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Abstract 31 

Uncovering general rules enhances the predictive capabilities in ecology and evolution. Meta-32 

analytic approaches play a critical role in this endeavour, examining the extent to which 33 

phenomena can be replicated, generalized, and transferred. However, ecologists and 34 

evolutionary biologists have largely overlooked the role of meta-analytic heterogeneity in 35 

informing generality. To reform this situation, we introduce a pluralistic approach aimed at 36 

quantifying and stratifying various heterogeneity metrics, such as 𝐼2, 𝐶𝑉, 𝑀, and predictive 37 

distribution. These metrics offer complementary information, revealing the source, 38 

magnitude, and visual representation of heterogeneity. Our analysis of 512 meta-analyses 39 

demonstrates that heterogeneity is, on average, ten times larger than statistical noise, 40 

contributing to 91% of the observed variance (median I2 = 91%). This amount of 41 

heterogeneity is nearly twice the size of the meta-analytic mean effect (median CV = 1.8, M = 42 

0.6), indicating substantial total heterogeneity in ecology and evolution. Surprisingly, in half 43 

of the cases, focal effects could generalize across studies even with high total heterogeneity 44 

by controlling for within-study variation. Our synthesis also visualises empirical distributions 45 

of various heterogeneity metrics, potentially serving as new benchmarks for informed 46 

interpretation. Our proposed pluralistic approach will accelerate the future quest for general 47 

rules via meta-analyses.  48 

  49 



Main 50 

Uncovering general patterns holds immense significance in ecology and evolution 1. This 51 

enables scientists, practitioners, and policymakers to transfer findings across diverse systems, 52 

taxonomic groups, and spatiotemporal contexts. This pursuit enhances predictive capabilities 53 

and facilitates more precise management, intervention, and conservation practices. Ecologists 54 

and evolutionary biologists strive to unveil general processes and patterns using a range of 55 

approaches 2. Notably, meta-analytic modelling has emerged as a natural route to assess the 56 

generality or context dependence of an effect of interest. By synthesizing a collection of 57 

conceptual replications 3, meta-analyses can scrutinize the extent to which inferences drawn 58 

from a specific context can be replicated (replication), extended beyond the reference context 59 

to a new context of interest (transferred), and extrapolated to the broader target population 60 

(generalized) as requested by stakeholders 2,4. 61 

 62 

Meta-analyses play a crucial role in evaluating the generality of patterns 3. Firstly, they 63 

quantitatively estimate the population mean effect across studies 5-7, characterising the central 64 

tendency of a focal effect. Secondly, they can identify effect modifiers or moderators 65 

contributing to context dependence 5 and provide tailored estimates for target contexts 4. 66 

Third, meta-analyses can quantify variability in study outcome, the “heterogeneity” among 67 

effect sizes. Without quantifying heterogeneity, it is difficult to interpret both the overall 68 

trends and context-specific effects 8. Heterogeneity can help to indicate the degree of 69 

inconsistency, or context dependence, of study findings, with high heterogeneity signalling a 70 

need to investigate the drivers of the variation. Lower heterogeneity can indicate high 71 

generality. Specifically, the mean effect size is highly transferable across the contexts 72 

characterised by the study pool without the need to consider effect modifiers 2. Until now, the 73 



significance of heterogeneity in informing generality has been largely overlooked. Indeed, 74 

surveys have revealed that heterogeneity statistics are not routinely reported 7-9. 75 

 76 

 77 

Fig. 1: 78 

The interpretation of total 𝐼2 can be ambiguous and can lead to incorrect conclusions about the 79 

magnitude of heterogeneity. (A) A large estimated total 𝐼2 value could be due to small sampling error 80 

variances �̅� (i.e., low statistical noise). (B) On the other hand, a large total 𝐼2 value could also result 81 

from a large true heterogeneity. Values of 𝜎𝑡𝑜𝑡𝑎𝑙
2  and �̅� were derived from their empirical distributions 82 

based on 512 meta-analyses (see Figs. S1 and S2). Total 𝐼2 values were calculated using Equations 2 83 

and 3. High, medium, and low 𝜎𝑡𝑜𝑡𝑎𝑙
2  (and �̅�) denote the 25%, 50%, and 75% percentiles of their 84 

empirical distributions (Table 1). Three horizontal lines denote the conventional thresholds for the use 85 

of 𝐼2 to interpret the magnitude of heterogeneity 10. 86 

 87 

Currently, measuring and interpreting meta-analytic heterogeneity faces two major 88 

limitations. First, no single heterogeneity metric provides a holistic interpretation of 89 

generality 11.Currently, the I2 statistic is a popular metric that quantifies the proportion of 90 

variance due to differences between effect sizes rather than by statistical noise (i.e., sampling 91 

variance) 12,13. The biological interpretation of I2, however, is ambiguous 14 because a small 92 

absolute heterogeneity can lead to a high I2 due to small statistical noise (see Fig. 1) 12,14,15. In 93 



addition, I2 is a point estimate and cannot reflect the whole distribution of context-specific 94 

effects 16. Second, meta-analyses typically focus on estimating total heterogeneity only 5, 95 

despite the hierarchical nature of real biological data structures 6,9. Explicitly decomposing 96 

effect size heterogeneity across hierarchical levels (i.e., stratification) enables a more nuanced 97 

assessment of generality, and helps in identifying contextual factors 5 that drive context 98 

dependence. For example, in a multi-taxon meta-analysis, if stratification of studies by 99 

species yields low heterogeneity at the taxon level, the focal effect still can be generalizable 100 

across taxon (in terms of accounting for within-taxon variation; Fig. 2). This is so, even if the 101 

total heterogeneity remains high 8.  102 

 103 

Fig. 2: 104 

A cross-taxa meta-analysis with a high total variance can have a small amount of species-specific 105 

heterogeneity. The focal effect is still possible to be generalizable at the species level. The circles 106 

represent the replication of species-specific effect. The red dashed lines denote the meta-analytic 107 

mean effects. See a real example in Modelling additional source heterogeneity. 108 

 109 
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Here, we present solutions to the aforementioned limitations, offering pluralistic pathways to 110 

biological generality and transferability. We begin by reformulating the concept of 111 

heterogeneity within the multilevel meta-analytic model and evaluating commonly used 112 

heterogeneity measures. Building on this foundation, we take currently underused 113 

heterogeneity metrics and propose new, stratified versions. After introducing the theoretical 114 

background, we leverage a big dataset spanning 512 meta-analyses from the fields of ecology 115 

and evolutionary biology (cf. 17,18) to unveil empirical patterns of heterogeneity using these 116 

measures and establish meta-scientific evidence on their (in)congruence. Next, we show ways 117 

to visualise measures of heterogeneity using predictive distributions. Finally, we provide 118 

practical recommendations and a tutorial with R functions for researchers to navigate the 119 

complex landscape of heterogeneity (https://yefeng0920.github.io/heterogeneity_guide/). Our 120 

synthesis highlights the significance of adopting a pluralistic framework for a comprehensive 121 

understanding of meta-analytic findings in ecology and evolutionary biology.   122 

https://yefeng0920.github.io/heterogeneity_guide/


Discerning biological generality  123 

Heterogeneity in multilevel meta-analytic modelling framework 124 

Data used in meta-analyses often exhibit a complex hierarchical structure 5,19, with study 125 

identity serving as a typical clustering variable, forming two strata (or more). Ecological and 126 

evolutionary meta-analyses typically report around eight effect sizes per study 20. However, 127 

