wild populations are unlikely to experience fixed conditions, as the 113 

environmental context will vary in a continuous fashion, hence influencing the expression of 114 

tradeoffs. Therefore, there is a need to analyse and predict continuous variation of phenotypic 115 

correlations. 116 

Here, we repurpose a hierarchical multivariate ‘covariance reaction norm’ (hereafter 117 

CRN) model recently developed by Martin (2023), which allows the incorporation of continuous 118 

predictors directly on the covariance matrix, for application to sampling designs typical in 119 

population ecology, enabling the study of the context-dependent expression of tradeoffs. As a 120 

proof-of-concept, we first validate this model on two simulated datasets, respectively focusing 121 

on an intergenerational tradeoff and an intraindividual tradeoff. We then apply our model on 122 

two empirical datasets of wild populations of yellow-bellied marmots Marmota flaviventer and 123 

Soay sheep Ovis aries. Prior studies have explored tradeoffs between demographic rates in both 124 

species (Kroeger et al., 2020; Tavecchia et al., 2005). For instance, in yellow-bellied marmots, a 125 

quality-quantity tradeoff in offspring has been observed for older mothers. In Soay sheep, the 126 

costs of reproduction have been particularly evident for breeding ewes in high-density 127 

populations or following harsh winters. However, the environmental context-dependence of 128 

these tradeoffs has yet to be studied explicitly. In the marmots, which inhabit high-altitude, highly 129 

seasonal environments, and the sheep, which face severe winter storms and fluctuating 130 

population densities, we hypothesize that tradeoffs are more likely to manifest under 131 

unfavorable ecological conditions (Cohen et al., 2020; Sgrò & Hoffmann, 2004). 132 



 

Methods 133 

The model 134 

In this study, we employ a newly introduced CRN model (Martin, 2023), which has been initially 135 

developed to predict continuous changes in trait associations when genetic data or repeated 136 

individual measurements are available. A key assumption of multivariate models thus far has 137 

been that phenotypic correlations caused by demographic tradeoffs are fixed through time or 138 

space (Cam et al., 2002; Hamel et al., 2018). The CRN approach provides a solution to this general 139 

challenge, by allowing for phenotypic covariances to vary in response to variation in the 140 

environment. In the present study, we extend application of this general CRN approach to the 141 

detection of context-dependent demographic tradeoffs between life-history traits, with special 142 

consideration to sampling conditions typical of long-term field research in population ecology. 143 

Specifically, we examine the use of bivariate CRN models to test for the presence of tradeoffs 144 

when genetic data or repeated individual measurements are lacking in a given environmental 145 

context (e.g., during a specific sampling event such as a breeding season or a year). These are 146 

typical situations in field research that motivate further refinement of the quantitative genetic 147 

models proposed by Martin (2023). 148 

Consider a CRN model investigating how environmental contexts X (an N x P matrix of N 149 

measurements of P predictors) affect the phenotypic means of 𝛽! and among-individual 150 

correlations 𝛽!  between two Gaussian life history trait measures z1 and z2 with repeated 151 

individual measurements in each environmental context. We begin by focusing on linear models 152 

to simplify notation and aid comprehension, with generalized models for non-Gaussian 153 



 

distributions discussed further below. Following Martin (2023) in the absence of genetic data, 154 

our bivariate phenotypic model is given by 155 

 156 

Trait values are expressed as a function of the average effects 𝛽𝜇𝟏 and 𝛽𝜇𝟐 of X on each 157 

phenotype, as well as among-individual effects 𝛼𝟏(𝑿) and 𝛼𝟐(𝑿) that are repeatable across 158 

measurements and within-individual effects 𝜖1(') and 𝜖𝟐(𝑿) that are stochastic across 159 

measurements. The model matrix Y (an N x J matrix for J subjects) structures the among-160 

individual effects 𝛼(𝑿) across repeated measurements. (Co)variances between independent 161 

among- and within-individual effects are respectively described by P and 𝚺 covariance matrices. 162 

