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Abstract 

Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species 
occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to 
limitations in species occurrence data. These limitations include, in particular, issues related to sample 
size, positional error, and sampling bias. In addition, it is widely recognized that the quality of SDMs as 
well as the approaches used to mitigate the impact of the aforementioned data limitations are 
dependent on species ecology. While numerous studies have experimentally evaluated the effects of 
these data limitations on SDM performance, a synthesis of their results is lacking. However, without a 
comprehensive understanding of their individual and combined effects, our ability to predict the 
influence of these issues on the quality of modelled species-environment associations remains largely 
uncertain, limiting the value of model outputs. In this paper, we review studies that have evaluated 
the effects of sample size, positional error, sampling bias, and species ecology on SDMs outputs. We 
integrate their findings into a step-by-step guide for critical assessment of spatial data intended for 
use in SDMs. 

Keywords: Complexity, Ecological Niche Modelling, Filtering, Heterogeneity, Sampling, Scale, Training, 

Quality, Validation 

1. INTRODUCTION 

The quantity and quality of biological observations has improved dramatically over the past decades. 

However, a certain level of uncertainties is inherently present in such data, resulting in uncertainties 

of scientific inferences based on it (Hortal et al. 2015; Daru and Rodriguez 2023; Hughes et al. 2023). 

Correlative species distribution models (SDMs; aka habitat suitability models or ecological niche 

models; Sillero 2011) are useful for tackling the gaps in our knowledge of species occurrence (Elith and 

Leathwick 2009). These models combine environmental and species occurrence data to build a set of 

rules describing the environmental space (i.e. species ecological niche) where species were observed 

and, subsequently, can be used to predict the distribution of the respective species (Ferrier et al. 2017). 

SDMs support a wide variety of ecological applications, such as the assessment of the spread of 

invasive species (Guisan et al. 2013; Bazzichetto et al. 2021), the detection of potential impacts of 

environmental changes on biodiversity (Ehrlén and Morris 2015; Haesen et al. 2023), or the 

identification of suitable locations for the relocation of endangered species (Guisan et al. 2013; Segal 

et al. 2021). However, despite their broad applicability, SDMs have critical shortcomings associated in 

particular with the characteristics of input data, including their quantity and quality (Elith et al. 2002; 

Barry and Elith 2006; Rocchini et al. 2011; Moudrý and Šímová 2012; Wüest et al. 2020). In this paper, 

we focus on limitations of species occurrence data (for issues associated with environmental data, see 

e.g. Fourcade et al. 2018; Araújo et al. 2019; Moudrý et al. 2023). 

Limitations of species occurrence data can introduce uncertainty and biases in the estimation of 

species-environment relationships and, consequently, of their modelled distributions (Araújo et al. 

2019). In particular, data availability (i.e. sample size) is critical; the smaller is the minimum sample size 

that can theoretically be used in SDMs, the higher is the number of species that can be modelled (e.g. 

Stockwell and Peterson 2002). However, measurement errors associated with data acquisition 

methods (i.e. positional error; Smith et al. 2023) are another major source of uncertainty, which may, 

in effect, necessitate the use of a larger sample size than had the data been accurate. In addition, the 

choice of inappropriate sampling strategies (if any) can introduce biases toward certain locations (i.e. 

sampling bias; Bazzichetto et al. 2023). Moreover, it is well recognized that the quality of SDMs is also 



3 
 

influenced by the species’ ecology (Segurado and Araújo 2004; Heikkinen et al. 2006; McPherson and 

Jetz 2007; Guisan et al. 2007; Collart et al. 2023) and the fact that the effects of different data 

limitations (e.g. sample size, positional error, and sampling bias) may be species-specific.  

As the interest in using SDMs continues to grow, tackling data limitations becomes increasingly critical 

(Araújo et al. 2019; Wüest et al. 2020; Jansen et al. 2022; Marcer et al. 2022). In this context, data 

characteristics and limitations are expected to be regularly considered and properly reported during 

the conceptualization and validation of SDMs (Feng et al. 2019; Zurell et al. 2020; Sillero and Barbosa 

2021; Tessarolo et al. 2021; Jansen et al. 2022; Boyd et al. 2023). However, without proper knowledge 

of the individual or combined effects of sample size, positional error, sampling bias, and species’ 

ecology, our ability to anticipate the effect of these issues on the quality of modelled species-

environment associations remains largely uncertain, limiting the value of model outputs (see Figure 1 

for a diagram introducing data characteristics and their relationships considered in this perspective). 

A common approach to the evaluation of the effects of data limitations on model performances is to 

manipulate the input data experimentally or to simulate datasets impacted by various sources of error. 

Here, we examine studies that manipulated the sample size (Section 2), introduced positional errors 

(Section 3) or sampling bias (Section 4), to investigate their impact on SDMs’ outputs. Accordingly, we 

also provide guidance for a critical assessment of spatial data to be used in SDMs and identify future 

directions towards the development of guidelines for optimising the tradeoffs between data 

limitations and accurate modelling of species-environment relationships (Section 5). 

 

Figure 1. Sample size, positional error, and sampling bias are the three essential characteristics of 

species occurrence data addressed in this study. These interconnected characteristics can have a 

significant impact on the reliability of SDM results. Researchers must thoughtfully address these 

factors during the collection of species occurrence data (sampling design) and the construction of 

models (model complexity). Maximising sample size, using sampling bias correction methods, and 

minimising positional error relative to the study's spatial resolution during model training and testing 

are all essential steps. Additionally, species ecology and the distribution of species observations in the 

geographic and environmental space can exacerbate/attenuate the negative effects of small sample 

size, high sampling bias, and high positional error on the reliability of SDMs results. See the glossary 

box for the explanation of terms. 
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2. SAMPLE SIZE 

Among all possible factors, sample size (see Glossary) has the most profound effect on the 

performance of an SDM (Thibaud et al. 2014; Santini et al. 2021). Sample size poses an important 

constraint to the model complexity, i.e. to the number of predictors to be estimated as well as of 

potential algorithms and their parameters used for modelling. Sample sizes in SDMs can range from 

just a few (Papeş and Gaubert 2007; Pearson et al. 2007) to millions (e.g., Botella et al. 2023; Gábor et 

al. 2023a) of records. In the vast literature measuring the effect of sample size on model performance 

(see Table 1), the primary concern has been to determine the minimum adequate sample size required 

to produce reliable and fit-for-purpose models (e.g., Stockwell and Peterson 2002; Hanberry et al. 

2012; Proosdij et al. 2016). In parallel, ecological research investigates to what extent additional time 

and economic resources should be spent to improve models by increasing the sample size (e.g., Liu et 

al. 2019). Knowing the minimum (and maximum) sample size required for accurate predictions would 

theoretically allow optimisation of the resources spent on labour-intensive fieldwork and, therefore, 

help reduce associated costs. Nonetheless, the extent to which modelling could replace fieldwork 

remains questionable.  

 

2.1. Importance of sample size in model training and testing  

Studies focusing on a better understanding of how the sample size impacts the models' accuracy 

revealed that it is in principle possible to train SDMs with a relatively small sample. Values typically 

range from 50 to 150 presences (or presences-absences), although values as low as 10 presences or as 

high as a few hundred have also been reported (Table 1). However, it is important to note that studies 

typically reported minimum values when the model was still relatively useful, not values when the 

model gave optimal results. Besides, it has been reported that models relying on fewer than 

approximately 70 presences do not reliably identify the variables affecting distributional patterns 

(Smith and Santos 2020) or result in poor(er) estimates of the shapes of species response curves 

(Coudun and Gégout 2006; Shiroyama et al. 2020; Bazzichetto et al. 2023; Wang and Jackson 2023). In 

general, all studies agreed that increasing sample size increased a model’s predictive performance 

(keeping the number of predictors fixed), although a plateau in model performance is generally 

reached (Stockwell and Peterson 2002). According to recent studies, hundreds of presences are 

needed to reach the plateau where increasing sample size further adds little to the model performance 

(Liu et al. 2019; Gábor et al. 2020a).  

Insufficient attention has so far been devoted to the evaluation of possible effects of the testing 

dataset sample size on validating SDMs’ predictive performances. Generally, small validation datasets 

can lead to inaccurate assessment of model performance (Hallman and Robinson 2020). Recently, 

Jiménez-Valverde (2020) showed that 30 presence-absence records (i.e., 15 presences and 15 

absences) are a (minimum) adequate sample size for a validation dataset to estimate the predictive 

performance of presence-absence models. Nevertheless, their conclusions are based on simulations, 

and it should be, therefore, pointed out that studies using real data are essential to generalise these 

results. In addition, the minimal sample size of a validation dataset has not yet been evaluated in the 

case of presence-background data; since these carry less information than presence-absence data, the 

validation set should be correspondingly larger (Collart and Guisan 2023). While the importance of a 
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sufficient validation sample is intuitive, the impact of validation dataset sample size on model 

performance and validation accuracy urgently needs to be further tested. 

Table 1. Overview of studies testing the role of the number of presences or presences and absences 

for model performance. PA - presences-absences. 

