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Abstract  28 

 29 

Although miRNA regulation of protein production is a likely target of adaptive evolution, 30 

high false-positive rates in the identification of mRNAs targeted by miRNAs in non-31 

model species’ complicates interpretation of recent advances. Here we document the 32 

challenges and then outline steps for the community to address these challenges. 33 

 34 

 35 

 36 

Keywords  37 

 38 

miRNA, target detection, false-positives, functional coherence, gene set enrichment 39 

analysis 40 

 41 

 42 

 43 

  44 



 2 

One major revelation of the genomics era is that gene regulatory networks (GRNs) 45 

exhibit extensive functional coherence, as most transcription factors regulate the 46 

transcription of functionally related modules of genes, resulting in co-expressed genes 47 

generally comprising coherent developmental and metabolic pathways (Stuart et al. 48 

2003; Wolfe et al. 2005). GRNs are at the core of evolutionary biology studies, since it is 49 

the modification of GRNs, as well as their co-option into novel developmental contexts, 50 

that is the major axis upon with evolutionary adaptations and novelty arise (Bruce & 51 

Patel 2020; Erwin 2021). However, mRNA transcription alone does not determine 52 

protein concentrations and hence phenotypes, but rather a diverse set of dynamics, 53 

including post-transcriptional and post-translational regulation, significantly modify the 54 

transcriptome, forming a key feature of the genotype to phenotype map (Liu et al. 2016; 55 

Bartel 2018).  56 

Here we focus upon post-transcriptional regulation via microRNAs (miRNAs), 57 

~22 nucleotides (nt) long RNAs. In most animals, miRNAs are produced after 58 

transcription via a series of processes (hairpin formation, cleavage, export to cytoplasm, 59 

cleavage), then bound by the Argonaute protein, creating a silencing complex that 60 

selectively binds mRNA based upon a short (6-8 nt) sequence seed matching between 61 

the miRNA and mRNA, primarily in the 3’ UTR region of mRNA transcripts, which then 62 

initiates various forms of translation repression (Bartel 2018). Via this post-63 

transcriptional action regulating the mRNA to protein production relationship, miRNAs 64 

play an important role in developmental progression and physiological functioning 65 

(Bartel 2018; Gebert & MacRae 2019). Numerous studies over the past decade, across 66 

both invertebrates and vertebrates, have found significant differential expression of 67 

miRNA genes associated with adaptive phenotypes, suggesting that these “sculptors” of 68 

the transcriptome play an important role in adaptive evolution (Bartel 2018; Leung & 69 

Sharp 2010; Fruciano et al. 2021). However, investigating how such differential 70 

expression of miRNA causally leads to adaptive phenotypes necessitates identifying the 71 

mRNAs that are targeted by miRNAs, as only this allows researchers to make causal 72 

connections between differential miRNA expression, protein expression changes, and 73 

ultimately differential reproductive success. Unfortunately, identifying which mRNAs are 74 

targeted by which miRNAs remains a complex problem (Bracken et al. 2016). 75 
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Based upon insights from model-species (e.g. humans, flies, worms), animals 76 

are expected to have 100’s of miRNA families (miRNAs that target the same canonical 77 

motif in mRNA), each of which can effectively reduce the protein production of 100’s 78 

genes. In humans these numbers correspond to about 500 miRNAs, 300 of which can 79 

be placed into about 170 gene families, with each family on average 80 

posttranscriptionally repressing roughly 400 genes (Bartel 2018). From the perspective 81 

of a given mRNA sequence, nearly half of fly (~ 40%) and human (> 60%) mRNAs 82 

contain conserved miRNA binding targets, with each mRNA on average containing 83 

multiple miRNA binding sites (of the same and/or different miRNA families). Thus, 84 

across diverse taxa, miRNAs have the potential to sculpt a large faction of the 85 

transcriptome.  86 

Genomic core facilities now routinely provide short RNA sequencing, enabling 87 

quantitative assessments of miRNA abundance in nearly any taxa. However, identifying 88 

the biologically meaningful targets of differentially expressed miRNA remains 89 

challenging, despite technological advances. While direct sequencing of the mRNA pool 90 

bound by the silencing complex is possible (crosslinking-immunoprecipitation-91 

sequencing, CLIP-seq), a high concentration of cells is required, with results necessarily 92 

averaging over the diverse miRNA regulation dynamics among cells lineages. While a 93 

single cell approach has just been developed (Sekar et al. 2023), neither technique is 94 

able to identify the miRNAs directly involved.  95 

As an initial, or only, foray into miRNA research, many research groups rely upon 96 

bioinformatic prediction of miRNA targets in their focal species, for initial interpretation 97 

of differential miRNA expression. In animals, miRNA binding to mRNA primarily relies 98 

upon 6 to 8 nucleotides of complimentary sequence, referred to as seed pairing. While 99 

legions of such short motifs populate the UTR regions of transcriptome, only a small 100 

fraction are involved in post-transcriptional repression (Agarwal et al. 2015, 2018; 101 

