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ABSTRACT 36 

1. While there has been substantial literature on the evaluation of predictions from single 37 

species distribution models, the topic of prediction has only recently begun to be 38 

addressed for joint species distribution models (JSDMs). These studies have covered 39 

only limited aspects of prediction: limited selection of models being compared, limited 40 

number of evaluation metrics, and/or not comparing the different prediction types 41 

available to JSDMs.  42 

2. In this study, we perform a large-scale comparison of the predictive performance of 43 

eight model types: two stacked species distribution models (SSDMs) and six JSDMs. 44 

We fit these models to 22 real and simulated datasets, make four types of JSDM 45 

predictions, and evaluate up to 32 metrics from five different classes that quantify 46 

different aspects of performance of predictions about species distributions and the 47 

community assemblage process.  48 

3. We found that likelihood-based metrics indicated the JSDMs were better fit to the data 49 

than the standard SSDM, but most other metric classes showed the SSDM 50 

outperforming the JSDMs by generally small amounts. The spatial and non-spatial 51 

implementations of the hierarchical multivariate probit regression model with latent 52 

factors typically performed better than the other JSDMs, but overall still performed 53 

worse than the SSDM. The SSDM predictions constrained with the spatially-explicit 54 

species assemblage modelling framework (SESAM) consistently outperformed both 55 

the standard SSDM and all JSDMs for both species- and community-level metrics.  56 

4. Our results indicate that despite the additional inference they provide about the 57 

community assemblage process by accounting for the residual association between 58 

species, JSDMs generally yield worse predictions than stacked single species models 59 

when evaluated at either the species or community level. The performance of the 60 
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SESAM framework suggests that exploring similar approaches to constrain JSDM 61 

predictions is an interesting future avenue of research. 62 

Keywords: biotic interactions, community assemblage, evaluation metrics, joint species 63 

distribution models, prediction, species richness 64 
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1. INTRODUCTION 65 

Species distributions are influenced by the response of a species to both the abiotic and biotic 66 

conditions it encounters, but the development of species distribution models (SDMs) has 67 

historically not accounted for the (biotic) effect of species interactions, largely focusing on 68 

single-species approaches. Over the past decade, joint species distribution models (JSDMs) 69 

have seen rapid development for modelling multiple species simultaneously while accounting 70 

for both environmental responses and residual species associations (Kissling et al., 2012; 71 

Warton et al., 2015; Wilkinson et al., 2019; Wisz et al., 2013). Research on JSDMs initially 72 

focused on the development of different statistical modelling approaches (Clark et al., 2017; 73 

Golding & Purse, 2016; Harris, 2015; Hui, 2016; Ovaskainen, Roy, et al., 2016; Pollock et al., 74 

2014), then extended the framework to account for additional factors such as the effect of 75 

spatial scale or environmental gradients on species associations (Ovaskainen, Abrego, et al., 76 

2016; Thorson et al., 2016; Tikhonov et al., 2017). Only recently has the question of prediction 77 

using JSDMs begun to be explored in any detail (Norberg et al., 2019; Wilkinson et al., 2021; 78 

Zhang et al., 2018; Zurell et al., 2019). 79 

A model’s ability to accurately predict species distributions or communities needs to be 80 

evaluated to be confident that the model performs well in practice. While there is substantial 81 

literature on the evaluation of single species SDMs (Fielding & Bell, 1997; Lawson et al., 2014; 82 

Liu et al., 2009), there is little research into the evaluation of the multi-species predictions of 83 

JSDMs. Whilst single species model evaluation metrics can also be applied to the predictions 84 

of multi-species models, the multivariate nature of JSDMs also invites the evaluation of 85 

predictions using the community dissimilarity indices widely used in community ecology 86 

(Legendre & De Cáceres, 2013).  87 
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The community assemblage process can be viewed as the result of two processes: (1) an abiotic 88 

filter where species-environment relationships influence which species can occur in a given 89 

environment, and (2) a biotic filter where between-species relationships influence which 90 

species are more or less likely to co-occur (Cornell & Harrison, 2014; Götzenberger et al., 91 

2012). Some accounting of species interactions inside the single-species framework is possible, 92 

by using additional species as predictor variables (Araújo & Luoto, 2007; Meier et al., 2010; 93 

Zhang et al., 2020) or constraining predicted distributions to that of another species it depends 94 

on (Schweiger et al., 2012), but this only reflects unidirectional interactions where the direction 95 

of the relationship is already known (Kissling et al., 2012; Pollock et al., 2014; Wisz et al., 96 

2013).  97 

Stacked species distribution models (SSDMs) represent community assemblages by stacking 98 

the predictions of multiple independent single-species models (Guisan & Rahbek, 2011; 99 