Study 
Number 
of species 

Training 
sample 

Testing sample 
Study extent / 
resolution 

No. 
predict
ors 

No. obs. 
suggested  

Stockwell 
and Peterson 
(2002) 

130 birds 1 - 100 
1000; presence-
background 

Mexico /  
3 × 3 minutes 

8 
at least 50 
presences 

Kadmon et 
al. (2003) 

192 
plants 

10 - 200 
96 plots; presence-
absence 

Israel /  
1 × 1 km 

3 
50 - 75 
presences 

Hernandez 
et al. (2006) 

18 
animals 

5 - 100 50 presences 
California /  
1 × 1 km 

10 
50 - 75 
presences 

Wisz et al. 
(2008) 

46 plants, 
animals 

10 - 100 
presence-absence 
data 

five regions /  
100 × 100 m;  
1 × 1  km 

11-13 
at least 30 
presences  

Mateo et al. 
(2010) 

2 plants 9 - 60 
compared to maps 
created with full 
datasets 

Ecuador / 
1 × 1  km 

19 
at least 20 
presences 

Feeley and 
Silman 
(2011) 

65 plants 25 - 150 
compared to maps 
created with full 
datasets 

tropical South 
America /  
5 × 5 km 

3 
Larger than 
evaluated 

Hanberry et 
al. (2012)  

16 trees 30 - 2500 
Presence samples not 
used for training 

46,000 km2 /  
310,000 polygons  

16 
at least 200 
presences 

Proosdij et 
al. (2016) 

6 virtual 3 - 50 
Compared with actual 
virtual species 
distribution 

18,000,000 km2 / 
5 × 5 minutes 

15 
14-25 
presences 

Liu et al. 
(2019) 

1800 
virtual  

20 - 640 
3000 presences and 
absences of virtual 
species distribution 

62,500 km2 / 1 × 1 
km 

6 
a few 
hundred 
presences 

Støa et al. 
(2019) 

30 insects 5 - 320 
Compared to maps 
created with full 
datasets 

Norway / 1 × 1 km 2 
10-15 
presences 

Smith and 
Santos 
(2020) 

1 virtual 8 - 1024 
400 presences and 
absences of virtual 
species distribution 

Virtual landscape 
/ 1024 × 1024 
cells 

1 
at least 128 
presences  

McPherson 
et al. (2004) 

7 birds 50 - 500 
500 presences-
absences 

South Africa  / 
0.25 × 0.25 
degrees 

61 300 PA 

Coudun and 
Gégout 
(2006) 

54 virtual  50 - 5000 Not used Not relevant 1 
at least 50 
PA 

Jiménez-

Valverde et 

al. (2009) 

1 virtual 
182 -

182,288 

Compared with actual 
virtual species 
distribution 

6,576 km2 / 
0.04 × 0.04 
degrees 

4 
at least 70 
PA 

Shiroyama et 
al. (2020) 

Bluegill 50 - 900 
110 presences 
absences 

Seven rivers in 
Kanto region, 
Japan. 

4 
at least 400 
PA 

Bazzichetto 
et al. (2023) 

2 virtual 200 - 500 
Compared with actual 
virtual species 
distribution 

10 794 km2 / 1 × 1 
km 

2 
at least 200 
PA 

Wang and 
Jackson 
(2023) 

16 virtual  50 - 800 
50 presences 
absences 

140 000 km2 / 4 × 
4 km 

2 
at least 100 
PA 
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2.2. On the relationships between sample size, species ecology and model complexity 

The association between model performance and sample size depends largely on the species’ ecology. 

Studies have repeatedly indicated that for a given sample size, SDMs better predict species with 

restricted geographical distributions (i.e., low range size, prevalence, or relative occurrence area), as 

well as specialist species with strict ecological requirements (i.e., narrow ecological niche) than species 

with wide geographic ranges and generalist (i.e., wider ecological niche) species (Stockwell and 

Peterson 2002; Seoane et al., 2005; Hernandez et al. 2006; Tsoar et al. 2007; Mateo et al. 2010; 

Tessarolo et al. 2014; Proosdij et al. 2016; Hallman and Robinson 2020; Arenas-Castro et al. 2022; 

Wang and Jackson 2023). The association between model performance, sample size, and species 

ecology can be explained by niche completeness (i.e., the proportion of a species' niche covered by 

the sampling). For example, if a species has a restricted ecological niche (or range), the niche may likely 

be well represented by a low number of occurrences. On the other hand, large sample size does not 

necessarily mean a complete coverage of the entire ecological niche for widespread species 

(Bazzichetto et al. 2023; Boyd et al. 2023). This is further related to model complexity. The minimum 

required sample size increases with the number of variables or parameters and the complexity of the 

assumed species response curves (e.g., quadratic response curves or statistical interactions among 

predictors; Austin 2002; Barry and Elith 2006; Maggini et al. 2006; Ficetola et al. 2014; Merow et al. 

2014; Bell and Schlaepfer 2016; Carretero and Sillero, 2016). However, even large sample sizes can 

result in low accuracy in the estimation of model parameters if the model is overly complex (i.e., 

includes too many parameters or interactions, e.g., Wisz et al. 2008; Moreno-Amat et al. 2015).  

 

2.3. Recommendations associated with sample size 

The above-mentioned studies showed that SDMs can perform relatively well even with small sample 

sizes (Table 1). However, the studies mentioned in Table 1 are difficult to directly compare due to the 

use of different species, differences in the used modelling algorithms, numbers of parameters, or 

spatial resolutions and geographical extents. Whether the sample size is considered small or sufficient 

depends largely on the number of predictors in the model and the complexity and nature of the 

species–environment relationships (e.g., Merow et al. 2014; Smith and Santos 2020; Bazzichetto et al. 

2023). Hence, given how context-dependent these relationships are, we cannot recommend a specific 

threshold of what a ‘small’ or ‘large’ sample is but we provide a series of steps that researchers should 

consider when preparing SDMs: 

• First of all, the sample size required for a particular analysis requires careful consideration of 

the purpose of the study (Foody, 2011). On the one hand, models based on low sample sizes 

can help identify potential knowledge gaps and optimise the allocation of funds for field 

surveys (e.g. to pinpoint areas with a high potential for discovering unknown populations of 

the studied species; Raxworthy et al. 2003; Fois et al. 2018). On the other hand, it is crucial to 

emphasise that predictions derived from models with small sample sizes should not be 

employed as guidelines for applications such as modelling species ranges, predicting responses 

to climate change, or planning conservation efforts (Loiselle et al. 2008; Feeley and Silman 

2011; Duputié et al. 2014).  
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• Second, species’ ecology has to be considered as SDMs better predict specialist species with 

narrow ecological niches than generalist species with wider ecological niches (e.g. Tsoar et al. 

2007). 

• Third, researchers should consider the number of predictors investigated. As the ability to 

differentiate between influential and uninfluential variables decreases with decreasing sample 

sizes, the challenge lies in the identification of variables that genuinely influence species 

distribution (Smith and Santos 2020). Studies that include a small number of variables selected 

based on expert opinion will generally require a smaller sample size than studies that select 

variables from a large pool using automated algorithms (Ficetola et al. 2014).  

• Fourth, the complexity of the shape of species response curves must be taken into account as 

models based on small sample sizes result in less accurate estimates of these shapes 

(Bazzichetto et al. 2023). Models aiming at generating simple response curves (e.g., linear, 

hinge or step) can be developed with relatively low sample sizes. However, models identifying 

more complex shapes such as logistic, gaussian or even non-parametric smooth functions of 

variable flexibility require much larger sample sizes. Adding interactions between variables 

increases the requirements for the sample size even more.  

• We cannot suggest a minimum number of presences (presences-absences) as a rule of thumb 

but if you are unsure whether your sample size is sufficient given the objectives and complexity 

of your model, we recommend testing the effect of sample size in your dataset. Start with the 

most comprehensive model you think is appropriate in your particular case and progressively 

increase the sample size until you reach your possible maximum (i.e., all presences you have), 

and see if your model performance is reaching a plateau. If no plateau is reached, it is likely 

that more presences are necessary. In such a case, a reduction in the number of variables or 

the complexity of the response curves should be considered. Remember to set aside at least 

30 presence-absence records for model validation, as recommended by Jiménez-Valverde 

(2020). 

• Finally, while it is possible to design accurate SDMs with a well-balanced sampling of as few as 

50 presences (Table 1), most observational data are too ad-hoc and far from being 

representative of spatial variations in species-environment associations due to confounding 

effects of data limitations such as positional errors (Section 3), or sampling bias (Section 4). 

Hence, researchers should also consider these data limitations before attempting to build a 

model based on a small sample.  

 

3. POSITIONAL ERROR 

Species occurrence data are always prone to positional error, i.e. the difference between the actual 

and recorded location of a species in the coordinate reference system of the dataset. The magnitude 

of the positional error associated with species observations can range from a few centimetres up to 

tens of kilometres. Under high positional error, SDMs using environmental layers at spatial resolutions 

finer than the magnitude of the positional error (e.g., environmental layers at a 10 m resolution and a 

50 m positional uncertainty of species observations) can estimate erroneous/misleading species-

environment relationships. The potential effect of positional error on SDMs performance is 

determined by several interacting factors (Figure 2). Therefore, positional error should be assessed 
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before calibrating and validating SDMs, as it can negatively affect training and testing datasets as well 

as modelling decisions, such as the spatial resolution of environmental variables.  

 

 
 

Figure 2. Three groups of interacting factors that determine the magnitude and potential impact of 

positional error on SDMs performance can be specified: the recording technique and data processing 

(Section 3.2); species ecology and characteristics of the site (Section 3.3); and the spatial resolution 

and degree of spatial autocorrelation of the predictors (Section 3.4). 

 

3.1. How to address positional error in training and testing datasets 

Several studies have examined the impact of positional error on SDMs performance by simulating 

shifts in species presences (Table 2). These studies typically compare SDMs outcomes based on data 

with high positional accuracy against results obtained using the same data but affected by positional 

error of different magnitudes. Findings from these studies have been somewhat mixed: some found 

little effect of positional error and reported that SDMs were relatively robust to it (Graham et al. 2008; 

Fernandez et al. 2009); others concluded that species occurrence data with positional error generally 

lead to less accurate SDMs (Johnson and Gillingham 2008; Osborne and Leitão 2009; Mitchell et al. 

2017).  

In real-world applications, a mix of high- and low-accuracy distribution data is the most common 

situation and analysts usually have to find a compromise between positional error and sample size 

(Smith et al. 2023). However, studies focusing on this issue yielded somewhat conflicting results. 
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Reside et al. (2011) warned that increasing the sample size by incorporating historic species occurrence 

data with inaccurate positions can reduce SDMs performances. On the other hand, Smith et al. (2023) 

showed that the removal of data with high positional error can excessively reduce the sample size and, 

thus, the model accuracy (Smith et al. 2023). Furthermote, Gábor et al. (2023b) showed that even 

models affected by positional error in species distribution data can be ecologically interpretable. 

Another study investigating the effect of positional error concluded that models with small sample 

sizes were more affected by positional error than models based on larger sample sizes (Mitchell et al. 

2017). 

The role of positional error is seldom accounted for during SDMs evaluation/testing. Surprisingly, most 

SDMs studies dealing with positional error only focused on the training dataset, while ignoring the 

(potential) effect of inaccurately georeferenced data in the validation dataset. The ultimate 

consequence of positional error in species data lies in an erroneous identification of the presence or 

absence in a given cell. In this regard, Foody (2011) demonstrated that validation data should be error-

free (i.e., correctly distinguish between presences and absences) as even a small amount of error could 

result in misidentification of presences/absences and substantial misestimation of model 

performance. Therefore, data correctly labelled as the presence or absence of species (i.e., with 

minimal positional error) is essential for assessing model performance. More recently, Moudrý et al. 

