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Abstract—Ecosystems are highly valuable as a source of goods
and services and as a heritage for future generations. Knowing
their condition is extremely important for all management and
conservation activities and public policies. Until now, the eval-
uation of ecosystem condition has been unsatisfactory and thus
lacks practical implementation for most countries. We propose
that ecosystem integrity is a useful concept that can be used to
evaluate ecosystem condition through data science and machine
learning. Based on a three tier (contextual, instrumental and
hidden) model and a Bayesian network approach, we used field
and remote sensing data to estimate the integrity of terrestrial
ecosystems per 250 m in Mexico.

I. INTRODUCTION

CURRENTLY, there is a growing capacity worldwide to
produce large amounts of environmental data (probably

on the ranks of Big data), and the growing technological de-
velopment to obtain and analyze them allow to tackle human
and ecological problems under new paradigms[1]. Today it
is possible to conceive spatially continuous maps that can be
updated in almost “real time”, depending on the frequency of
new available information[2]. One of such interests focus on
Ecosystems because, despite being regarded as an externality
to the economy, they are highly valuable as a source of
goods and services and as a heritage for future generations.
In particular, there is growing interest in monitoring their
condition as a basis for all management and conservation
activities and public policies. Mexico has produced big
datasets, such as the National Forest and Soil Inventory
(INFyS, for its Spanish acronym), the National Information
System on Biodiversity (SNIB, for its Spanish acronym)
the National System of Biodiversity Monitoring (SNMB, for
its Spanish acronym). These, in combination with publicly
available satellite imagery (e.g. MODIS, Landsat, Sentinel 1
and 2 collections) may progressively be used to assess the
natural condition of the country[3].

In contrast to combining variables in ad hoc indices
as has been done before[4][5], we capitalize on the large
data-sets described above and machine learning technologies
to produce an ecosystem integrity estimate. We trained a
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Bayesian network[6] to predict the value of an integrity index
that relates to the condition an environmental unit might have
at a point in time using a conceptual model and learning
algorithms. The result is strongly data driven and science
based on an explicit concept, which makes it both innovative
and highly reproducible, a relevant contribution in support of
evidence based decision-making.

II. THE THREE TIER MODEL FOR ECOSYSTEM INTEGRITY

Ecosystem integrity emerges from the driving of both nat-
ural and anthropogenic processes which operate concurrently
over the ecosystem. However, in order to enhance clarity we
follow an analytical strategy of separating these processes
taking advantage of the modularity of Bayesian networks
that allow for an object-oriented approach [7]. Thus, we
developed a three tier model that accounts for the condition
in which the ecosystem is, based on a referent of non-human
intervention. In this model, observations obtained by sam-
pling in the field or through remote sensing, are allocated to
the “instrumental tier” (Figure 1). We assume that the actual
values of the variables in this tier are a result of the simultane-
ous effect of two components: a) the physical and chemical
conditions of existence (also conditioning the evolutionary
lineages present in the area) and b) the current condition of
the ecosystem. The former constitutes a “contextual tier” in
our model and the latter a “hidden tier”. The contextual tier
accounts for the physicochemical conditions within which
the ranges of values of the variables from the instrumental
layer express themselves (conditioning expected values). The
hidden layer defines the level of ecosystem integrity based on
the values of the instrumental and contextual layer (expected
outcome of human intervention).

Human intervention is added as an extra tier that allows
the coupling with key drivers that can be hypothesized are
preconditions acting over an environmental unit, that are
likely to affect ecosystem integrity (not shown in Figure 1).

III. METHODS

A. Contextual tier
Data on precipitation, biotemperature and potential evap-

otranspiration ratio were used to assess physicochemical
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Fig. 1. The three tier conceptual model of ecosystem integrity.

conditions and calculate thirty one life zones for the Mex-
ico according to Holdridge (1967), using the nomenclature
proposed by the International Institute for Applied Systems
Analysis. Data from a digital elevation model was included
in order to account for the physical conditions imposed by
elevation and local hilliness.

B. Instrumental tier

1) Field data: Field data were obtained from INFyS,
which Mexico has been conducted since 2004 over a grid
of more than 22,000 conglomerates. These are sampled
iteratively over a cycle of five years. The grid is evenly
spaced depending on the type of ecosystem in question, 5
km for forests and 25 km for arid and semi-arid ecosystems.
INFyS includes the sampling of over 150 variables. From
these, we selected ten to produce wall-to-wall cartography at
250 m by means of machine learning based spatiotemporal
interpolation. To achieve this, the In Situ INFyS data was
associated to several covariates, which are available continu-
ously over Mexico. A first batch of these were remote sensing
derived, yearly composites of Modis Vegetation Indices 16-
Day L3 Global at 250 m (MOD13Q1 and MYD13Q1) were
produced: P0.05, P0.20, mean, P0.80, P0.95 mean of the dry
season1 and mean of the wet season for both NDVI and
EVI indices. The second batch of covariates are climatic and
topographic: high resolution (90 m) bioclimatic surfaces[8]
and a digital elevation model (mean elevation and range).

