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Abstract 25 

Extra-pair behaviours, where individuals copulate outside of an established pair bond, resulting 26 

in extra-pair paternity (EPP) of offspring, have long intrigued behavioural ecologists. Of 27 

particular interest is why females of otherwise socially monogamous species engage in extra-28 

pair behaviours. Although researchers recognise that the drivers of variation in EPP, both 29 

within-species and between-species, also depend on the negative consequences (costs) of the 30 

behaviour to the individual, empirical studies mostly focus on benefits rather than costs. This 31 

is partly because benefits are often measured in currency close to fitness, whereas costs often 32 

have more indirect and complex pathways to fitness. Both the prevalence and magnitude of a 33 

cost are experienced in the context of the environment of the individual and may affect fitness, 34 

either directly (by affecting reproduction or survival) or indirectly (through the fitness of 35 

offspring). Here, we review our current understanding of costs associated with EPP and extra-36 

pair copulations (EPC), e.g. both the costs of producing extra-pair offspring and the behaviour 37 

associated with EPP. We conclude that the costs of EPP and EPC are likely a key factor shaping 38 

this behaviour. More research, particularly empirical and experimental studies in taxa other than 39 

birds, is needed to understand the intricate cost-benefit equation underlying EPP.   40 
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1. BACKGROUND  41 

Introduction  42 

Multiple paternity is reproduction with multiple males within the same clutch. The extent of 43 

multiple paternity varies between mating systems and is particularly common in polygamous 44 

mating systems [1]. However, multiple paternity also occurs in species with mating systems 45 

regarded as socially monogamous, mainly through extra-pair paternity (EPP). EPP is any 46 

reproduction outside an established social pair – that is, offspring sired by a male other than 47 

social father. EPP is a result of extra-pair copulations (EPC), that is, copulation with partners 48 

outside the social pair. The combination of EPP and EPC, hereafter referred to as extra-pair 49 

mating (EPM), therefore covers both reproduction and the behaviour associated with it. EPP is 50 

well studied in birds [2–5], and 75% of sampled bird species regarded as socially monogamous 51 

engage in extra-pair behaviour to some extent [2]. Further, EPP is also recorded in socially 52 

monogamous species in other taxonomic groups, like mammals [6,7], reptiles [8] and fish [9].  53 

Through EPP, males can increase the number of offspring produced without investing in costly 54 

parental care. However, the motivation for females to engage in EPC, potentially resulting in 55 

EPP, is less clear. Trivers [10] suggested that, because females are limited by the number of 56 

eggs they can lay over their lifetime, females should only seek extra-pair copulations (EPC) 57 

from males of higher quality than their social partner, increasing the quality of her offspring, 58 

and her reproductive success. However, empirical evidence for such indirect benefits to females 59 

is scarce [11–14]. 60 

Several, often conflicting, hypotheses have been proposed to explain female engagement in 61 

EPM, often focusing on the benefits for the female [2,4,15]. These hypotheses are broadly 62 

divided into direct and indirect benefits, of which both could result in EPM as an adaptive 63 

reproductive strategy for females. Direct benefits of EPM for females would increase their 64 
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reproductive success or survival. For example, extra-pair males may provide insurance against 65 

social male infertility [16–18]. Other direct benefits may include access to resources [19,20], 66 

avoidance of genetic incompatibility [21,22] and increased parental care or nest defence 67 

[23,24]. Although any of these interactions may provide a benefit to individual fitness, they are 68 

unlikely to explain considerable variation in extra-pair paternity, as many studies find no 69 

evidence for such indirect benefits [24–26]. 70 

Indirect benefits increase the female’s reproductive success by enhancing the fitness of her 71 

offspring. For example, a female may increase the genetic quality of her offspring by 72 

reproducing with a male of high genetic quality [11,15,27,28] or compatible with her own genes 73 

(i.e. through inbreeding avoidance; [21]). Despite these hypotheses, suggested to explain the 74 

persistence of extra-pair behaviour in females, EPP has seldom been demonstrated to provide 75 

indirect benefits in the wild [12,29].  76 

Moreover, there are empirical examples of costs to females [30,31] or to extra-pair offspring 77 