Thuiller et al., 2015). In contrast, joint species distribution models can capture both the biotic 100 

and the abiotic factors impacting species and thus link distribution modelling and community 101 

ecology. Wilkinson et al. (2021) detailed the different ways that JSDMs can make predictions: 102 

environment-only marginal predictions at the species-level, joint predictions at the community-103 

level predictions that leverage the additional information on residual species occurrence, and 104 

conditioning both marginal or joint on the known occurrence state of some species at a site.  105 

JSDMs have been presented as a modelling approach with the potential to make better 106 

predictions, particularly at the community level, than methods that do not account for the 107 

residual correlations between species. However, the use of JSDMs for prediction has only 108 

begun to be addressed in the literature (Gelfand & Shirota, 2021; Norberg et al., 2019; 109 

Ovaskainen, Roy, et al., 2016; Poggiato et al., 2021; Wilkinson et al., 2021; Zhang et al., 2018; 110 

Zurell et al., 2019). These studies have been limited in what aspects of JSDM predictive 111 

performance they have considered. Only Norberg et al. (2019) considered prediction types that 112 
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account for the residual correlations between species in practice, while conditional prediction 113 

types have only been theoretically discussed (Gelfand & Shirota, 2021; Poggiato et al., 2021). 114 

Only Norberg et al. (2019) has compared multiple JSDM implementations, and they all have 115 

compared predictive performance for only a select few evaluation metrics. In this study we 116 

compare the predictive performance of six JSDMs and two SSDMs when fit to two real and 20 117 

simulated datasets. We use 32 metrics over five metric classes to evaluate SSDM predictions 118 

against the four different prediction types available to JSDMs. 119 

 120 

2. MATERIALS AND METHODS 121 

2.1.MODELS 122 

The two SSDM models are generalised linear models with a probit link, fit individually to each 123 

species but differ in their approach to stacking predictions. The first is a standard stacked 124 

approach (SSDM) where individual species predictions are summed together to obtain species 125 

richness predictions. The second approach is spatially explicit species assemblage modelling 126 

(SESAM; Guisan & Rahbek, 2011)  that selects species as present at a site up to a calculated 127 

maximum limit (e.g. from a macroecological model). 128 

All six JSDMs are based on the multivariate probit regression model of Chib and Greenberg 129 

(1998). The first is the standard multivariate probit regression model (MPR) implemented in 130 

the R package BayesComm (Golding et al., 2015). Second, the hierarchical multivariate probit 131 

regression model (HPR) of Pollock et al (2014). Third, the multivariate probit regression with 132 

latent factors (LPR) implemented in the R package boral (Hui, 2016). Fourth, the multivariate 133 

generalised regression model (DPR) implemented in the R package gjam (Clark et al., 2017). 134 

The fifth and sixth models are the spatial (HLR-S) and non-spatial (HLR-NS) implementations 135 
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of the hierarchical multivariate probit regression model with latent factors implemented in the 136 

R package HMSC (Ovaskainen, Roy, et al., 2016). All of these models are implemented using 137 

a Bayesian framework and fit using Markov chain Monte Carlo (MCMC) sampling, using their 138 

default or suggested settings as defined in their source articles or the documentation of the 139 

software implementing them. Model equations, default priors, and MCMC regimes are defined 140 

in greater detail in Wilkinson et al (2019) and in Appendix S1.  141 

2.2. PREDICTION METHODS 142 

Single-species models generate environment-only predictions that ignore species associations. 143 

For SSDMs, a prediction is obtained independently for each species using the estimated 144 

regression coefficients and the corresponding measured variables. This provides a predicted 145 

probability of presence for each species at each site. Binary predictions can be generated by 146 

taking draws from a Bernoulli distribution, using the predicted probabilities. The SESAM only 147 

provides binary predictions and constrains them to a site-specific species richness upper limit 148 

using an estimated species richness, either from a macroecological model or alternatively, as 149 

we have done here, using the probability rank rule (selecting species in decreasing order of 150 

probability, considering as present as many as the total sum of probabilities rounded down). 151 

JSDMs, in contrast, provide additional information on residual correlations between species 152 

occurrence in their model outputs which can inform predictions. Marginal JSDM predictions 153 

are species-level, environment-only predictions where the information about species co-154 

occurrence is ignored. Predictions are again probabilistic (a probability for each species at each 155 

site), and binary predictions can be generated by drawing Bernoulli samples, as for the standard 156 

SSDM. To quantify prediction uncertainty in binary predictions, Bernoulli samples can be 157 

drawn for each species, site, and sample of predicted probability from the model posterior in a 158 