Traditional random-effects meta-analytic approaches do not account for heterogeneity driven 128 

by such data stratification 6,7,9, and multi-level meta-analysis is required to model 129 

heterogeneity at different strata or multi-levels in a meta-analysis (see Methods). 130 

 131 

In the simplest multilevel model, the effect size estimate 𝐸𝑆[𝑖] is modelled as a combination 132 

of the population mean effect or meta-analytic mean effect size 𝜇, random effects at two 133 

strata (i.e., between- and within-study levels), and statistical noise: 134 

𝐸𝑆[𝑖] = 𝜇 + 𝑢𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] + 𝑢𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] + 𝑒[𝑖], (1) 135 

The typical assumptions for Equation 1 is as follows: (i) between-study-level random effect 136 

𝑢𝑏[𝑗] follows a normal distribution with mean zero and variance 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 : 𝑢𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] ∼137 

𝒩(0, 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 ), (ii) within-study-level random effect 𝑢𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] follows a normal distribution 138 

with mean zero and variance 𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 :  𝑢𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] ∼ 𝒩(0, 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 ), and (iii) sampling error 𝑒[𝑖] 139 

follows a normal distribution with mean zero and variance in effects defined by the sampling 140 

variance (𝑣[𝑖]) associated with each effect size, i, such that 𝑒[𝑖] ∼ 𝒩(0, 𝑣[𝑖]). The assumption 141 

of homogeneous variances for the random effects can be relaxed to allow for 142 

heteroscedasticity 21. Similarly, the assumption of independent sampling errors (𝑒[𝑖]) can be 143 

relaxed to allow for sampling error covariance 𝑣[𝑖] 
7. In the following sections, we will 144 

elaborate on how to stratify heterogeneity information using Equation 1. 145 

 146 



Unstandardised heterogeneity metrics 147 

Cochran’s 𝑄 is a widely used metric for assessing heterogeneity in meta-analyses 22. It serves 148 

as a test statistic to determine whether the true effects are homogeneous or not, informing a 149 

binary decision as to whether the effect sizes come from a common underlying population, or 150 

not (i.e., is heterogeneity ‘non-zero’?). In contrast, the variance of true effects (𝜎𝑡𝑜𝑡𝑎𝑙
2 =151 

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 ) provides a direct measure of absolute heterogeneity. Equation 1 offers a 152 

general way to partition the variance of the observed effects into sampling error variance, and 153 

that of true effects at different strata, such as between-study (𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 ) and within-study 154 

strata (𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 ). By considering additional strata, such as variation in effects among species or 155 

geographical locations, the total variance in true effects (𝜎𝑡𝑜𝑡𝑎𝑙
2 ) can be further decomposed to 156 

assess generality at these specific strata (See Model additional source heterogeneity). For 157 

example, high variation among studies implies lack of generality from one study to another 158 

while low variation among species implies effects are similar, on average, across species. 159 

Nonetheless, relying solely on such absolute variance may not provide practical intuition 160 

regarding the magnitude of heterogeneity. For example, in a meta-analysis with 𝜎𝑡𝑜𝑡𝑎𝑙
2  = 1, it 161 

is unclear whether this amount of variance is large and meaningful because absolute variance 162 

is not unit-free and not comparable across effect size measure used. 163 

 164 

Variance-standardised heterogeneity metrics 165 

The heterogeneity index, 𝐼2 has emerged as the most popular metric as it provides a 166 

standardized measure of heterogeneity that accounts for the scale dependence (i.e., unit-free) 167 

10. 𝐼2 is a variance-scaled heterogeneity metric that measures the proportion of total variance 168 

beyond statistical noise 13. The total I2 can be computed by dividing the variance in the true 169 

effects (𝜎𝑡𝑜𝑡𝑎𝑙
2 ) by the variance in the observed effects (Var[𝐸𝑆[𝑖]]), as follows: 170 



𝐼𝑡𝑜𝑡𝑎𝑙
2 =

𝜎𝑡𝑜𝑡𝑎𝑙
2

Var[𝐸𝑆[𝑖]]
=  

𝜎𝑡𝑜𝑡𝑎𝑙
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + �̅�

, (2) 171 

where �̅� represents the “typical” sampling error variance. �̅� can be computed using different 172 

estimators 23,24, with the common one being 13: 173 

�̅� =  
(𝑘 − 1) ∑ 1 𝑣[𝑖]⁄𝑘

𝑖=1

(∑ 1 𝑣[𝑖]⁄𝑘
𝑖=1 )2 − ∑ 1 𝑣[𝑖]

2⁄𝑘
𝑖=1

, (3) 174 

Within the multilevel modelling framework, the total 𝐼2 can be stratified at different strata 175 

5,24, for example, by estimating 𝐼2 at between-study (𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 ) and within-study(𝐼𝑤𝑖𝑡ℎ𝑖𝑛

2 ) 176 

levels: 177 

𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 =

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

Var[𝐸𝑆[𝑖]]
=  

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + �̅�

, (4) 178 

𝐼𝑤𝑖𝑡ℎ𝑖𝑛
2 =

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

Var[𝐸𝑆[𝑖]]
=  

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + �̅�

, (5) 179 

However, as mentioned earlier, large 𝐼2 values do not necessarily imply a practically relevant 180 

amount of heterogeneity (see Fig. 1; also see a case study in Model additional source of 181 

heterogeneity). Statistical noise can sometimes inflate 𝐼2 values, which is a common 182 

occurrence in ecology and evolutionary meta-analyses (see Empirical patterns of 183 

heterogeneity in ecology and evolution). Stratified 𝐼2 metrics range from 0 to 100% (but 184 

together sum to 100%), providing a clearer intuition of the source of heterogeneity and aiding 185 

in assessing the drivers of context dependence at different strata. For example, a 𝐼𝑤𝑖𝑡ℎ𝑖𝑛
2  of 186 

90% means within-study variation can account for 90% of heterogeneity, therefore, indicating 187 

that within-study level predictors are more likely to drive context dependence. 𝐼2 and its 188 

stratified variants can also be transformed into the ratio of the variance of true effect to 189 

typical sampling error variance (
σ2

�̅�
=

𝐼2

(1− 𝐼2)
 or log (

σ2

�̅�
) = 𝑙𝑜𝑔𝑖𝑡( 𝐼2)), which represents 190 

heterogeneity as a proportion of the statistical noise (sampling error variance). 191 

