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Abstract 25 

1. Measuring heterogeneity, or inconsistency, among effect sizes is a crucial step for 26 

interpreting the meta-analytic evidence across diverse taxonomic groups and spatiotemporal 27 

contexts. However, ecologists and evolutionary biologists often interpret mean population 28 

effects (i.e., meta-analytic mean effect size) as consistent, either explicitly or implicitly, 29 

without proper heterogeneity quantification, thus assuming consistency in effects across 30 

contexts. 31 

2. Here, we present a pluralistic approach aimed at quantifying heterogeneity by introducing 32 

complementary measures, each of which decomposes (stratifies) heterogeneity into within- 33 

and between-study variances. These measures include the traditional I2, stratified I2, the 34 

newly derived coefficient of variation (CV), and its transformation (M). 35 

3. To demonstrate the benefits of the combined use of these measures, we synthesize 512 36 

ecological and evolutionary meta-analyses. We show that total heterogeneity (variance in true 37 

effects) is, on average, ten times larger than statistical noise (sampling variance), contributing 38 

to 91% of the observed variance (median I2 = 91%). This amount of heterogeneity is nearly 39 

twice the size of the mean population effect (median CV = 1.8 and transformation M = 0.6), 40 

indicating substantial variation among studies within a meta-analysis.  41 

4. Surprisingly, despite a high amount of total heterogeneity is present in most meta-analyses, 42 

half of the meta-analyses had low among-study variance (and high within-study variance), 43 

indicating the meta-analytic mean effect could be generalizable across studies.  44 

5. Our meta-synthesis can serve as new benchmarks for the interpretation of heterogeneity. 45 

Our proposed pluralistic approach provides our recommendations on how to quantify and 46 

report heterogeneity. Collectively, we could accelerate the future quest for generalizability of 47 

ecological and evolutionary phenomena via a better understanding of meta-analytic 48 

heterogeneity. 49 



Introduction 50 

Meta-analytic modelling is widely used to test ecological and evolutionary hypotheses and 51 

informing conservation and environmental policies (Gurevitch et al. 2018). This feat is 52 

accomplished through one or more of three procedures. Firstly, meta-analysis quantitatively 53 

estimates the mean population effect (meta-analytic mean effect size) across effect sizes 54 

sampled from different contexts (Nakagawa & Santos 2012; Noble et al. 2022; Yang et al. 55 

2022), characterising the central tendency of a focal ecological and evolutionary effect. 56 

Secondly, effect modifiers or moderators explaining variation in effect sizes are identified 57 

(context-specific effects; Nakagawa & Santos 2012). Third, meta-analysis can quantify 58 

variability in study outcomes, the “heterogeneity” among effect sizes. Heterogeneity helps 59 

indicate the degree of inconsistency or ‘context dependence’ of study findings, with high 60 

heterogeneity indicating high variability among effect sizes that underpin the mean 61 

population effect. . High heterogeneity thus precludes generality of the mean effect size, and 62 

signals a need to further identify the drivers of effect size variation. Without quantifying 63 

heterogeneity, it is difficult to interpret both the overall trends and context-specific effects 64 

(Senior et al. 2016).  65 

 66 

While meta-analyses of a collection of studies using similar protocols for single species have 67 

clear interpretations, the interpretation of average population effects across diverse taxonomic 68 

groups and spatiotemporal contexts can be problematic. However, ecologists and 69 

evolutionary biologists often either explicitly or implicitly interpret the mean population 70 

effect and context-specific effects as consistent across contexts (Spake et al. 2022), and thus 71 

transferable to a broad, largely unspecified target context. The mean population effect size is 72 

only generalizable and transferable across the contexts when the meta-analytic evidence pool 73 

does not respond to effect modifiers, leading to low amount of the variability around the true 74 



effect size (i.e., low heterogeneity). Until now, the significance of heterogeneity in 75 

interpreting meta-analytic evidence has been largely overlooked. Indeed, surveys have 76 

revealed that heterogeneity statistics are not routinely reported (Senior et al. 2016; Yang et al. 77 

2022; Nakagawa et al. 2023). 78 

 79 

 80 

Fig. 1: 81 

The interpretation of total 𝐼2 can be ambiguous and can lead to incorrect conclusions about the 82 

magnitude of heterogeneity. (A) A large estimated total 𝐼2 value could be due to small typical 83 

sampling error variances �̅� (i.e., low statistical noise; Equation 3). (B) On the other hand, a large total 84 

𝐼2 value could also result from a large true heterogeneity. Values of 𝜎𝑡𝑜𝑡𝑎𝑙
2  and �̅� were derived from 85 

their empirical distributions based on 512 meta-analyses (see Figs. S1 and S2). Total 𝐼2 values were 86 

calculated using Equations 2 and 3. High, medium, and low 𝜎𝑡𝑜𝑡𝑎𝑙
2  (and �̅�) denote the 25%, 50%, and 87 

75% percentiles of their empirical distributions (Table 1). Three horizontal lines denote the 88 

conventional thresholds for the use of 𝐼2 to interpret the magnitude of heterogeneity (Higgins et al. 89 

2003). 90 

 91 

Currently, measuring and interpreting meta-analytic heterogeneity is challenging for two 92 

major reasons. First, no single heterogeneity metric provides a holistic interpretation of 93 

generalizability (Cairns & Prendergast 2022). Currently, the I2 statistic is a popular metric 94 



that quantifies the proportion of variance due to differences between effect sizes rather than 95 

by statistical noise (i.e., sampling variance; Higgins & Thompson 2002; Rücker et al. 2008). 96 

The biological interpretation of I2, however, is ambiguous (IntHout et al. 2016) because a 97 

small absolute heterogeneity can lead to a high I2 due to small statistical noise (see Fig. 1; 98 

Rücker et al. 2008; IntHout et al. 2016; Borenstein et al. 2017). Second, meta-analyses 99 

typically focus on estimating total heterogeneity only (Nakagawa & Santos 2012), despite the 100 

hierarchical nature of real biological data structures (Noble et al. 2022; Nakagawa et al. 101 

2023). Explicitly decomposing effect size heterogeneity across hierarchical levels (i.e., 102 

stratification) enables a more nuanced configurative account of the meta-analytic evidence, 103 

and helps identify contextual factors (Nakagawa & Santos 2012) that drive context 104 

dependence. For example, in a multi-taxon meta-analysis, if stratification of studies by 105 

species yields low heterogeneity at the taxon level, the focal effect still can be generalizable 106 

across taxon (in terms of accounting for within-taxon variation; Fig. 2). This is so, even if the 107 

total heterogeneity remains high (Senior et al. 2016).  108 

 109 

Fig. 2: 110 
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A cross-taxa meta-analysis with a high total variance can have a small amount of species level 111 

heterogeneity. The focal effect is still possible to be generalizable at the species level. The circles 112 

represent the replication of species-specific effects. The red dashed lines denote the meta-analytic 113 

mean effects. See a real example in Extended strategies: Non-phylogenetic and phylogenetic 114 

species-level heterogeneity and generality. 115 

 116 

Here, we present a pluralistic framework designed to quantify heterogeneity, incorporating 117 

two intertwined strategies: stratification and the estimation of complementary measures of 118 

heterogeneity. We begin by introducing a general method for stratifying heterogeneity, which 119 

is applicable to any effect-size metric. We then evaluate commonly used heterogeneity 120 

metrics and propose two sets of new metrics, which capture different dimensions of 121 

heterogeneity and inform cross-context generalizability of the meta-analytic mean effect size. 122 