Bayesian model fitting framework. 159 
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Joint predictions are obtained from the estimated joint probability distribution (a multivariate 160 

normal distribution) over plausible community assemblages. This probability distribution 161 

defines the probability of occurrence of an observed or hypothesised assemblage, or can be 162 

used to simulate binary community assemblage predictions. Averaging the presence-absence 163 

of individual species across simulated community assemblages approximates the marginal 164 

distribution. 165 

Conditional predictions include the additional information of known occurrence states for one 166 

or more species in the community. The known occurrence state of a species truncates the 167 

multivariate normal distribution on one axis. As the total probability must sum to one, this 168 

affects the probability of the remaining possible community assemblages. 169 

Conditional marginal predictions are similar to the conditional predictions in that they truncate 170 

the multivariate normal distribution based on the occurrence state of one or more species. But 171 

rather than representing the joint distribution of the remaining species, the distribution over the 172 

remaining species is marginalised, to yield a single probability of presence for each species. 173 

Thus, these are predictions conditional on one or more species but marginal to the remainder. 174 

An in-depth explanation of these prediction methods can be found in Wilkinson et al. 175 

(Wilkinson et al., 2021) or Appendix S2. 176 

2.3. DATASETS 177 

For this comparison we have used two real datasets, on frogs and eucalypts, and twenty 178 

simulated presence-absence datasets. The frog dataset comprises 9 species, 104 sites, and 3 179 

covariates from Melbourne, Australia (Parris, 2006). The eucalypt dataset comprises 12 180 

species, 458 sites, and 7 covariates from Grampians National Park, Australia (Pollock et al., 181 

2014). The simulated datasets all have 10 species, 100 sites, and 5 covariates (3 continuous, 2 182 
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binary), with the species correlation matrix generated using three latent factors. Species 183 

presence absence data was generated using the HMSC::communitySimul function (Blanchet et 184 

al., 2019).  185 

For all datasets, the continuous variables were standardised. For evaluation, we implemented 186 

two different cross-validation approaches depending on the dataset. For the eucalypts and half 187 

of the simulated datasets, we used five-fold spatial block cross-validation using the 188 

blockCV::spatialBlock function (Valavi et al., 2019). For the frog and half of the simulated 189 

datasets, we implemented five-fold random cross-validation, using the caret::createFolds 190 

function (Kuhn et al., 2019), as the spatial scale of the frog dataset was too small for practical 191 

implementation of spatial block cross-validation.  192 

2.4. EVALUATION METRICS 193 

The metrics available for evaluating JSDM predictions can be broadly classified into five 194 

groups based on the aspects of performance they consider. Threshold-independent metrics 195 

evaluate continuous predicted probabilities against observed presence-absence data. A 196 

common example in SDMs is the Area Under the Receiver Operating Characteristic Curve 197 

(AUC), but also includes root mean square error (RMSE), and the coefficient of determination 198 

(𝑅2). 199 

Threshold-dependent metrics compare binary predictions against observed presence-absence 200 

data. Predicted probabilities are converted to presences if they exceed a set threshold value or 201 

absences if they do not. A confusion matrix that contrasts observed and predicted species 202 

occurrence states can then be built. Example metrics here include precision, sensitivity, and 203 

true/false positive/negative rates. However, thresholding predictions is a contentious topic in 204 

the SDM literature (Freeman & Moisen, 2008; Guillera‐Arroita et al., 2015; Lawson et al., 205 



11 

 

2014; Liu et al., 2005). In addition to debates about the use of thresholds in general, there are 206 

also debates about how to determine the threshold value. Thresholds are commonly set to an 207 

arbitrary value of 0.5 (Freeman & Moisen, 2008), but an alternative is to make the threshold 208 

equivalent to the observed prevalence of the species(Hanberry & He, 2013). A logical 209 

extension of this debate for JSDMs is species-specific or community-wide thresholds. 210 

However, Lawson et al (2014) showed that we can evaluate threshold-dependent metrics 211 

without thresholding predictions by calculating a probabilistic confusion matrix. We have used 212 

this approach here to avoid any influence of threshold choice impacting our analysis. 213 

As JSDMs are multi-species in nature we can use additional evaluation metrics from 214 

community ecology in the form of community dissimilarity indices. These metrics compare 215 

how dissimilar our observed and predicted species assemblages are. Common examples are 216 

Bray-Curtis dissimilarity and Jaccard distance. These metrics are restricted to evaluating binary 217 

predictions. To evaluate these metrics on probabilistic predictions, we simulated binary 218 

community assemblages from the appropriate probability distribution. For JSDMs, a 219 

community assemblage was drawn per posterior sample; for SSDMs, the same number of 220 

community assemblages were simulated. 221 

Species richness metrics consider a model’s ability to predict a single aspect of community 222 

composition: the number of species present at a site. We consider species richness difference - 223 

the predicted richness minus the observed richness. 224 

Likelihood-based metrics assess model fit by computing the probability of observing a given 225 

community assemblage, assuming a particular model structure, and given the set of model 226 

parameter estimates representing the prediction. It is common to work with the log of the 227 