To detect context-dependent tradeoff expression, we use environmental information in X to 163 

predict the among-individual trait covariance matrix P(X). 164 

 165 

where the inverse hyperbolic tangent function atanh(r)=logit([𝑟 + 1]/2)/2 is used as a link 166 

function to model additive environmental effects 𝛽!	 on the logit scale while retaining the [-1,1] 167 

scaling of the correlation coefficient r. The same approach can be taken to describe changes in 168 

within-individual variation across environmental contexts. 169 



 

 170 

Direct prediction of the transformed correlation coefficient is useful because we are 171 

principally interested in r(X) as an indicator of putative within- or among-individual tradeoffs, 172 

rather than the covariance  𝑃1,2(') = r(X)𝜎1𝜎2  per se. Changes in the scale 𝜎1𝜎2 of life history trait 173 

variation may occur independently of changes in positive or negative trait association among 174 

individuals, but these effects will be confounded together in the covariance 𝑃1,2('). In contrast, 175 

the correlation coefficient r(X) is standardized relative to the scale of each phenotype, providing 176 

a more robust quantity for directly predicting and comparing estimates of life history tradeoffs 177 

across phenotypes and species. Our model also assumes that phenotypic variances can vary 178 

across environmental contexts, but no predictions are made on this variation. Greater plasticity 179 

is instead expected in the strength of tradeoff expression caused by fluctuating environmental 180 

factors (e.g., environmental harshness, resource availability, local predator density). See Martin 181 

(2023) for further details on relaxing these assumptions to model environmental effects on 182 

among- and within-individual variances. 183 

Non-repeated measures 184 

Estimating Eq 1 with empirical data requires multiple measurements of the same subjects 185 

across time to effectively partition trait correlations due to sources of among- P(X) and within-186 

individual 𝚺 phenotypic variation, relative to a given window of sampling. Repeated individual 187 

measurements are often inconsistent or unavailable in a given environmental context (e.g., a 188 

single fecundity measurement for individuals in a given year) in long-term field studies, which 189 



 

otherwise provide invaluable datasets for investigating context-specific tradeoffs in the wild. 190 

Fortunately, we can still take advantage of long-term environmental variation in such studies to 191 

detect variation in tradeoff expression without repeated measurements in a given environmental 192 

context. This requires simplifying the CRN model to predict observation-level phenotypic 193 

associations across environmental contexts.  194 

 195 

Here 𝑜1(') = 𝑎1(') + 𝜖1(') and 𝑜2(') = 𝑎2(') + 𝜖2(') are observation-level random effects 196 

aggregating variation due to among- and within-individual differences across measurements, 197 

within a given environmental context defined by X (e.g., a given year, position in space, level of 198 

resource abundance). Note that the Y matrix from Eq 1 is no longer necessary in the absence of 199 

repeated measurements. As a consequence, we expect that the observation-level correlation 200 

𝑟*(') between these random effects to reflect the combined effect of the among- and within-201 

individual correlations between life history traits, weighted by their geometric mean 202 

repeatability R (Dingemanse & Dochtermann, 2013; Searle, 1961). 203 

 204 



 

Where phenotypic variances are adjusted for the mean effects of 𝑋𝛽+1 and 𝑋𝛽+2. We can see 205 

that inferences about among-individual tradeoffs from the non-repeated measures model (Eq. 206 

2) will be at greatest risk of bias when sign(𝑟,)≠sign(𝑟-) and &𝑅1𝑅2 	<< &(1−𝑅1)(1−𝑅2)	. 207 

Figure 1 shows these general relationships across correlation and repeatability ranges, identifying 208 

regions of sign bias. Fortunately, researchers will generally be able to judge their risk of inferential 209 

bias based on a priori knowledge about the repeatability of life history traits, which tends to be 210 

medium to high (Dingemanse et al., 2021). For example, observation-level correlations of 211 

behavioral traits will tend to be dominated by within-individual associations (Bell et al., 2009; 212 

Cauchoix et al., 2018; Holtmann et al., 2017), while morphological associations will tend to be 213 

dominated by among-individual variation (Dingemanse et al., 2021). Note that our model 214 

considers no measurement errors, as we are not able to disentangle it from true within-individual 215 

variation using non-repeated measures. Such considerations regarding trait repeatability and 216 

measurement error should be explicit when interpreting results without repeated measures. 217 