To ground our framework empirically, we undertake a large-scale synthesis, generating new 123 

benchmarks for interpreting heterogeneity and generalizability (Table 1), leveraging a big 124 

dataset spanning 512 ecological and evolutionary meta-analyses (cf. O'Dea et al. 2021; 125 

Costello & Fox 2022). We also present meta-scientific evidence on (in)congruence between 126 

different heterogeneity metrics, and outline approaches for developing useful extensions of 127 

heterogeneity quantification in phylogenetic contexts. To facilitate researchers in navigating 128 

the intricate landscape of heterogeneity, we conclude by offering practical recommendations 129 

and a tutorial with R functions (https://yefeng0920.github.io/heterogeneity_guide/). The 130 

proposed framework and large-scale synthesis aim to empower researchers in their quest to 131 

unravel the complex patterns underlying the generalizability of ecological and evolutionary 132 

phenomena. 133 

  134 

https://yefeng0920.github.io/heterogeneity_guide/


Methods 135 

Meta-analysis database 136 

The ecological and evolutionary databases used in this study were originally compiled by 137 

Costello & Fox 2022, and  O'Dea et al. 2021. They systematically searched for meta-analysis 138 

papers published in ecological journals, including those from the Ecological Society of 139 

America and journals of the British Ecological Society. Additionally, they supplemented the 140 

database with high-profile journals, such as Nature, and Science. Their systematic search 141 

yielded 522 meta-analysis datasets. We dropped meta-analysis datasets that could not achieve 142 

convergence when fitted to the multilevel model. Convergence could not be reached for ten 143 

meta-analysis datasets, even after adjusting key parameters of the iterative methods to 144 

maximize the log-likelihood function (see below for details). Therefore, our database 145 

contained 512 meta-analysis datasets encompassing 17,770 primary studies and 109,495 146 

effect size estimates. On average, each meta-analysis dataset included 240 effect size 147 

estimates sourced from 40 studies, with median values of 64 and 23, respectively. 148 

 149 

Stratifying heterogeneity using multilevel meta-analytic modelling framework 150 

Data used in meta-analyses often exhibit a complex hierarchical structure (Nakagawa & 151 

Santos 2012; Noble et al. 2017), with paper (or study) identity serving as a typical clustering 152 

variable, forming two strata (or more). Ecological and evolutionary meta-analyses typically 153 

report around eight effect sizes per study (Yang et al. 2023). However, traditional random-154 

effects meta-analytic approaches do not account for heterogeneity driven by such data 155 

stratification (Noble et al. 2022; Yang et al. 2022; Nakagawa et al. 2023), and multi-level 156 

meta-analysis is required to model heterogeneity at different strata or multi-levels in a meta-157 

analysis (see Appendix for the theoretical background). 158 

 159 



In the simplest multilevel model, the effect size estimate 𝐸𝑆[𝑖] is modelled as a combination 160 

of the population mean effect or meta-analytic mean effect size 𝜇, random effects at two 161 

strata (i.e., between- and within-study levels), and statistical noise: 162 

𝐸𝑆[𝑖] = 𝜇 + 𝑢𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] + 𝑢𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] + 𝑒[𝑖], (1) 163 

The typical assumptions for Equation 1 are as follows: (i) between-study-level random effect 164 

𝑢𝑏[𝑗] follows a normal distribution with mean zero and variance 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 : 𝑢𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] ∼165 

𝒩(0, 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 ), (ii) within-study-level random effect 𝑢𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] follows a normal distribution 166 

with mean zero and variance 𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 :  𝑢𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] ∼ 𝒩(0, 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 ), and (iii) sampling error 𝑒[𝑖] 167 

follows a normal distribution with mean zero and variance in effects defined by the sampling 168 

variance (𝑣[𝑖]) associated with each effect size i, such that 𝑒[𝑖] ∼ 𝒩(0, 𝑣[𝑖]). The assumption 169 

of homogeneous variances for the random effects can be relaxed to allow for 170 

heteroscedasticity (Viechtbauer & López‐López 2022). Similarly, the assumption of 171 

independent sampling errors (𝑒[𝑖]) can be relaxed to allow for sampling error covariance 𝑣[𝑖] 172 

(Noble et al. 2017; Yang et al. 2022). In the multilevel meta-analytic modelling framework, 173 

the total observed variance Var[𝐸𝑆[𝑖]] is the sum of the variance of true effects 𝜎𝑡𝑜𝑡𝑎𝑙
2  and the 174 

sampling variance, while the variance of true effects 𝜎𝑡𝑜𝑡𝑎𝑙
2  is the sum of between-study 175 

variance 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and within-study variance 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 . Note that in the context of random-176 

effects model, the between-study variance (the so-called 𝜏2) is treated as the 𝜎𝑡𝑜𝑡𝑎𝑙
2 , while a 177 

multilevel model treats between-study variance as one of the components of the 𝜎𝑡𝑜𝑡𝑎𝑙
2 . 178 

 179 

We used the rma.mv() function from the metafor package (Viechtbauer 2010) to fit all 512 180 

meta-analysis datasets to the three-level meta-analytic model (Equation 1). We employed 181 

restricted maximum likelihood (REML) as the variance estimator and the quasi-Newton 182 

method as the optimizer to maximize the likelihood function over variance estimation 183 



(𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 ), with a threshold of 10-8, a step length of 1, and a maximum iteration 184 

limit of 1000. All models successfully converged under these settings. We confirmed the 185 

identifiability of variance estimation (𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 ) by checking their likelihood 186 

profiles. The R code for model fitting can be accessed at the website 187 

(https://github.com/Yefeng0920/heterogeneity_ecoevo). In the following sections, we will 188 

elaborate on how to use Equation 1 to stratify heterogeneity information for different metrics. 189 

 190 

Complementary measures of heterogeneity 191 

Unstandardised heterogeneity metrics 192 

Cochran’s 𝑄 is a widely used metric for assessing heterogeneity in meta-analyses Cochran 193 

1954. It serves as a test statistic to determine whether the true effects are homogeneous or 194 

not, informing a binary decision as to whether the effect sizes come from a common 195 

underlying population or not (i.e., is there variability around the true effect size?). In contrast, 196 

the variance of true effects (𝜎𝑡𝑜𝑡𝑎𝑙
2 = 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 ) provides a direct measure of 197 

absolute heterogeneity. Equation 1 offers a general way to partition the variance of the 198 

observed effects into sampling error variance, and that of true effects at different strata, such 199 

as between-study (𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 ) and within-study strata (𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 ). By considering additional 200 

strata, such as variation in effects among species or geographical locations, the total variance 201 

in true effects (𝜎𝑡𝑜𝑡𝑎𝑙
2 ) can be further decomposed to assess generalizability at these specific 202 

strata (See Results and Discussion). For example, low variation among species implies 203 

effects are similar, on average, across species. Nonetheless, relying solely on absolute 204 

variance may not provide practical intuition regarding the magnitude of effect heterogeneity. 205 

For example, in a meta-analysis with 𝜎𝑡𝑜𝑡𝑎𝑙
2  = 1, it is unclear whether this amount of variance 206 

is large and meaningful because absolute variance is not unitless and comparable across 207 

effect-size statistics. 208 

https://github.com/Yefeng0920/heterogeneity_ecoevo


 209 

Variance-standardised heterogeneity metrics 210 

The heterogeneity index, 𝐼2 has emerged as the most popular metric as it provides a 211 

standardized measure of heterogeneity that accounts for the scale dependence (i.e., unitless; 212 