likelihood for numerical stability reasons. The independent log-likelihood represents the 228 

typical log-likelihood metric used in SSDMs. This metric independently assesses each species 229 
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across all sites– computing the probability of observing a species’ presence/absence 230 

observations– and combines them into a single metric, assuming the species’ distributions to 231 

be independent. The joint log-likelihood simultaneously assesses all species, as an assemblage, 232 

at each site and accounts for the correlation structure encoded in the core JSDM formulation – 233 

the multivariate probit model. 234 

More detail on the metrics including how they are calculated, which prediction types they are 235 

appropriate for, and how to interpret them can be found in Appendix S3. 236 

2.5. MODEL PREDICTION COMPARISONS 237 

For the standard SSDM, we obtained binary and probabilistic predictions of community 238 

assemblages, and for SESAM only binary predictions. For the JSDMs, we evaluated nine 239 

prediction types: binary and probabilistic marginal predictions, binary joint predictions, binary 240 

conditional predictions for low-, middle-, and high-prevalence known species scenarios, and 241 

probabilistic conditional marginal predictions for low-, middle-, and high-prevalence known 242 

species scenarios. For real datasets, the low-prevalence species were randomly selected from 243 

those within the bottom 20% of prevalence, medium-prevalence species the middle 30%, and 244 

high-prevalence the top 20%. For simulated datasets, this was the species with lowest, median, 245 

and highest prevalence. We evaluated a suite of 32 evaluation metrics in total, but some applied 246 

only to binary or probabilistic prediction types. 247 

2.6. ANALYSIS OF RESULTS 248 

We used linear mixed effects models (MEMs) to analyse the predictive performance of the 249 

eight models for the nine prediction methods. We fit an MEM to each combination of 250 

evaluation metric and prediction type, to assess the relationship between the response variable 251 

(the evaluation statistic) and three explanatory variables (model, dataset, and cross-validation 252 
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fold), with a random effect on the intercept of either species or site (depending on the test 253 

statistic’s calculation method). The performance results for any given model are relative to the 254 

standard SSDM approach, which is set as the reference class. A partial interaction between 255 

model and dataset was included for the HPR and DPR models to account for observed patterns 256 

in the residuals. The MEMs explicitly considered different residual variances for the eight 257 

model types to account for evident inhomogeneity of variance. We assessed whether the model 258 

residuals met the model assumptions of being normally-distributed with homogenous variance 259 

(after accounting for inhomogeneity between model types) with a Kolmogorov-Smirnov test 260 

(Massey Jr, 1951), hereafter referred to as a KS-test. The KS-test determines if the distribution 261 

of the residuals is significantly different from a normal distribution with the same mean and 262 

standard deviation. As we performed a large number of comparisons, we used a Bonferroni-263 

corrected p-value, 
0.05

405
= 1.2 ∗ 10−4 to consider whether normality assumptions were violated; 264 

to reduce the sensitivity of these tests (Dunn, 1961).  265 

2.7. SOFTWARE 266 

All models were fit using R v3.5.2 (R Core Team, 2018). R packages for model fitting include 267 

BayesComm v0.1-2 (Golding & Harris, 2015), boral v1.7 (Hui, 2018), gjam v2.2.5 (Clark & 268 

Taylor-Rodríguez, 2018), and HMSC v2.2-0 (Blanchet et al., 2019). R packages required for 269 

prediction and prediction evaluation are mvtnorm v1.0-10 (Genz et al., 2019), tmvtnorm v1.4-270 

10 (Wilhelm & B G, 2015), TruncatedNormal v1.0 (Zdravko, 2015), Metrics v0.1.4 (Hamner 271 

& Frasco, 2018), caret 6.0-84 (Kuhn et al., 2019), vegan v2.5-5 (Oksanan et al., 2018), and 272 

psych v1.8.12 (Revelle, 2018). Analyses were run on The University of Melbourne’s Spartan 273 

HPC infrastructure (Meade et al., 2017).  274 

3.  RESULTS 275 
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No model outperformed the others across all prediction types, but there were consistent trends 276 

within each class of validation metrics. The relative performance of the models compared to 277 

the standard SSDM ((metricmodel – metricSSDM) / |metricSSDM| * 100)  are summarised in Figure 278 

1 for marginal predictions and Figure 3 for joint predictions. Likelihood-based metrics showed 279 

that the JSDMs were better fit to the data than the SSDM. Both threshold-dependent and 280 

threshold-independent metrics indicated better performance by the SSDM, although the 281 

difference was small for the majority of metrics. The SSDM generally outperformed JSDMs 282 

for community dissimilarity metrics, with a greater difference for joint prediction types than 283 

marginal ones. The JSDMs almost always overpredicted species richness compared to the 284 

SSDM for marginal predictions, but HLR-S and HLR-NS had more accurate estimates than the 285 