Hybrid scenarios 218 

Variation in repeated sampling is also likely to occur across phenotypes due to factors such as 219 

difficulty of measurement and the rate of trait expression. While a single measure of age at first 220 

reproduction or fecundity in a given environmental context may be available per individual, 221 

multiple individual measures may be available for traits such as offspring quality. Such scenarios 222 

require a hybrid modeling approach. For example, consider a model for an intergenerational 223 

tradeoff between fecundity (e.g., clutch size) and offspring quality, but other traits could equally 224 

be studied. The model structure for offspring quality (depicted as offspring body mass), a 225 

gaussian trait, is given by 226 



 

 227 

The linear predictor for the mass of an offspring of a given mother in year X includes a year-228 

specific mother random effect 𝑎1(') and 𝜖1(') being the within-brood/litter variance. 229 

The model for fecundity follows the same basic structure, but using a Poisson distribution where 230 

we model the expected rate of offspring production using a log link function. 231 

 232 

Without repeated measures, the random effect 𝑜2(') is specified at the observation-level, 233 

accounting for any overdispersion in the Poisson process across measurements of each female. 234 

The context-dependent tradeoff will be estimated between the among-mother random effect in 235 

offspring quality and the observation-level random effect in fecundity. 236 

 237 

Reducing Eq. 3, the correlation 𝑟' between the individual- 𝑎1(') and observation-level 𝑜2(') 238 

effects will necessarily be proportional to the among-individual correlation across life history 239 

traits. 240 

 241 

Note that this method does not allow the inclusion of non-continuous traits (e.g., Bernoulli traits) 242 

in the absence of repeated measurements within a given environmental context (e.g., a given 243 



 

year). In addition, another limitation is that this model does not partition context-invariant 244 

differences between individuals (fixed among-individual heterogeneity across environmental 245 

contexts) from context-dependent among-individual variation. 246 

 247 

Validation on simulated datasets 248 

We validated the CRN model on two different types of tradeoffs, an intergenerational tradeoff 249 

between offspring quantity and quality (hybrid CRN model), and an intraindividual tradeoff 250 

between fecundity and parental growth (non-repeated measures CRN model). See Martin (2023) 251 

for a more extensive simulation-based calibration of CRN models over a broad range of 252 

parameter values. 253 

Intergenerational tradeoff (offspring quantity-quality) 254 

We first focused on an intergenerational tradeoff between offspring quantity and quality (hybrid 255 

CRN model). This quantity-quality tradeoff has been the focus of numerous studies since Lack’s 256 

pioneering work on bird clutch sizes (Lack, 1947). We simulate 30 years of individual-based data 257 

in which 25 new individuals enter the population each year, reproduce with an average 258 

clutch/litter size of 2.5, and then have a probability to survive to next year of 0.6. This yielded a 259 

final simulated dataset of 750 individuals, totaling 1578 reproductive events and 4783 offspring. 260 

An observation-level correlation was included between offspring mass and clutch size, and this 261 

correlation was made dependent on a single climatic predictor. The same climatic predictor was 262 

also included to influence both mean clutch size and offspring mass. 263 

Intraindividual tradeoff (fecundity-growth) 264 



 

We then simulated data for an intraindividual tradeoff between fecundity and growth (non-265 

repeated measures CRN model). This simulated dataset is also made of 30 years and 750 266 

individuals, for a total of 1974 reproductive events, with a variable observation-level correlation 267 

between individual growth and fecundity, which is itself dependent on a single climatic predictor. 268 

 269 

Study systems and application on empirical datasets 270 

Marmots 271 

We applied the hybrid CRN model (one trait with repeated individual measurements within a 272 

given year and one trait without) on data from a yellow-bellied marmot population monitored at 273 

the Rocky Mountain Biological Laboratory in Gothic, Colorado (38°57ʹN, 106°59ʹW) during the 274 

summer season each year, whereby extensive individual-based data is collected (Armitage, 2014; 275 