 192 



Mean-standardised heterogeneity metrics 193 

Evolutionary biologists and behavioural ecologists are familiar with the variance-scaled 194 

metrics such as heritability (ℎ2) and repeatability (𝑅), which are statistically comparable to 195 

the heterogeneity index, 𝐼2. Although less commonly used, there also exists the mean-scaled 196 

counterparts, such as evolvability or the coefficient of variation (𝐶𝑉) for additive genetic 197 

variance (𝐶𝑉𝐴) and 𝐶𝑉 for between-individual variance (𝐶𝑉𝐵) 25. In a similar manner, there 198 

exists a mean-scaled heterogeneity metric that can provide a standardized measure of 199 

heterogeneity, denoted as 𝐶𝑉𝑡𝑜𝑡𝑎𝑙, that compares the standard deviation 𝜎𝑡 to the magnitude 200 

of its population mean (𝜇) 23: 201 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙 =  
𝜎𝑡𝑜𝑡𝑎𝑙

|𝜇|
, (6) 202 

𝐶𝑉𝑡 expresses the total heterogeneity as a proportion of the meta-analytic mean effect (or as a 203 

percentage of change in the meta-analytic mean effect when multiplied by 100). To provide a 204 

more precise quantification of heterogeneity at different strata, we propose stratified versions 205 

of 𝐶𝑉𝑡. Under the simplest multilevel model framework (Equation 1), we propose estimating 206 

between-study, 𝐶𝑉𝑏, and within-study, 𝐶𝑉𝑤, as follows: 207 

𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =  
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

|𝜇|
, (7) 208 

𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛 =  
𝜎𝑤𝑖𝑡ℎ𝑖𝑛

|𝜇|
, (8) 209 

Notably, these mean-scaled variance metrics have the limitation of becoming arbitrarily large 210 

as the magnitude of meta-analytic mean effect |𝜇| approaches zero 26. It is this limitation that 211 

has probably prevented the widespread adoption of the mean-scaled variance in the field of 212 

evolutionary quantitative genetic and animal personality research 25,27. 213 

 214 

Variance-mean-standardised heterogeneity metrics 215 



To remedy the problems of 𝐼2 and 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 as illustrated above, there is a more robust measure 216 

of heterogeneity 𝑀𝑡𝑜𝑡𝑎𝑙 that combines the strengths of mean-scaled and variance-scaled 217 

metrics 11: 218 

𝑀𝑡𝑜𝑡𝑎𝑙 =  
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛 + |𝜇|
, (9) 219 

Here we propose between-study (𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛) and within-study (𝑀𝑤𝑖𝑡ℎ𝑖𝑛) versions by 220 

stratifying 𝑀𝑡, which allows for a more precise quantification of heterogeneity at specific 221 

strata: 222 

𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =  
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡𝑖𝑛 + |𝜇|
, (10) 223 

𝑀𝑤𝑖𝑡ℎ𝑖𝑛 =  
𝜎𝑤𝑖𝑡ℎ𝑖𝑛

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛 + |𝜇|
, (11) 224 

𝑀𝑡 and its stratified variants are still standardised measures that quantify the size of 225 

heterogeneity relative to the magnitude of meta-analytic mean effect, providing intuitive 226 

interpretation. For example, 𝜎𝑡𝑜𝑡𝑎𝑙 = 0 leads to 𝑀𝑡𝑜𝑡𝑎𝑙 = 0, indicating the population mean 227 

effect is fully generalisable, and replicable across different contexts (see a case study in 228 

Model additional source of heterogeneity). One the other hand, 𝑀𝑡𝑜𝑡𝑎𝑙 and its stratified 229 

variants are truncated at one, which overcomes the issue of 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 when the magnitude of 230 

meta-analytic mean effect |𝜇| approaches zero. Note that there is another mean- and variance-231 

scaled metric, 𝑀𝑡𝑜𝑡𝑎𝑙
2 , where 𝜎𝑡𝑜𝑡𝑎𝑙  and |𝜇| are replaced by their squared values (Methods). 232 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙, 𝑀𝑡𝑜𝑡𝑎𝑙 and 𝑀𝑡𝑜𝑡𝑎𝑙
2  can be all be easily stratified using multilevel meta-analytic 233 

models (Model additional source of heterogeneity).  234 

 235 

Empirical patterns of heterogeneity in ecology and evolution  236 

To evaluate empirical patterns in heterogeneity among meta-analytic studies in ecology and 237 

evolution, we applied multilevel meta-analytic models (Equation 1) to 512 published meta-238 



analyses 18,28. For each meta-analysis, we quantified and stratified heterogeneity using 𝐼𝑡𝑜𝑡𝑎𝑙
2 , 239 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙, 𝑀𝑡𝑜𝑡𝑎𝑙. For 𝐼𝑡𝑜𝑡𝑎𝑙
2 , the 25th, 50th, and 75th percentiles corresponded to 79%, 91%, 240 

and 97% 𝐼𝑡𝑜𝑡𝑎𝑙
2 , respectively (Fig. 3), rather than conventional thresholds for interpreting 𝐼2, 241 

which typically categorize heterogeneity as small, moderate, or high at 25%, 50%, and 75% 242 

𝐼𝑡𝑜𝑡𝑎𝑙
2 , respectively 10. This also means, on average, variation in true effect sizes σ2 was ten 243 

times as large as typical sampling error variance (
σ2

�̅�
=

𝐼2

(1− 𝐼2)
= 10; see Figs. S1 and S2 for 244 

empirical distributions of σ2 and �̅�) and 91% of them can be attributed to the ‘true’ biological 245 

or methodological differences in research contexts, and thus are theoretically explainable 246 

using appropriate predictors. 247 

 248 

While 𝐼𝑡𝑜𝑡𝑎𝑙
2  displayed a left-skewed and single-modal distribution, its stratified counterparts, 249 

𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 𝐼𝑤𝑖𝑡ℎ𝑖𝑛

2 , demonstrated a right-skewed distribution with multi-modal patterns. 250 

There was no consistent trend suggesting one type of stratified heterogeneity consistently 251 

outweighed the other across the 512 meta-analyses (Fig. 3). Intriguingly, 47% (242 out of 252 

512) of the meta-analyses exhibited smaller between-study level heterogeneity than within-253 

study level heterogeneity (𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  < 𝐼𝑤𝑖𝑡ℎ𝑖𝑛

2 ; Fig. 4). Within this subset of meta-analyses, the 254 

median values for 𝐼𝑡𝑜𝑡𝑎𝑙
2 , 𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2  and 𝐼𝑤𝑖𝑡ℎ𝑖𝑛
2  were 95%, 21%, and 63%, respectively. It 255 

highlights a key finding often overlooked by traditional heterogeneity quantification 256 

practices: findings from many meta-analyses with high total heterogeneity can still be 257 

generalized at the between-study study level. Such generalization is achievable when 258 

replication is defined as the testing of the null hypothesis at the between-study level, and 259 

when within-study methodological and biological variations can be adequately accounted for 260 

(i.e., within-lab heterogenization 29) because some meta-analyses have relatively low 261 

heterogeneity at the between-study study level.  262 



 263 

Fig. 3: 264 

The distribution of heterogeneity estimates derived from 512 meta-analyses was systematically 265 

assessed using pluralistic measures and stratified across different strata. Total heterogeneity measures 266 

(A – C): 𝐼𝑡𝑜𝑡𝑎𝑙
2 , 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 and 𝑀𝑡𝑜𝑡𝑎𝑙. Between-study heterogeneity measures (D – E): 𝐼𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2 , 267 

𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 and 𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛. Within-study heterogeneity measures (G – I): 𝐼𝑤𝑖ℎ𝑡𝑖𝑛
2 , 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛 and 268 

𝑀𝑤𝑖𝑡ℎ𝑖𝑛.Three dashed lines correspond to the 25th, 50th, and 75th percentiles, respectively. In panels 269 

B, E, and H, the 𝐶𝑉 was truncated at five for figure clarity, as very large 𝐶𝑉 values can be challenging 270 

to interpret when the meta-analytic mean effect is small. For example, the maximum 𝐶𝑉 observed in 271 



the 512 meta-analyses was 106, which was inflated by a small meta-analytic mean effect of 0.03. For 272 

the figures without truncation, please refer to Figure S3. 273 

 274 

When the 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 metric was used to quantify heterogeneity, the calculated 25th, 50th, and 275 

75th percentiles of 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 values were 1.0, 1.8, and 3.5, respectively (Fig. 3). This means 276 

that the standard deviation (in this case, heterogeneity) was, on average, nearly twice that of 277 

the meta-analytic mean effect. The distributions of both 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 and its stratified versions, 278 

𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛, and 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛, displayed a right-skewed pattern with a single-mode. In contrast, the 279 

distribution of 𝑀𝑡 exhibited a more symmetrical pattern, with the 25th, 50th, and 75th 280 

percentiles of 𝑀𝑡𝑜𝑡𝑎𝑙 values being 0.5, 0.6, and 0.8, respectively (Fig. 3), albeit with a minor 281 

peak around zero. Notably, stratification analysis revealed that 𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛 and 𝑀𝑤𝑖𝑡ℎ𝑖𝑛 had 282 

patterns similar to those observed for 𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 and 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛. This similarity is expected as 283 

they can be mathematically transformed into one another using equations 𝑀𝑡𝑜𝑡𝑎𝑙 =284 

 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 (1 + 𝐶𝑉𝑡𝑜𝑡𝑎𝑙)⁄  and 𝑙𝑜𝑔𝑖𝑡(𝑀𝑡𝑜𝑡𝑎𝑙) = log (𝐶𝑉𝑡𝑜𝑡𝑎𝑙). The median values for both 285 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙 and 𝑀𝑡𝑜𝑡𝑎𝑙 across the 512 meta-analyses signify a high amount of heterogeneity, 286 

thereby warranting a thorough exploration into the drivers influencing such context 287 

dependence. However, stratification of 𝑀𝑡𝑜𝑡𝑎𝑙 also suggests that meta-analyses with high 288 

heterogeneity can possess a considerable likelihood of generality at the between-study level, 289 

given low 𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛 (as we pointed out above with I2). On average, there was a median 290 

𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 0.3 (SD is 41% of the meta-analytic mean effect) observed in 47% of the meta-291 

analyses (242/512) with smaller 𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛 values compared to 𝑀𝑤𝑖𝑡ℎ𝑖𝑛 values (Fig. 4). 292 



 293 

Fig. 4: 294 

Paired comparison of stratified heterogeneity estimates derived 512 meta-analyses for three 295 

heterogeneity metrics (A) 𝐼2, (B) coefficient of variation, 𝐶𝑉 and (C) 𝑀. Heterogeneity was stratified 296 

at both ‘between-study’ and ‘within-study’ levels (x-axes). Each point represents an estimate from 297 

each meta-analysis. For panel B, 𝐶𝑉 has been truncated at five for figure clarity. For the full figures 298 

without truncation, please refer to Figure S4. For other details see Fig. 3. 299 

 300 



We found only moderate agreement between heterogeneity measured as 𝐼2 and the 301 

alternatives (𝐶𝑉𝑡𝑜𝑡𝑎𝑙: rspearman = 0.32, 95% CI = [0.24, 0.40], 𝑀𝑡𝑜𝑡𝑎𝑙: rspearman = 0.33, 95% CI = 302 

[0.25, 0.41]; Fig. 5). In cases of meta-analyses with 𝐼2 larger than 75% or smaller than 25% 303 

(identified as large and small heterogeneity by conventional benchmarks 10), the disagreement 304 

between 𝐼2 and 𝐶𝑉, as well as 𝐼2 and 𝑀, became even more pronounced (Fig. S5 – S7). In 305 

contrast, a near-perfect agreement was observed between 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 and 𝑀𝑡𝑜𝑡𝑎𝑙, as expected 306 

(rspearman = 1, 95% CI = [0.99, 1]; Fig. 5). Therefore, cross-meta-analysis (meta-scientific) 307 

evidence suggests that the heterogeneity source measure 𝐼2 is not consistent with the 308 

magnitude measures (𝐶𝑉𝑡𝑜𝑡𝑎𝑙 and 𝑀𝑡𝑜𝑡𝑎𝑙) for ecological and evolutionary data. We also found 309 

that out of the 512 meta-analyses featuring medium to large 𝐼𝑡𝑜𝑡𝑎𝑙
2  values (>50% based on 310 

conventional guidelines), 80 had small 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 (Fig. 5), indicating that more than 20% of the 311 

large 𝐼𝑡𝑜𝑡𝑎𝑙
2  values were caused by small sampling errors rather than larger amount of 312 

heterogeneity. These findings emphasize the importance of considering multiple metrics to 313 

obtain a holistic understanding of heterogeneity in meta-analyses (see A pluralistic 314 

framework). 315 

 316 

Fig. 5: 317 

Disagreement (or agreement) between different heterogeneity metrics. For other details see Fig. 3. 318 

The Spearman correlation estimates (rspearman) were: 0.32, 95% CI = [0.24, 0.40] for 𝐼𝑡𝑜𝑡𝑎𝑙
2  and 𝐶𝑉𝑡𝑜𝑡𝑎𝑙, 319 

0.33, 95% CI = [0.25, 0.41] for 𝐼𝑡𝑜𝑡𝑎𝑙
2  and 𝑀𝑡𝑜𝑡𝑎𝑙, and 1, 95% CI = [0.99, 1] for𝑀𝑡𝑜𝑡𝑎𝑙 and 𝐶𝑉𝑡𝑜𝑡𝑎𝑙. 320 



 321 

Prediction intervals and predictive distributions: visualising heterogeneity 322 

Prediction intervals (PIs) are underreported but insightful in meta-analytic heterogeneity and 323 

generality. Surveys have shown that less than one per cent (1/102) of such studies reported 324 

Pis 30). Pis are derived from the definition of 𝜎𝑡
2 and provide a range within which a future 325 

effect size is predicted to fall with a certain probability 14, often 95% (Fig. 6).  326 

 327 

Fig. 6:  328 

Example of how prediction intervals (PIs) combined with ‘prediction distributions’ (PDs) can be used 329 

to understand effect size heterogeneity and generality. Effect size data are simulated assuming two 330 



effect sizes were collected from a total of n = 50 studies, (k = 100), with a 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  = 0.1, 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  = 331 

0.6 and an overall meta-analytic mean, 𝑢, of 0.5 332 

(https://yefeng0920.github.io/heterogeneity_guide/). Red dashed lines are the upper and lower 333 