Higgins et al. 2003). 𝐼2 is a variance-scaled heterogeneity metric that measures the proportion 213 

of total variance beyond statistical noise (Higgins & Thompson 2002). The total I2 can be 214 

computed by dividing the variance in the true effects (𝜎𝑡𝑜𝑡𝑎𝑙
2 ) by the variance in the observed 215 

effects (Var[𝐸𝑆[𝑖]]), as follows: 216 

𝐼𝑡𝑜𝑡𝑎𝑙
2 =

𝜎𝑡𝑜𝑡𝑎𝑙
2

Var[𝐸𝑆[𝑖]]
=  

𝜎𝑡𝑜𝑡𝑎𝑙
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + �̅�

, (2) 217 

where �̅� represents the “typical” sampling error variance. �̅� can be computed using different 218 

estimators (Takkouche, Cadarso-Suarez & Spiegelman 1999; Cheung 2014), with the 219 

common one being (Higgins & Thompson 2002): 220 

�̅� =  
(𝑘 − 1) ∑ 1 𝑣[𝑖]⁄𝑘

𝑖=1

(∑ 1 𝑣[𝑖]⁄𝑘
𝑖=1 )2 − ∑ 1 𝑣[𝑖]

2⁄𝑘
𝑖=1

, (3) 221 

Within the multilevel modelling framework, the total 𝐼2 can be stratified at different strata 222 

(Nakagawa & Santos 2012; Cheung 2014), for example, by estimating 𝐼2 at between-study 223 

(𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 ) and within-study(𝐼𝑤𝑖𝑡ℎ𝑖𝑛

2 ) levels: 224 

𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 =

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

Var[𝐸𝑆[𝑖]]
=  

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + �̅�

, (4) 225 

𝐼𝑤𝑖𝑡ℎ𝑖𝑛
2 =

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2

Var[𝐸𝑆[𝑖]]
=  

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + �̅�

, (5) 226 

However, as mentioned earlier, large 𝐼2 values do not necessarily imply a practically relevant 227 

amount of heterogeneity (see Fig. 1; also see a case study in Extended strategies: Non-228 

phylogenetic and phylogenetic species-level heterogeneity and generality). Statistical 229 

noise can sometimes inflate 𝐼2 values, which is a common occurrence in ecology and 230 



evolutionary meta-analyses. Stratified 𝐼2 metrics range from 0 to 100% (but together sum to 231 

100%), providing a clearer intuition of the relative sources of heterogeneity and aiding in 232 

assessing the drivers of context dependence at different strata. For example, a 𝐼𝑤𝑖𝑡ℎ𝑖𝑛
2  of 90% 233 

means within-study variation accounts for 90% of heterogeneity, therefore, indicating that 234 

within-study level predictors are more likely to drive context dependence. 𝐼2 and its stratified 235 

variants can also be transformed into the ratio of the variance of true effect to typical 236 

sampling error variance (
σ2

�̅�
=

𝐼2

(1− 𝐼2)
 or log (

σ2

�̅�
) = 𝑙𝑜𝑔𝑖𝑡( 𝐼2)), which represents 237 

heterogeneity as a proportion of the statistical noise (sampling error variance). 238 

 239 

Mean-standardised heterogeneity metrics 240 

Evolutionary biologists and behavioural ecologists are familiar with the variance-scaled 241 

metrics such as heritability (ℎ2) and repeatability (𝑅), which are statistically comparable to 242 

the heterogeneity index, 𝐼2. Although less commonly used, there also exists the mean-scaled 243 

counterparts, such as evolvability or the coefficient of variation (𝐶𝑉) for additive genetic 244 

variance (𝐶𝑉𝐴) and 𝐶𝑉 for between-individual variance (𝐶𝑉𝐵) Hansen, Pélabon & Houle 245 

2011. In a similar manner, there exists a mean-scaled heterogeneity metric that can provide a 246 

standardized measure of heterogeneity, denoted as 𝐶𝑉𝑡𝑜𝑡𝑎𝑙, that compares the standard 247 

deviation 𝜎𝑡𝑜𝑡𝑎𝑙  to the magnitude of its mean population effect size (𝜇) (Takkouche, Cadarso-248 

Suarez & Spiegelman 1999): 249 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙 =  
𝜎𝑡𝑜𝑡𝑎𝑙

|𝜇|
, (6) 250 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙 expresses the total heterogeneity as a proportion of the meta-analytic mean effect (or 251 

as a percentage of change in the meta-analytic mean effect when multiplied by 100). 252 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙 = 1 means that the heterogeneity (standard deviation among effects) is equal to mean 253 

Commented [MNL1]: Total? 



population effect. Assuming a normal distribution this means ~16% of effects would have 254 

opposite sign to overall effect. 255 

 256 

To provide a more precise quantification of heterogeneity at different strata, we propose 257 

stratified versions of 𝐶𝑉𝑡𝑜𝑡𝑎𝑙. Under the simplest multilevel model framework (Equation 1), 258 

we propose estimating between-study, 𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛, and within-study, 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛, as follows: 259 

𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =  
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

|𝜇|
, (7) 260 

𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛 =  
𝜎𝑤𝑖𝑡ℎ𝑖𝑛

|𝜇|
, (8) 261 

Notably, these mean-scaled variance metrics have the limitation of becoming arbitrarily large 262 

as the magnitude of meta-analytic mean effect |𝜇| approaches zero (Nakagawa et al. 2015). It 263 

is this limitation that has probably prevented the widespread adoption of the mean-scaled 264 

variance in the field of evolutionary quantitative genetic and animal personality research 265 

(Hansen, Pélabon & Houle 2011; Dochtermann & Royauté 2019). 266 

 267 

Variance-mean-standardised heterogeneity metrics 268 

To remedy the problems of 𝐼𝑡𝑜𝑡𝑎𝑙
2  and 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 as illustrated above, there is a more robust 269 

measure of heterogeneity 𝑀𝑡𝑜𝑡𝑎𝑙 that combines the strengths of mean-scaled and variance-270 

scaled metrics (Cairns & Prendergast 2022): 271 

𝑀𝑡𝑜𝑡𝑎𝑙 =  
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛 + |𝜇|
, (9) 272 

Here we propose between-study (𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛) and within-study (𝑀𝑤𝑖𝑡ℎ𝑖𝑛) versions by 273 

stratifying 𝑀𝑡𝑜𝑡𝑎𝑙, which allows for a more precise quantification of heterogeneity at specific 274 

strata: 275 

𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =  
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡𝑖𝑛 + |𝜇|
, (10) 276 



𝑀𝑤𝑖𝑡ℎ𝑖𝑛 =  
𝜎𝑤𝑖𝑡ℎ𝑖𝑛

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛 + |𝜇|
, (11) 277 

𝑀𝑡𝑜𝑡𝑎𝑙 and its stratified variants are still standardised measures that quantify the size of 278 

heterogeneity relative to the magnitude of meta-analytic mean effect, providing intuitive 279 

interpretation. For example, 𝜎𝑡𝑜𝑡𝑎𝑙 = 0 leads to 𝑀𝑡𝑜𝑡𝑎𝑙 = 0, indicating the population mean 280 

effect is fully generalisable, and replicable across different contexts (see a case study in 281 