Blumstein, 2013). In Alpine marmots Marmota marmota, an offspring quality-quantity tradeoff 276 

has been found (Berger et al., 2015), while it remained mostly elusive in yellow-bellied marmots, 277 

being only found for older mothers (Kroeger et al., 2020), whereby within-cohort selection has 278 

likely reduced the amount of among-individual variance in resource acquisition, thus making the 279 

tradeoff visible (Kendall et al., 2011; van Noordwijk & de Jong, 1986). Therefore, we searched for 280 

an intergenerational tradeoff between mothers’ fecundity and offspring estimated mass 281 

(offspring quality-quantity tradeoff). We used repeated measurements of offspring mass for each 282 

mother (one mass estimate for each offspring in a given litter). The offspring weaning mass was 283 

imputed based on the date of emergence for each litter and mass measurements from captures 284 

later in the season, following the method of Ozgul et al. (2010). For the observation-level 285 

correlation sub-model, we included measures quantifying environmental conditions for the year. 286 



 

First, the total amount of snow during the preceding winter, with years of little overwinter snow 287 

considered harsher for marmots as it offers limited thermal insulation during the hibernation 288 

(Barash, 1973; Cordes et al., 2020; Wells et al., 2022). Second, the average daily maximum 289 

temperature during the month of June, with warmer summer temperatures considered 290 

unfavorable conditions for marmots as they are prone to overheating, hence limiting the time 291 

that can be allocated to foraging (Cordes et al., 2020; Krajick, 2004; Melcher et al., 1990). Note 292 

that we used temperature in June and not July as commonly used in this system (Cordes et al., 293 

2020), because this is more likely to represent the conditions experienced for most offspring 294 

before emergence and weaning. For the mass sub-model, we included as covariates the total 295 

amount of snow during the winter, June average maximum temperature, age of the mother, and 296 

mother’s estimated mass in early June. We also included these parameters as covariates for the 297 

fecundity sub-model, except June average maximum temperature, since it cannot affect 298 

fecundity as pregnancies mostly occur before this period. We expected tradeoffs to be more 299 

strongly expressed among individuals in years with little overwinter snow or high summer 300 

temperature. In total, we used 2540 offspring mass from 597 reproductive events, from 279 301 

females across 42 years. 302 

Soay sheep 303 

We applied the non-repeated measures CRN model on Soay sheep data, as we have no repeated 304 

individual measurement within a given year available for neither of the traits studied. We used 305 

data from an unmanaged population of feral sheep in the Village Bay area of the island of Hirta 306 

(57°48ʹN, 8°37ʹW), which has been monitored since 1985 (Clutton-Brock & Pemberton, 2004). In 307 

Soay sheep, survival costs of reproduction were found for breeding ewes, particularly in 308 



 

populations at high densities or following stormy winters (Tavecchia et al., 2005). Therefore, we 309 

searched for an intraindividual tradeoff between ewes’ fecundity defined as the number of lambs 310 

born in Spring (ranging from 0 to 2) and their log mass in the following summer, with both traits 311 

conditional on ewes surviving the winter. Regarding the observation-level correlation sub-model, 312 

we included two covariates characterizing the ecological harshness faced by the sheep: 313 

population density and winter NAO (North Atlantic Oscillation), with high NAO values 314 

corresponding to wet and stormy winters (Coulson et al., 2001; Regan et al., 2022). For the ewe’s 315 

fecundity sub-model, we included as covariates the individual’s log mass preceding the 316 

reproductive event, age (linear term), and population density. For the sub-model on the log mass 317 

in the following summer, we included the same covariates, as well as winter NAO. We expected 318 

tradeoffs to be more strongly expressed in years of high population density or high NAO. In total, 319 

we used data from 2497 reproductive events across 37 years, for 861 ewes with known mass in 320 

the summer preceding the reproductive event, as well as known mass in the following summer. 321 

 322 

Model implementation 323 

We implemented all multivariate models described above in a Bayesian framework using the Stan 324 

statistical language (Carpenter et al., 2017), through the software R (R Core Team, 2021) using 325 

the R package CmdStanR (Gabry & Češnovar, 2020). Stan was preferred for model 326 

implementation because of its flexibility. Common regularizing priors were used for all model 327 

parameters: normal distributions of mean 0 and standard deviation of 1 for intercepts and slopes 328 

coefficients, and exponential distributions of rate 2 for variance parameters. Each model ran on 329 