SSDM for most joint prediction types. The SESAM model outperformed both the SSDM and 286 

JSDMs for threshold-dependent and community dissimilarity metrics for binary prediction 287 

types (Figure 3). 288 

Only a selection of figures is presented in the main article. Forest plots for the absolute value 289 

of model performance for each evaluation metric are presented in Appendix S4. Individual 290 

heatmaps for the different prediction types are presented in Appendix 5. 291 

As the JSDM underperformance results are unexpected we performed checks to ensure the 292 

MEMs were not returning erroneous results. We found no evidence to suggest our results are 293 

an artefact of the model fitting process. We present the result of these checks in Appendix 6. 294 

3.1. PROBABILISTIC PREDICTIONS 295 

3.1.1. SINGLE SPECIES METRICS 296 

The SSDM outperformed all JSDMs in marginal predictions for almost every threshold-297 

independent metric (Figure 1). The only exception to this was the bias metric for DPR in low-298 
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prevalence conditional marginal predictions. The relative performance of the JSDMs for the 299 

bias metric suggests very poor performance of the JSDMs, but on an absolute scale these 300 

differences are actually quite small. As the optimum bias value is 0, good performing models 301 

may show high relative differences in this metric when they actually have little absolute 302 

difference (Figure 2). Across all probabilistic predictions, the SSDM had a mean bias of -303 

2.7*10-4, while the JSDMs average -1.6*10-3, i.e. all models were largely unbiased. For all 304 

other metrics, the average relative JSDM performance across all marginal prediction types was 305 

-6.3% [-20.7, -0.3]. HPR was the worst performer for the error-based metrics with a mean 306 

relative difference of -18.3% [-61.8, -2.2]. For low- and medium-prevalence scenarios of 307 

conditional marginal predictions, there was a large relative difference between SSDM and the 308 

JSDMs in sum of squared errors (-26.9% [-62.0, -13.0]). The mean difference over all marginal 309 

prediction types for AUC between the SSDM and the worst performing JSDM is only 0.01. 310 
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 311 

 312 

Figure 1: Heat maps showing the relative performance of the different JSDMs compared to the SSDM 313 

for all metrics applicable to probabilistic marginal predictions (see Appendix S4 for binary marginal 314 

predictions). Each ring represents a particular model, while each ray represents a different evaluation 315 

metric, which are clustered by class. Values in blue indicate better performance relative to the SSDM, 316 

while red values indicate worse performance relative to the SSDM. The four prediction types shown 317 

are a) probabilistic marginal, b) low-prevalence conditional marginal, c) medium-prevalence 318 

conditional marginal, and d) high-prevalence conditional marginal prediction. These heat maps were 319 

generated using Circos (Krzywinski et al., 2009). 320 

 321 

JSDMs performed worse than the SSDM for threshold-dependent metrics but differences were 322 

small. Across all probabilistic predictions, the relative JSDM performance was -3.9% [-18.2, -323 

0.2]. The only notable relative differences were in HPR, DPR, HLR-S, and HLR-NS for the 324 
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false rate metrics for probabilistic marginal predictions (-17.8% [-28.7, -13.6]) and high-325 

prevalence conditional marginal predictions (-16.5% [-25.8, -13.5]). 326 

3.1.2. COMMUNITY DISSIMILARITY METRICS 327 

The SSDM outperformed the JSDMs for all community dissimilarity metrics on marginal 328 

prediction types (Figure 1). The mean relative JSDM performance was -14.5% [-25.5, -4.9] for 329 

probabilistic marginal predictions, -14.7% [-34.4, -5.7] for low-prevalence, -12.4% [-22.4, -330 

6.1] for medium-prevalence, and -27.8% [-44.1, -6.1] for high prevalence conditional marginal 331 

predictions. For high-prevalence predictions the largest differences were for Bray-Curtis 332 

dissimilarity (-40.4% [-46.9, -34.6]) and Raup-Crick dissimilarity (-36.2% [-42.5, -30.9]), 333 

while the smallest was for Gower index (-9.3% [-17.8, -5.15]). The HPR model was the worst 334 

performer overall with a mean relative difference of -23.1% [-43.7, -14.7] across all marginal 335 

prediction types. LPR and MPR were the best JSDMs with a mean relative performance for all 336 

marginal prediction types of -12.7% [-32.5, -4.8], compared to -19.7% [-41.2, -7.8] for the 337 

other JSDMs. 338 
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 339 

Figure 2: Model performance for the bias (mean error) evaluation metric for probabilistic marginal 340 

predictions. Performance estimates are shown as the mean and 95% confidence intervals, over species 341 

in each dataset, after accounting for dataset and fold using an MEM. The dashed dark grey line 342 

corresponds to the SSDM mean bias, and the dashed light grey line corresponds to 95% confidence 343 