Extended strategies: Non-phylogenetic and phylogenetic species-level heterogeneity and 282 

generality). One the other hand, 𝑀𝑡𝑜𝑡𝑎𝑙 and its stratified variants are truncated at one, which 283 

overcomes the issue of 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 when the magnitude of meta-analytic mean effect |𝜇| 284 

approaches zero. Note that there is another mean- and variance-scaled metric, 𝑀𝑡𝑜𝑡𝑎𝑙
2 , where 285 

𝜎𝑡𝑜𝑡𝑎𝑙  and |𝜇| are replaced by their squared values (See Appendix). 𝐶𝑉𝑡𝑜𝑡𝑎𝑙, 𝑀𝑡𝑜𝑡𝑎𝑙 and 286 

𝑀𝑡𝑜𝑡𝑎𝑙
2  can be all be easily stratified using multilevel meta-analytic models.  287 

  288 



Results and Discussion 289 

Empirical patterns of heterogeneity and implications for effect generality  290 

Source of heterogeneity 291 

We used the variance-standardised metric 𝐼2 to measure sources of heterogeneity. The 25th, 292 

50th, and 75th percentiles corresponded to 79%, 91%, and 97% 𝐼𝑡𝑜𝑡𝑎𝑙
2 , respectively (Fig. 3), 293 

which is worth contrasting with the conventional thresholds for interpreting 𝐼2, which 294 

typically categorize heterogeneity as small, moderate, or high at 25%, 50%, and 75% 𝐼𝑡𝑜𝑡𝑎𝑙
2  295 

(Higgins et al. 2003), respectively. Thus, on average (50th percentile), 91% of variance in 296 

effect sizes can be attributed to the ‘true’ biological or methodological differences in research 297 

contexts, and may therefore be explainable using appropriate predictors. It also means that 298 

variation in true effect sizes is ten times larger than typical sampling error variance (
σ2

�̅�
=299 

𝐼2

(1− 𝐼2)
= 10; see Figs. S1 and S2 for empirical distributions of σ2 and �̅�). 300 

 301 

While 𝐼𝑡𝑜𝑡𝑎𝑙
2  displayed a left-skewed and single-modal distribution, its stratified counterparts, 302 

𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 𝐼𝑤𝑖𝑡ℎ𝑖𝑛

2 , demonstrated a right-skewed distribution with multi-modal patterns 303 

(Fig. 3). There was no consistent trend suggesting neither type of stratified heterogeneity 304 

consistently outweighed the other across the 512 meta-analyses (Fig. 3). Intriguingly, 47% 305 

(242 out of 512) of the meta-analyses exhibited smaller between-study level heterogeneity 306 

than within-study level heterogeneity (𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  < 𝐼𝑤𝑖𝑡ℎ𝑖𝑛

2 ; Fig. 4). Within this subset of meta-307 

analyses, the median values for 𝐼𝑡𝑜𝑡𝑎𝑙
2 , 𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2  and 𝐼𝑤𝑖𝑡ℎ𝑖𝑛
2  were 95%, 21%, and 63%, 308 

respectively.  309 

 310 

Our results highlight a key finding often overlooked by traditional heterogeneity 311 

quantification practices: findings from many meta-analyses with high total heterogeneity can 312 



still be generalized at the between-study study level. Such generalization is achievable when 313 

replication is defined as the testing of the null hypothesis at the between-study level, and 314 

when within-study methodological and biological variations can be adequately accounted for 315 

(i.e., within-lab heterogenization; Richter 2017) because some meta-analyses have relatively 316 

low heterogeneity at the between-study study level.  317 

 318 

Fig. 3: 319 

The distribution of heterogeneity estimates derived from 512 meta-analyses was systematically 320 

assessed using pluralistic measures and stratified across different strata. Total heterogeneity measures 321 

(A – C): 𝐼𝑡𝑜𝑡𝑎𝑙
2 , 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 and 𝑀𝑡𝑜𝑡𝑎𝑙. Between-study heterogeneity measures (D – E): 𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2 , 322 



𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 and 𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛. Within-study heterogeneity measures (G – I): 𝐼𝑤𝑖ℎ𝑡𝑖𝑛
2 , 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛 and 323 

𝑀𝑤𝑖𝑡ℎ𝑖𝑛.Three dashed lines correspond to the 25th, 50th, and 75th percentiles, respectively. In panels 324 

B, E, and H, the 𝐶𝑉 was truncated at five for figure clarity, as very large 𝐶𝑉 values can be challenging 325 

to interpret when the meta-analytic mean effect is small. For example, the maximum 𝐶𝑉 observed in 326 

the 512 meta-analyses was 106, which was inflated by a small meta-analytic mean effect of 0.03. For 327 

the figures without truncation, please refer to Figure S3. 328 

 329 

Magnitude of heterogeneity 330 

When the mean-standardised metric 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 was used to quantify the magnitude of 331 

heterogeneity, the calculated 25th, 50th, and 75th percentiles of 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 values were 1.0, 1.8, 332 

and 3.5, respectively (Fig. 3). Therefore, the standard deviation (in this case, heterogeneity) 333 

was, on average (50-th percentile), nearly twice that of the meta-analytic mean effect. The 334 

distributions of both 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 and its stratified versions, 𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛, and 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛, displayed a 335 

right-skewed pattern with a single-mode (Fig. 3). In contrast, the distribution of the mean-336 

variance-standardised metric 𝑀𝑡 exhibited a more symmetrical pattern, with the 25th, 50th, 337 

and 75th percentiles of 𝑀𝑡𝑜𝑡𝑎𝑙 values being 0.5, 0.6, and 0.8, respectively (Fig. 3), albeit with 338 

a minor peak around zero. 339 

 340 

Notably, stratification analysis revealed that 𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛 and 𝑀𝑤𝑖𝑡ℎ𝑖𝑛 had patterns similar to 341 

those observed for 𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 and 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛. This similarity is expected as they can be 342 

mathematically transformed into one another using equations 𝑀𝑡𝑜𝑡𝑎𝑙 =343 

 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 (1 + 𝐶𝑉𝑡𝑜𝑡𝑎𝑙)⁄  and 𝑙𝑜𝑔𝑖𝑡(𝑀𝑡𝑜𝑡𝑎𝑙) = log (𝐶𝑉𝑡𝑜𝑡𝑎𝑙). The median values for both 344 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙 and 𝑀𝑡𝑜𝑡𝑎𝑙 across the 512 meta-analyses signify a high amount of heterogeneity, 345 

thereby warranting a thorough exploration into the drivers influencing such context 346 

dependence. However, stratification of 𝑀𝑡𝑜𝑡𝑎𝑙 also suggests that meta-analyses with high 347 



heterogeneity can possess a considerable likelihood of generality at the between-study level, 348 

given low 𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (as we pointed out above with I2). On average, there was a median 349 

𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 0.3 (SD is 41% of the meta-analytic mean effect) observed in 47% of the meta-350 

analyses (242/512) with smaller 𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛 values compared to 𝑀𝑤𝑖𝑡ℎ𝑖𝑛 values (Fig. 4). 351 