[29,32,33]. More recent sexual conflict hypotheses therefore consider how, under certain 78 

conditions, EPM may persist while maladaptive for females. This could happen if i) EPP is an 79 

adaptive behaviour for males – the intersexual pleiotropy hypothesis [34,35] or ii) genes for 80 

other traits under positive selection also code for EPM behaviour- the intrasexual pleiotropy 81 

hypothesis [36]. 82 

The costs of EPM are central to these hypotheses because they focus attention on the 83 

disadvantage(s) for the female relative to the benefits experienced by the male [33]. Sexual 84 

conflict hypotheses have been difficult to test empirically, in part due to incomplete assessment 85 

of costs [37,38], and have mostly been supported by indirect evidence [39,40]. Thus, although 86 

sexual conflict hypotheses demonstrate that EPP could be maintained despite being maladaptive 87 

to females, measuring the relative costs is key to empirical evaluation.  88 
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Although several costs of EPM have been described (listed in Table 1), they’re scarcely studied 89 

experimentally [41–43] and difficult to demonstrate empirically without large sample sizes and 90 

precise fitness data [13]. Empirical studies, therefore, focus on identifying the reproductive 91 

benefits of EPP, but they rarely access (or are aware of) the costs in the same context. Although 92 

this is likely due to currency of benefits is easier to measure than the currency of costs, studies 93 

often also fail to consider them. For example, although obtaining EPP can increase the number 94 

of offspring for the males [44], seeking EPC also comes with search costs [41] and leaves the 95 

female unguarded in the same period, hence risking loss of within-pair paternity [45,46]. 96 

Another issue is the predominant bias toward avian studies compared to other taxa, like reptiles, 97 

mammals, fish and insects. Therefore, a biased, under-representation or underestimation of the 98 

costs may bias our understanding of EPM behaviour.  99 

Costs of EPM can take different pathways. First, the costs of EPM can be direct [42] or indirect 100 

[33]. A direct cost reduces an individual’s fitness through reduced reproduction or survival. In 101 

contrast, indirect costs affect the fitness of offspring, for example through lowered genetic 102 

quality [23,33,40]. Direct and indirect costs are not mutually exclusive, as certain mechanisms 103 

can affect both parental reproduction/survival and offspring future fitness at the same time (e.g. 104 

reduced parental care from social partners). Second, costs can have an evolutionary or an 105 

ecological origin. An environmental (or behavioural) cost of EPM result from an individual’s 106 

engagement in EPP, whereas an evolutionary cost result from the consequences of EPP in 107 

previous generations, reflecting past selection events. One could argue that evolutionary costs 108 

are simply the result of beneficial behaviour maximizing fitness instead of direct costs to the 109 

individual [47]. Therefore, evolutionary versus environmental costs cannot always be 110 

separated. However, clarifying the origin can often avoid potential misconceptions.  111 

Here, we review the negative consequences of EPM for individuals, while placing them into 112 

costs of EPC and EPP. We make the case for studying the drivers of EPM in the context of 113 
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costs and benefits. In doing so, we hope this will improve our understanding of the long-114 

standing question of extra-pair paternity, particularly from the female perspective.  115 

  116 



7 
 

The costs of extra-pair paternity  117 

In this section, we review identified costs (Table 1) associated with extra-pair paternity under 118 

nine headings, each representing a cost: 1) reduced paternity, 2) costs of acquiring extra-pair 119 

mates, 3) mate guarding (and its effect on paternity), 4) reduced genetic quality as a result of 120 

EPP, 5) transmission of sexually transmitted disease, 6) offspring competition, 7) harassment, 121 

8) divorce rates, and, 9) reduced parental care.  122 

1) Reduced paternity  123 

From an individual’s perspective, loss of within-pair paternity (through female EPP) is the most 124 

apparent, and likely highest cost of EPP for males [2]. Loss of paternity is a direct cost of EPP, 125 

as it reduce the number of offspring produced [5]. Although studies have investigated the fitness 126 

benefits of obtaining EPP [44], fewer have investigated the reduced fitness due to loss of 127 

paternity (i.e. the reduced lifetime reproductive success), a consequence that deserve closer 128 

investigation. From studying characteristics of males obtaining EPP, we know that reduced 129 

paternity is dependent on both quality and age of the male. For example, male of bird species 130 

often obtain more EPP with age [48], although the evidence for an effect of age on within-par 131 

paternity is mixed [44,49].  132 

Although focusing on the costs of EPP for the individual, one should note that reduced paternity 133 

could also be a population-level cost of EPP as it can affect both adaptation and population 134 

dynamics. For example, EPP can influence variance in reproductive success [44], thereby 135 

affecting the effective population size [50]. In song sparrows, Melospiza melodia, O’Connor et 136 

al. [51] showed that EPP had a low effect on effective population size by comparing estimates 137 

of effective population size from social and genetic data. Another way to investigate how EPP 138 

influence effective population size is to decompose the demographic variance to understand its 139 

sensitivity to variation in reproductive success, but such empirical studies in birds are lacking 140 