Fridrich et al. 2019). This scenario highlights the inherently challenging nature of target 102 

prediction due to the exceptional potential for statistically significant false positives 103 

(Fridrich et al. 2019), with the challenge of accurate in silico prediction spawning yet 104 

another bioinformatics cottage industry (~ 100 different software approaches to date 105 

(Fridrich et al. 2019; Kern et al. 2020; Ritchie et al. 2009). 106 
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Emerging from diverse efforts in model-species to understand miRNA post-107 

transcriptional regulation comes the robust result that signatures of evolutionary 108 

conservation, generated due to consistent purifying selection acting over 10 to 100’s of 109 

millions of years, provides a powerful means of discriminating functionally important 110 

seed regions from other candidates in the dynamically evolving UTR regions of mRNA. 111 

Indeed, compared to using only identified motifs in a single species, or in combination 112 

with various ways of modeling local thermodynamics, only approaches incorporating 113 

evolutionary conservation appear accurate (Friedman et al. 2009; Agarwal et al. 2015), 114 

though the field continues to explore additional parameters and approaches (Kern et al. 115 

2020). Of direct relevance to this journal’s readership, the prediction tools most 116 

commonly employed by the ecology and evolution, non-model species community are 117 

those using data from only one species without information on evolutionary 118 

conservation, which exhibit false-positives rates approaching 50% or fail to identify true-119 

positives in well verified experiments (e.g. miRanda, RNAhybrid; (Agarwal et al. 2015; 120 

Pinzón et al. 2017; Fridrich et al. 2019; Krüger & Rehmsmeier 2006)).  121 

These observations thereby suggest that our community faces extensive 122 

challenges, not only when hypothesizing about the potential range of functional impacts 123 

of differentially expressed miRNAs, but when trying to conduct functional validation 124 

studies. Currently, it is common to see studies intersecting miRNA expression patterns 125 

with RNAseq results, scanning for inverse relationships. Unfortunately, finding 126 

meaningful negative correlations between miRNA and mRNA levels is likely to 127 

challenging, as the power of such correlations depends upon the number of time points 128 

in comparison and the accuracy of identified miRNA-mRNA interactions. Given that 129 

each miRNA can have hundreds of predicted targets, we fear that without a 130 

substantially large dataset of such comparison across tissues and timepoints, such 131 

efforts will always be beset by high false-positive rates. In sum, the aforementioned 132 

issues highlight the need for an external means of assessing the accuracy of miRNA 133 

target set prediction, especially one that could be used by the non-model species 134 

community.  135 

Here we present rational for an external means of assessing the accuracy of 136 

miRNA target set prediction. We take as our starting point that the regulatory network of 137 
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miRNAs is non-random, as miRNA targets are significantly higher than expected in 138 

genes having positive regulatory motifs and being highly-connected GRN components, 139 

such as transcription factors (Cui et al. 2006; Bracken et al. 2016). Co-expressed 140 

miRNAs, whether co-localized or not, have also been found to target specific genes and 141 

pathways (Lee et al. 2012; Xu & Wong 2008; Bracken et al. 2016). Additionally, 142 

individual miRNA gene families have been found to exhibit functional coherence in the 143 

genes they target (Tsang et al. 2010). Indeed, the functional coherence of mRNA 144 

targets is itself central to resolving the paradox between the small post-transcriptional 145 

effect of miRNAs upon individual genes and the larger phenotypic effects of miRNAs, as 146 

miRNA action upon multiple steps of a pathway is expected to culminate in larger 147 

phenotypic impacts (Bracken et al. 2016). However, currently little is known about the 148 

extent of such functional coherence across miRNA gene families as a whole. Specially, 149 

we can find no global scale analyses of the functional coherence of individual miRNA 150 

targets in species other than humans within a disease context (Bracken et al. 2016; 151 

Gusev 2008), highlighting the lack of a general understanding of how such coherence 152 

varies among taxa. Nevertheless, identifying a signature of functional coherence, 153 

beyond informing on the miRNA GRN and how it evolves, could provide a biologically 154 

informative metric for assessing de novo target predictions in novel taxa. 155 

Our work here began with trying to identify the miRNA targets in a novel species, 156 

the Green-veined White butterfly Pieris napi (Lepidoptera, Pieridae). Ultimately our goal 157 

was to identify the miRNAs involved in the different states of diapause progression, but 158 

in order to understand patterns of differentially expressed miRNAs, we needed to 159 

identify their potential targets in the transcriptome. We present a comparison of different 160 

miRNA prediction approaches, finding that only our approach incorporating evolutionary 161 

constraint, results in a detectable functional coherence among the targets per miRNA. 162 

In order to validate this finding, we present evidence using miRNA target predictions 163 

across model and non-model species that animals generally exhibit extensive functional 164 

coherence across miRNA gene families. Therefore, functional coherence provides a 165 

biologically informative metric for assessing de novo target predictions in novel taxa that 166 

could greatly facilitate ability of the ecology and evolutionary genomics community to 167 

Commented [PL1]: Sounds a bit defensive. Perhaps it 
could be written more neutrally? 
 