 352 

Fig. 4: 353 



Paired comparison of stratified heterogeneity estimates derived from 512 meta-analyses for three 354 

heterogeneity metrics (A) 𝐼2, (B) coefficient of variation, 𝐶𝑉 and (C) 𝑀. Heterogeneity was stratified 355 

at both ‘between-study’ and ‘within-study’ levels (x-axes). Each point represents an estimate from 356 

each meta-analysis. For panel B, 𝐶𝑉 has been truncated at five for figure clarity. For the full figures 357 

without truncation, please refer to Figure S4. For other details see Fig. 3. 358 

 359 

Meta-scientific evidence on (in)congruence between different metrics 360 

We found only moderate agreement between heterogeneity measured as 𝐼2 and the 361 

alternatives (𝐶𝑉𝑡𝑜𝑡𝑎𝑙: rspearman = 0.32, 95% CI = [0.24, 0.40], 𝑀𝑡𝑜𝑡𝑎𝑙: rspearman = 0.33, 95% CI = 362 

[0.25, 0.41]; Fig. 5). In cases of meta-analyses with 𝐼2 larger than 75% or smaller than 25% 363 

(identified as large and small heterogeneity by conventional benchmarks Higgins et al. 2003), 364 

the disagreement between 𝐼2 and 𝐶𝑉, as well as 𝐼2 and 𝑀, became even more pronounced 365 

(Fig. S5 – S7). In contrast, a near-perfect agreement was observed between 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 and 366 

𝑀𝑡𝑜𝑡𝑎𝑙, as expected (rspearman = 1, 95% CI = [0.99, 1]; Fig. 4). Therefore, cross-meta-analysis 367 

(meta-scientific) evidence suggests that 𝐼2 as a measure of heterogeneity is not consistent 368 

with magnitude measures (𝐶𝑉𝑡𝑜𝑡𝑎𝑙 and 𝑀𝑡𝑜𝑡𝑎𝑙) for ecological and evolutionary data. We also 369 

found that out of the 512 meta-analyses featuring medium to large 𝐼𝑡𝑜𝑡𝑎𝑙
2  values (>50% based 370 

on conventional guidelines), 80 had small 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 (Fig. 5), indicating that more than 20% of 371 

the large 𝐼𝑡𝑜𝑡𝑎𝑙
2  values were caused by small sampling errors rather than larger amount of 372 

heterogeneity. These findings emphasize the importance of considering multiple metrics to 373 

obtain a holistic understanding of heterogeneity in meta-analyses (see Interpreting 374 

heterogeneity and discerning effect generality using a pluralistic framework). 375 



 376 

Fig. 5: 377 

Disagreement (or agreement) between different heterogeneity metrics. For other details see Fig. 3. 378 

The Spearman correlation estimates (rspearman) were: 0.32, 95% CI = [0.24, 0.40] for 𝐼𝑡𝑜𝑡𝑎𝑙
2  and 𝐶𝑉𝑡𝑜𝑡𝑎𝑙, 379 

0.33, 95% CI = [0.25, 0.41] for 𝐼𝑡𝑜𝑡𝑎𝑙
2  and 𝑀𝑡𝑜𝑡𝑎𝑙, and 1, 95% CI = [0.99, 1] for𝑀𝑡𝑜𝑡𝑎𝑙 and 𝐶𝑉𝑡𝑜𝑡𝑎𝑙. 380 

 381 

Extended strategies: Non-phylogenetic and phylogenetic species-level heterogeneity and 382 

generality 383 

In ecological and evolutionary datasets, complexity often arises from the inclusion of diverse 384 

species, temporal, and spatial variations (Gurevitch et al. 2018). To address the challenge of 385 

quantifying heterogeneity in ecological and evolutionary datasets with increasingly complex 386 

structures that often involve high species-level heterogeneity, we propose decomposing 387 

heterogeneity into non-phylogenetic and phylogenetic species level strata. Such an approach 388 

offers a unique opportunity for further disentangling heterogeneity.  389 

 390 

This can be achieved by embracing a flexible random-effects structure within the multilevel 391 

meta-analytic framework (Yang et al. 2022; Nakagawa et al. 2023). To illustrate this, we will 392 

show the principles of how to partition heterogeneity in datasets featuring multiple species 393 

(similar principles can be applied to those involving different temporal and spatial contexts). 394 

In the case of datasets encompassing multiple species, incorporating species-relevant 395 



random-effects terms into Equation 1 would lead to the phylogenetic multilevel meta-analytic 396 

model (Nakagawa & Santos 2012; Cinar, Nakagawa & Viechtbauer 2022): 397 

𝐸𝑆[𝑖] = 𝜇 + 𝑢𝑠𝑝𝑒𝑐𝑖𝑒𝑠[𝑘] + 𝑢𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦[𝑘] + 𝑢𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] + 𝑢𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] + 𝑒[𝑖], (12) 398 

where 𝑢𝑠𝑝𝑒𝑐𝑖𝑒𝑠[𝑘] denotes the non-phylogenetic species random effect, which follows a 399 

normal distribution with mean zero and variance 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠
2 ; 𝑢𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦[𝑘] denotes the 400 

phylogenetic species random effect, which follows a multivariate normal distribution with 401 

mean zero and variance-covariance matrix 𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2 𝑨 (where 𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦

2  is the 402 

phylogenetic species variance, and 𝑨 is phylogenetic correlation matrix based on the distance 403 

between species on a molecular-based phylogenetic tree).  404 

 405 

With Equation 12 in hand, the total variance can be stratified at the phylogenetic and non-406 

phylogenetic species level (𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2  and 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠

2 ). Such stratification allows for the 407 

assessment of the generality of a focal effect within these strata, as illustrated in the empirical 408 

example below. Phylogenetic and non-phylogenetic species-level heterogeneity can be 409 

measured using 𝐼𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2  and 𝐼𝑠𝑝𝑒𝑐𝑖𝑒𝑠

2 , respectively:  410 

𝐼𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2 =  

𝜎𝑝ℎ𝑦𝑝𝑜𝑔𝑒𝑛𝑦
2

𝜎𝑝ℎ𝑦𝑝𝑜𝑔𝑒𝑛𝑦
2 + 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠

2 + 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 + �̅�
, (13) 411 

𝐼𝑠𝑝𝑒𝑐𝑖𝑒𝑠
2 =  

𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠
2

𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2 + 𝜎𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠

2 + 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 + �̅�
, (14) 412 

We derive the alternative stratified version of measures as follows: 413 

𝐶𝑉𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦 =  
𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦

|𝜇|
, (15) 414 

𝐶𝑉𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =  
𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠

|𝜇|
, (16) 415 

𝑀𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦 =  
𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦

𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦 + 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠 + 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛 + |𝜇|
, (17) 416 



𝑀𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =  
𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦 + 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠 + 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛 + |𝜇|
, (18) 417 

 418 

To illustrate the insights gained through these extended measures, we present an empirical 419 

example. We re-analysed a phylogenetic meta-analysis originally conducted by (Risely et al. 420 

Risely, Klaassen & Hoye 2018). Our focus centres on a subset of this analysis, specifically 421 

examining the impact of infection status on the cost (e.g., movement capacity) of migratory 422 

animals. Our re-analysis yielded three observations. Firstly, 𝐼𝑡𝑜𝑡𝑎𝑙
2 = 97% exceeded the 75th 423 

percentile of the empirically derived heterogeneity distribution (Fig. 6 and Table 1). This 424 

suggests a high amount of heterogeneity according to the conventional benchmarks (Higgins 425 

et al. 2003). However, when we employed magnitude metrics to measure heterogeneity, they 426 

fell below the 25th and 50th percentiles of the empirically derived heterogeneity distribution 427 