95% PI, black dashed line the ‘null’ effect. The orchard plot 30 displays the overall meta-analytic 334 

mean, 95% confidence interval (CI) and 95% PI. The PDs were constructed using t-distribution with k 335 

-1 degrees of freedom, 𝑢 as location parameter, and total or between-study variance along with 336 

sampling variance of around u as scale parameter (see Equation 11). The percentage of effect sizes 337 

beyond a given threshold (i.e., the lower 95% CI) are provided.  338 

 339 

For example, consider a conservation intervention with a mean effect size (SMD) of -0.5 and 340 

95% PI of [-0.2 to -0.8]. This indicates that 95% of future interventions implemented in are 341 

predicted to decrease the conservation outcomes of interest by between 0.2 to 0.8 standard 342 

deviations. Unlike the point estimate of heterogeneity, such as 𝜎𝑡
2, PIs offer an interval to 343 

inform the extent to which the focal effect can be generalized 31. Under Equation 1, 95% PIs 344 

can be computed by 7: 345 

95%PI = 𝜇 ± 𝑡0.975√𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 + SE[𝜇]2, (11) 346 

where 𝑡0.975 denotes the 97.5th percentile of a t-distribution (with k−1 degrees of freedom 32, 347 

where k is the number of sample size), and SE[𝜇] denotes the standard error of the mean 348 

effect 𝜇.  349 

 350 

Despite their usefulness, PIs can create the illusion that all effect sizes within the upper and 351 

lower intervals are equally likely (Fig. 6; see also 33). Therefore, statisticians have 352 

emphasised the importance of visualising the probability density to accurately capture the 353 

likelihood of each effect size within the intervals 34,35. By considering the entire distribution 354 

of true effects while accounting for statistical noise, the predictive distribution (PD) offers a 355 

https://yefeng0920.github.io/heterogeneity_guide/


more holistic measure of heterogeneity and generality. In the Bayesian framework, PDs, 356 

known as posterior distributions, are a natural part of the process, but even frequentist 357 

approaches can adopt PDs (sometimes referred to as “empirical Bayes”) to achieve similar 358 

aims. An advantage of the PD is its ability to calculate the probability that a true effect size 359 

exceeds a biologically or practically meaningful threshold although determining such a 360 

threshold usually requires domain-specific knowledge and expertise. The proportion of true 361 

effect sizes above a specific threshold could serve as a measure of evidence strength and 362 

generality 16. Consider a case that 69% of effect sizes representing the efficacy of a 363 

conservation intervention are predicted to surpass a threshold value representing a practically 364 

significant effect (Fig.6, where we assumed the lower confidence limit representing the 365 

threshold). If assuming similar configurations of study contexts in the sampled future cases, 366 

we can infer that the intervention will achieve this benefit in 69% of future cases, with strong 367 

implications for policymaking.  368 

 369 

Modelling additional sources of heterogeneity 370 

In ecological and evolutionary datasets, complexity often arises from the inclusion of diverse 371 

species, temporal, and spatial variations 3. Such complexity offers a unique opportunity for 372 

further disentangling heterogeneity. This can be achieved by embracing a flexible random-373 

effects structure within the multilevel meta-analytic framework 7,9. To illustrate this, we will 374 

show the principles of how to partition heterogeneity in datasets featuring multiple species 375 

(similar principles can be applied to those involving different temporal and spatial contexts). 376 

In the case of datasets encompassing multiple species, incorporating species-relevant 377 

random-effects terms into Equation 1 would lead to the phylogenetic multilevel meta-analytic 378 

model 5,36: 379 

𝐸𝑆[𝑖] = 𝜇 + 𝑢𝑠𝑝𝑒𝑐𝑖𝑒𝑠[𝑘] + 𝑢𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦[𝑘] + 𝑢𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] + 𝑢𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] + 𝑒[𝑖], (12) 380 



where 𝑢𝑠[𝑘] denotes the non-phylogenetic species random effect, which follows a normal 381 

distribution with mean zero and variance 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠
2 ; 𝑢𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦[𝑘] denotes the phylogenetic 382 

species random effect, which follows a multivariate normal distribution with mean zero and 383 

variance-covariance matrix 𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2 𝑨 (where 𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦

2  is the phylogenetic species 384 

variance, and 𝑨 is phylogenetic correlation matrix based on the distance between species on a 385 

molecular-based phylogenetic tree).  386 

 387 

With Equation 12 in hand, the total variance can be stratified at the phylogenetic and non-388 

phylogenetic species level (𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2  and 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠

2 ). Such stratification allows for the 389 

assessment of the generality of a focal effect within these strata, as illustrated in the empirical 390 

example below. Phylogenetic and non-phylogenetic species-level heterogeneity can be 391 

measured using 𝐼𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2  and 𝐼𝑠𝑝𝑒𝑐𝑖𝑒𝑠

2 , respectively 5:  392 

𝐼𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2 =  

𝜎𝑝ℎ𝑦𝑝𝑜𝑔𝑒𝑛𝑦
2

𝜎𝑝ℎ𝑦𝑝𝑜𝑔𝑒𝑛𝑦
2 + 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠

2 + 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 + �̅�
, (13) 393 

𝐼𝑠𝑝𝑒𝑐𝑖𝑒𝑠
2 =  

𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠
2

𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2 + 𝜎𝑠𝑠𝑝𝑒𝑐𝑖𝑒𝑠

2 + 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 + �̅�
, (14) 394 

We derive the alternative stratified version of measures as follows: 395 

𝐶𝑉𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦 =  
𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦

|𝜇|
, (15) 396 

𝐶𝑉𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =  
𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠

|𝜇|
, (16) 397 

𝑀𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦 =  
𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦

𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦 + 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠 + 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛 + |𝜇|
, (17) 398 

𝑀𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =  
𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝜎𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦 + 𝜎𝑠𝑝𝑒𝑐𝑖𝑒𝑠 + 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛 + |𝜇|
, (18) 399 



Furthermore, the predictive distribution also can be stratified at phylogenetic and non-400 

phylogenetic species-level, which provides a visual means to assess the heterogeneity and 401 

generality at these strata.  402 

 403 

To illustrate the insights gained through these extended measures, we present an empirical 404 

example. We re-analysed a phylogenetic meta-analysis originally conducted by Risely et al. 405 

37. Our focus centres on a subset of this analysis, specifically examining the impact of 406 

infection status on the cost (e.g., movement capacity) of migratory animals. The data and 407 

code for replicating all calculations can be found at 408 

https://yefeng0920.github.io/heterogeneity_guide/. Our re-analysis yielded three 409 

observations. Firstly, 𝐼𝑡𝑜𝑡𝑎𝑙
2 = 97% exceeded the 75th percentile of the empirically derived 410 

heterogeneity distribution (Fig. 7 and Table S1). This suggests a high amount of 411 

heterogeneity according to the conventional benchmarks 10. However, when we employed 412 

magnitude metrics to measure heterogeneity, they fell below between the 25th and 50th 413 

percentiles of the empirically derived heterogeneity distribution (𝐶𝑉𝑡𝑜𝑡𝑎𝑙= 1.3 and 𝑀𝑡𝑜𝑡𝑎𝑙= 414 