(2017) showed that the inclusion of potentially erroneous presences (in this case ambiguous breeding 

bird categories used in the breeding bird atlases, i.e. possible and probable breeding) severely affected 

models’ performance metrics when added to the validation dataset, while it had a relatively minor 

effect on model performance when added to the training dataset. Therefore, we suggest relying on 

large sample size possibly including observations with low positional accuracy (i.e. with higher 

positional error than the spatial resolution of predictors) for model calibration, while preserving high-

accuracy data for model validation.  

Alternatively, Moudrý and Šímová (2012) suggested that knowing the positional error of the 

occurrences allows balancing high and poor-quality data in both training and testing datasets and 

including a covariate predictor in the model (even as a factor variable with a few levels) to be tested 

or to up/down weight the importance of observations (see Velásquez‐Tibatá et al. 2016 for such 

approach using Bayesian models). This allows preserving most of the data and offsetting the potential 

negative effect of high positional error. On the other hand, if the covariate has many levels and few 

observations, it might be better to subselect the data to retain only those of the best quality. If only a 

small sample size is available, we recommend considering the use of methods to mitigate positional 

error (Hefley et al. 2014; Zhang et al. 2018; Smith et al. 2023). Note, however, that the existing 

approaches typically either require knowledge of the magnitude of the error and their use is limited to 

data with relatively small positional error (Zhang et al. 2018), or they require that at least part of the 

dataset is recorded with minimal positional error (Hefley et al. 2014; Smith et al. 2023). Although 

recent literature is favouring the inclusion of observations with reasonable positional error rather than 

reducing sample size, we recommend careful consideration of their trade-off. Whether it is preferable 

to maintain the sample size or to minimize the adverse effect of positional error remains a very current 

and unanswered question. 
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Table 2. Studies analysing the influence of positional error in species occurrence data on SDMs. 

 Study Species data 
Resolution of 
environmental var. 

Range of shifting occurrences  

Distance Cells 

Graham et al. (2008) Observed 100 × 100 m 0 - 5 km 0 - 50 cells 

Johnson and Gillingham 
(2008) 

Observed 30 × 30 m 50 - 1000 m  1 - 34 cells 

Osborne and Leitão 
(2009) 

Observed 1 × 1 km 0 - 5 km 0 - 5 cells 

Fernandez et al. (2009) Observed 1 × 1 km 5 - 50 km 1 - 50 cells 

Naimi et al. (2011) Virtual artificial data Not valid 1 – 30 cells 

Mitchell et. al. (2017) Observed 2.5 × 2.5 m 5 - 400 m 1 - 160 cells 

Velásquez‐Tibatá et al. 

(2016) 
Virtual 150 × 150 cells Not valid 5 - 15 cells 

Gábor et al. (2020b) Virtual 5 × 5 m 5 – 500 m 1 – 100 cells 

Gábor et al. (2023b) Virtual 50 × 50 m 50 - 1500 m 1 - 30 cells 

Gábor et al. (2023b) Observed 200 × 200 m 1 - 30 km 1 - 30 cells 

 

3.2. Role of recording technique and data processing 

Old datasets, such as historical observations archived in museums, atlases and natural history 

collections that were retrospectively georeferenced, are usually thought to be more prone to relatively 

higher positional error than new ones (Graham et al. 2004; Wieczorek et al. 2004; Newbold 2010; 

Bloom et al. 2018, Marcer et al. 2022). However, positional error affects any dataset, including those 

georeferenced using modern technologies such as the global navigation satellite systems (GNSS). 

Indeed, several factors can degrade GNSS positional accuracy, including the number and position of 

satellites, and the characteristics of the study site (e.g. beneath a dense forest canopy vs. an open 

grassland). The use of a low number of satellites to georeference species data may be due to the use 

of outdated technology, such as the use of a device that relies only on the United States' Global 

Positioning System (GPS), instead of using all currently available systems (e.g. Galileo, Glonass, and 

Beidou). Even when the above-mentioned challenges are overcome, species occurrence data may still 

be impacted by errors introduced during data processing (e.g. wrong transformations among 

coordinate reference systems, rounding of coordinates, or lack of error correction procedures (e.g. 

post-differential correction; Sillero and Seco 2014). Unfortunately, the positional error of species 

records is often undocumented (Moudrý and Devillers 2020; Marcer et al. 2022). 

 

 

https://www.tandfonline.com/doi/full/10.1080/13658816.2012.721553
https://www.tandfonline.com/doi/full/10.1080/13658816.2012.721553
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3.3. Relationships between positional error, species ecology and ecosystem characteristics 

It is usually impossible to accurately georeference positions for non-sessile species (unless they are 

equipped with transmitters) due to environmental barriers (for example, it's impossible to get close to 

the species in some habitats) and/or species characteristics (e.g. size, mobility and behaviour) (Frair et 

al. 2010). Besides, georeferencing species' location using GNSS in a dense forest or at the bottom of a 

narrow and deep ravine may be difficult due to the poor reception of the satellite signal. In addition, 

buildings, walls and trees in the proximity of an antenna can reflect the signal from satellites, thereby 

further reducing the positioning accuracy (a phenomenon known as multipath; Kos et al. 2010). 

Besides, GNSS does not work underwater; in effect, the positioning of species observations in marine 

and freshwater environments is based on acoustic positioning, which leads to a decrease in accuracy 

with the water column depth, or simply on recording a position at the surface of water and 

disregarding movements of the sampling gear in the water column (Rattray et al. 2014, Mitchell et al. 

2017). As a result, data for mobile animals can have a positional uncertainty of tens to hundreds of 

metres. The distance between an animal and the observer is positively associated with the species' 

body size and, therefore, big animals are typically less accurately georeferenced as they move a lot or 

can be even dangerous, which leads to recording their location from a distance (Zhang et al. 2018). 

The effect of positional error on SDMs may also depend on the species mobility, expressed as the daily 

dispersal range or migration ability. Many birds, fishes and big predators are very mobile, and the 

accurate georeferencing of their location may play a smaller role in SDM performance than in the case 

of sessile species (see Figure 2 for an overview of the factors that may interact with the magnitude of 

positional error when building SDMs). In this regard, Gábor et al. (2023b) showed that the performance 

of a band-tailed pigeon SDM only slightly decreased with an increasing positional error, while virtual 

species simulations that did not consider species mobility showed a rapid decrease. Although 

positional error seems to depend on species characteristics, its role in affecting SDMs for different 

groups (such as insects vs. big mammals; mobile organisms like birds vs. sessile organisms like plants, 

corals, etc.) is understudied. Among the few studies that analysed the interaction between positional 

error and species ecology, Velásquez‐Tibatá et al. (2016) and, more recently, Gábor et al. (2020b), 

showed that positional error has a greater impact on SDMs’ performances for specialists (i.e., species 

with a narrow niche breadth) than for generalist species (i.e., those with a wide niche breadth). This is 

due to occurrences of specialist species being more susceptible to a shift into unsuitable environments.  

3.4. Relationship between positional error, spatial resolution and autocorrelation 

The spatial resolution of predictors used in SDMs is another critical factor determining the impact of 

positional error on model performance. Previous studies on positional error considered shifts from 5 

m up to 50 km. Such a range of errors results in a less impactful shift of species data over raster cells 

(and across environmental conditions) in a coarse-resolution set of environmental layers (e.g., 1 × 1 

km) than in a fine-resolution set of environmental layers (e.g., 10 × 10 m). Note that the recent studies 

investigated shifts of the species occurrence data by up to 160 pixels (which is almost threefold 

compared to older studies) thanks to the reduced pixel sizes in the current environmental data (see 

Table 2 for the combinations of adopted resolution and positional error in existing studies). Indeed, 

with today’s availability of high spatial resolution predictors, misuse of positionally inaccurate species 
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occurrences is increasingly likely, with the risk of exacerbating the negative effect of positional error 

on SDMs’ performances.  

To reduce the effect of positional error, multiple studies suggested adjusting spatial resolution so that 

the largest positional error associated with occurrence data is lower than the spatial resolution of the 

predictors (Engler et al. 2004; Moudrý and Šímová 2012; Keil et al. 2014; Vollering et al. 2016; Sillero 

et al. 2021a). However, coarsening the spatial resolution of the environmental variables may degrade 

information on fine-scale heterogeneity in environmental variables, eventually reducing their 

explanatory power for predicting species distribution (Mertes and Jetz 2018). In addition, spatial 

resolution can be coarsened to a level that is too far from the relevant ecological scale (Lecours et al. 

2015, Moudrý et al. 2023). Recently, Gábor et al. (2022) showed that coarsening the spatial resolution 

to compensate for positional error does not improve model performance. However, they used a 

relatively simple virtual species approach, so more studies preferably using ”real” species are needed 

to validate their results. Whether maintaining the spatial resolution of the response variable close to 

the ecological scale is more important than minimizing the adverse effect of positional error (or 

whether the opposite is true) remains a very current and unanswered question.  

It is crucial to recognize that shifting species records in the geographic space does not necessarily 

translate to an equivalent shift in the environmental space. High positional error can lead to 

mischaracterizing the conditions under which a species occurs, especially in regions characterised by 

steep ecological gradients, such as mountainous areas or heavily fragmented landscapes. Indeed, the 

impact of positional error is related to the spatial autocorrelation of environmental variables. Naimi et 

al. (2011) found that the impact of positional error on SDMs’ prediction performance decreased with 

increasing spatial autocorrelation in the environmental variables. In this regard, examining the degree 

of spatial autocorrelation in environmental variables was suggested as a way to a priori assess the 

impact of positional error on SDMs predictions (Naimi et al. 2011; 2014).  

3.5. Recommendations associated with positional error 

It is crucial to consider data quality and to carefully assess the implications of using inaccurate data in 

either the training or validation process. Such considerations will yield more reliable assessments of 

model performance and improve the accuracy of SDMs.  

• First of all, we recommend “cleaning” the dataset and removing aberrant errors (e.g., records 

with switched latitude and longitude, or records located at ZOOs or botanical gardens). This 

can be performed using automated methods such as the CoordinateCleaner package (Zizka et 

al. 2019). 