(𝐶𝑉𝑡𝑜𝑡𝑎𝑙= 1.3 and 𝑀𝑡𝑜𝑡𝑎𝑙= 0.6). This discrepancy was attributed to the small typical sampling 428 

variance �̅�, which was found to be 0.001 in this case, underscoring 𝐼𝑡𝑜𝑡𝑎𝑙
2 ’s limitation of 429 

relying on �̅� to capture relative magnitude of heterogeneity. On the other hand, we emphasise 430 

that the proper interpretation of 𝐼𝑡𝑜𝑡𝑎𝑙
2  is to use it to indicate the source of heterogeneity rather 431 

than the magnitude, as it represents the variance of the true effect in the context of the 432 

variance of the observed effect. For example, 𝐼𝑡𝑜𝑡𝑎𝑙
2 = 97% suggests a heterogeneity can 433 

explain most (97%) of the variability in effect size (only 3% is explained by the sampling 434 

variance, or the heterogeneity is 32 times larger than that of statistical noise).  435 



 436 

Fig. 6: 437 

Heterogeneity quantification and stratification for multiple metrics. (A) The heterogeneity is 438 

quantified using raw variance, (B) source measure 𝐼2, (C) magnitude measure 𝐶𝑉, and (D) magnitude 439 

measure 𝑀, and stratified at phylogenetic (Phylo), non-phylogenetic (Spp), between-study (Between), 440 

and within-study (Within) levels. The source measure 𝐼2 sometimes aligns well with the raw variance, 441 

as observed in this example (A and B). However, we note that 𝐼2 values can be challenging to 442 

interpret as the magnitude of heterogeneity, especially when the typical sampling error variance is 443 

extremely small or large. This challenge is often encountered with certain effect size measures, such 444 

as the log coefficient of variation ratio (lnCVR), as demonstrated in a real example at 445 

https://yefeng0920.github.io/heterogeneity_guide/. 446 

 447 

https://yefeng0920.github.io/heterogeneity_guide/


Secondly, the estimated mean effect was highly likely to be generalizable and replicable at 448 

the between-study- and species-context, if controlling for within-study experimental contexts 449 

(e.g., age, sex, outcomes). This is indicated by the stratification analysis that between-study 450 

level heterogeneity was extremely low, despite a large heterogeneity according to 451 

conventional benchmarks (Higgins et al. 2003). Traditional meta-analytic practices would 452 

overlook these valuable insights, potentially leading to erroneous conclusions. For example, 453 

random-effects meta-analysis shows that this dataset has high study-level heterogeneity 454 

(𝐼𝑡𝑜𝑡𝑎𝑙
2  = 96%; Fig. 4 and Table 1). However, stratification of heterogeneity further indicated 455 

that it was not attributable to the between-study level but, rather, was mainly explained by the 456 

phylogenetic signal (𝐼𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2  = 76%).  457 

  458 



Interpreting heterogeneity and discerning effect generality using a 459 

pluralistic framework 460 

Given that two strategies for heterogeneity quantification (i.e., new metrics and stratification 461 

of heterogeneity) offer distinct insights into empirical patterns of biological generality (Figs. 462 

2 to 7), we propose adopting a pluralistic framework to comprehensively assess generality by 463 

more thoroughly characterising and presenting meta-analytic heterogeneity. Our 464 

recommendations are fourfold (Table 1): 465 

(1) Employ a multilevel meta-analytic framework: We strongly advocate for the use of a 466 

multilevel meta-analytic framework (Equation 1), as opposed to random-effects meta-467 

analysis, for the modelling and stratification of heterogeneity. Additional random 468 

effects can be incorporated into Equation 1 as needed to further dissect heterogeneity. 469 

For example, the application of the phylogenetic multilevel meta-analytic model 470 

(Equation 12) allows for the disentanglement of species-specific heterogeneity. 471 

(2) Quantification and stratification of pluralistic heterogeneity measures: We recommend 472 

transparently reporting all variance components, including typical sampling error 473 

variances in the main text, supplementary tables, or figures (Figs. 6 and 7 and Table 474 

1). As such, pluralistic metrics can be computed using the formula above. 𝐼2, 𝑀 (with 475 

𝐶𝑉 being derivable from 𝑀), and their stratified versions should be reported as the 476 

default measures. These measures provide complementary information, for example, 477 

the source and magnitude (examples see Table 1). We also provide parametric 478 

bootstrapping solutions to estimate the uncertainty (e.g., 95%CI) for each of the 479 

measures.  480 

(3) Check the model parameter identifiability: When models incorporate many random 481 

effects, issues of parameter identifiability may arise, wherein unique variance 482 

estimates that maximize the likelihood function may not exist (see Methods; Raue et 483 



al. 2009). Therefore, we recommend assessing whether variance components are all 484 

identifiable through means such as checking profile likelihood, before proceeding 485 

with heterogeneity quantification and stratification. 486 

(4) Carefully interpret heterogeneity measures: It is important to interpret both total and 487 

stratified heterogeneity to evaluate variation in effect sizes, aiding in the examination 488 

of general rules in the fields of ecology and evolution. However, neither the 489 

conventional benchmarks (25, 50, and 75% as small, moderate and high 490 

heterogeneity; Higgins et al. 2003) nor those of empirically derived distributions 491 

(Table 1 and Fig. 3) are currently suitable for informing interpretation. Nevertheless, 492 

the empirically derived distribution can be employed to interpret heterogeneity within 493 

the context of existing ecological and evolutionary meta-analyses.  494 

 495 

Overall, we argue that ecologists and evolutionary biologists should treat heterogeneity and 496 

the meta-analytic mean effect size with equal importance and discuss both when making 497 

biological conclusions (Higgins, Thompson & Spiegelhalter 2009). Our pluralistic approach 498 

provides a framework to achieve it. 499 

 500 



Table 1  501 

Summary of heterogeneity measures, their stratified counterparts, and empirically derived benchmark values. SMD denotes standardised mean 502 

difference. lnRR denotes log response ratio. Zr denotes Fisher’s r-to-z transformed correlation coefficient. 2-by-2 table denotes often 503 

dichotomous (binary) effect size measures, such as log odds ratio, log risk ratio. Uncommon measures represent less frequently used effect size 504 

measures, such as raw mean difference and regression coefficients.  505 

Types Metrics Interpretation and examples Empirically derived benchmark1 

Test statistic 𝑄 Null-hypothesis test. Statistical test of heterogeneity in effect sizes. Not applicable 

Unstandardisation 𝜎2 

Absolute magnitude measure of heterogeneity. Variance (square of 

standard deviation) of the meta-analytic mean effect (𝜎𝑡𝑜𝑡𝑎𝑙
2 ) and its 

stratification at between- and within-study contexts (𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 ). 

25th, 50th, and 75th percentiles (Fig. S1): 

0.54, 1.25, 3.03 for SMD; 0.11, 0.27, 0.57 for 

lnRR; 0.06, 0.12, 0.25 for Zr; 1.04, 1.20, 2.51 

for the 2-by-2 table; 0.01, 0.04, 0.27 for 

uncommon measures. The percentiles of typical 

sampling variance �̅� are reported at Fig. S2. 

Variance-

standardization 
𝐼2 

Heterogeneity source measure. Proportion of variance not due to 

statistical noise. It measures the source of heterogeneity. For example, 

𝜎𝑡𝑜𝑡𝑎𝑙
2  = 95% denotes that 95% of variation is the result of nuisance 

heterogeneity (i.e., differences in contexts). 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  = 80% and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  

= 15% indicate differences in between-study contexts dominate the 

heterogeneity, pointing towards between-study level predictors as the 

likely drivers of context-dependent variation. 