“finding that only an approach incorporating 
evolutionary constraint, …” 
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make logical connections between miRNA to relevant protein expression changes and 168 

their eventual phenotypic impacts. 169 

 170 

Methods 171 

Samples, processing, miRNA identification 172 

Data generation, from collection to sequencing through to miRNA gene and seed 173 

identification was performed previously (Roberts et al., in review). Although readers are 174 

directed to this other work for methodological details (Roberts et al., in review), here 175 

they are briefly presented for clarity. A total of 73 samples were taken throughout pupal 176 

progression (12 timepoints (0, 3, 6 days direct development; 0,3,6,24,114,144,155 days 177 

diapause development), for each of 2 tissues (head, abdomen), each with 3-4 biological 178 

replicates). After library construction using Illumina small RNA library kits they were 179 

sequenced using HiSeq 2500 50SR, generating an average of 6.9 M reads / library. The 180 

miRTrace pipeline was used to check data quality (v1.0.1; (Kang et al. 2018)), 181 

contamination and taxonomic bias, followed by filtering and adapter removal (Roberts et 182 

al., in review). Using miRDeep2 processing scripts (Friedlander et al. 2011), reads 183 

greater than 17bp were mapped against the chromosomal level assembly for P. napi 184 

genome GCA_905231885.1 (Lohse, Hayward, et al. 2021), with miRNAs detected using 185 

Bombyx mori and Heliconius melpomene as reference miRNA sets.  186 

 187 

Target identification 188 

miRNA targets were identified using two separate approaches, the first relying primarily 189 

upon evolutionary conservation and the second using data from a single species. Our 190 

first approach aligned genomes of 6 species of Pieridae using the software Progressive 191 

Cactus (Armstrong et al. 2020), each increasing evolutionary distance from our focal 192 

species P. napi, which was used as the reference (P. napi (GCA_905231885.1; (Lohse, 193 

Hayward, et al. 2021), P. rapae (GCA_905147795.1; (Lohse, Ebdon, et al. 2021)), P. 194 

brassicae (GCA_905147105.1; (Lohse, Mackintosh, et al. 2021)), P. macdunnoughii 195 

(Steward et al. 2021). The last two of these 6 genomes were high-quality draft 196 

assemblies, using MaSuRCA (Zimin et al. 2017) for genome assembly of Oxford 197 

Nanopore Sequencing data and and Illumina short read data for P. melete 198 
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(PRJEB59056, 376 contigs, 320 Mbp, N50 2.6 Mbp, BUSCO: CS:94.1%, CD:4.4%, 199 

F:0.3%, M:1.2% (BUSCO v. 5.5.0 (Manni et al. 2021), n:5286, lepidoptera_odb10), and 200 

using Flye ver. 2.7 (Kolmogorov et al. 2019) for Pontia daplidice (PRJEB59056, 142 201 

contigs, 223 Mbp, N50 3.6 Mbp, BUSCO: CS:97.7%, CD:0.5%, F:0.3%, M:1.4%, 202 

(n:5286, lepidoptera_odb10). The last common ancestor of these species was 203 

approximately 23 million years ago (Chazot et al. 2019). We next sought to identify 204 

3’UTR regions that were expressed in the relevant tissue and developmental stage of 205 

our miRNA data.  206 

Obtaining accurate 3’UTR annotations is challenging for several reasons. First, 207 

the 3’UTR per locus is highly variable, with > 65% of human and Drosophila loci 208 

producing alternative polyadenelated mRNAs across tissues and development (Derti et 209 

al. 2012; Ye et al. 2023; Sanfilippo et al. 2017). This gains relevance as the available 210 

genomic annotation of our focal species did not use RNAseq data from diapause 211 

relevant tissues for their annotation. Second, methods for predicting 3’UTR regions from 212 