• Second, researchers should quantify the positional error of the remaining input data, for 

example, using attributes specifying positional error. If such assessment is limited by metadata 

availability, for example in the case of historical data, it is recommended to at least 

approximate the positional error based on known information, such as the collection 

methodology or the number of decimals recorded with coordinates (e.g., Watcharamongkol 

et al. 2018; Moudrý and Devillers 2020).  

• Third, we recommend that researchers carefully weigh the trade-offs between the positional 

error and resolution of environmental variables, with greater emphasis on the use of a 
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resolution as close to the ecological scale as possible (Gábor et al. 2022; Moudrý et al. 2023). 

Preferably, the positional error should be lower than the spatial resolution of the 

environmental variables (Moudrý and Šímová 2012). We suggest that the spatial resolution 

should be at least twice the positional error to reduce the risk of miscalculation of species-

environment relationships. However, this may not always be achievable. In such a case, it is 

important to consider the following aspects to estimate and acknowledge the potential impact 

of positional error on the performance of the model. 

• Fourth, we suggest considering positional error in the light of the particular species’ ecology 

as some groups of species, such as mobile species, might be less affected by positional error 

than others (Gábor et al. 2020b).  

• Fifth, researchers should examine the spatial autocorrelation in predictors to gain insight into 

whether predictions are likely to be affected by the positional error (Naimi et al. 2011; 2014). 

This may include testing the impact of various resolutions on model performance.  

• Finally, we recommend considering the use of methods to mitigate positional error (Hefley et 

al. 2014; Zhang et al. 2018; Smith et al. 2023). Alternatively, knowing the positional error of 

the occurrences allows the inclusion of covariate predictors in the model to be tested or to 

up/downweight the importance of observations (Moudrý and Šímová 2012; Velásquez‐Tibatá 

et al. 2016). For new surveys, we suggest using measurement techniques that minimize 

positional error, such as differential GNSS (e.g. Sillero et al. 2021b), and providing an estimate 

of the measurement accuracy (as is increasingly common in global databases).  

 

4. SAMPLING BIAS 

Sampling bias poses a significant challenge in SDMs, leading to models that provide a partial or 

distorted view of species distribution or ecological niche (Kadmon et al. 2004; Leitao et al. 2011; Bean 

et al. 2012; Beck et al. 2014; Bardon et al. 2021). Despite advances, our knowledge of species 

distributions still remains limited for most taxa due to the variations in the sampling intensity over time 

and huge regions of the world remaining poorly sampled (Isaac and Pocock 2015; Menegotto and 

Rangel 2018; Hughes et al. 2021; Daru and Rodriguez 2023). Typically, positive sampling biases have 

been reported towards easily accessible areas (e.g. proximity to roads, rivers and urban settlements, 

Kadmon et al. 2004), protected areas (Boakes et al. 2010; Girardello et al. 2019), more populated areas 

(Geldmann et al. 2016), and charismatic species (Troudet et al. 2017), leading to spatial and taxonomic 

biases (Huges et al. 2021). Uneven data-sharing practices further exacerbate this issue (Meyer et al. 

2015). 

Various methods have been proposed to compensate for sampling bias in species occurrence records, 

aiming to create models with quality comparable to models developed with unbiased data. Prevalent 

approaches for bias compensation include adjusting background samples (target-group background, 

TGB, approach; Phillips et al. 2009) in presence-background models or filtering (thinning) presences 

(Veloz 2009) (Table 3). The rationale behind the TGB is to select background data with the same 

sampling bias as for the set of presence records (i.e. to bias background locations towards areas where 

the presences were sampled; Phillips et al. 2009). The filtering approach was designed to reduce the 

negative effect of sampling bias by reducing the number of presences in oversampled regions in the 

geographic space (Veloz 2009) or oversampled environmental conditions in the environmental space 
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(Varela et al. 2014). Both geographic and environmental filtering use a distance between presences to 

determine the filter size. However, while geographic filtering uses distances in the geographic space 

(e.g., latitude and longitude) environmental filtering uses the range between values of multiple 

environmental variables (Varela et al. 2014; Castellanos et al. 2019). Another strategy carried out in 

the environmental space is to use presence data (i.e., their position in the environmental space) to 

identify and filter out background points associated with suitable habitats (Da Re et al. 2023). Many 

studies have evaluated the performance of these methods, simulating the bias by sub-sampling the 

original data (i.e. a presumably complete dataset without any bias) or by addressing bias already 

present in the datasets (Table 3). Such assessments require independent evaluation data containing 

both presence and absence records or comparison against models based on the unbiased dataset 

before sub-sampling simulation.  

4.1. Should the bias be assessed in the geographic or environmental space? 

There is an ongoing debate about whether bias should be assessed in the geographic or environmental 

space, or both (e.g., Varela et al. 2014; Moudrý 2015; Cosentino and Maiorano 2021). Indeed, the 

challenge in estimating species-environment relationships lies not only in the spatial bias within the 

geographic space where the bias originates but also in how this bias is reflected in the environmental 

space (i.e. the ecological niche space). All SDMs are not purely spatial methods (like interpolation, for 

instance), and the calculations actually occur within the environmental space defining the species’ 

ecological niche. Therefore, addressing bias within the environmental space directly tackles the model 

calibration. 

Sampling bias is influenced by the sampling design (Hirzel and Guisan 2002; Tessarolo et al. 2014; 

Mateo et al. 2018; Bazzichetto et al. 2023). A fundamental assumption underlying presence-

background methods is that environmental conditions are sampled in proportion to their actual 

availability (Hastie and Fithian 2013). If not, clustered occurrences (i.e. geographic bias) may lead to 

the overestimation of the environmental suitability for the respective species in environments that 

have been sampled more intensively and underestimated for those surveyed less intensively (Barry 

and Elith 2006; Guillera-Arroita et al. 2015). For instance, fully random draws of species' presence in 

the geographic space may introduce a bias towards the most widespread environmental conditions, 

which possibly leads to uneven sampling of the species’ realized niche within the environmental space 

(Bazzichetto et al. 2023). This issue is associated with another underlying assumption: that the species' 

niche is comprehensively sampled across the entire spectrum of environmental conditions in which it 

occurs (Phillips et al. 2009). Failing to meet this assumption, which can happen when there is a lack of 

knowledge about a species’ tolerance to abiotic conditions (i.e. environmental bias), may cause a poor 

estimation of the actual niche occupied by the species (Hortal et al. 2008). If the ecological niche of 

the species is truncated (i.e. the complete niche of the species is not captured by the occurrences), it 

is not possible to extrapolate a reliable model into different spatial or temporal dimensions (Chevalier 

et al. 2022). Therefore, representative sampling of the environmental space should in principle give 

better results, regardless of their bias in the geographic space (Tessarolo et al. 2014; Sabatini et al. 

2021; Bazzichetto et al. 2023). 

Geographic and environmental spaces are communicating vessels, and so correcting one component 

(geographic or environmental) may have a detrimental effect on the other. For example, geographical 
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filtering could unwittingly exclude occurrences in the environmental space with unique environmental 

conditions (Varela et al. 2014). On the other hand, environmental filtering (down-weighting repeated 

species occurrences in similar environmental conditions) identifies grid cells within marginal habitats 

to be equally suitable as the cells representing core habitats. For example, if the species probability of 

occurrence is 0.1 at one site and 0.7 at another, such sites will be occupied in one and seven out of 10 

cases, respectively. If we disregard the presences at the latter site, we lose the ability to discern the 

conditions favoured by the species (Moudrý et al. 2015). Indeed, it is impossible to use presence-

background data to determine whether species observed in particular environments result from a 

larger sampling effort or ecological preferences (Guillera-Arroita et al. 2015), and removing bias 

without the information on the sampling effort becomes quixotic (Rocchini et al. 2023).  

We recommend considering both geographic and environmental spaces in the assessment of sampling 

bias (e.g. Tessarolo et al. 2014; Cosentino and Maiorano 2021). In areas of high geographic and high 

environmental bias, and particularly in undersampled environments, further sampling efforts are 

required. Alternatively, bias correction based on the TGB method or geographic filtering can be a 

suitable option (e.g. Inman et al. 2021). However, a bias in the geographic space does not necessarily 

lead to a bias in the environmental space. If the geographic bias is high but the environmental bias is 

low, no corrections are needed, and the data can be used ‘as is’ for modelling. For example, Kadmon 

et al. (2004) and more recently Mccarthy et al. (2012) showed that the road network provided a good 

sample of environmental gradients, and allowed uncovering of true species-environment 

relationships. In the case of low geographic but high environmental bias, it is reasonable to consider 

directly a correction in environmental space using environmental filtering (Varela et al. 2014; 

Cosentino and Maiorano 2021). 

4.2. How sampling bias (and correction methods) interact with species ecology 

Several studies have reported that there was no improvement or even detrimental effects on SDMs 

performance after filtering out biased samples (e.g. Chefaoui and Serrão 2017; Ranc et al. 2017; Gábor 

et al. 2020a), and it has been suggested that this might be related to species ecology (e.g. Bystriakova 

et al. 2012). For example, Ranc et al. (2017) showed that range size was the most important factor 

driving species vulnerability to sampling bias and that widespread species were more affected by 

sampling bias and more likely to benefit from bias correction than species with narrow geographic 

ranges. Similarly, Baker et al. (2022) showed that species type has a notable effect on model 

performance, with models generally being more robust to the effects of sampling bias for specialist 

(narrow environmental niches) than for generalist (wide environmental niches) species. In addition, a 

few studies highlighted that bias correction was detrimental for species with narrow ranges (Ranc et 

al. 2017), narrow niches (Inman et al. 2021), or low prevalence (Gábor et al. 2020a) and yielded worse 

models than without bias correction. It is evident that different species are differently affected by 

sampling bias and respond differently to bias correction. Therefore, species ecology should be 

considered when correcting for sampling bias. We recommend not to use bias correction methods for 

specialist species. 
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Table 3. Studies that evaluated the effect of sampling bias and the effectiveness of methods proposed 

to compensate for sampling bias on model performance.  

Study 
Number of 
species 

Bias type 
Evaluation 
approach 

Bias correction  Main conclusion 

Phillips et al. 
(2009) 

226  Existing Independent data TGB 
Bias correction 
improve models 

Bystriakova 
et al. (2012) 

5 plants 
(Asplenium 
spp.) 