[52]. Increased variance in reproductive success caused by sexual selection may also affect the 141 
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evolvability of a species due to reduced genetic variation, commonly referred to as the 'lek 142 

paradox’ [53–55]. However, the potential role off EPP in this paradox through affecting sexual 143 

selection remains poorly understood.  144 

2) Costs of acquiring extra-pair mates 145 

The costs of acquiring an extra-pair mate have traditionally been split into search cost [41], and 146 

the energetic costly display for extra-pair partners [56]. However, they have received little 147 

empirical attention, particularly experimentally [41]. All these costs have been proposed under 148 

a system of adaptive EPP [15,41], and are experienced by either sex, affecting the same 149 

individual (i.e. the individual seeking EPC).  150 

Search costs (i.e., the cost of physically searching for an extra-pair partner) can be viewed as a 151 

time cost, lost opportunity cost and/or an energetic cost. The travel distances required to find 152 

potential extra-pair partners can be extensive [57,58] but the energetic expenditure is expected 153 

to be low [41]. Indeed, extra-pair partners are often neighbours [24,59–61]. Experimental 154 

evidence suggests that search cost may affect the distribution, but not the level, of EPP. Dunn 155 

& Whittingham [41] experimentally increased search costs by cutting wing-feathers of female 156 

tree swallows Tachycineta bicolor, and found similar EPP rates for wing-cut versus control 157 

females, but wing-cut females had more local extra-pair partners. Search costs may also be the 158 

reason why several studies find population density to be a determinant of EPP rates [5] because 159 

higher densities could reduce search costs. 160 

While searching for an extra-pair partner, time spent away from the nest also increases the risk 161 

of others stealing nest material [62]. Although this is an untested hypothesis, stealing of nest 162 

material has been reported in multiple bird species [63,64], and maybe a relevant cost of EPM 163 

worth further investigation. Further, this time away from the nest also makes it prone to brood 164 

parasitism [65]. However, no study link risk of brood parasitism to EPM behaviour through this 165 

mechanism specifically.  166 
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When an extra-pair partner is located, courtship displays towards this potential partner may be 167 

required [56]. Courtship displays are expected to have time and energetic costs, although these 168 

might be relatively small direct costs [66]. Experimental studies would again be useful for 169 

properly assessing display costs of EPP, because they could control for potential confounding 170 

effects, such as individual quality and state. Although challenging, such experiments could 171 

manipulate the need for display (through skewed sex ratio, physically separating the sexes etc.) 172 

and track fitness either through reproduction or state (e.g. through relative body mass).   173 

3) Mate-guarding  174 

Mate-guarding, where the male follows the female to avoid her engaging in EPC, occurs often 175 

in the wild [15,67,68]. Mate guarding potentially results in physical conflict with other males 176 

[69], thus resulting in both energetic costs [43,70] and time (lost opportunity) costs [42] for the 177 

guarding male. 178 

To study the energetic cost of mate-guarding in Seychelles warblers Acrocephalus sechellensis, 179 

Komdeur [42] experimentally manipulated the density of neighbouring males, hence changing 180 

the necessity of mate-guarding. This study demonstrated a negative relationship between 181 

relative body mass (i.e., energetic state) and time spent mate-guarding. Moreover, the 182 

experimentally induced reductions in mate-guarding resulted in substantial increases in male 183 

relative body mass and time spent foraging. Mate-guarding was also demonstrated as 184 

energetically costly for other birds [43], mammals [68] and spiders [71]. Reduced energy intake 185 

during mate guarding is also documented in reptiles [70]. Therefore, mate-guarding can be a 186 

direct cost for males, as reductions in male body mass are expected to be associated with 187 

reduced survival [72].  188 

Although the extent of mate guarding varies [15,43], high-quality individuals have been shown 189 

to perform less guarding [67]. This may be because females prioritize mating based upon the 190 
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social males relative ‘quality’ [67]. A decrease in guarding with individual quality is also 191 

predicted by theoretical models [73]. Hence, high-quality individuals are likely to exhibit a 192 

lower cost of paternity assurance. However, measures of male ‘quality’ are often attributed to 193 

individual quality markers such as body size or sexually-selected signals [67]. This represents 194 

an among-individual quality effect, but few studies have focused on the within-individual 195 

quality effect of energetic state (i.e., relative body mass or fat reserves) which would be 196 

interesting to understand within- versus between individual cost-variation.  197 

The costs of mate-guarding can be reduced by guarding only during the partner’s fertile period 198 