3 chains, with a burn-in period of 1000 iterations, sampling for 1000 iterations when analyzing 330 



 

simulated data, and 3000 iterations when analyzing empirical data, keeping all the sampled 331 

iterations (Link & Eaton, 2012). Convergence of parameter estimates was assessed visually and 332 

using the Gelman-Rubin diagnostic (Gelman & Rubin, 1992). We report the full posterior 333 

distributions, alongside their mean, 50%, and 89% credible intervals (McElreath, 2020). The Stan 334 

code to implement all the CRN models presented in this study is archived on GitHub 335 

(https://github.com/lbiard/detecting_tradeoffs_crn_models) and Zenodo (will be added upon 336 

acceptance of the manuscript). 337 

 338 

Results 339 

The model validation performed on simulated datasets showed that parameters were correctly 340 

recovered for both intergenerational tradeoffs (Figure 2) and intraindividual tradeoffs (Figure 3). 341 

While these simulation examples do not quantify bias of estimations (more details from a 342 

simulation-based calibration of CRN models are available in Martin (2023)), they still confirm that 343 

the model presented in the methods is able to detect context-dependence in the expression of 344 

tradeoffs. 345 

The model applied to yellow-bellied marmot data shows trends towards tradeoffs being 346 

more strongly expressed in years with harsh environmental conditions, albeit with high 347 

uncertainty in the estimates (Figure 4). We found a positive mean effect of the amount of 348 

overwinter snow on the correlation (Figure 4), meaning that the tradeoff between fecundity and 349 

offspring quality was more strongly expressed after winters with little snow. We also found a 350 

negative mean effect of the average maximum June temperature on the correlation (Figure 4), 351 



 

where females with more offspring were more likely to have lighter offspring during warmer 352 

summers. 353 

 Estimated effects of covariates on the correlation also had high uncertainty in the Soay 354 

sheep dataset (Figure 5). Overall, we found that the correlation tended to be negative across all 355 

environments, which means that ewe’s growth was lower for the ones that weaned offspring 356 

(Figure 5). Contrary to our expectations, while we hypothesized that the tradeoffs should be 357 

more strongly expressed in wet and stormy winters (high NAO index), we found a positive effect 358 

of winter NAO on the correlation between fecundity and growth (Figure 5). We did not find any 359 

clear effect of population density on the expression of the tradeoff (Figure 5). 360 

  361 

Discussion 362 

Our proof-of-concept study demonstrates that the hierarchical multivariate CRN model (Martin, 363 

2023) can be used successfully to detect and estimate context-dependent changes in tradeoff 364 

expression. In agreement with theoretical predictions, we found that reproductive tradeoffs in 365 

yellow-bellied marmots tend to be more strongly expressed under unfavorable climatic 366 

conditions, even though uncertainty of the estimation was large. In Soay sheep, our proxies of 367 

ecological harshness were not clearly linked with the expression of tradeoffs, and effect 368 

directions were even opposite to our initial prediction. This hierarchical model has the potential 369 

to be used on many long-term individual-based datasets and could help improve our 370 

understanding of tradeoff expression and life-history theory. 371 

 Although the initial motivation to use this method partly rested on the observed difficulty 372 

of finding tradeoffs in empirical datasets, we found that in both sheep and marmots, the 373 



 

tradeoffs tend to be expressed across all environments, with mean phenotypic correlations being 374 

negative regardless of the environmental conditions. Thus, ironically, in these two empirical 375 

datasets, tradeoffs would have been detected using simpler multivariate methods without the 376 

need for context dependence. However, this should not come as a surprise for Soay sheep, as 377 

this negative correlation between growth and fecundity was already found on a smaller dataset 378 