DNA alone, or even with RNAseq data, perform with high variability across species and 213 

in general, poorly in non-model species (Ye et al. 2023; Bryce-Smith et al. 2023), and 214 

though some have tried to directly address this (Huang & Teeling 2017), obtaining 215 

meaningful UTR predictions is challenging in novel species. Thus, in order to efficiently 216 

move beyond data and bioinformatic limitations, here we deployed a simplified 217 

approach for exploring potential 3’UTR regions for our focal species.  218 

We assessed the 3’UTR annotation for the P. napi genome and found that it had 219 

overpredicted UTR regions (GCA_905231885.1; (Lohse, Hayward, et al. 2021), such 220 

that UTR regions routinely overlapped with flanking genes. In addition, at the time of our 221 

analyses, the annotation of GCA_905231885.1 available from the Darwin Tree of Life 222 

Program relied on an early annotation pipeline that was not optimized for Lepidoptera. 223 

Accordingly, we chose to rely upon a de novo genome annotation we previously 224 

generated (Steward et al., in review). This de novo annotation was produced using the 225 

BRAKER2 pipeline (v.2.1.5, (Brůna et al. 2020; Hoff et al. 2016; Ter-Hovhannisyan et 226 

al. 2008; Stanke et al. 2006, 2008; Lomsadze et al. 2005; Hoff et al. 2019), run in 227 

protein mode using Arthropoda OrthoDB (v.10) reference proteins. This annotation 228 

contained 123,638 exons, 16,449 genes and was found to contain 98.4% complete 229 
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BUSCOs for Lepidoptera_ODB10. Comparisons between this annotation and two 230 

accessed from the Darwin Tree of Life revealed the BRAKER2 annotation to be the 231 

most complete (i.e. fewest fragmented BUSCOs, a small proportion of single exon 232 

genes, and more total estimated transcripts (see Supplementary methods; Table S1, S2 233 

in Steward et al., in review).  234 

Among moths and flies, the majority of 3'UTR regions are expected to be within 1 235 

kb of the stop codon in the terminal coding exon, based upon detailed studies from 236 

several Drosophila species (Sanfilippo et al. 2017; Wang et al. 2019) and 3’UTR lengths 237 

for the an exemplar moth (Bombyx mori mean=923 bp, n=27,556) and butterfly 238 

(Heliconius melpomene mean=600, n=11,770) downloaded from UTRdatabase 239 

(Lo Giudice et al. 2023). While alternative UTRs in animals can involve spliced introns, 240 

the frequency in 3’UTR regions are lower than 5’UTR, and usually < 10% (Mignone et 241 

al. 2002). Based upon these expectations of 3’UTRs, we generated a bed file of likely 242 

3’UTR regions, extending 1kb beyond every stop codon (and containing 9 codons (27 243 

bp) prior to the terminal codon), of every protein isoform. We then assessed whether 244 

any of these candidate 3’UTR regions had a significant match via blastn when searched 245 

against the assembled transcriptome of an RNAseq dataset. The assembled 246 

transcriptome was generated using Trinity (Haas et al. 2013), default parameters, with 247 

RNAseq data comprising all of the same tissues and timepoints of our miRNA samples 248 

(Pruisscher et al. 2021). Alignments were filtered to only include candidate 3’UTR 249 

regions that had at least 70 bp of 3pUTR (filter settings: DNA identity > 90%, e-value < 250 

0.000001, bitscore > 300, alignment length > 100 bp; NCBI BLAST v. 2.2.28+; 251 

(Camacho et al. 2009). Coordinates for these post-filtered 3’UTR regions, which we 252 

expect to be expressed 3’UTRs, were then used to identify these regions in the P. napi 253 

genome, then whole genome alignment of all species, followed by the extraction of each 254 

expressed 3’UTR region, which were then used as the input for conserved miRNA 255 

target identification via targetscan_70.pl, part of TargetScan v.7 (Agarwal et al. 2018). 256 

Manipulation of GFF files used bedtools2 (Quinlan & Hall 2010), which was also used to 257 

assign nearest coding gene ID to each candidate 3’UTR region, while alignment filtering 258 

used maffilter, with default settings unless indicated (remove_duplicates=yes, 259 

reference=Pnapi, min_size=6), min_length=50, dist_max=1200; (Dutheil et al. 2014). 260 
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The other input file for targetscan_70.pl was the seed sequences for each of the 261 

identified miRNA genes, predicted from mirDeep2 (Roberts et al., in review).  262 

For each identified target region, the resulting output provides information on 263 

species depth and seed size, which can be used to filter for differing degrees of 264 

evolutionary conservation. Species depth indicates the number of species having the 265 

identical target sequence in the alignment, ranging from all of the species down to only 266 