[58,74,75]. In several species, males guard their social partner throughout their fertile period 199 

and seek extra-pair mating outside this period [58,75]. Furthermore, the costs of mate-guarding 200 

could be lowered by reducing the intensity of guarding behaviour. However, intensity of 201 

chasing potential conflicting males was independent of relative body mass in guarding male 202 

Seychelles warblers [42]. This indicate that energetic state may affect only the extent of mate-203 

guarding, rather than the intensity of the behaviour itself [42]. Interestingly, mate-guarding 204 

could also have the by-product benefit of increasing the partner’s condition, because the 205 

presence of an alert partner could reduce the female’s adaptive level of anti-predator vigilance, 206 

which could enhance an indirect benefit of mate-guarding [76]. 207 

Although direct costs of mate-guarding have been demonstrated, no studies have explored 208 

potential indirect costs of mate-guarding. If mate-guarding reduces the energetic state of males 209 

in species with obligate biparental care, this might reduce potential for male care, with potential 210 

effects on offspring quality. 211 

4) Reduced genetic quality 212 

Increased genetic quality for offspring by higher quality genes from extra-pair males is one of 213 

the main hypotheses regarding EPP [11,12]. However, when mating with extra-pair partners, 214 



11 
 

females also risks reducing the genetic quality of the offspring [13]. Females indirectly assess 215 

the genetic quality of extra-pair mates, for example via secondary sexual traits [4,77]. These 216 

traits might, or might not, be reliable indicators of male quality, potentially reducing the 217 

female’s ability to sample the quality of potential mates sufficiently [56]. Uncertainty in 218 

accessed male quality can therefore result in sub-optimal genetic assessment both of the social 219 

and the extra-pair partner [78]. Thus, females impose, either intended or non-intended, the cost 220 

to the offspring. Sperm choice, where the female choose between sperm from several mated 221 

males is thought to partly solve this problem (e.g. choosing only social males sperm), but there 222 

is only limited evidence in some species for differential male sperm selection by females [15].  223 

Analysis regarding the genetic quality of offspring needs to be rooted in one or more fitness 224 

components. A variety of fitness components have been used, but one should be careful in the 225 

choice when multiple components are available, as they potentially answer different questions. 226 

If multiple fitness components are measured, multivariate analysis now allows for useful 227 

interpretation of the covariance-matrix, allowing the use of multiple fitness components [79]. 228 

Studies have stated that lifetime reproductive success may be the optimal fitness estimate 229 

[33,40], but often cost and benefits are only apparent in the short-term [80]. However, cases 230 

may arise where it is natural to look to other fitness components, particularly if one has detailed 231 

knowledge of fitness measurements in the population [80], and a priori hypothesis are made 232 

about certain fitness relationships.  233 

Most studies find no difference between extra-pair offspring (EPO) and within-pair offspring 234 

(WPO) in measurable fitness components [12], and few studies find EPO have lower fitness 235 

than WPO [40]. Sardell et al. [40] used song sparrows Melospiza melodia to study survival, 236 

recruitment and lifespan and how they differed between EPO and WPO. They demonstrated a 237 

sex-specific genetic cost regarding EPO, with female EPO having lower recruitment and shorter 238 
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lifespan than WPO females. However, this was not demonstrated in male offspring, 239 

underpinning the important aspect of sex-dependency while comparing EPO and WPO.  240 

When studying American crows Corvus brachyrhynchos, Townsend et al. [23] found that EPO 241 

were more inbred than WPO. Inbreeding is found to lower survival in this population [81], 242 

resulting in an indirect cost of EPP. Again, it can be useful to consider population-level costs 243 

of EPP. Population-level costs can be lowered effective population size, reduced evolvability, 244 

reduced genetic variation (See reduced paternity) and population-level inbreeding depression, 245 

with potential severe consequences also at population level [82]. 246 

Thus, it is likely a restricted cost of EPP. Indeed, none of the examples have shown an effect 247 

on the reproductive fitness of offspring, likely caused by lack of power. However, this is 248 

expected if reduced offspring genetic quality is a large cost of EPP, and not all poor-quality 249 

offspring die prior to recruiting into the breeding population.  250 

5) Sexually transmitted diseases (STDs) 251 

Pathogens can affect individual fitness, population dynamics [83,84] and sexual selection [85]. 252 