25th, 50th, and 75th percentiles (Fig. 3): 

79%, 91%, 97% for overall; 78%, 89%, 96% for 

SMD; 88%, 95%, 99% for lnRR; 73%, 87%, 

95% for Zr; 71%, 73%, 89% for the 2-by-2 

table; 74%, 91%, 98% for uncommon measures. 

Mean-standardization 𝐶𝑉 
Heterogeneity magnitude measure. Variance expressed as the proportion 

of the mean effect. It is the measure of the magnitude of heterogeneity in 

25th, 50th, and 75th percentiles (Fig. 3): 



the context of mean effect. For example, 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 = 1.5, 𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 0.8, 

and 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛= 0.5 denote that total, between- and within-study variance 

are 150, 80, and 50% of the mean effect. 

1.0, 1.8, 3.5 for overall; 1.1, 2.0, 3.9 for SMD; 

1.2, 1.9, 3.5 for lnRR; 0.8, 1.7, 2.9 for Zr; 1.2, 

2.2, 2.7 for the 2-by-2 table; 0.7, 1.1, 1.3for 

uncommon measures. 

Variance-mean-

standardization 
𝑀 

Heterogeneity magnitude measure. Variance expressed as the proportion 

of the mean effect and a transformation of 𝐶𝑉 designed with better 

properties. It is the measure of the magnitude of heterogeneity in the 

context of mean effect. The interpretation can be eased by back-

transformation with 𝑀𝑡𝑜𝑡𝑎𝑙 =  𝐶𝑉𝑡𝑜𝑡𝑎𝑙 (1 + 𝐶𝑉𝑡𝑜𝑡𝑎𝑙)⁄ . For example, 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙 = 0.6, 𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 0.5, and 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛= 0.4 denote that total, 

between- and within-study variance are 150, 100, and 67% of the mean 

effect. 

25th, 50th, and 75th percentiles (Fig. 3): 

0.5, 0.7, 0.8 for overall; 0.5, 0.7, 0.8 for SMD; 

0.5, 0.7, 0.8 for lnRR; 0.5, 0.6, 0.8 for Zr; 0.5, 

0.7, 0.7 for the 2-by-2 table; 0.4, 0.5, 0.6 for 

uncommon measures. 

1The distributions and percentiles could be underestimated if publication bias existed. 506 
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Appendix 

Stratifying heterogeneity of hierarchical meta-analytic data 

In this section, we elucidate the theoretical background behind employing a three-level meta-

analytic approach to stratify datasets characterized by three-level hierarchical structure as 

outlined above. Note that the stratification of heterogeneity can be further extended to data 

structures with more than four strata as necessary (see a case study in Extended strategies: 

Non-phylogenetic and phylogenetic species-level heterogeneity and generality). In the 

first-stage modelling procedure, the true (population) effect size 𝜇𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] of j-th study is 

modelled using a normal distribution with expectation 𝜇 and variance 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 , where 𝜇 is 

the population mean effect or overall effect and 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  denotes the extent to which 

𝜇𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] deviates from the overall effect 𝜇 Van den Noortgate et al. 2013; Cheung 2014. 

Moving to the second-stage modelling procedure, the i-th effect size 𝜇𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] within j-th 

study is modelling using a normal distribution with expectation 𝜇𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] and variance 

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 , where 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  represents the extent to which within-study effect 𝜇𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] deviates 

from between-study effect 𝜇𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗]Van den Noortgate et al. 2013; Cheung 2014. In the 

third-stage modelling procedure, the effect size estimate 𝐸𝑆[𝑖] of 𝜇𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] is modelled using a 

normal distribution with expectation 𝜇𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] and sampling error variance𝑣[𝑖]. This 

multilevel modelling framework provides a general way to decompose the variance of effect 

sizes into different strata, for example between- and within-study levels.  

 

From the implementation perspective, effect size estimate 𝐸𝑆[𝑖] is not sequentially modelled 

through the three-stage process but rather directly modelled from the overarching distribution 

with an expectation 𝜇 and variance-covariance matrix 𝑉𝐶𝑉 Van den Noortgate et al. 2013; 

Cheung 2014: 



[

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 + 𝑣[1] ⋯ 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

⋮ ⋱ ⋮
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2 ⋯ 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 + 𝑣[𝑘]

] , (19) 

The meta-analytic model specified with the variance-covariance matrix 𝑉𝐶𝑉 is referred to as 

the multilevel meta-analytic model (Equation 1). 𝑉𝐶𝑉 can be reparametrized as a compound 

symmetry random-effects structure within the framework of multivariate meta-analytic model 

Van den Noortgate et al. 2013; Cheung 2019. 

[

𝜎𝑡𝑜𝑡𝑎𝑙
2  +  𝑣[1] ⋯ 𝜌𝜎𝑡𝑜𝑡𝑎𝑙

2

⋮ ⋱ ⋮
𝜌𝜎𝑡𝑜𝑡𝑎𝑙

2 ⋯ 𝜎𝑡𝑜𝑡𝑎𝑙
2  +  𝑣[𝑘]

] , (20) 

where 𝜎𝑡𝑜𝑡𝑎𝑙
2 = 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2  is the total variance in effect sizes and 𝜌 =

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 𝜎𝑡𝑜𝑡𝑎𝑙

2⁄  denotes intraclass correlation coefficient.  

 

Extended heterogeneity metrics 

In addition to 𝐶𝑉𝑡𝑜𝑡𝑎𝑙, 𝑀𝑡𝑜𝑡𝑎𝑙, and their stratified counterparts (Equations 6 – 11), we 

introduce two related heterogeneity measures. 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 has a potential shortcoming that it is 

not numerically equivalent to the sum of heterogeneity at between- and within-study levels 

(𝐶𝑉𝑡𝑜𝑡𝑎𝑙 ≠  𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛). This is because the total standard deviation 𝜎𝑡 is not equal 

to the sum deviations at each stratum (𝜎𝑡𝑜𝑡𝑎𝑙 ≠ 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛). To address the numerical 

difference, we propose 𝐶𝑉𝑡𝑜𝑡𝑎𝑙
2 , an analogue to 𝐶𝑉𝑡𝑜𝑡𝑎𝑙: 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙
2 =  

𝜎𝑡𝑜𝑡𝑎𝑙
2

𝜇2
, (21) 

Similarly, we propose between-study level and within-study level variants (𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 

𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛
2 ): 

𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 =  

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

𝜇2
, (22) 

𝐶𝑉𝑤𝑖ℎ𝑡𝑖𝑛
2 =  

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2

𝜇2
, (23) 



Following the same principle, 𝑀𝑡𝑜𝑡𝑎𝑙
2  can be obtained Cairns & Prendergast 2022: 

𝑀𝑡𝑜𝑡𝑎𝑙
2 =  

𝜎𝑡𝑜𝑡𝑎𝑙
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + 𝜇2

, (24) 

We further propose between-study level (𝑀𝑡𝑜𝑡𝑎𝑙
2 ) and within-study level (𝑀𝑡𝑜𝑡𝑎𝑙

2 ) counterparts 

as: 

𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 =  

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + 𝜇2

, (25) 

𝑀𝑤𝑖𝑡ℎ𝑖𝑛
2 =  

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + 𝜇2

, (26) 

𝑀𝑡𝑜𝑡𝑎𝑙
2  and its stratified variants (𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2  and 𝑀𝑤𝑖𝑡ℎ𝑖𝑛
2 ) are re-scaling of 𝐶𝑉𝑡𝑜𝑡𝑎𝑙

2  and its 

stratified variants (𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛

2 ). Therefore, they can be converted into each other 

using simple mathematical relationships, such as 𝑀𝑡𝑜𝑡𝑎𝑙
2 −1

= 𝐶𝑉𝑡𝑜𝑡𝑎𝑙
2 −1

+ 1 or 

logit(𝑀𝑡𝑜𝑡𝑎𝑙
2 ) = log (𝐶𝑉𝑡𝑜𝑡𝑎𝑙

2 ).  