(Fung et al., 2022). Nonetheless, the results still highlight that context-dependence has the 379 

potential to hinder our ability to detect tradeoffs in some cases. For instance, when marmots 380 

experience favorable environmental conditions, the average correlation is closer to null with 381 

credibility intervals nearing or overlapping zero (Figure 4), while the intergenerational tradeoff is 382 

found to be more strongly expressed during harsh years. However, context dependence appears 383 

to be limited or absent for the expression of the tradeoff in Soay sheep. Since ewes’ mass is 384 

measured in the following summer and not directly after parturition, harsh winter conditions are 385 

expected to increase overwinter mortality (Milner et al., 1999), lowering spring population 386 

density and reducing competition. This could potentially help surviving ewes to recover their 387 

body condition between spring and summer, which is the period of greatest grass growth, hence 388 

masking context dependence of the tradeoff. While this tradeoff might also just be invariant in 389 

regard to the ecological context, we speculate that the result could have arisen from two 390 

potential pitfalls due to idiosyncrasies of the Soay sheep data. First, among-individual variation 391 

in fecundity is limited in sheep, ranging from no offspring to twins, potentially making it more 392 

complicated for the model to estimate variances accurately (Fay, Authier, et al., 2022; Kain et al., 393 

2015). Second, both ewes’ growth and fecundity are conditional on survival in the data, hence 394 



 

individuals who suffered most from the cost of reproduction and did not survive are not present 395 

in the analysis, potentially biasing the results. 396 

Despite the potential of this modeling approach to study context-dependent tradeoffs, a 397 

few methodological limitations are to be considered. A recent study conducted by Fay et al. 398 

(2022) highlighted that multivariate models with correlated random effects for Bernoulli traits 399 

performed rather poorly, resulting in a potentially large bias and imprecise estimates of variances 400 

and covariances. This is in part because Bernoulli traits contain less information than continuous 401 

variables, making estimations of variances complicated (Fay, Authier, et al., 2022), but also 402 

because the data needed to estimate individual heterogeneity is usually scarce (Browne et al., 403 

2007). The model we present suffers from this limitation, and even more so when there is only a 404 

single individual observation per individual per sampling occasion (e.g., parental survival). This 405 

issue renders the model, as well as any other multilevel model, unable to meaningfully estimate 406 

distinct mean and variance parameters for Bernoulli traits, due to the fact that the mean p of a 407 

Bernoulli variable determines its variability p(1-p) without scope for overdispersion. Therefore, 408 

environmental effects on the mean of Bernoulli measures will necessarily change their variances 409 

(Skrondal & Rabe-Hesketh, 2007). However, when repeated Bernoulli observations or a binomial 410 

measure are available within each sampling occasion (e.g., survival of each offspring within a 411 

litter), the CRN model can then be used to partition distinct environmental effects on trait means 412 

and (co)variances. As we have shown in the present study, despite this limitation, the CRN 413 

remains applicable to single measures of continuous traits and count measures (e.g., growth, 414 

fecundity, phenology, behavioral traits), as well as proportions and various other kinds of non-415 

Gaussian measures. Another limitation of the proposed method is that sample sizes needed are 416 



 

likely to be large, with enough individuals in each environmental context, and importantly 417 

enough sampling occasions across which to estimate the context dependence of tradeoff 418 

expression. Nonetheless, many long-term individual-based studies should have enough data to 419 

fulfill these requirements (de Villemereuil et al., 2020). 420 

Despite the abovementioned caveats and limitations of the methodology in the absence 421 

of repeated measurements, this new model is a development that could be useful for many 422 

datasets. Thanks to its implementation in a Bayesian framework using Stan (Carpenter et al., 423 

2017), it offers great flexibility and can be easily repurposed and modified to fit the idiosyncrasies 424 

of a given dataset or species life history. It is also straightforward to extend the model by adding 425 

a pedigree for quantitative genetic analysis (see Martin, 2023), even though phenotypic 426 

correlations should suffice in most cases (Cheverud, 1988; Dochtermann, 2011; Roff, 1995). 427 

While we presented a bivariate model, this model is not necessarily limited to two traits, and 428 

more continuous traits and their covariances could also be analyzed simultaneously. We also 429 

restricted our proof-of-concept study to the reaction norm of the correlation between traits, but 430 

researchers interested in the canalization of traits variances as a response to the environmental 431 

context could also benefit from this modeling approach (Péron et al., 2016). 432 

 Life-history tradeoffs have long been sought after, but difficult to detect in empirical data 433 

due to individual heterogeneity (Metcalf, 2016; Reznick et al., 2000; van Noordwijk & de Jong, 434 