As several pathogens can be transmitted during mating, promiscuous behaviour has been 253 

suggested to increase the prevalence of sexually transmitted diseases (STDs) in both individuals 254 

and species [86]. Sheldon [87] defined an STD as “… any pathogen that is transmitted during 255 

the act of copulation”, a definition we follow. STDs include both pathogens transmitted via the 256 

reproductive organs [88] and ectoparasites transmitted through physical contact, such as feather 257 

parasites in birds [89–91].  258 

STDs have been identified in multiple wild populations of birds [88,92–94], mammals [95], 259 

reptiles [95] and insects [96]. However, the ecological factors determining between-species 260 

variation in the presence and prevalence of these pathogens are still unclear, although it likely 261 

depends on for example the social environment [97]. One important factor is the effect of 262 
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species-dependent life-history traits, because the presence of STDs will reflect the co-263 

evolutionary relationship between parasite and host [98]. Therefore, it is here helpful to separate 264 

between evolutionary versus environmental costs.  265 

Between species, a positive covariation between average EPP-rate and the presence and 266 

prevalence of STDs is expected. Such an effect would demonstrates an evolutionary cost of 267 

EPP, due to potential co-evolutionary effects between parasites and hosts [98]. In a comparison 268 

of 4 bird species with contrasting mating systems, STDs were more prevalent in more 269 

promiscuous species [92]. However, similar studies with larger sample sizes are needed to 270 

further confirm this hypothesis.  271 

STDs are also predicted to affect individual EPC behaviour [99] as they can have a negative 272 

effect on individual fitness, imposing a direct environmental cost [87]. An increasing number 273 

of sexual partners per individual is predicted to result in higher prevalence of STDs per 274 

individual [92]. It remains unknown, however, if pathogens can potentially be transferred over 275 

to the offspring during embryo/egg development and create an additional indirect 276 

environmental cost through reduced offspring fitness. One problem when studying 277 

environmental costs of EPC is the striking variation in types of pathogens identified. Westneat 278 

& Rambo [93] studied the environmental costs of EPP in red-winged blackbirds Agelaius 279 

phoeniceus based on exposure to STDs, and found no effect of STDs on male fertility or female 280 

reproduction, but highlighted the need for a larger sample size. Furthermore, they demonstrated 281 

high variation in identified pathogens among males, underpinning the importance of pathogen-282 

specific a priori hypothesis regarding the role of STDs. Another study found heterogeneity in 283 

pathogenic microbes among tree swallows, but this did not affect semen characteristics in the 284 

studied population [88].  285 

If STDs reduce fitness, defence mechanisms may evolve. For example, the uropygial gland in 286 

birds produces anti-parasitic substances [90,100]. A comparative analysis of 60 bird species 287 
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showed larger uropygial glands in species with higher levels of EPP, perhaps as a antiparasitic 288 

defence mechanism against the evolutionary costs of EPP [101]. Moreover, bird species with 289 

higher levels of EPP tend to have larger spleens, which are an important part of the immune 290 

system [102]. However, no within-species investigations exist linking the uropygial gland or 291 

the spleen to EPP rates, which would be of highest interest regarding among-individual 292 

variation in STDs and the evolution of defences against STD. Such co-evolutionary responses 293 

may explain low effects of EPP rates on STDs among species, because the selection for defence 294 

mechanisms may already have occurred for many of these species [98]. 295 

Recently, substantial research has focused on microbiomes- the symbiotic microbial 296 

communities in organisms. Microbiomes include pathogenic microbes, and methods for 297 

detection such pathogens have improved over later years [103]. In the rufous-collared sparrow 298 

(Zonotrichia capensis), the cloacal microbiome changed during the breeding season for males, 299 

and were more diverse early in the breeding season, potentially because of sexual transmission 300 

during mating [104]. However, few have tested how microbiomes relates to EPP directly, and 301 

certainly warrants further investigation [103,104]. Although caution must be used regarding the 302 

source sample (e.g. faecal sample, semen sample etc.), this technique can set the new standard 303 

for future empirical research of STDs as costs of EPC, and is particularly useful for 304 

investigating the environmental costs of EPC.   305 

6) Increased sibling competition  306 

Increased sib-sib competition provides a rarely mentioned cost of EPP [13]. It follows from 307 

theories of parent-offspring conflict, sibling competition and the effects of reduced within-308 

family relatedness [105,106]. Such a cost is imposed either by the female (if she participate in 309 