References 

Borenstein, M., Higgins, J.P., Hedges, L.V. & Rothstein, H.R. (2017) Basics of meta‐analysis: I2 is not 

an absolute measure of heterogeneity. Research Synthesis Methods, 8, 5-18. 

Cairns, M. & Prendergast, L.A. (2022) On ratio measures of heterogeneity for meta‐analyses. 

Research Synthesis Methods, 13, 28-47. 
Cheung, M.W.-L. (2014) Modeling dependent effect sizes with three-level meta-analyses: a structural 

equation modeling approach. Psychological methods, 19, 211. 
Cheung, M.W.-L. (2019) A guide to conducting a meta-analysis with non-independent effect sizes. 

Neuropsychology review, 29, 387-396. 

Cinar, O., Nakagawa, S. & Viechtbauer, W. (2022) Phylogenetic multilevel meta‐analysis: A 

simulation study on the importance of modelling the phylogeny. Methods in Ecology and 
Evolution, 13, 383-395. 

Cochran, W.G. (1954) The combination of estimates from different experiments. Biometrics, 10, 101-
129. 

Costello, L. & Fox, J.W. (2022) Decline effects are rare in ecology. Ecology, 103, e3680. 
Dochtermann, N.A. & Royauté, R. (2019) The mean matters: going beyond repeatability to interpret 

behavioural variation. Animal Behaviour, 153, 147-150. 
Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. (2018) Meta-analysis and the science of 

research synthesis. Nature, 555, 175-182. 
Hansen, T.F., Pélabon, C. & Houle, D. (2011) Heritability is not evolvability. Evolutionary Biology, 38, 

258-277. 

Higgins, J.P. & Thompson, S.G. (2002) Quantifying heterogeneity in a meta‐analysis. Statistics in 

medicine, 21, 1539-1558. 
Higgins, J.P., Thompson, S.G., Deeks, J.J. & Altman, D.G. (2003) Measuring inconsistency in meta-

analyses. bmj, 327, 557-560. 

Higgins, J.P., Thompson, S.G. & Spiegelhalter, D.J. (2009) A re‐evaluation of random‐effects 

meta‐analysis. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172, 

137-159. 
IntHout, J., Ioannidis, J.P., Rovers, M.M. & Goeman, J.J. (2016) Plea for routinely presenting 

prediction intervals in meta-analysis. BMJ open, 6, e010247. 
Nakagawa, S., Poulin, R., Mengersen, K., Reinhold, K., Engqvist, L., Lagisz, M. & Senior, A.M. (2015) 

Meta‐analysis of variation: ecological and evolutionary applications and beyond. Methods 

in Ecology and Evolution, 6, 143-152. 
Nakagawa, S. & Santos, E.S. (2012) Methodological issues and advances in biological meta-analysis. 

Evolutionary Ecology, 26, 1253-1274. 
Nakagawa, S., Yang, Y., Macartney, E.L., Spake, R. & Lagisz, M. (2023) Quantitative evidence synthesis: 

a practical guide on meta-analysis, meta-regression, and publication bias tests for 
environmental sciences. Environmental Evidence, 12, 8. 

Noble, D.W., Lagisz, M., O'dea, R.E. & Nakagawa, S. (2017) Nonindependence and sensitivity analyses 

in ecological and evolutionary meta‐analyses. Molecular Ecology, 26, 2410-2425. 

Noble, D.W., Pottier, P., Lagisz, M., Burke, S., Drobniak, S.M., O'Dea, R.E. & Nakagawa, S. (2022) Meta-
analytic approaches and effect sizes to account for ‘nuisance heterogeneity’in comparative 
physiology. Journal of Experimental Biology, 225, jeb243225. 

O'Dea, R.E., Lagisz, M., Jennions, M.D., Koricheva, J., Noble, D.W., Parker, T.H., Gurevitch, J., Page, 
M.J., Stewart, G. & Moher, D. (2021) Preferred reporting items for systematic reviews and 

meta‐analyses in ecology and evolutionary biology: a PRISMA extension. Biological reviews, 

96, 1695-1722. 



Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U. & Timmer, J. (2009) 
Structural and practical identifiability analysis of partially observed dynamical models by 
exploiting the profile likelihood. Bioinformatics, 25, 1923-1929. 

Richter, S.H. (2017) Systematic heterogenization for better reproducibility in animal experimentation. 
Lab animal, 46, 343-349. 

Risely, A., Klaassen, M. & Hoye, B.J. (2018) Migratory animals feel the cost of getting sick: A meta‐

analysis across species. Journal of Animal Ecology, 87, 301-314. 
Rücker, G., Schwarzer, G., Carpenter, J.R. & Schumacher, M. (2008) Undue reliance on I2 in assessing 

heterogeneity may mislead. BMC Medical Research Methodology, 8, 1-9. 
Senior, A.M., Grueber, C.E., Kamiya, T., Lagisz, M., O'dwyer, K., Santos, E.S. & Nakagawa, S. (2016) 

Heterogeneity in ecological and evolutionary meta‐analyses: its magnitude and 

implications. Ecology, 97, 3293-3299. 
Spake, R., O’dea, R.E., Nakagawa, S., Doncaster, C.P., Ryo, M., Callaghan, C.T. & Bullock, J.M. (2022) 

Improving quantitative synthesis to achieve generality in ecology. Nature Ecology & 
Evolution, 1-11. 

Takkouche, B., Cadarso-Suarez, C. & Spiegelman, D. (1999) Evaluation of old and new tests of 
heterogeneity in epidemiologic meta-analysis. American journal of epidemiology, 150, 206-
215. 

Van den Noortgate, W., López-López, J.A., Marín-Martínez, F. & Sánchez-Meca, J. (2013) Three-level 
meta-analysis of dependent effect sizes. Behavior research methods, 45, 576-594. 

Viechtbauer, W. (2010) Conducting meta-analyses in R with the metafor package. Journal of 
statistical software, 36, 1-48. 

Viechtbauer, W. & López‐López, J.A. (2022) Location‐scale models for meta‐analysis. Research 

Synthesis Methods, 13, 697-715. 
Yang, Y., Lagisz, M., Williams, C., Pan, J., Noble, D.W. & Nakagawa, S. (2023) Robust point and variance 

estimation for ecological and evolutionary meta-analyses with selective reporting and 
dependent effect sizes. EcoEvoRxiv. 

Yang, Y., Macleod, M., Pan, J., Lagisz, M. & Nakagawa, S. (2022) Advanced methods and 
implementations for the meta-analyses of animal models: Current practices and future 
recommendations. Neuroscience & Biobehavioral Reviews, 105016. 

  



Supplementary Materials 

Table S1, Fig. S1 to Fig. S7. 