intervals from SSDM predictions. SSDMs are shown to the left of the black vertical line, and JSDMs 344 

to the right. This figure is illustrative of the absolute metric plots provided for all metrics and prediction 345 

types as supplementary information in Appendix S4. SESAM is not plotted here as it does not make 346 

predictions for individual species. 347 

3.1.3. SPECIES RICHNESS 348 

The SSDM generally outperformed JSDMs in species richness difference estimates for 349 

marginal predictions. However, the difference in performance is not as dramatic as suggested 350 

by the relative performance results in Figure 1 as relative differences can be exaggerated where 351 

the metric’s optimum value is 0, so we discuss the absolute differences here. The SSDM had a 352 

mean species richness difference of 0.06 [0.02, 0.08] across the MEMs fitted for marginal 353 
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prediction results. For probabilistic marginal predictions, the JSDMs had a similar mean 354 

species richness difference of 0.09 [0.02, 0.15], with HLR-S outperforming the SSDM with a 355 

value of just 0.007. For low-, medium-, and high-prevalence conditional marginal predictions, 356 

the JSDMs had a difference of 0.86 [0.79, 0.93], 0.63 [0.57, 0.70], and 0.34 [0.28, 0.39] species 357 

respectively. HLR-S exhibited the smallest differences of all of the JSDMs for each marginal 358 

prediction type. 359 

3.2. BINARY PREDICTIONS 360 

3.2.1. SINGLE SPECIES METRICS 361 

For threshold-dependent metrics evaluated on joint predictions, the JSDMs performed worse 362 

than the SSDM (Figure 3). For binary marginal predictions (Appendix S4), the JSDMs had a 363 

mean relative difference of -3.4% [-6.9, -0.7] from the SSDM except for the false rate metrics 364 

for HPR, DPR, HLR-S, and HLR-NS with a mean of -17.9% [-29.0, -13.5]. The mean relative 365 

difference between JSDMs and SSDMs for conditional predictions was -4.1% [-15.0, -0.2] 366 

across all metrics, with a larger relative difference for HPR and DPR on the Cohen’s Kappa 367 

and Youden’s J metrics of -21.8 [-66.7, -11.9]. For all JSDM joint predictions, there was a large 368 

relative difference from SSDMs of -36.3 [-97.7, -3.5] for false rate metrics. This was strongest 369 

for HPR and DPR with means of -70.4% and -88.7% respectively. LPR had a comparatively 370 

small relative difference of -4.0%. Across all threshold-dependent metrics for joint prediction, 371 

HPR and DPR had a large relative difference of -35.7% [-82.2, -12.0] and -45.2% [-100.9, -372 

15.0] respectively. 373 
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 374 

Figure 3: Heat maps showing the relative performance of the different JSDMs and SESAM compared 375 

to the SSDM for all metrics applicable to joint (binary) predictions. Each ring represents a particular 376 

model, while each ray represents a different evaluation metric, which are clustered by class. Values in 377 

blue indicate better performance relative to the SSDM, while red values indicate worse performance 378 

relative to the SSDM. The four prediction types shown are a) joint, b) low-prevalence conditional, c) 379 

medium-prevalence conditional, and d) high-prevalence conditional prediction.  380 

3.2.2.COMMUNITY DISSIMILARITY METRICS 381 

For community dissimilarity metrics on binary marginal predictions, the SSDM outperformed 382 

the JSDMs. The relative performance difference was largest for HPR, DPR, HLR-S, and HLR-383 

NS (-14.2% [-24.1, -10.0]), and smallest for MPR and LPR (-2.8% [-4.1, -2.0]). For joint 384 

prediction types, HPR and DPR performed worst with a mean relative performance difference 385 

of -75.3% [-132.7, -44.7]. LPR performed best with a mean difference of -4.3% [-20.5, 6.3], 386 
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and performed slightly better than the SSDM for several metrics in low- or medium-prevalence 387 

scenarios. 388 

3.2.3. SPECIES RICHNESS 389 

The results for species richness were mixed. Across all joint prediction types, the mean 390 

difference between predicted and observed species richness was 0.06 [0.01, 0.09] for the 391 

SSDM. HLR-S had a small mean species richness difference of 0.02 [-0.01, 0.04] while HLR-392 

NS performed similarly to the SSDM with a mean difference of 0.06 [0.03, 0.09]. LPR, HPR, 393 

and MPR exhibited slightly larger mean species richness differences than the SSDM with 394 

values of 0.07 [0.02, 0.1], 0.09 [-0.03, 0.17], and 0.14 [0.1, 0.17] respectively. DPR was the 395 

only JSDM to underpredict species richness with a mean difference value of -0.12 [-0.38, 0.14].  396 