0.6). This discrepancy was attributed to the small typical sampling variance �̅�, which was 415 

found to be 0.001 in this case, underscoring 𝐼𝑡𝑜𝑡𝑎𝑙
2 ’s limitation of relying on �̅� to capture 416 

relative magnitude of heterogeneity. On the other hand, we emphasise that the proper 417 

interpretation of 𝐼𝑡𝑜𝑡𝑎𝑙
2  is to use it to indicate the source of heterogeneity rather than the 418 

magnitude, as it represents the variance of the true effect in the context of the variance of the 419 

observed effect. For example, 𝐼𝑡𝑜𝑡𝑎𝑙
2 = 97% suggests a heterogeneity can explain most (97%) 420 

of the variability in effect size (only 3% is explained by the sampling variance, or the 421 

heterogeneity is 32 times larger than that of statistical noise).  422 

https://yefeng0920.github.io/heterogeneity_guide/


 423 

Fig. 7: 424 

Heterogeneity quantification and stratification for multiple metrics. (A) The heterogeneity is 425 

quantified using raw variance, (B) source measure 𝐼2, (C) magnitude measure 𝐶𝑉, and (D) magnitude 426 

measure 𝑀, and stratified at phylogenetic (Phylo), non-phylogenetic (Spp), between-study (Between), 427 

and within-study (Within) levels. The source measure 𝐼2 sometimes aligns well with the raw variance, 428 

as observed in this example (A and B). However, we note that 𝐼2 values can be challenging to 429 

interpret as the magnitude of heterogeneity, especially when the typical sampling error variance is 430 

extremely small or large. This challenge is often encountered with certain effect size measures, such 431 

as the log coefficient of variation ratio (lnCVR), as demonstrated in a real example at 432 

https://yefeng0920.github.io/heterogeneity_guide/. 433 

 434 
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Secondly, the estimated mean effect was highly likely to be generalizable and replicable at 435 

the between-study- and species-context, if controlling for within-study experimental contexts 436 

(e.g., age, sex, outcomes). This is indicated by the stratification analysis that between-study 437 

level heterogeneity was extremely low, despite a large heterogeneity according to 438 

conventional benchmarks 10. Traditional meta-analytic practices would overlook these 439 

valuable insights, potentially leading to erroneous conclusions. For example, random-effects 440 

meta-analysis shows that this dataset has high study-level heterogeneity (𝐼𝑡𝑜𝑡𝑎𝑙
2  = 96%; Fig. 5 441 

and Table S1). However, this amount of heterogeneity was not attributable to the study level 442 

but, rather, was mainly explained by the phylogenetic signal (𝐼𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦
2  = 76%). The 443 

stratified version of PD also provided a clearer visual clue that the phylogenetic signal was 444 

the primary source of heterogeneity (Fig. 7). 445 

 446 

A pluralistic framework 447 

Given that different measures offer distinct insights into heterogeneity and generality (Table 448 

1), we propose adopting a pluralistic framework to comprehensively assess heterogeneity in 449 

ecological and evolutionary meta-analyses. Our recommendations are threefold: 450 

(1) Employing multilevel meta-analytic framework: Provided data allow, we strongly 451 

advocate for the use of a multilevel meta-analytic framework (Equation 1), as 452 

opposed to random-effects meta-analysis, for the modelling and stratification of 453 

heterogeneity. Additional random effects can be incorporated into Equation 1 as 454 

needed to further dissect heterogeneity. For example, the application of the 455 

phylogenetic multilevel meta-analytic model (Equation 12) allows for the 456 

disentanglement of species-specific heterogeneity. 457 

(2) Quantification and stratification of pluralistic heterogeneity measures: We recommend 458 

transparently reporting all variance components, including typical sampling error 459 



variances in the main text, supplementary tables, or figures (Figs. 6 and 7 and Table 460 

1). As such, pluralistic metrics can be computed using the formula above. 𝐼2, 𝑀 (with 461 

𝐶𝑉 being derivable from 𝑀), and their stratified versions should be reported as the 462 

default measures. PI or PD should also be reported to provide a visual identification 463 

of the heterogeneity information. These measures provide complementary 464 

information, for example, the source, magnitude, and visual clue of heterogeneity 465 

(examples see Table 1). We also provide parametric bootstrapping solutions to 466 

estimate the uncertainty (e.g., 95%CI) for each of the measures.  467 

(3) Check the model parameter identifiability: When models incorporate many random 468 

effects, issues of parameter identifiability may arise, wherein unique variance 469 

estimates that maximize the likelihood function may not exist (see Method) 39. 470 

Therefore, we recommend assessing whether variance components are all identifiable 471 

through means such as checking profile likelihood, before proceeding with 472 

heterogeneity quantification and stratification. 473 

(4) Carefully interpret heterogeneity measures: It is crucial to interpret both total and 474 

stratified heterogeneity to evaluate variation in effect sizes, aiding in the examination 475 

of general rules in the fields of ecology and evolution (see a case study in Modelling 476 

additional sources of heterogeneity). However, neither the conventional benchmarks 477 

(25, 50, and 75% as small, moderate and high heterogeneity 10) nor those of 478 

empirically derived distributions (Table 1 and Fig. 3) are currently suitable for 479 

informing interpretation. Nevertheless, the empirically derived distribution can be 480 

employed to interpret heterogeneity within the context of existing ecological and 481 

evolutionary meta-analyses.  482 

 483 



We argue that ecologists and evolutionary biologists should treat heterogeneity and the meta-484 

analytic mean effect size with equal importance. We provide a user-friendly tutorial equipped 485 

with a set of R functions to streamline the qualification, stratification, and interpretation of 486 

heterogeneity https://yefeng0920.github.io/heterogeneity_guide/, empowering ecologists and 487 

evolutionary biologists to discern generality. 488 

 489 
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Table 1  490 

Summary of heterogeneity measures, their stratified counterparts, and empirically derived benchmark values. SMD denotes standardised mean 491 

difference. lnRR denotes log response ratio. Zr denotes Fisher’s r-to-z transformed correlation coefficient. 2-by-2 table denotes often 492 

dichotomous (binary) effect size measures, such as log odds ratio, log risk ratio. Uncommon measures represent less frequently used effect size 493 

measures, such as raw mean difference and regression coefficients.  494 

Types Metrics Interpretation and examples Empirically derived benchmark1 

Test statistic 𝑄 Null-hypothesis test. Statistical test of heterogeneity in effect sizes. Not applicable 

Unstandardisation 𝜎2 

Absolute magnitude measure of heterogeneity. Variance (square of 

standard deviation) of the meta-analytic mean effect (𝜎𝑡𝑜𝑡𝑎𝑙
2 ) and its 

stratification at between- and within-study contexts (𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 ). 

25th, 50th, and 75th percentiles (Fig. S1): 

0.54, 1.25, 3.03 for SMD; 0.11, 0.27, 0.57 for 

lnRR; 0.06, 0.12, 0.25 for Zr; 1.04, 1.20, 2.51 

for the 2-by-2 table; 0.01, 0.04, 0.27 for 

uncommon measures. The percentiles of typical 

sampling variance �̅� are reported at Fig. S2. 