INFyS variables which were continuous in nature: number
of trees and shurbs (diameter > 7.5 cm) per ha, average tree
height, standard deviation of tree heights, average tree crown
diameter, standard deviation of tree crowns diameter, average
stem height, standard deviation of stem heights, average
diameter at breast height and standard deviation of diameters
at breast height, were used to fit XGBoost[9] regression
models. Variables which were discrete: presence/absence of
tree pests, presence/absence of standing dead trees, were used
to fit Random Forest classification models[10]. Once these
predictive models where trained and tuned, they where used
to predict on the whole of Mexico to produce the desired
cartography.

1January, February, March, April and December

2) Remote sensing: Additionally, as a proxy for vegetation
function on the ground, Modis Net Photosynthesis products
(MOD17A2 and MYD17A2) where used. The complete
available time series of this product was downloaded and then
yearly composites where created: mean net photosynthesis,
standard deviation of net photosynthesis and mean of the wet
and dry seasons.

C. MAD-MEX land cover

Medium resolution (30 m) MAD-MEX[11] (Monitoring
Activity Data – Mexico) land cover classification maps
were used to generate coarse resolution proportion of cover
maps at 250 m. First, the original MAD-MEX scheme was
aggregated to IPCC classes, except that forest, rainforest
and shrubland were separated and grassland and agriculture
aggregated. Then, these 30 m resolution classification maps
were overlaid on a 250 m grid and the proportion of each
class contained on each 250 m pixel calculated (Figure 2).

Fig. 2. Example of spatial overlay: 30 m raster on 1 km grid.

The percentage of a pixel covered by forest, rainforest,
shrubland were considered as instrumental variables and
bareground, grassland or agriculture and human settlements,
as preconditions that affect ecosystem integrity.

IV. BAYESIAN NETWORK MODELING

All variables were automatically imported to Netica as
continuous nodes then discretized to 10 levels, based on
the particular histogram pattern of each node. A Bayesian
network model was used to describe the influence among the
variables as well as to provide estimates of the conditional
probability matrices. Bayesian networks are represented by
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an directed acyclic graph with variables as nodes linked by
arrows pointing in the direction of the influence (Figure 3).
The model further specifies the dependencies by means of
matrices of conditional probability that account for the set of
dependencies the variables have, one matrix per node, which
completes the quantitative specification of the model.

Fig. 3. Generic Ecosystem Integrity Bayesian network.

For network structure we followed a mixed strategy. First,
we applied a Tree Augmented Naı̈ve algorithm (TAN)[12]
to help on discovering co-depencency pattern in the data
set, then we superimposed the three tier structure (contextual
and hidden layers → instrumental layer) plus preconditioning
so as to produce the largest correlation with the ecosystem
condition primes. All Conditional probabilities tables were
obtained using the Counting-Learning algorithm embedded
in Netica.

In order to prime the hidden tier we prepared a “Delta
Primary Vegetation” (DeltaVP) map, based on the hemeroby
concept [13], that estimates the amount of transformation that
vegetation shows by comparing current land cover obtained
from classified satellite imagery of the year 2008 versus
expected “primary vegetation”, as judged by expert opinion.
The qualitative amount of change was evaluated following
the criteria showed in Figure 4.

Fig. 4. DeltaPV: Deviation between primary and current vegetation based
on INEGI vegetation series IV, as judge by expert opinion.

V. BAYESIAN NETWORK PREDICTION

The final Bayesian network may be used to estimate the
level of Ecosystem integrity for any year where the variables
of the three tier model are available. The original Bayesian
network was trained on data comprising the year 2018 but

may be used to extrapolate to, for example, the year 2004
(Figure 5) or to any recent year. It should be noted that
even though the Bayesian network in question is trained
in classification mode (DeltaVP is an ordinal variable), the
expected value along its numeric range can be calculated,
which is what we refer to by the Ecosystem Integrity Index.

A Bayesian network can be queried in multiple ways,
which delivers different ”reasoning types” (mainly diagnos-
tic, causal or intercausal) [7]. In a causal reasoning, for
instance we could ascertain the values of all nodes that
correspond to a prime condition to yield reference values.

Fig. 5. Ecosystem integrity index projected to 2018, using the model trained
on 2008 data.
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