Existing  
Independent data 
(but only presences) 

TGB 
Bias correction 
improve models 

Kramer 
Schadt et al. 
(2013) 

Malay civet, 
two virtual 
species 

Existing, 
Simulated 

Simulated data 
Geographic 
filtering, TGB 

Geographic filter is 
preferred relative 
to TGB 

Syfert et al. 
(2013) 

Tree fern Existing  Independent data TGB 
Bias correction 
improve models 

Fourcade et 
al. (2014) 

Turtle, 
salamander, 
virtual species 

Simulated  
Original model 
based on unbiased 
data 

Five methods 
Variable efficiency, 
further research 
needed 

Varela et al. 
(2014) 

Virtual Simulated  
Original model 
based on unbiased 
data 

Environmental and 
geographic 
filtering 

Recommend 
environmental 
filtering 

Ranc et al. 
(2017) 

Virtual Simulated  
True distribution of 
simulated species 

TGB 
Bias correction is 
detrimental for 
some species 

Castellanos 
et al. (2019) 

Virtual Simulated 
True distribution of 
simulated species 

Environmental and 
geographic 
filtering 

Recommend 
environmental 
filtering 

Gábor et al. 
(2020a) 

Virtual Simulated  
True distribution of 
simulated species 

Environmental 
filtering 

Filtering is not 
necessarily helpful  

Chauvier et 
al. (2021) 

1,900 plants Existing Independent data 

Bias covariate 
correction, and 
environmental 
bias correction 

Combining both 
methods might be 
the best choice 

Inman et al. 
(2021) 
 

Virtual Simulated 
True distribution of 
simulated species 

TGB, geographic 
and environmental 
filtering 

Bias correction is 
detrimental for 
some species 

Baker et al. 
(2022) 

Virtual Simulated  
True distribution of 
simulated species 

Geographic 
filtering 

More mechanistic 
understanding of 
how sampling 
biases arise is 
needed 

 

4.3. Recommendations associated with sampling bias 

Complete elimination of spatial bias from the modelling procedure is impossible without proper 

knowledge of all the processes generating it (Rocchini et al. 2023), and it is unrealistic to assume that 

sampling bias in biodiversity data can be eliminated, even with the development of automated 

observation technologies. Hence, SDMs need to explore and acknowledge the inherent biases 

associated with the data in both the geographic and environmental space (Cosentino and Maiorano 

2021; Rocchini et al. 2023).  

• First, researchers should quantify the sampling bias of their input data in the geographic space. 

For example, the sampbias algorithm (Zizka et al. 2021) can be used for such purposes.  
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• Second, bias should also be evaluated in the environmental space by comparing the 

distribution of the cells where the focal species was present to all cells in the study area in a 

gridded environmental space of ecological predictors. This can be done, for example, by using 

Ecological Niche Factor Analysis (Hirzel et al. 2002); hypervolume R package (Blonder et al. 

2014); or principal component analysis in the ecospat R package (Di Cola et al. 2017). 

• The relationship between geographic and environmental bias should be further explored using 

local indicators of spatial association (LISA; Anselin 1995) and the results of such an assessment 

should be used as a basis for the selection of bias-correction methods (Cosentino and 

Maiorano 2021; Rocchini et al. 2023). This quantification can also assist researchers in 

effectively directing their further sampling efforts.  

• The next step lies in the application of the bias-correction method, if necessary. Filtering or 

the TGB approach are possible options, but caution is needed as it could result in lower model 

performance in particular cases. This requires consideration of species’ ecology as specialist 

species typically do not benefit from bias correction or can even be negatively affected by it 

(Gábor et al. 2020a; Inman et al. 2021; Baker et al. 2022). In addition, it is important to notice 

that filtering will inevitably reduce the number of presences available for modelling (but see 

Da Re et al. 2023 for filtering of background points). Therefore, if the sample size is relatively 

small, the TGB approach might be a preferred method.  

 

5. GUIDELINES AND FUTURE DIRECTIONS 

Despite the increasing number of studies focusing on how various limitations inherent to species data 

affect the performance of SDMs, there are still gaps in our knowledge and the use of SDMs remains 

problematic in many contexts. To advance our understanding, future studies should focus on 

comprehensive analyses that simultaneously consider various issues, such as sample size, sampling 

bias in the geographic and environmental space, positional error, spatial resolution, and species’ 

ecological characteristics (Figure 1). Such studies can help establish the urgently needed guidelines for 

better-informed modelling choices (e.g. bias correction, removal of data with high positional error) 

concerning data limitations and species ecology. For instance, the consideration of data limitations 

becomes particularly important for specialist species of high conservation concern, where SDMs may 

be the only feasible means of estimating their distribution and responses to environmental changes. 

Regarding species characteristics, it is important to do such evaluations on characteristics that are easy 

to specify (i.e. we know them for the majority of species), such as dispersal ability, body size, or trophic 

group. This way, the assessments can be further used to guide data selection processes in other 

studies.  

Finally, it is crucial to transparently report any potential biases and errors in the data used for 

modelling. Whenever possible, rigorous tests should be conducted to examine the impact of these 

biases and errors on model performance. Until more comprehensive assessments are available, we 

strongly recommend remaining vigilant about data limitations and following the basic guidelines for a 

critical assessment of spatial data to be used in SDMs shown in Figure 3.  
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Figure 3. Workflow for a critical assessment of spatial data to be used in SDMs. For more information 

on the individual steps, we refer the reader to the Recommendations subsections at the end of each 

main section. 
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GLOSSARY BOX 

Ecological niche: Hutchinsonian niche, which is defined as a hypothetical hypervolume spanned by the 

eco-physiological responses of a species to all environmental factors affecting its fitness. 

Model complexity refers to the level of intricacy and flexibility in the representation of a species' 

ecological niche. It reflects how well the model can capture the underlying relationships between 

predictors and species distribution. The choice of model complexity depends on the nature of the 

problem, the amount and quality of available data, the number of model parameters, and the available 

computational resources. Finding the right balance between a model's ability to capture patterns and 

its potential for overfitting is a key challenge in building effective models. 

Model performance: Here intended in a broad sense as a model capacity of recovering the underlying 

species-environment relationship using available data (‘explanatory’ performance), while also being 

able to extend (predict) out of the sample used for training/calibration (‘predictive’ performance). 

Model training is the process of teaching a machine learning or statistical model to make predictions 

based on data. It is a crucial step in building and developing predictive models. Model training involves 

using a dataset with known outcomes to enable the model to learn the underlying patterns and 

relationships in the data. 

Model testing, also known as model evaluation, is the process of assessing the performance and 

effectiveness of a machine learning or statistical model using a separate (independent) dataset that 

the model has not seen during training. The primary purpose of model testing is to determine how 

well the trained model generalizes to new, unseen data and to assess its predictive accuracy and 

reliability. 

Positional error in species occurrence data refers to inaccuracies or uncertainty in the recorded 

coordinates of where a species was observed or collected. This error can result from factors such as 

imprecise GNSS measurements, data entry mistakes, or a lack of accurate location information.  

Spatial resolution or grain refers to the level of detail or granularity at which data is collected, 

represented, or analysed in a spatial context. It can also be thought of as the size of the smallest spatial 

unit in a dataset (i.e. pixel size). 

Sampling design refers to the approach used to collect species occurrence data. The sampling design 

is a crucial aspect of SDM, as it should in principle ensure that the data include all relevant information 

to represent the ecological niche of the species and the environmental conditions in the study area. 

The quality and representativeness of the data collected directly impact the accuracy and reliability of 

the model.  

Sample size: The size of the data sample used to train and validate the model. Here, we define sample 

size as the total number of presences and absences (i.e. presence-absence data). When discussing 

studies based on presence-background data, we will refer specifically to the number of presences. 

Sampling bias: Species occurrence records typically exhibit spatial bias, wherein some locations or 

environmental conditions are more intensively sampled than others. People sample accessible 

locations more intensively than remote or unpopular ones. This type of bias means that the available 

data used as the response variable fail to represent the complete niche of the species.  

 

 



20 
 

ACKNOWLEDGEMENTS 

Funded by the European Union. Views and opinions expressed are however those of the author(s) only 

and do not necessarily reflect those of the European Union or the European Research Council Executive 

Agency. Neither the European Union nor the granting authority can be held responsible for them. VM, 

RR, AFC, VB, DR, RCG, PS were supported by the Horizon Europe project EarthBridge (Grant agreement 

No 101079310). MB acknowledges funding from the European Union's Horizon Europe research and 

innovation programme under the Marie Skłodowska-Curie grant agreement No 101066324. RGM was 

funded by project grants Connect2restore (TED2021-129589B-I00, funded by 

MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR), and 

NextDive (PID2021-124187NB-I00, funded by MCIN/AEI/10.13039/501100011033 and by ERDF, a way 

of making Europe). AZA was supported by a Margarita Salas Contract financed by the European Union-

NextGenerationEU, Ministerio de Universidades y Plan de Recuperacion, Tranformacion y Resiliencia, 

Spain. MM, JW and JP were supported by the Czech Academy of Sciences (project RVO 67985939). FL 

was funded by the European Union (ERC, BEAST, 101044740). JJL was supported by BiodivERsA+ 

project ASICS (BiodivMon-call 2021-2022). NS is supported by a CEEC2017 contract 

(CEECIND/02213/2017) from FCT - Fundação para a Ciência e a Tecnologia, Portugal. MT was partially 

funded by the European Union’s Horizon 2020 research and innovation program under grant 

agreement No 862480 (SHOWCASE).  

REFERENCES 

Anselin, L. (1995) Local indicators of spatial association—LISA. Geographical analysis, 27, 93-115. 

Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., ... & Rahbek, 
C. (2019) Standards for distribution models in biodiversity assessments. Science advances, 5, eaat4858. 

Arenas‐Castro, S., Regos, A., Martins, I., Honrado, J., & Alonso, J. (2022) Effects of input data sources 
on species distribution model predictions across species with different distributional ranges. Journal 
of Biogeography, 49, 1299-1312. 

Austin, M. P. (2002) Spatial prediction of species distribution: an interface between ecological theory 
and statistical modelling. Ecological modelling, 157, 101-118. 

Baker, D. J., Maclean, I. M., Goodall, M., & Gaston, K. J. (2022) Correlations between spatial sampling 
biases and environmental niches affect species distribution models. Global Ecology and Biogeography, 
31, 1038-1050. 