3.3. LIKELIHOOD-BASED METRICS 397 

Both likelihood metrics (Figures 1 and 3) indicate that the JSDMs were better fit to the out-of-398 

sample data than the SSDMs, under the assumptions of the univariate and multivariate probit 399 

models. For the probabilistic marginal predictions, the JSDMs on average performed 12.2% 400 

[7.9, 18.4] better than the SSDM, and for the low-, medium-, and high-prevalence conditional 401 

marginal predictions the JSDMs on average performed 12.5% [8.0, 19.0], 13.6% [8.5, 20.4], 402 

and 15.2% [10.4, 22.1] better than the SSDM. HLR-S and HLR-NS outperformed the other 403 

JSDMs across all probabilistic prediction types with a mean relative independent log likelihood 404 

of 19.3% [17.0, 22.0] compared to 9.4% [7.9, 12.0] for the remaining models. Results were 405 

similar for the joint log-likelihood except that HPR performed worse relative to the SSDM by 406 

7.8%. Relative to the SSDM, HLR-S and HLR-NS performed better than the other JSDMs by 407 

an additional ~10%. 408 

3.4. SESAM PERFORMANCE 409 
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SESAM outperformed the SSDM and all JSDM joint predictions for the threshold-dependent 410 

and community dissimilarity metrics. SESAM had a mean relative performance difference of 411 

3.5% [0.7, 15.6] across threshold-dependent metrics for all joint prediction types. This 412 

performance is strongest in the false rate metric for binary marginal and joint predictions with 413 

a mean relative difference of 13.2% [10.0, 16.7].  For the community dissimilarity metrics, 414 

SESAM had a mean relative performance across all joint prediction types of 17.8% [14.4, 415 

22.5]. SESAM and SSDM richness predictions were functionally equivalent, as expected, as 416 

SESAM uses SSDM predictions to set it’s species richness limit. 417 

4. DISCUSSION 418 

4.1. SINGLE SPECIES METRICS 419 

The SSDM routinely outperformed the JSDMs in marginal prediction for all threshold-420 

independent metrics, but the magnitude of the difference was generally small on the absolute 421 

scale of the metric. This differs from Zurell et al (2019) which found the JSDM performed 422 

much worse than the stacked model. However, that study used a stacked ensemble SDM while 423 

we have just used a generalised linear model based SDM. Ensemble models have the potential 424 

to outperform single models (Dormann et al., 2018; Hao et al., 2019), which may have 425 

increased the observed difference in performance between the JSDM and SSDM. We also 426 

observed small differences on the absolute scale for both common error-based metrics (e.g. 427 

bias, MSE, RMSE) and the correlation metrics. The only exception to this was the SSE metric 428 

for low- and medium-prevalence conditional marginal metrics, but all models, including the 429 

SSDM, had significantly larger errors here compared to the other marginal prediction types. 430 

This suggests that, for species-level predictions, the JSDMs and SSDM are performing 431 

similarly in terms of threshold-independent metrics. 432 
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JSDMs performed slightly worse than, but generally similar to, the SSDM for all threshold-433 

dependent metrics on both marginal and joint prediction types but, like for threshold-434 

independent metrics, differences were minor. The relative performance of HPR, DPR, HLR-S, 435 

and HLR-NS suggests a large difference between them and the SSDM for the false rate metrics 436 

in probabilistic marginal and high-prevalence conditional marginal predictions, but on the 437 

absolute scale the performance difference is ≤4% for all metrics. The same trend can be seen 438 

in the joint prediction type exhibit larger relative differences for the false rate metrics. On the 439 

absolute scale these differences are ≤4% for most metrics, and usually ≤1% for MPR and LPR. 440 

The exception to this is that both HPR and DPR perform poorly in the joint predictions, with 441 

difference on the absolute scale of 15.5% and 19.6% respectively.  442 

4.2.COMMUNITY DISSIMILARITY METRICS 443 

One of the purported benefits of JSDMs over single species models is that accounting for 444 

residual species co-occurrences during the model fitting process they will better predict 445 

community composition by accounting for species associations. These species associations, 446 

which could include species interactions or shared responses to unmeasured environmental 447 

variables, provide information on how likely species are to co-occur beyond their response to 448 

the measured variables. However, our community dissimilarity metrics results show the 449 

JSDMs predicting worse than the SSDM, although the difference was again minor on the 450 

absolute scale.  Only LPR outperformed the SSDM for some conditional predictions, but just 451 

by a mean of 0.004, so the performance can in practice be considered identical. 452 

4.3.LIKELIHOOD 453 

In almost all cases JSDMs outperformed the SSDM for both of the likelihood-based metrics, 454 

indicating they were better fit to the in-sample data. This is consistent with Norberg et al 455 
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(2019), who also found better likelihood metrics for JSDMs when they contrasted model pairs 456 

that were identical in all aspects except accounting, or not, for residual correlations. The JSDMs 457 

exhibiting better likelihood performance is expected as they include additional useful model 458 

parameters (i.e. a residual correlation structure).  The estimation of regression coefficients is 459 

fairly robust to the covariance matrix, so JSDMs and SSDMs would estimate similar species 460 

niches(Chib & Greenberg, 1998; Poggiato et al., 2021), therefore a possible explanation for 461 