1986). Previous studies have also highlighted that life-history tradeoffs could be expressed only 435 

under unfavorable ecological conditions (Cohen et al., 2020; Stearns, 1989). Yet, despite our 436 

knowledge of the issues hindering tradeoff detection, we still lacked a statistical framework that 437 

permits the detection of context-dependence in tradeoff expression. Our proof-of-concept study 438 



 

shows that this context dependence can be detected. This method has the potential to be applied 439 

by demographers and evolutionary ecologists having long-term individual-based datasets at 440 

hands, with many study systems having the required data (Culina et al., 2021; de Villemereuil et 441 

al., 2020). Altogether, this method has the potential to help us improve our understanding of life 442 

history theory, and in part resolve van Noordwijk and de Jong’s (1986) conundrum of tradeoff 443 

detection, by accounting for the context-dependence of their expression. 444 

 445 
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Figures 461 

 462 

Figure 1: General relationships across correlations and repeatability ranges based on Eq 3 for a 463 

non-repeated measures CRN (model of Eq 2), identifying the magnitude of correlation bias and 464 

the regions of sign bias. The bias is here defined as the difference between the observation-level 465 

correlation and the among-individual correlation, using the latter as a reference. Parameter 466 

spaces in gray represent the regions of sign bias, where the observation-level correlation has a 467 

sign opposite to the among-individual correlation. This highlights that the observation-level 468 

correlation is mostly influenced by the among-individual correlation for traits with high 469 

repeatability, while it is mostly influenced by the within-individual correlation for traits with low 470 

repeatability. 471 

 472 

 473 

 474 

 475 



 

 476 

Figure 2: Left panel: estimated vs. simulated observation-level correlation between litter size and 477 

offspring mass as a function of climate, after accounting for the effect of climate on both traits. 478 

The regression line indicates the mean effect of climate on the correlation, while the shaded 479 

areas depict the 50% and 89% credible intervals predicted by the model. Each black dot 480 

represents the simulated observation-level correlation between both traits in a given year 481 

depending on climate. Right panel: estimated vs. simulated intercepts and slopes for the 482 

offspring mass and litter size sub-models. Dashed lines represent the value used to simulate the 483 

data, while the distributions and intervals represent the posterior distributions estimated by the 484 

model, alongside the mean, 50%, 89% credible intervals. Litter size estimates are presented on 485 

the log scale. 486 

 487 



 

 488 

Figure 3: Left panel: estimated vs. simulated observation-level correlation between fecundity and 489 

growth as a function of climate, after accounting for the effect of climate on both traits. The 490 

regression line indicates the mean effect of climate on the correlation, while the shaded areas 491 

depict the 50% and 89% credible intervals predicted by the model. Each black dot represents the 492 

simulated observation-level correlation between both traits in a given year depending on climate. 493 

Right panel: estimated vs. simulated intercepts and slopes for the growth and fecundity sub-494 

models. Dashed lines represent the value used to simulate the data, while the distributions and 495 

intervals represent the posterior distributions estimated by the model, alongside the mean, 50%, 496 

89% credible intervals. Fecundity estimates are presented on the log scale.  497 



 

 498 

Figure 4: Observation-level correlation between litter size and offspring mass in marmots as a 499 

function of the total amount of snow in the preceding winter (top left panel) and the maximum 500 

daily June temperature of the year (top right panel). Estimated effects of standardized predictors 501 

(bottom panel) on offspring mass, fecundity, and the observation-level correlation between both 502 

traits in marmots. The regression line indicates the mean estimated effect, while the shaded 503 

areas depict the 50% and 89% credible intervals predicted by the model. 504 



 

 505 

Figure 5: Observation-level correlation between fecundity and mothers’ mass in the following 506 

year in Soay sheep as a function of the winter NAO (top left panel) and the population density 507 

(top right panel). Estimated effects (bottom panel) of standardized predictors on mother’s mass 508 

in the following year, fecundity, and the observation-level correlation between both traits in Soay 509 

sheep. The figure displays the posterior distributions estimated by the model, alongside the 510 

mean, 50%, and 89% credible intervals. 511 
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