Bardon, L. R., Ward, B. A., Dutkiewicz, S., & Cael, B. B. (2021) Testing the skill of a species distribution 
model using a 21st century virtual ecosystem. Geophysical Research Letters, 48, e2021GL093455. 

Barry, S., & Elith, J. (2006) Error and uncertainty in habitat models. Journal of Applied Ecology, 43, 413-
423. 

Bazzichetto, M., Lenoir, J., Da Re, D., Tordoni, E., Rocchini, D., Malavasi, M., ... & Sperandii, M. G. (2023) 
Sampling strategy matters to accurately estimate response curves' parameters in species distribution 
models. Global Ecology and Biogeography, 32, 1717-1729. 

Bazzichetto, M., Massol, F., Carboni, M., Lenoir, J., Lembrechts, J. J., Joly, R., & Renault, D. (2021) Once 
upon a time in the far south: Influence of local drivers and functional traits on plant invasion in the 
harsh sub‐Antarctic islands. Journal of Vegetation Science, 32, e13057. 

Bean, W. T., Stafford, R., & Brashares, J. S. (2012) The effects of small sample size and sample bias on 
threshold selection and accuracy assessment of species distribution models. Ecography, 35, 250-258. 

Beck, J., Böller, M., Erhardt, A., & Schwanghart, W. (2014) Spatial bias in the GBIF database and its 
effect on modeling species' geographic distributions. Ecological Informatics, 19, 10-15. 



21 
 

Bell, D. M., & Schlaepfer, D. R. (2016) On the dangers of model complexity without ecological 
justification in species distribution modeling. Ecological Modelling, 330, 50-59. 

Blonder, B., Lamanna, C., Violle, C., & Enquist, B. J. (2014) The n‐dimensional hypervolume. Global 
Ecology and Biogeography, 23, 595-609. 

Bloom, T. D., Flower, A., & DeChaine, E. G. (2018) Why georeferencing matters: Introducing a practical 
protocol to prepare species occurrence records for spatial analysis. Ecology and Evolution, 8, 765-777. 

Boakes, E. H., McGowan, P. J., Fuller, R. A., Chang-qing, D., Clark, N. E., O'Connor, K., & Mace, G. M. 
(2010) Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS 
biology, 8, e1000385. 

Botella, C., Deneu, B., Marcos, D., Servajean, M., Estopinan, J., Larcher, T., ... & Joly, A. (2023) The 
GeoLifeCLEF 2023 Dataset to evaluate plant species distribution models at high spatial resolution 
across Europe. arXiv preprint arXiv:2308.05121. 

Boyd, R. J., Harvey, M., Roy, D. B., Barber, T., Haysom, K. A., Macadam, C. R., ... & Pescott, O. L. (2023) 
Causal inference and large‐scale expert validation shed light on the drivers of SDM accuracy and 
variance. Diversity and Distributions. 

Bystriakova, N., Peregrym, M., Erkens, R. H., Bezsmertna, O., & Schneider, H. (2012) Sampling bias in 
geographic and environmental space and its effect on the predictive power of species distribution 
models. Systematics and biodiversity, 10, 305-315. 

Carretero, M. A., & Sillero, N. (2016) Evaluating how species niche modelling is affected by partial 
distributions with an empirical case. Acta Oecologica, 77, 207-216. 

Castellanos, A. A., Huntley, J. W., Voelker, G., & Lawing, A. M. (2019) Environmental filtering improves 
ecological niche models across multiple scales. Methods in Ecology and Evolution, 10, 481-492. 

Chauvier, Y., Zimmermann, N. E., Poggiato, G., Bystrova, D., Brun, P., & Thuiller, W. (2021) Novel 
methods to correct for observer and sampling bias in presence‐only species distribution models. Global 
Ecology and Biogeography, 30, 2312-2325. 

Chevalier, M., Zarzo-Arias, A., Guélat, J., Mateo, R. G., & Guisan, A. (2022) Accounting for niche 
truncation to improve spatial and temporal predictions of species distributions. Frontiers in Ecology 
and Evolution, 10. 

Chefaoui, R. M., & Serrão, E. A. (2017) Accounting for uncertainty in predictions of a marine species: 
integrating population genetics to verify past distributions. Ecological Modelling, 359, 229-239. 

Collart, F., & Guisan, A. (2023) Small to train, small to test: Dealing with low sample size in model 
evaluation. Ecological Informatics, 75, 102106. 

Collart, F., Broennimann, O., Guisan, A., & Vanderpoorten, A. (2023) Ecological and biological indicators 
of the accuracy of species distribution models: lessons from European bryophytes. Ecography, e06721. 

Cosentino, F., & Maiorano, L. (2021) Is geographic sampling bias representative of environmental 
space?. Ecological Informatics, 64, 101369. 

Coudun, C., & Gégout, J. C. (2006) The derivation of species response curves with Gaussian logistic 
regression is sensitive to sampling intensity and curve characteristics. Ecological modelling, 199, 164-
175. 

Da Re, D., Tordoni, E., Lenoir, J., Vanwambeke, S. O., Rocchini, D., Bazzichetto, M., & SoilTemp 
Consortium. (2023) USE it: uniformly sampling pseudo-absences within the environmental space for 
applications in habitat suitability models. 

Daru, B. H., & Rodriguez, J. (2023) Mass production of unvouchered records fails to represent global 
biodiversity patterns. Nature Ecology & Evolution, 1-16. 



22 
 

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., d'Amen, M., Randin, C., ... & Guisan, A. 
(2017) ecospat: an R package to support spatial analyses and modeling of species niches and 
distributions. Ecography, 40, 774-787. 

Duputié, A., Zimmermann, N. E., & Chuine, I. (2014) Where are the wild things? Why we need better 
data on species distribution. Global Ecology and Biogeography, 23, 457-467. 

Ehrlén, J., & Morris, W. F. (2015) Predicting changes in the distribution and abundance of species under 
environmental change. Ecology letters, 18, 303-314. 

Elith, J., Burgman, M. A., & Regan, H. M. (2002) Mapping epistemic uncertainties and vague concepts 
in predictions of species distribution. Ecological modelling, 157, 313-329. 

Elith, J., & Leathwick, J. R. (2009) Species distribution models: ecological explanation and prediction 
across space and time. Annual review of ecology, evolution, and systematics, 40, 677-697. 

Engler, R., Guisan, A., & Rechsteiner, L. (2004) An improved approach for predicting the distribution of 
rare and endangered species from occurrence and pseudo‐absence data. Journal of applied ecology, 
41, 263-274. 

Feeley, K. J., & Silman, M. R. (2011) Keep collecting: accurate species distribution modelling requires 
more collections than previously thought. Diversity and distributions, 17, 1132-1140. 

Feng, X., Park, D. S., Walker, C., Peterson, A. T., Merow, C., & Papeş, M. (2019) A checklist for 
maximizing reproducibility of ecological niche models. Nature Ecology & Evolution, 3, 1382-1395. 

Fernandez, M., Blum, S., Reichle, S., Guo, Q., Holzman, B., & Hamilton, H. (2009) Locality uncertainty 
and the differential performance of four common niche-based modeling techniques. Biodiversity 
Informatics, 6. 

Ferrier, S., Jetz, W., & Scharlemann, J. (2017) Biodiversity modelling as part of an observation system. 
The GEO handbook on biodiversity observation networks, 239-257. 

Ficetola, G. F., Bonardi, A., Mücher, C. A., Gilissen, N. L., & Padoa-Schioppa, E. (2014) How many 
predictors in species distribution models at the landscape scale? Land use versus LiDAR-derived canopy 
height. International Journal of Geographical Information Science, 28, 1723-1739. 

Fois, M., Cuena-Lombraña, A., Fenu, G., & Bacchetta, G. (2018) Using species distribution models at 
local scale to guide the search of poorly known species: Review, methodological issues and future 
directions. Ecological Modelling, 385, 124-132. 

Foody, G. M. (2011) Impacts of imperfect reference data on the apparent accuracy of species 
presence–absence models and their predictions. Global Ecology and Biogeography, 20, 498-508. 

Fourcade, Y., Engler, J. O., Rödder, D., & Secondi, J. (2014) Mapping species distributions with MAXENT 
using a geographically biased sample of presence data: a performance assessment of methods for 
correcting sampling bias. PloS one, 9, e97122. 

Fourcade, Y., Besnard, A. G., & Secondi, J. (2018) Paintings predict the distribution of species, or the 
challenge of selecting environmental predictors and evaluation statistics. Global Ecology and 
Biogeography, 27, 245-256. 

Frair, J. L., Fieberg, J., Hebblewhite, M., Cagnacci, F., DeCesare, N. J., & Pedrotti, L. (2010) Resolving 
issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2187-2200. 

Gábor, L., Moudrý, V., Barták, V., & Lecours, V. (2020a) How do species and data characteristics affect 
species distribution models and when to use environmental filtering?. International Journal of 
Geographical Information Science, 34, 1567-1584. 



23 
 

Gábor, L., Moudrý, V., Lecours, V., Malavasi, M., Barták, V., Fogl, M., ... & Václavík, T. (2020b) The effect 
of positional error on fine scale species distribution models increases for specialist species. Ecography, 
43, 256-269. 

Gábor, L., Jetz, W., Lu, M., Rocchini, D., Cord, A., Malavasi, M., ... & Moudrý, V. (2022) Positional errors 
in species distribution modelling are not overcome by the coarser grains of analysis. Methods in 
Ecology and Evolution, 13, 2289-2302. 

Gabor, L., Cohen, J., & Jetz, W. (2023a) Assessing the impact of binary land cover variables on species 
distribution models: A North American study on water birds. bioRxiv, 2023-07. 

Gábor, L., Jetz, W., Zarzo‐Arias, A., Winner, K., Yanco, S., Pinkert, S., ... & Moudrý, V. (2023b) Species 
distribution models affected by positional uncertainty in species occurrences can still be ecologically 
interpretable. Ecography, e06358. 

Geldmann, J., Heilmann‐Clausen, J., Holm, T. E., Levinsky, I., Markussen, B. O., Olsen, K., ... & Tøttrup, 
A. P. (2016) What determines spatial bias in citizen science? Exploring four recording schemes with 
different proficiency requirements. Diversity and Distributions, 22, 1139-1149. 