2 species. Targets only found in 2 of the 6 species likely identify a region of lower 267 

evolutionary constraint compared to targets identical across all species. Seed size of 268 

the identified target can vary in size from an 8-mer down to a 6-mer, indicating the 269 

length of base pairs of the identified target. Targets shorter in length are more likely to 270 

occur by random chance compared to those of longer length. We use this information to 271 

explore the quality of targets in later analyses. 272 

Our second approach for miRNA target prediction used only two files as the input 273 

for miRAnda (Enright et al. 2003) and RNAhybrid (Krüger & Rehmsmeier 2006). These 274 

were the expressed 3’UTR coordinates for P. napi and seed sequences for P. napi, both 275 

of which were described above. Both programs were run on default settings. Thresholds 276 

for targets were set at e-value < 0.1 for miRanda, and p-value < 0.1 for RNAhybrid. 277 

 278 

 279 
Fig. 1. Flowchart of miRNA target detection in Pieris napi, using two methods that lead 280 

to gene set enrichment analyses (GSEA). Shown are the data files (blue), various 281 
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software programs (orange), and custom bioinformatic scripts (yellow) that were used. 282 

Generation of miRNA data through to miRNA seed input file is from previously 283 

published work (green enclosed portion of flow chart; Roberts et al., in review). Made 284 

using diagrams.net. 285 

 286 

 287 

Functional coherence via gene set enrichment analysis 288 

Target sets predicted per miRNA family were assessed for their functional coherence 289 

via gene set enrichment analysis (GSEA) using the r package topGO v2.46 (Alexa & 290 

Rahnenfuhrer 2023), with inputs of GO terms assigned to the coding regions of genes 291 

having identified 3’UTR targets. For each GSEA of a miRNA target set, we took the -292 

log10 P-values of the top ten most significant categories, and quantified their distribution 293 

as a function of the number of aligned species having identical seed sequences, and for 294 

different seed pairing lengths, from 6mer to 8mer.  295 

 296 

Comparative assessment of functional coherence 297 

In order to gain a robust assessment of miRNA functional coherence, with miRNA target 298 

sets independent of our work and for model species having higher quality target 299 

prediction, we repeated our analyses on the miRNA targets from 4 additional diverse 300 

animals. Three datasets were downloaded from TargetScan databases (Homo sapiens: 301 

TargetScanHuman release 8.0, Predicted_Targets_Info.default_predictions.txt 302 

(McGeary et al. 2019); Mus musculus: TargetScanMouse release 8.0, 303 

Predicted_Targets_Info.default_predictions.txt (McGeary et al. 2019); Drosophila 304 

melanogaster: TargetScanFly release 7.2, 305 

Predicted_Targets_Info.default_predictions.txt, (Agarwal et al. 2018)), while predicted 306 

cichlid targets for Oreochromis niloticus (Mehta et al. 2022), were provided by Dr. T. 307 

Mehta upon request. Note that for each TargetScan species dataset, in order to connect 308 

miRNA ID to coding gene ID to GO terms of the latter, for the relevant genome 309 

assembly, its GFF annotation was downloaded and protein sequences per ID extracted 310 

using gffread from cufflinks-2.2.1 (Trapnell et al. 2010), for which GO annotations were 311 

generated using functional annotation via orthology assignment, implemented in the 312 
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online server eggNOG using default settings (Huerta-Cepas et al. 2019), which was 313 

then joined to the miRNA table downloaded from the relevant TargetScan database. An 314 

estimate of the evolutionary depth over which 3’UTR alignments were made in order to 315 

assess evolutionary constrain was estimated from. Ages for each clades of data upon 316 

which miRNA targets were based, i.e. the age of the relevant crown groups (the 317 

paraphyletic Drosophila genus at 53 MYA (Suvorov et al. 2022); the dataset for H. 318 

sapiens involved using 84 of 100 species of the UCSC multiz alignment (Agarwal et al. 319 

2015), including all species sister to, Latimeria chalumnae, as well as this coelacanth, 320 

with their crown age estimated at roughly 400 MYA (Amemiya et al. 2013); the dataset 321 

for M. musculus only included 52 species of the 60-way multiz alignment of UCSC, and 322 

has a similar crown age as H. sapiens; the dataset for target O. niloticus has a crown 323 

age estimated at 10 MYA (Mehta et al. 2022). 324 

 325 

Results and Discussion 326 

An extensive miRNA sequencing effort has recently identified 257 miRNAs expressed 327 

during pupal development of P. napi (236 expressed in head tissue, 207 in the 328 

abdomen; Roberts et al., in review). Here we use this data to predict mRNA targets of 329 

these miRNAs in P. napi. We began by identifying which mRNAs, among all candidate 330 