EPP voluntarily) or by the extra pair male (through enforced copulation) while affecting the 310 

offspring and potentially both sexes.  311 
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Across species, begging loudness was found to increase with the species EPP rate [107]. This 312 

intensified begging could result in increased parental care [108], and could therefore represent 313 

a direct cost for the parent(s) that provide more than their optimum level of care. It could 314 

potentially also increase the predation risk. Environmental costs of increased sib-sib 315 

competition through begging would consider changes in begging (intensity) to variation in 316 

within-clutch relatedness, but although intensively studied, this has rarely been demonstrated 317 

[108], (but see [109] for exception). One reason why siblings do not adjust begging to sib-sib 318 

relatedness is the lack of stable paternity markers. Extra-pair mates would be selected to avoid 319 

paternity markers, which could reveal their identity for the social mate. However, weather 320 

paternity markers evolve, either genetically or through behaviour, is debated and topic for 321 

considerable theoretical modelling [110,111].  322 

Changes in the relatedness between parents and offspring affects the parent-offspring ‘zone of 323 

conflict’ [105]. The optimal level of investment from the parent is stable or decreasing with 324 

lowered average relatedness to the offspring [112]. Simultaneously, lowered relatedness 325 

between the offspring, and between the offspring and the parent, makes the optimal level of 326 

investment for the specific offspring to increase [105]. Therefore, the amount of parental 327 

investment offspring want to extract from their parents increases [105]. In the least killifish 328 

Heterandria formosa, polyandrous populations with reduced sibling relatedness have stronger 329 

maternal resource extraction than monogamous populations [113], illustrating a direct cost for 330 

the female. 331 

7) Harassment  332 

When engaging in EPC, females may experience physical harassment from the social partner 333 

or extra-pair mates. This can be a severe direct cost of EPC and could affect the timing and 334 

occurrence for EPC [114]. However, the quantification of such harassment has so far received 335 

limited empirical attention [114]. Social males can harass their females, as deterrent 336 
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‘punishment’ for engaging in EPCs. This was documented in lesser grey shrikes Lanius minor, 337 

where females performing EPCs experienced aggression from social mates. Moreover, the 338 

study found that this harassment was not so costly for males [114]. However, we lack 339 

demonstration of this EPC-induced harassment in most species [114], although indirect studies 340 

suggest higher mortality in females engaging in multiple paternity in insects, although most of 341 

these species was not socially monogamous [115]. 342 

Females may also experience harassment from extra-pair mates, as a coercion tactic from males 343 

to obtain EPP. This harassment can result in female injury, or even death [116]. Extreme 344 

examples of harassment are comparatively rare in birds (e.g. versus mammals) and they are 345 

mostly recorded within waterfowl and the hihi Notiomystis cincta [117]. EPCs can also occur 346 

as a cost-avoiding strategy by females [5]. Harassment by extra-pair males may be reduced in 347 

duration and intensity if female comply with EPCs that they might otherwise avoid participating 348 

in, known as convenience polyandry [118]. Higher levels of harassment in species with higher 349 

levels of EPP remains an untested hypothesis. Between-species investigations would be 350 

informative, if not only to understand the natural variation in EPP-related harassment.  351 

Given that harassment is costly for females, one could argue that EPCs are not female driven. 352 

However, females may still seek EPCs with certain types of males and thus risk a certain amount 353 

of harassment from other potential extra-pair mates. To reduce the cost of harassment from 354 

social and extra-pair males, EPCs could be performed cryptically compared to within-pair 355 

copulations as demonstrated in the great grey shrike Lanius excubitor, where within-pair 356 

copulations were performed openly, while EPC took place in more vegetative areas [119]. 357 

8) Divorce rate 358 

Engaging in EPP may also increase the divorce rate (i.e. the rate at which social partners are 359 

changed across reproductive events). Divorce can be a direct cost, because more experienced 360 
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pairs often have higher reproductive success [120]. In long-lived species, pair formation is time-361 

consuming and individuals may miss critical reproductive opportunities following divorce 362 