Girardello, M., Chapman, A., Dennis, R., Kaila, L., Borges, P. A., & Santangeli, A. (2019) Gaps in butterfly 
inventory data: A global analysis. Biological conservation, 236, 289-295. 

Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004) New developments in 
museum-based informatics and applications in biodiversity analysis. Trends in ecology & evolution, 19, 
497-503. 

Graham, C. H., Elith, J., Hijmans, R. J., Guisan, A., Townsend Peterson, A., Loiselle, B. A., & NCEAS 
Predicting Species Distributions Working Group. (2008) The influence of spatial errors in species 
occurrence data used in distribution models. Journal of Applied Ecology, 45, 239-247. 

Guillera‐Arroita, G., Lahoz‐Monfort, J. J., Elith, J., Gordon, A., Kujala, H., Lentini, P. E., ... & Wintle, B. A. 
(2015) Is my species distribution model fit for purpose? Matching data and models to applications. 
Global ecology and biogeography, 24, 276-292. 

Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, A. T. (2007) WHAT 
MATTERS FOR PREDICTING THE OCCURRENCES OF TREES: TECHNIQUES, DATA, OR 
SPECIES'CHARACTERISTICS?. Ecological monographs, 77, 615-630. 

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. I., ... & 
Buckley, Y. M. (2013) Predicting species distributions for conservation decisions. Ecology letters, 16, 
1424-1435. 

Haesen, S., Lenoir, J., Gril, E., De Frenne, P., Lembrechts, J. J., Kopecký, M., ... & Van Meerbeek, K. 
(2023) Microclimate reveals the true thermal niche of forest plant species. Ecology Letters. 

Hallman, T. A., & Robinson, W. D. (2020) Deciphering ecology from statistical artefacts: Competing 
influence of sample size, prevalence and habitat specialization on species distribution models and how 
small evaluation datasets can inflate metrics of performance. Diversity and Distributions, 26, 315-328. 

Hanberry, B. B., He, H. S., & Dey, D. C. (2012) Sample sizes and model comparison metrics for species 
distribution models. Ecological Modelling, 227, 29-33. 

Hastie, T., & Fithian, W. (2013) Inference from presence‐only data; the ongoing controversy. 
Ecography, 36, 864-867. 

Hefley, T. J., Baasch, D. M., Tyre, A. J., & Blankenship, E. E. (2014) Correction of location errors for 
presence‐only species distribution models. Methods in Ecology and Evolution, 5, 207-214. 

Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & Sykes, M. T. (2006) Methods and 
uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography, 
30, 751-777. 



24 
 

Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006) The effect of sample size and 
species characteristics on performance of different species distribution modeling methods. Ecography, 
29, 773-785. 

Hirzel, A., & Guisan, A. (2002) Which is the optimal sampling strategy for habitat suitability modelling. 
Ecological modelling, 157, 331-341. 

Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002) Ecological‐niche factor analysis: how to 
compute habitat‐suitability maps without absence data?. Ecology, 83, 2027-2036. 

Hortal, J., Jiménez‐Valverde, A., Gómez, J. F., Lobo, J. M., & Baselga, A. (2008) Historical bias in 
biodiversity inventories affects the observed environmental niche of the species. Oikos, 117, 847-858. 

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M., & Ladle, R. J. (2015) Seven 
shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and 
Systematics, 46, 523-549. 

Hughes, A. C., Orr, M. C., Ma, K., Costello, M. J., Waller, J., Provoost, P., ... & Qiao, H. (2021) Sampling 
biases shape our view of the natural world. Ecography, 44, 1259-1269. 

Hughes, A., Dorey, J., Bossert, S., Qiao, H., & Orr, M. (2023) Big data-big problems? How to circumvent 
problems in biodiversity mapping and ensure meaningful results. 

Inman, R., Franklin, J., Esque, T., & Nussear, K. (2021) Comparing sample bias correction methods for 
species distribution modeling using virtual species. Ecosphere, 12, e03422. 

Isaac, N. J., & Pocock, M. J. (2015) Bias and information in biological records. Biological Journal of the 
Linnean Society, 115, 522-531. 

Jansen, J., Woolley, S. N., Dunstan, P. K., Foster, S. D., Hill, N. A., Haward, M., & Johnson, C. R. (2022) 
Stop ignoring map uncertainty in biodiversity science and conservation policy. Nature Ecology & 
Evolution, 6, 828-829. 

Jiménez-Valverde, A., Lobo, J., & Hortal, J. (2009) The effect of prevalence and its interaction with 
sample size on the reliability of species distribution models. Community Ecology, 10, 196-205. 

Jiménez-Valverde, A. (2020) Sample size for the evaluation of presence-absence models. Ecological 
Indicators, 114, 106289. 

Johnson, C. J., & Gillingham, M. P. (2008) Sensitivity of species-distribution models to error, bias, and 
model design: an application to resource selection functions for woodland caribou. Ecological 
Modelling, 213, 143-155. 

Kadmon, R., Farber, O., & Danin, A. (2003) A systematic analysis of factors affecting the performance 
of climatic envelope models. Ecological Applications, 13, 853-867. 

Kadmon, R., Farber, O., & Danin, A. (2004) Effect of roadside bias on the accuracy of predictive maps 
produced by bioclimatic models. Ecological Applications, 14, 401-413. 

Keil, P., Wilson, A. M., & Jetz, W. (2014) Uncertainty, priors, autocorrelation and disparate data in 
downscaling of species distributions. Diversity and Distributions, 20, 797-812. 

Kos, T., Markezic, I., & Pokrajcic, J. (2010, September) Effects of multipath reception on GPS positioning 
performance. In Proceedings ELMAR-2010 (pp. 399-402). IEEE. 

Kramer‐Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., ... & Wilting, 
A. (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. 
Diversity and distributions, 19, 1366-1379. 

Lecours, V., Devillers, R., Schneider, D. C., Lucieer, V. L., Brown, C. J., & Edinger, E. N. (2015) Spatial 
scale and geographic context in benthic habitat mapping: review and future directions. Marine Ecology 
Progress Series, 535, 259-284. 



25 
 

Leitão, P. J., Moreira, F., & Osborne, P. E. (2011) Effects of geographical data sampling bias on habitat 
models of species distributions: a case study with steppe birds in southern Portugal. International 
Journal of Geographical Information Science, 25, 439-454. 

Liu, C., Newell, G., & White, M. (2019) The effect of sample size on the accuracy of species distribution 
models: considering both presences and pseudo‐absences or background sites. Ecography, 42, 535-
548. 

Loiselle, B. A., Jørgensen, P. M., Consiglio, T., Jiménez, I., Blake, J. G., Lohmann, L. G., & Montiel, O. M. 
(2008) Predicting species distributions from herbarium collections: does climate bias in collection 
sampling influence model outcomes?. Journal of Biogeography, 35, 105-116. 

Maggini, R., Lehmann, A., Zimmermann, N. E., & Guisan, A. (2006) Improving generalized regression 
analysis for the spatial prediction of forest communities. Journal of biogeography, 33, 1729-1749. 

Marcer, A., Chapman, A. D., Wieczorek, J. R., Xavier Picó, F., Uribe, F., Waller, J., & Ariño, A. H. (2022) 
Uncertainty matters: ascertaining where specimens in natural history collections come from and its 
implications for predicting species distributions. Ecography, 2022, e06025. 

Mateo, R. G., Felicísimo, Á. M., & Muñoz, J. (2010) Effects of the number of presences on reliability and 
stability of MARS species distribution models: the importance of regional niche variation and ecological 
heterogeneity. Journal of Vegetation Science, 21, 908-922. 

Mateo, R. G., Gaston, A., Aroca-Fernández, M. J., Saura, S., & García-Viñas, J. I. (2018) Optimization of 
forest sampling strategies for woody plant species distribution modelling at the landscape scale. Forest 
Ecology and Management, 410, 104-113. 

Mccarthy, K. P., Fletcher Jr, R. J., Rota, C. T., & Hutto, R. L. (2012) Predicting species distributions from 
samples collected along roadsides. Conservation biology, 26, 68-77. 

McPherson, J. M., & Jetz, W. (2007) Effects of species’ ecology on the accuracy of distribution models. 
Ecography, 30, 135-151. 

McPherson, J. M., Jetz, W., & Rogers, D. J. (2004) The effects of species’ range sizes on the accuracy of 
distribution models: ecological phenomenon or statistical artefact?. Journal of applied ecology, 41, 
811-823. 

Menegotto, A., & Rangel, T. F. (2018) Mapping knowledge gaps in marine diversity reveals a latitudinal 
gradient of missing species richness. Nature communications, 9, 4713. 

Merow, C., Smith, M. J., Edwards Jr, T. C., Guisan, A., McMahon, S. M., Normand, S., ... & Elith, J. (2014) 
What do we gain from simplicity versus complexity in species distribution models?. Ecography, 37, 
1267-1281. 

Mertes, K., & Jetz, W. (2018) Disentangling scale dependencies in species environmental niches and 
distributions. Ecography, 41, 1604-1615. 

Meyer, C., Kreft, H., Guralnick, R., & Jetz, W. (2015) Global priorities for an effective information basis 
of biodiversity distributions. Nature communications, 6, 1-8. 

Mitchell, P. J., Monk, J., & Laurenson, L. (2017) Sensitivity of fine‐scale species distribution models to 
locational uncertainty in occurrence data across multiple sample sizes. Methods in Ecology and 
Evolution, 8, 12-21. 

Moreno-Amat, E., Mateo, R. G., Nieto-Lugilde, D., Morueta-Holme, N., Svenning, J. C., & García-
Amorena, I. (2015) Impact of model complexity on cross-temporal transferability in Maxent species 
distribution models: An assessment using paleobotanical data. Ecological Modelling, 312, 308-317. 

Moudrý, V., & Devillers, R. (2020) Quality and usability challenges of global marine biodiversity 
databases: An example for marine mammal data. Ecological Informatics, 56, 101051. 



26 
 

Moudrý, V., & Šímová, P. (2012) Influence of positional accuracy, sample size and scale on modelling 
species distributions: a review. International Journal of Geographical Information Science, 26, 2083-
2095. 

Moudrý, V. (2015) Modelling species distributions with simulated virtual species. Journal of 
Biogeography, 42, 1365-1366. 

Moudrý, V., Komárek, J., & Šímová, P. (2017) Which breeding bird categories should we use in models 
of species distribution?. Ecological Indicators, 74, 526-529. 