Variance-

standardization 
𝐼2 

Heterogeneity source measure. Proportion of variance not due to 

statistical noise. It measures the source of heterogeneity. For example, 

𝜎𝑡𝑜𝑡𝑎𝑙
2  = 95% denotes that 95% of variation is the result of nuisance 

heterogeneity (i.e., differences in contexts). 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  = 80% and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  

= 15% indicate differences in between-study contexts dominate the 

heterogeneity, pointing towards between-study level predictors as the 

likely drivers of context-dependent variation. 

 

25th, 50th, and 75th percentiles (Fig. 3): 

79%, 91%, 97% for overall; 78%, 89%, 96% for 

SMD; 88%, 95%, 99% for lnRR; 73%, 87%, 

95% for Zr; 71%, 73%, 89% for the 2-by-2 

table; 74%, 91%, 98% for uncommon measures. 

Commented [SN1]: can we put a disclaimer that the 
spread could be underestimated - these values could be 
underestimated if we have publication bias - this is espeically 
so for CV and M 
 
Should discuss with Shinichi 

Commented [YY2R1]: Good point 



Mean-standardization 𝐶𝑉 

Heterogeneity magnitude measure. Variance expressed as the proportion 

of the mean effect. It is the measure of the magnitude of heterogeneity in 

the context of mean effect. For example, 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 = 1.5, 𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 0.8, 

and 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛= 0.5 denote that total, between- and within-study variance 

are 150, 80, and 50% of the mean effect. 

25th, 50th, and 75th percentiles (Fig. 3): 

1.0, 1.8, 3.5 for overall; 1.1, 2.0, 3.9 for SMD; 

1.2, 1.9, 3.5 for lnRR; 0.8, 1.7, 2.9 for Zr; 1.2, 

2.2, 2.7 for the 2-by-2 table; 0.7, 1.1, 1.3for 

uncommon measures. 

Variance-mean-

standardization 
𝑀 

Heterogeneity magnitude measure. Variance expressed as the proportion 

of the mean effect and a transformation of 𝐶𝑉 designed with better 

properties. It is the measure of the magnitude of heterogeneity in the 

context of mean effect. The interpretation can be eased by back-

transformation with 𝑀𝑡𝑜𝑡𝑎𝑙 =  𝐶𝑉𝑡𝑜𝑡𝑎𝑙 (1 + 𝐶𝑉𝑡𝑜𝑡𝑎𝑙)⁄ . For example, 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙 = 0.6, 𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 0.5, and 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛= 0.4 denote that total, 

between- and within-study variance are 150, 100, and 67% of the mean 

effect. 

25th, 50th, and 75th percentiles (Fig. 3): 

0.5, 0.7, 0.8 for overall; 0.5, 0.7, 0.8 for SMD; 

0.5, 0.7, 0.8 for lnRR; 0.5, 0.6, 0.8 for Zr; 0.5, 

0.7, 0.7 for the 2-by-2 table; 0.4, 0.5, 0.6 for 

uncommon measures. 

Visual metric PI & PD 

Heterogeneity visual measure. A plausible interval where a new effect 

size is predicted to fall with a specified level of probability. It can be 

used to visually diagnose the heterogeneity and generality of the mean 

effect. For example, a 95% prediction interval (PI) of [-0.2 to -0.8] 

indicates that 95% range of future effect sizes are expected in studies 

with similar contexts. The whole predictive distribution (PD) can be used 

to derive the probability of a newly observed effect being above a 

biologically meaningful threshold. 

Not applicable 

1The distributions and percentiles could be underestimated if publication bias existed. 495 

 496 



Methods 497 

Meta-analysis database 498 

The ecological and evolutionary database used in this study were originally compiled by 499 

Costello 18, O'Dea 17, and their colleges. They conducted a systematic search for meta-500 

analysis papers published in ecological journals, including those from the Ecological Society 501 

of America and journals of the British Ecological Society. Additionally, they supplemented 502 

the database with high-profile journals, such as Nature, and Science. Their systematic search 503 

yielded 522 meta-analysis datasets. We dropped meta-analysis datasets that could not achieve 504 

convergence when fitted to the multilevel model. Convergence could not be reached for ten 505 

meta-analysis datasets, even after adjusting key parameters of the iterative methods to 506 

maximize the log likelihood function (see below for details). Therefore, our database 507 

contained 512 meta-analysis datasets encompassing 17,770 primary studies and 109,495 508 

effect size estimates. On average, each meta-analysis dataset included 240 effect size 509 

estimates sourced from 40 studies, with median values of 64 and 23, respectively. 510 

 511 

Stratification of hierarchical meta-analytic data 512 

In this section, we elucidate the theoretical background behind employing a three-level meta-513 

analytic approach to stratify datasets characterized by three-level hierarchical structure as 514 

outlined above. Note that the stratification of heterogeneity can be further extended to data 515 

structures with more than four strata as necessary (see a case study in Model additional 516 

source heterogeneity). In the first-stage modelling procedure, the true (population) effect 517 

size 𝜇𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] of j-th study is modelled using a normal distribution with expectation 𝜇 and 518 

variance 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 , where 𝜇 is the population mean effect or overall effect and 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2  519 

denotes the extent to which 𝜇𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] deviates from the overall effect 𝜇 24,40. Moving to the 520 

second-stage modelling procedure, the i-th effect size 𝜇𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] within j-th study is modelling 521 



using a normal distribution with expectation 𝜇𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗] and variance 𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 , where 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2  522 

represents the extent to which within-study effect 𝜇𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] deviates from between-study 523 

effect 𝜇𝑏𝑒𝑡𝑤𝑒𝑒𝑛[𝑗]
24,40. In the third-stage modelling procedure, the effect size estimate 𝐸𝑆[𝑖] of 524 

𝜇𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] is modelled using a normal distribution with expectation 𝜇𝑤𝑖𝑡ℎ𝑖𝑛[𝑖] and sampling 525 

error variance𝑣[𝑖]. This multilevel modelling framework provides a general way to 526 

decompose the variance of effect sizes into different strata, for example between- and within-527 

study levels.  528 

 529 

From the implementation perspective, effect size estimate 𝐸𝑆[𝑖] is not sequentially modelled 530 

through the three-stage process but rather directly modelled from the overarching distribution 531 

with an expectation 𝜇 and variance-covariance matrix 𝑉𝐶𝑉 24,40: 532 

[

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 + 𝑣[1] ⋯ 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

⋮ ⋱ ⋮
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2 ⋯ 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 + 𝑣[𝑘]

] , (19) 533 

The meta-analytic model specified with the variance-covariance matrix 𝑉𝐶𝑉 is referred to as 534 

the multilevel meta-analytic model (Equation 1). 𝑉𝐶𝑉 can be reparametrized as a compound 535 

symmetry random-effects structure within the framework of multivariate meta-analytic model 536 