3’UTR regions in the genome of P. napi, were expressed in a tissue matched RNAseq 331 

transcriptome assembly. We then identified these 3’UTR regions if mRNA in a 332 

multispecies, whole-genome alignment (n=6 species of Pieridae, Lepidoptera) that span 333 

nearly 23 million years of divergence (Chazot et al. 2019). The resulting 3’UTR 334 

alignment, together with the seed sequences from the identified miRNA genes of P. 335 

napi, were then used as input for TargetScan v.7, which uses evolutionary conservation 336 

in 3’UTRs to predict miRNA targets (Agarwal et al. 2018).  337 

Next, we sought an independent means of quantifying whether these predicted 338 

target sets per miRNA gene had more biological meaning than random sets, as 339 

critiques of target prediction methods suggest that target sets generate from tools such 340 

as miRAanda and RNAhybrid may be dominated by false positives (Fridrich et al. 2019; 341 

Pinzón et al. 2017; Krüger & Rehmsmeier 2006). We reasoned that since a general 342 

feature of gene regulatory networks (GRN) is their extensive functional coherence of 343 
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regulated genes, as most transcription factors regulate related modules of genes (Stuart 344 

et al. 2003; Wolfe et al. 2005), the same is likely true for the targets of miRNA (see 345 

Methods for additional discussion). Functional coherence was quantified using gene set 346 

enrichment analysis (GSEA) upon the predicted set of gene targets for each miRNA, 347 

using the average significance of the top ten most enriched GO categories as the 348 

representative metric. 349 

 In order to assess whether there was any functional coherence in our predicted 350 

targets, we quantified GSEA of the miRNA target sets using variable levels of 351 

evolutionary constraint. TargetScan output provides two axes upon which to vary 352 

evolutionary constraint in miRNA target prediction. First, we used differing thresholds of 353 

constraint upon the species alignment of the 3’UTR, by varying the number of species 354 

for which the seed site was required to be identical. Our lowest evolutionary constraint 355 

level required only 2 species to have identical sequences in the alignment for the 356 

miRNA seed site (the lowest threshold we could set), while our most stringent required 357 

all 6 species to have the same identical sequence for the seed site. Second, there are 5 358 

different sizes of target sites for the seed match region of the 3’UTR, ranging from 6 bp 359 

(6mer) to 8 bp (8mer) in length. Requiring target sites to be longer in length is a more 360 

stringent requirement. In combination, our most relaxed setting was 6mer for only 2 361 

species in the alignment, while our most constrained was 8mer for all species. In order 362 

to assess the relative tradeoff across these axes of constraint in the prediction of 363 

miRNA targets, we explored our results extensively (fig. 2 A,B). As the stringency 364 

increases, via increasing the number of species having target seed or increasing the 365 

size of the seed match category, the predicted number of targets per miRNA gene 366 

decreases, suggesting there is a biological signal in our target prediction method. While 367 

these results are highly variable across miRNA genes (fig. 2C), we concluded that a 368 

good balance between over-prediction and power was using a 7mer seed match size 369 

and higher (termed 7mer-inclusive, which includes all targets from 7mer variants and 370 

8mer) that is present and conserved across all of the aligned species.  371 

 372 
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 373 
Fig. 2. Assessment of GSEA results across predicted targets per miRNA gene. (A) 374 

Significance of the top 10 GO terms per target set per miRNA gene (each dot is one 375 

term) shown as a boxplot of all results, as a function of the number of species for which 376 

seed was identical, for each of 5 different sizes of site type of the seed match (color 377 

scale purple to yellow). As the stringency of predicted targets increases from being 378 

found only in 2 species to all 6 species, the significance values increase for the smaller 379 

seed match sizes (e.g. 6mers increase while 8mers do not). (B) Number of targets per 380 

miRNA gene (each dot is count for a miRNA gene), across different prediction 381 

thresholds of species number and miRNA seed match size (as in A). As the stringency 382 

increases, via increasing the number of species having target seed or increasing the 383 

size of the seed match category (color scale purple to yellow), the predicted number of 384 

targets per miRNA gene decreases (6mer in 2 species is largest set, 8mer in 6 species 385 

is the smallest). (C) Shown are GSEA results for two miRNA genes (left is Bantam, right 386 
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is Let-7), displaying effects of stringency increase on significance of the top 10 GO 387 

terms per target set per miRNA gene. These exemplify the range of variation between 388 

miRNA genes in their GSEA results, with Bantam exhibiting a strong increase in GSEA 389 

P-value as evolutionary constraint is maximized (8mer-1a panel) and Let-7 lacking this 390 

trend. 391 

  392 

 393 

For comparison, we also used single species target prediction methods. Using 394 

the 3’UTR regions of P. napi and seed sequences of miRNA genes as input, we used 395 

the most commonly employed target prediction tool by the ecological and evolutionary 396 

genomics community, miRanda (Enright et al. 2003). We additionally employed a 397 

second single species tool with the same input data, RNAhybrid (Krüger & Rehmsmeier 398 