Moudrý, V., Keil, P., Cord, A. F., Gábor, L., Lecours, V., Zarzo-Arias, A., ... & Šímová, P. (2023) Scale 
mismatches between predictor and response variables in species distribution modelling: A review of 
practices for appropriate grain selection. Progress in Physical Geography: Earth and Environment, 
03091333231156362. 

Naimi, B., Skidmore, A. K., Groen, T. A., & Hamm, N. A. (2011) Spatial autocorrelation in predictors 
reduces the impact of positional uncertainty in occurrence data on species distribution modelling. 
Journal of biogeography, 38, 1497-1509. 

Naimi, B., Hamm, N. A., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014) Where is positional 
uncertainty a problem for species distribution modelling?. Ecography, 37, 191-203. 

Newbold, T. (2010) Applications and limitations of museum data for conservation and ecology, with 
particular attention to species distribution models. Progress in physical geography, 34, 3-22. 

Osborne, P. E., & Leitao, P. J. (2009) Effects of species and habitat positional errors on the performance 
and interpretation of species distribution models. Diversity and Distributions, 15, 671-681. 

Papeş, M., & Gaubert, P. (2007) Modelling ecological niches from low numbers of occurrences: 
assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two 
continents. Diversity and distributions, 13, 890-902. 

Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007) Predicting species 
distributions from small numbers of occurrence records: a test case using cryptic geckos in 
Madagascar. Journal of biogeography, 34, 102-117. 

Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., & Ferrier, S. (2009) Sample 
selection bias and presence‐only distribution models: implications for background and pseudo‐
absence data. Ecological applications, 19, 181-197. 

Proosdij, A. S. J. van, Sosef, M. S., Wieringa, J. J., & Raes, N. (2016) Minimum required number of 
specimen records to develop accurate species distribution models. Ecography, 39, 542-552. 

Ranc, N., Santini, L., Rondinini, C., Boitani, L., Poitevin, F., Angerbjörn, A., & Maiorano, L. (2017) 
Performance tradeoffs in target‐group bias correction for species distribution models. Ecography, 40, 
1076-1087. 

Rattray, A., Ierodiaconou, D., Monk, J., Laurenson, L. J. B., & Kennedy, P. (2014) Quantification of spatial 
and thematic uncertainty in the application of underwater video for benthic habitat mapping. Marine 
Geodesy, 37, 315-336. 

Raxworthy, C. J., Martinez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider, G. E., Ortega-Huerta, 
M. A., & Townsend Peterson, A. (2003) Predicting distributions of known and unknown reptile species 
in Madagascar. Nature, 426, 837-841. 

Reside, A. E., Watson, I., VanDerWal, J., & Kutt, A. S. (2011) Incorporating low-resolution historic 
species location data decreases performance of distribution models. Ecological Modelling, 222, 3444-
3448. 

Rocchini, D., Hortal, J., Lengyel, S., Lobo, J. M., Jimenez-Valverde, A., Ricotta, C., ... & Chiarucci, A. 
(2011) Accounting for uncertainty when mapping species distributions: the need for maps of 
ignorance. Progress in Physical Geography, 35, 211-226. 



27 
 

Rocchini, D., Tordoni, E., Marchetto, E., Marcantonio, M., Barbosa, A. M., Bazzichetto, M., ... & 
Malavasi, M. (2023) A quixotic view of spatial bias in modelling the distribution of species and their 
diversity. npj Biodiversity, 2, 10. 

Sabatini, F. M., Lenoir, J., Hattab, T., Arnst, E. A., Chytrý, M., Dengler, J., ... & Wagner, V. (2021) 
sPlotOpen–An environmentally balanced, open‐access, global dataset of vegetation plots. Global 
Ecology and Biogeography, 30, 1740-1764. 

Santini, L., Benítez‐López, A., Maiorano, L., Čengić, M., & Huijbregts, M. A. (2021) Assessing the 
reliability of species distribution projections in climate change research. Diversity and Distributions, 27, 
1035-1050. 

Segal, R. D., Massaro, M., Carlile, N., & Whitsed, R. (2021) Small‐scale species distribution model 
identifies restricted breeding habitat for an endemic island bird. Animal Conservation, 24, 959-969. 

Segurado, P., & Araujo, M. B. (2004). An evaluation of methods for modelling species distributions. 
Journal of biogeography, 31, 1555-1568. 

Seoane, J., Carrascal, L. M., Alonso, C. L., & Palomino, D. (2005) Species-specific traits associated to 
prediction errors in bird habitat suitability modelling. Ecological Modelling, 185, 299-308. 

Shiroyama, R., Wang, M., & Yoshimura, C. (2020) Effect of sample size on habitat suitability estimation 
using random forests: a case of bluegill, Lepomis macrochirus. Annales de Limnologie-International 
Journal of Limnology, 56. 

Sillero, N. (2011) What does ecological modelling model? A proposed classification of ecological niche 
models based on their underlying methods. Ecological Modelling, 222, 1343-1346. 

Sillero, N., & Barbosa, A. M. (2021) Common mistakes in ecological niche models. International Journal 
of Geographical Information Science, 35, 213-226. 

Sillero, N., & Goncalves-Seco, L. (2014) Spatial structure analysis of a reptile community with airborne 
LiDAR data. International Journal of Geographical Information Science, 28, 1709-1722. 

Sillero, N., Arenas-Castro, S., Enriquez‐Urzelai, U., Vale, C. G., Sousa-Guedes, D., Martínez-Freiría, F., ... 
& Barbosa, A. M. (2021a) Want to model a species niche? A step-by-step guideline on correlative 
ecological niche modelling. Ecological Modelling, 456, 109671. 

Sillero, N., Dos Santos, R., Teodoro, A. C., & Carretero, M. A. (2021b) Ecological niche models improve 
home range estimations. Journal of Zoology, 313, 145-157. 

Smith, A. B., & Santos, M. J. (2020) Testing the ability of species distribution models to infer variable 
importance. Ecography, 43, 1801-1813. 

Smith, A. B., Murphy, S. J., Henderson, D., & Erickson, K. D. (2023) Including imprecisely georeferenced 
specimens improves accuracy of species distribution models and estimates of niche breadth. Global 
Ecology and Biogeography, 32, 342-355. 

Støa, B., Halvorsen, R., Stokland, J. N., & Gusarov, V. I. (2019) How much is enough? Influence of 
number of presence observations on the performance of species distribution models. Sommerfeltia, 
39, 1-28. 

Stockwell, D. R., & Peterson, A. T. (2002) Effects of sample size on accuracy of species distribution 
models. Ecological modelling, 148, 1-13. 

Syfert, M. M., Smith, M. J., & Coomes, D. A. (2013) The effects of sampling bias and model complexity 
on the predictive performance of MaxEnt species distribution models. PloS one, 8, e55158. 

Tessarolo, G., Rangel, T. F., Araújo, M. B., & Hortal, J. (2014) Uncertainty associated with survey design 
in Species Distribution Models. Diversity and Distributions, 20, 1258-1269. 



28 
 

Tessarolo, G., Ladle, R. J., Lobo, J. M., Rangel, T. F., & Hortal, J. (2021) Using maps of biogeographical 
ignorance to reveal the uncertainty in distributional data hidden in species distribution models. 
Ecography, 44, 1743-1755. 

Thibaud, E., Petitpierre, B., Broennimann, O., Davison, A. C., & Guisan, A. (2014) Measuring the relative 
effect of factors affecting species distribution model predictions. Methods in Ecology and Evolution, 5, 
947-955. 

Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R., & Legendre, F. (2017) Taxonomic bias in 
biodiversity data and societal preferences. Scientific reports, 7, 9132. 

Tsoar, A., Allouche, O., Steinitz, O., Rotem, D., & Kadmon, R. (2007) A comparative evaluation of 
presence‐only methods for modelling species distribution. Diversity and distributions, 13, 397-405. 

Varela, S., Anderson, R. P., García‐Valdés, R., & Fernández‐González, F. (2014) Environmental filters 
reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography, 37, 
1084-1091. 

Velásquez‐Tibatá, J., Graham, C. H., & Munch, S. B. (2016) Using measurement error models to account 
for georeferencing error in species distribution models. Ecography, 39, 305-316. 

Veloz, S. D. (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence‐
only niche models. Journal of biogeography, 36, 2290-2299. 

Vollering, J., Schuiteman, A., de Vogel, E., van Vugt, R., & Raes, N. (2016) Phytogeography of New 
Guinean orchids: patterns of species richness and turnover. Journal of Biogeography, 43, 204-214. 

Wang, L., & Jackson, D. A. (2023) Effects of sample size, data quality, and species response in 
environmental space on modeling species distributions. Landscape Ecology, 1-23. 

Watcharamongkol, T., Christin, P. A., & Osborne, C. P. (2018) C4 photosynthesis evolved in warm 
climates but promoted migration to cooler ones. Ecology Letters, 21, 376-383. 

Wieczorek, J., Guo, Q., & Hijmans, R. (2004) The point-radius method for georeferencing locality 
descriptions and calculating associated uncertainty. International journal of geographical information 
science, 18, 745-767. 

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., & NCEAS Predicting Species 
Distributions Working Group. (2008) Effects of sample size on the performance of species distribution 
models. Diversity and distributions, 14, 763-773. 

Wüest, R. O., Zimmermann, N. E., Zurell, D., Alexander, J. M., Fritz, S. A., Hof, C., ... & Karger, D. N. 
(2020) Macroecology in the age of Big Data–Where to go from here?. Journal of Biogeography, 47, 1-
12. 

Zhang, G., Zhu, A. X., Huang, Z. P., & Xiao, W. (2018) A heuristic‐based approach to mitigating positional 
errors in patrol data for species distribution modeling. Transactions in GIS, 22, 202-216. 

Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., ... & Antonelli, A. (2019) 
CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. 
Methods in Ecology and Evolution, 10, 744-751. 

Zizka, A., Antonelli, A., & Silvestro, D. (2021) Sampbias, a method for quantifying geographic sampling 
biases in species distribution data. Ecography, 44, 25-32. 

Zurell, D., Franklin, J., König, C., Bouchet, P. J., Dormann, C. F., Elith, J., ... & Merow, C. (2020) A standard 
protocol for reporting species distribution models. Ecography, 43, 1261-1277. 

 

 