[121]. Higher divorce rates is found in species with higher EPP-rates rates [122,123], suggesting 363 

an evolutionarily-based cost. More important is the environmental cost of divorce because 364 

individuals engaging in EPCs may experience a higher probability of divorce. This has been 365 

demonstrated in black-capped chickadees Poecile atricapillus [124], where females involved 366 

in EPCs were more likely to switch partners between breeding events. However, there were no 367 

differences in reproductive success whether the female was involved in EPCs or not. Females 368 

also divorced for males of higher status rank, indicating that they divorced for a better option, 369 

rather than as a result of being divorced by the male due to EPP. In house sparrows Passer 370 

domesticus, females that switched partner more often were more likely to have EPO, although 371 

they did not have a higher proportion if EPO [125] possibly implying a non-adaptive 372 

mechanism [34,125]. Divorce could be imposed by both sexes and affect the partner, as 373 

individuals would likely seek divorce only if they had better options. Therefore, the divorcing 374 

individual would likely benefit, while the divorced sex would bear the cost. The divorcing sex 375 

would also depend on the operational sex ratio [126], individual quality and other ecological 376 

and life-history characteristics.  377 

9) Reduced parental care 378 

Reduced parental care caused by lowered paternity is an intensively studied cost of EPP 379 

[31,127–130], because parental care is known to be particularly costly [131]. Reduced paternal 380 

is imposed by the male while directly costly for the female [132]. Theoretical models show 381 

mixed predictions for adaptive responses in care with paternity [133]. A key component in these 382 

models is the male’s ability to assess paternity [133], which is still debated in taxa like birds 383 

[110,111], but common in other taxa like fish [134]. Also, clutch-specific EPP levels can be 384 

driven by male quality. In such cases, low-quality males with low level of paternity may be left 385 



18 
 

with no better option than maintaining the same level of paternal care, doing “the best of a bad 386 

job”. Therefore, paternity-driven paternal care might not be expected within ecological 387 

timeframes [5]. Selection over generations can, however, result in species-level responses in an 388 

evolutionary timeframe [135].  389 

Evolutionary cost of EPP in this context mostly consider the change in average level of care in 390 

relation to the average species-level EPP-rate [127–130]. Evolutionary adaptations regarding 391 

reduction in paternal care can therefore result in selection maximizing long-term geometric 392 

fitness [47]. However, evolutionary relationships do not provide evidence of within-individual 393 

adjustments to EPP in their social clutch.  394 

Environmental costs of EPP evaluate adaptive responses to varying levels of paternity that 395 

happens within an individual’s lifespan [31,136]. A cost of adaptive within-male adjustment to 396 

EPP will be a direct cost as it calls for compensation by the female. However, it can also be an 397 

indirect cost if the female does not fully compensate, potentially resulting in lowered offspring 398 

quality [137].  399 

Evidence from empirical studies of both evolutionary and environmental costs of reduced 400 

paternal care are mixed [127–129,136]. The results also clearly differ between different taxa. 401 

In birds, between-species studies of evolutionary cost generally show that males decrease the 402 

level of care with reduced paternity, although it is still debated which forms of care that are 403 

reduced [127–130]. Different forms of care have different implementations [25]. While some 404 

studies find pre-hatching forms of care to be affected by paternity (including incubation, 405 

nestbuilding etc.) [30,130,138], other studies support post-hatching care to be affected by 406 

paternity (provisioning) [127,129,130]. However, studies differ in their scoring of caring 407 

behaviour, underpinning the need for a yardstick when treating parental care behaviour. In fish, 408 

clear between-species investigations are lacking, but paternal care evolve under pair-spawning, 409 
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where the male has some certainty of paternity, compared to group-spawning. However, this 410 

also included species with additional mating males (e.g. like sneakers) [139].  411 

Studies on the environmental costs of EPP show weaker consistency than evolutionary costs. 412 

Several studies have been performed linking paternity and paternal care, showing support for 413 

both a reduction in care [31,77,140–142], and no effect on care [136,143–146]. In the reed 414 

bunting Emberiza schoeniclus, Suter et al. [141] showed that the males reduced provisioning 415 

rate in response to decreased paternity. This reduction was further compensated by the female, 416 

indicating a direct cost of EPP for the female. However, Bouwman et al. [136] did not find any 417 

evidence for such a negative relationship between level of EPP and paternal care in the same 418 

species. Fewer examples exist from other taxa than birds, but in the bluegill sunfish Lepomis 419 

macrochirus, males reduce their amount of care with decreasing paternity [142]. However, in 420 

this species, potentially alongside other fish species, males use olfactory cues to access paternity 421 