2006). In order to compare the predicted targets across these tools, we quantified their 399 

relative functional coherence via GSEA using the 7mer-inclusive conservation threshold 400 

(described above). As a control, a GSEA was conducted on random sets of gene 401 

targets conditional on the set size of the observed miRNA targets, which we used as our 402 

background expectation of significance given concerns about GSEA significance 403 

thresholds when working with miRNA targets (Bleazard et al. 2015). 404 

The predicted targets of each miRNA from both methods exhibited significant 405 

GSEA results, with average P-values for miRanda of 0.0185 and 0.0420 for RNAhybrid 406 

(fig. 3a). However, GSEA results on sets of randomly drawn genes had P-value 407 

distributions that entirely overlapped with the gene set targets predicted by these 408 

methods (fig. 3a). Thus, GSEA P-value for targets from miRAnda, RNAhybrid, and 409 

random draws were lower than nominal P-value significance thresholds (i.e., alpha = 410 

0.05), highlighting two issues. First, these results exemplify previously noted challenges 411 

of GSEA when investigating miRNA targets (Bleazard et al. 2015), in that resulting P-412 

values are poorly controlling for diverse many to many relationships, as GSEA were not 413 

designed for such relationships. Second, neither miRAnda nor RNAhybrid predicted 414 

targets that performed better than random. 415 

In stark contrast to the previous results, miRNA targets predicted using 416 

evolutionary conservation via TargetScan exhibited extensive functional coherence (fig. 417 
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3a), with GSEA P-values much higher than random draws. This result suggests two 418 

mutually exclusive explanations. Either P. napi has miRNA targets that lack functional 419 

coherence, which could explain the miRanda and RNAhybrid results and therefore 420 

justify continued use of such tools by the non-model species community, or the miRNAs 421 

of this butterfly exhibit functional coherence and only biologically meaningful target sets 422 

can reveal this pattern. When facing variable results among target prediction methods, 423 

studies in the non-model species community commonly intersect results from various 424 

target prediction methods, despite this being explicitly discouraged by experts in the 425 

miRNA field (Fridrich et al. 2019; Ritchie et al. 2009). To quantify the performance of 426 

such an intersection approach, here we assess the overlap of targets from miRAnda 427 

and RNAhybrid with respect to target predictions from TargetScan. We find no 428 

substantial overlap across these three methods. Further, the level of overlap among 429 

methods does not covary with the degree of functional coherence observed in our 430 

TargetScan results (fig. 3b).   431 

 432 
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  433 

 434 
Fig. 3. The functional coherence of miRNA targets across animals measured using 435 

gene set enrichment analysis (GSEA). (A) Comparison of the functional coherence of 436 

miRNA target predictions and their relationships, predicted in the butterfly Pieris napi. 437 

Gene set enrichment analysis P-values for top 10 GO terms for each miRNA (Y-axis) for 438 

targets predicted using Targetscan (top panel), miRanda (middle panel), RNAhybird 439 

(lower panel). Left-hand panels summarize median P-values for random (light grey) and 440 

predicted (black) miRNA target sets, while right-hand panels show results each miRNA 441 

target set. (B) Intersection of predicted targets from all three methods in relation to 442 

TargetScan results, shown as a proportion. Order of miRNAs along X axis are by mean 443 

P-value based upon Targetscan GSEA results. 444 

 445 

 446 

In order to discriminate between the two aforementioned explanations, we next 447 

quantified functional coherence using four published miRNA target sets. Across diverse 448 

0

5

10

15

0

5

10

15

0

5

10

15

All sets

TargetScan (TS)

miRanda

RNAhybrid

Ranked miRNA target set

−
lo

g 1
0 

P−
va

lu
e

A

0.00

0.25

0.50

0.75

1.00

Ranked miRNA target set

Pr
op

. T
S 

ta
rg

et
s

All miRanda + TS RNAHybrid + TS TS only

B



 17 

metazoans, from arthropods to vertebrates, we found extensive functional coherence 449 

across many miRNAs (fig. 4). In each species, a large faction of predicted miRNAs 450 

exhibited a significantly greater functional coherence than background. Importantly, all 451 

of these previously published target sets were generated using the TargetScan 452 

framework, using phylogenetic conservatism of miRNA binding sites as a core 453 

identification criteria (Friedman et al. 2009; Agarwal et al. 2015). Common to all species 454 

is a substantial variation among miRNA gene sets in their functional coherence (the left 455 

vs right side of the P-value ranked distribution of miRNA genes). Whether this variation 456 

arises due to unequal coherence across miRNAs, variation in the functional annotation 457 

of relevant targets, poorly annotated 3’UTRs, or other factors warrants attention. 458 