JSDMs performing better on likelihood-based metrics and worse on the other classes is that the 462 

JSDMs have overfit the covariance matrix and are explaining some noise in the data (Poggiato 463 

et al., 2021). This could also explain why we see greater differences in performance between 464 

the JSDMs and the SSDM for the community-level joint predictions that leverage this 465 

information. Conditioning these predictions with known information still improves the 466 

predictions, which suggests the estimated correlations are too strong rather than sign-switched. 467 

A potential solution would be penalising the residual covariance matrix to prevent overfitting 468 

(Pichler & Hartig, 2021). 469 

4.4. SPECIES RICHNESS 470 

The species richness difference metric presented mixed results where the SSDM did not 471 

consistently perform better or worse than the JSDMs. All models generally over-predicted 472 

species richness, with the exception of DPR for conditional predictions, but the mean difference 473 

was minimal at ~ ≤0.1 species per site. HLR-S and HLR-NS were the best performing JSDMs 474 

overall. For all prediction types, except the conditional marginal, HLR-S outperformed the 475 

SSDM and HLR-NS performed equivalently to it. As HLR-S was the only JSDM to regularly 476 

outperform the SSDM, it suggests that the effect of spatial scale and/or spatially-driven 477 

unmeasured variables could be a potential driver of this result. Species co-occurrence can be 478 

driven by several factors, including species interactions or shared responses to environmental 479 
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conditions, which operate at different scales. Two species can have the same broad 480 

environmental condition preferences but tend to rarely co-occur at a finer scale. If the estimated 481 

correlations between species are driven by shared responses to environmental variables at 482 

larger spatial scales this can lead to higher species richness estimates at the site level 483 

(Ovaskainen, Roy, et al., 2016). All JSDMs had much larger species richness difference 484 

estimates for the probabilistic conditional marginal predictions compared to the binary 485 

conditional marginal predictions, but it is unclear why. This result contrasts previous works 486 

that indicate binary predictions are more prone to overprediction than probabilistic ones 487 

(Calabrese et al., 2014; Thuiller et al., 2015; Zurell et al., 2019).  488 

4.5. SESAM PERFORMANCE 489 

The SESAM predictions outperformed the SSDM and JSDMs for all evaluation metrics in the 490 

threshold-dependent and community dissimilarity metric classes. This suggests that 491 

constraining the number of species predicted at a site can improve predictive performance at 492 

both the species- and community-level, possibly acting as a carrying capacity proxy (Guisan 493 

& Rahbek, 2011). These results are consistent with Zurell et al (2019) who found that 494 

predictions constrained with SESAM’s probability rank rule performed better than SSDMs for 495 

both species- and community-level metrics. Zurell et al (2019) found a small benefit to species 496 

richness metrics for SESAM predictions compared to an SSDM, but they used a 497 

macroecological model to set the species richness limit compared to using the summed SSDM 498 

predictions as we have in this study (thus being unsurprising that we identified no difference 499 

between the two in this aspect of predictive performance).  500 

An interesting avenue of research not considered in our study is exploring whether constraining 501 

JSDM predictions can improve their performance. The superior performance of SESAM in our 502 

results is in concordance with that of Zurell et al (2019) who suggested that choosing how 503 
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species predictions are combined into community-level predictions is potentially more 504 

important than choosing the underlying model used to generate them. JSDMs could be 505 

predicting likely community assemblages in the absence of limiting factors like site carrying 506 

capacities or dispersal limits, and thus could potentially benefit from the application of a 507 

constraining framework. Research into how to incorporate suitable constraints into the 508 

prediction process itself rather than applying them post-hoc is suggested. 509 

5. CONCLUSION 510 

While there were consistent trends within evaluation metric classes, we did not find evidence 511 

to suggest that any one model outperformed all of the others across all prediction types. The 512 

likelihood metrics indicated that the JSDMs were better fit to the data, but SSDMs generally 513 

outperformed all of the JSDMs in the rest of evaluation metrics. On the absolute scale, the 514 

difference in performance between models was generally small. HLR-S and HLR-NS were the 515 

best performing JSDMs and were able to outperform the SSDM for most species richness 516 

difference estimates in joint prediction types and generally had the smallest difference in 517 

performance from the SSDM when underperforming. The SESAM model consistently 518 

outperformed both the JSDMs and the SSDM for both binary species- and community-level 519 

metrics which suggests that the application of frameworks to constrain JSDM prediction types 520 

should be evaluated in the future.  521 

   522 
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