[147]. A between-species investigation of within-male adjustment across several taxa found no 422 

effect of paternity on parental care [148]. However, reduction in male care were more likely if 423 

the cost of caring and risk of reduced paternity were high [148]. Several of these investigations 424 

have been experimental, and cross-fostering experiments are common, particularly within birds. 425 

Cross-fostering experiments are, however, seldom informative as few know the specific cues 426 

used by males to access paternity [149]. Cross-fostering experiments generally lack trust in 427 

null-results, as one rarely knows if there is no use of kin-recognition, or if the wrong cues are 428 

manipulated. This is potentially a source to publication bias, which can further affect meta-429 

analysis.  430 

Due to the mixed evidence to environmental costs of EPP on parental care, it has been hard to 431 

extract some general patterns [136]. However, most studies fail to address concerns on 432 

important confounding factors [149]. Factors like environmental variation, partner quality and 433 

an individual’s state are key aspects as they are all likely to affect the optimal behaviour for the 434 
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male [149]. Costs to the female of reduced paternal care may also be state-dependent, and 435 

studies linking state-dependency to cost of EPP to female fitness components would provide 436 

helpful insight [150].  437 

Schroeder et al. [31] studied paternal incubation and provisioning in house sparrows (Passer 438 

domesticus), while controlling for several of the suggested confounding effects [149]. They 439 

disentangled within- versus among-male differences in care related to varying paternity. The 440 

study found that females consistently differed in their individual EPP-rate. Males reduced 441 

provisioning only when mated with a female consistently engaging in EPP. Therefore, males 442 

adjusted the within-male level of care to the female identity, rather than the paternity-level in 443 

the clutch, questioning the use of same-pair studies of paternity to care relationships [149]. A 444 

cross-fostering experiment suggested that males did not use kin-recognition to adjust 445 

provisioning. To fully understand the role of paternity on parental care, more studies accounting 446 

for confounding factors [149] are needed. Further, disentangling within- and among-male 447 

adjustments are informative to understand the potential (and confounding) effect of difference 448 

in male ‘quality’ and how it relates to a male’s response to loss in paternity.  449 

The study of reduced parental care as a cost of EPP therefore lacks a clear consensus from an 450 

environmental perspective. However, few have applied a statistical decomposition that clearly 451 

accounts for demonstrated confounding factors. Studies should include considerations like pair-452 

constitution, environmental variation, individual state and whether the measured trait is a 453 

reliably proxy for parental care. Moreover, studies in other taxa than birds are highly needed.  454 

  455 
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CONCLUSIONS  456 

Studying the costs of EPM is helpful for understanding variation in EPM rates across both 457 

individuals and species. Costs of EPM likely play a significant role in shaping EPM behaviour. 458 

However, quantifying these costs is often difficult, and therefore poorly studied, and apriori 459 

hypotheses are needed. Moreover, bias toward avian studies amy limit our general 460 

understanding of EPM, both in terms of benefits and costs. Studies into the consequences of 461 

EPP beyond the birds would be beneficial.  462 

To date, however, the strongest costs seem to be reduced paternity and reduced parental care 463 

by the social partner. The cost to females is still largely misunderstood, despite many decades 464 

of research, and we suggest that an improved understanding of costs (rather than the traditional 465 

approach of defining empirical benefits) may yield new research direction.   466 
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Tables 833 

 Table 1: Identified costs of EPP, regarding costs as direct or indirect, what sex the cost is 834 
imposed by and which individuals that bear the costs.  835 

 836 

Cost Type of 

EPM 

Direct or 

indirect 

Imposed 

by 

Affecting Ref. 

Reduced paternity  EPP Direct Female? Male  [4] 

Cost acquiring partner  EPC Both Any sex Same individual [41] 

Mate guarding EPC Direct  Male Same individual [42] 

Reduced genetic quality EPP Indirect  Female Offspring  [40] 

STD EPC Both Any sex Same individual and partner [133] 

Increased sib competition EPP Both Female Offspring [107] 

Harassment  EPC Direct  Male Female   [151] 

Divorce risk EPP Direct  Any sex Partner  [122] 

Reduced parental care EPP Both Female Male  [31] 