However, the extensive functional coherence seen across nearly all miRNA genes in H. 459 

sapiens suggests such variation likely arises due to factors other than unequal 460 

coherence among the target sets of miRNA genes. Among these diverse metazoans, 461 

the lower functional coherence observed in these cichlids likely arises due to the young 462 

age of the clade analyzed (~ 10 million years), as this necessarily results in a lower 463 

power via phylogenetic conservatism. Highlighting the need and challenges of 464 

bioinformatic target assessment in young clades, this clade of cichlids is an exemplar of 465 

adaptive radiations, having generated > 2000 species in the 10 million years, making 466 

observations of their massive reorganization of the miRNA GRN incredibly intriguing for 467 

evolutionary study (Mehta et al. 2022). 468 

 469 

 470 
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  471 
 472 

Fig. 4. Functional coherence of miRNA targets across animals measured using gene set 473 

enrichment analysis (GSEA). Left-hand boxplots summarize median P-values for 474 

random and predicted miRNA target sets, while right-hand boxplots show P-values for 475 

the top 10 enriched GO terms per per miRNA gene, ordered by median GSEA P-value 476 

within each species. Results from predicted targets are colored while results from 477 

randomly selected genes are shown in gray. Inset horizontal bars indicate crown age 478 

(million years) of the species used to generate miRNA target predictions. Results from 479 

P. napi (fig. 3a) are presented here, allowing for direct comparison with four divergent 480 

taxa whose published datasets were generated using TargetScan.  481 
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Conclusions 484 

Functional coherence in the targets of miRNA genes appears to be common in 485 

the tree of life. Using this observation, together with an in-depth study of miRNA targets 486 

in a non-model species, our finding of no biological signal among the miRNA targets 487 

produced by miRanda and RNAhybrid predictions is consistent with previous findings 488 

and warnings of their low precision (Fridrich et al. 2019; Agarwal et al. 2015, 2018; 489 

Pinzón et al. 2017; Ritchie et al. 2009). We conclude that a substantial body of research 490 

may benefit from revising hypotheses based upon miRNA expression patterns, when 491 

those hypotheses relied upon miRNA target prediction lacking measures of evolutionary 492 

conservation. 493 

Much remains to be discovered about the role the miRNAs play in adaptive 494 

evolution and there has never better time for investigating the role of miRNA 495 

posttranslational repression in novel species. An ever-increasing diversity of high-quality 496 

genomes provides an unprecedented opportunity for exploiting evolutionary 497 

conservation via recent advances in miRNA target prediction (Agarwal et al. 2018). We 498 

note however that target predictions are merely another set of hypotheses. Since most 499 

miRNAseq studies are also coupled with RNAseq, we further note that correlations 500 

between increased miRNA expression and decreases in putative mRNA target 501 

expression are also hypotheses fraught with a potential for high false-positives, given 502 

the diverse patterns of expression in such datasets coupled with generally few sets of 503 

diverse sampling points. Finally, while identified miRNA function in model species can 504 

certainly aid hypothesis formulation of miRNA impacts, such relies upon increasingly 505 

tenuous assumptions of evolutionarily conserved function (Rusin 2023).  506 

 Perhaps the most important way forward for the non-model species community 507 

seeking to connect miRNA expression changes with adaptive phenotypes will be via 508 

harnessing of emerging gene manipulation technologies in the testing of functional 509 

hypotheses (Gudmunds et al. 2022). While the diverse many-to-many relationships 510 

inherent in the miRNA GRN necessitate careful design and interpretation of such 511 

experiments (Bartel 2018), these also offer unique opportunities. For example, consider 512 

a scenario where many independent miRNA genes target the same seed sequence 513 

within mRNA. While KO of all such miRNA genes could be lethal, knock out of one, 514 
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several, or many genes within such a gene family could effectively titrate phenotypic 515 

effects. Additionally, advances in single cell sequencing of RNA could greatly advance 516 

insights (Sekar et al. 2023), especially in the assessment of miRNA interactions with 517 

mRNA GRNs across diverse tissues and developmental courses. 518 

In conclusion, numerous studies across diverse taxa document differential 519 

expression of miRNAs suggestive of a potentially important role in adaptive evolutionary 520 

phenotypes. However, much work remains to be conducted in order to establish such 521 

genotype to phenotype connections. Here, by drawing attention to the challenges of de 522 

novo miRNA target prediction, we hope that more biologically meaningful hypotheses 523 

will emerge that can then be tested by modification of miRNA genes or their target sites, 524 

much as mRNA based hypotheses are now routinely explored via CRE and coding 525 

region manipulations (Gudmunds et al. 2022).   526 
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