40,41. 537 

[

𝜎𝑡𝑜𝑡𝑎𝑙
2  +  𝑣[1] ⋯ 𝜌𝜎𝑡𝑜𝑡𝑎𝑙

2

⋮ ⋱ ⋮
𝜌𝜎𝑡𝑜𝑡𝑎𝑙

2 ⋯ 𝜎𝑡𝑜𝑡𝑎𝑙
2  +  𝑣[𝑘]

] , (20) 538 

where 𝜎𝑡𝑜𝑡𝑎𝑙
2 = 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2  is the total variance in effect sizes and 𝜌 =539 

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 𝜎𝑡𝑜𝑡𝑎𝑙

2⁄  denotes intraclass correlation coefficient. We used the rma.mv() function 540 

from the metafor package 42 to fit all 512 meta-analysis datasets to the three-level meta-541 

analytic model (Equation 1). We employed restricted maximum likelihood (REML) as the 542 

variance estimator and the quasi-Newton method as the optimizer to maximize the likelihood 543 



function over variance estimation (𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 ), with a threshold of 10-8, a step 544 

length of 1, and a maximum iteration limit of 1000. All models successfully converged under 545 

these settings. We confirmed the identifiability of variance estimation (𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 𝜎𝑤𝑖𝑡ℎ𝑖𝑛

2 ) 546 

by checking their likelihood profiles. The R code for model fitting can be accessed at the 547 

https://github.com/Yefeng0920/heterogeneity_ecoevo. 548 

 549 

Extended heterogeneity metrics 550 

In addition to 𝐶𝑉𝑡𝑜𝑡𝑎𝑙, 𝑀𝑡𝑜𝑡𝑎𝑙, and their stratified counterparts (Equations 6 – 11), we 551 

introduce two related heterogeneity measures. 𝐶𝑉𝑡𝑜𝑡𝑎𝑙 has a potential shortcoming that it is 552 

not numerically equivalent to the sum of heterogeneity at between- and within-study levels 553 

(𝐶𝑉𝑡𝑜𝑡𝑎𝑙 ≠  𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛). This is because the total standard deviation 𝜎𝑡 is not equal 554 

to the sum deviations at each stratum (𝜎𝑡𝑜𝑡𝑎𝑙 ≠ 𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛 + 𝜎𝑤𝑖𝑡ℎ𝑖𝑛). To address the numerical 555 

difference, we propose 𝐶𝑉𝑡𝑜𝑡𝑎𝑙
2 , an analogue to 𝐶𝑉𝑡𝑜𝑡𝑎𝑙: 556 

𝐶𝑉𝑡𝑜𝑡𝑎𝑙
2 =  

𝜎𝑡𝑜𝑡𝑎𝑙
2

𝜇2
, (21) 557 

Similarly, we propose between-study level and within-study level variants (𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 558 

𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛
2 ): 559 

𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 =  

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

𝜇2
, (22) 560 

𝐶𝑉𝑤𝑖ℎ𝑡𝑖𝑛
2 =  

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2

𝜇2
, (23) 561 

Following the same principle, 𝑀𝑡𝑜𝑡𝑎𝑙
2  can be obtained 11: 562 

𝑀𝑡𝑜𝑡𝑎𝑙
2 =  

𝜎𝑡𝑜𝑡𝑎𝑙
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + 𝜇2

, (24) 563 

We further propose between-study level (𝑀𝑡𝑜𝑡𝑎𝑙
2 ) and within-study level (𝑀𝑡𝑜𝑡𝑎𝑙

2 ) counterparts 564 

as: 565 

https://github.com/Yefeng0920/heterogeneity_ecoevo


𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2 =  

𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + 𝜇2

, (25) 566 

𝑀𝑤𝑖𝑡ℎ𝑖𝑛
2 =  

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2

𝜎𝑡𝑜𝑡𝑎𝑙
2 + 𝜇2

, (26) 567 

𝑀𝑡𝑜𝑡𝑎𝑙
2  and its stratified variants (𝑀𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2  and 𝑀𝑤𝑖𝑡ℎ𝑖𝑛
2 ) are re-scaling of 𝐶𝑉𝑡𝑜𝑡𝑎𝑙

2  and its 568 

stratified variants (𝐶𝑉𝑏𝑒𝑡𝑤𝑒𝑒𝑛
2  and 𝐶𝑉𝑤𝑖𝑡ℎ𝑖𝑛

2 ). Therefore, they can be converted into each other 569 

using simple mathematical relationships, such as 𝑀𝑡𝑜𝑡𝑎𝑙
2 −1

= 𝐶𝑉𝑡𝑜𝑡𝑎𝑙
2 −1

+ 1 or 570 

logit(𝑀𝑡𝑜𝑡𝑎𝑙
2 ) = log (𝐶𝑉𝑡𝑜𝑡𝑎𝑙

2 ).  571 



Data availability 572 

The data needed to reproduce the analyses and figures are archived GitHub repository 573 

https://github.com/Yefeng0920/heterogeneity_ecoevo/tree/main, and will be deposited at 574 

Zenodo after acceptance. 575 

Code availability 576 

The scripts needed to reproduce the analyses and figures are archived GitHub repository 577 

https://github.com/Yefeng0920/heterogeneity_ecoevo/tree/main, and will be deposited at 578 

Zenodo after acceptance. 579 

  580 

https://github.com/Yefeng0920/heterogeneity_ecoevo/tree/main
https://github.com/Yefeng0920/heterogeneity_ecoevo/tree/main


References 581 

1 Lawton, J. H. Are there general laws in ecology? Oikos, 177-192 (1999). 582 
2 Spake, R. et al. Improving quantitative synthesis to achieve generality in ecology. Nature 583 

Ecology & Evolution, 1-11 (2022). 584 
3 Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of 585 

research synthesis. Nature 555, 175-182 (2018). 586 
4 Martin, P. A. et al. Flexible synthesis can deliver more tailored and timely evidence for 587 

research and policy. Proceedings of the National Academy of Sciences 120, e2221911120 588 
(2023). 589 

5 Nakagawa, S. & Santos, E. S. Methodological issues and advances in biological meta-analysis. 590 
Evolutionary Ecology 26, 1253-1274 (2012). 591 

6 Noble, D. W. et al. Meta-analytic approaches and effect sizes to account for ‘nuisance 592 
heterogeneity’in comparative physiology. Journal of Experimental Biology 225, jeb243225 593 
(2022). 594 

7 Yang, Y., Macleod, M., Pan, J., Lagisz, M. & Nakagawa, S. Advanced methods and 595 
implementations for the meta-analyses of animal models: Current practices and future 596 
recommendations. Neuroscience & Biobehavioral Reviews, 105016 (2022). 597 

8 Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta‐analyses: its 598 

magnitude and implications. Ecology 97, 3293-3299 (2016). 599 
9 Nakagawa, S., Yang, Y., Macartney, E. L., Spake, R. & Lagisz, M. Quantitative evidence 600 

synthesis: a practical guide on meta-analysis, meta-regression, and publication bias tests for 601 
environmental sciences. Environmental Evidence 12, 8, doi:10.1186/s13750-023-00301-6 602 
(2023). 603 

10 Higgins, J. P., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-604 
analyses. BMJ 327, 557-560 (2003). 605 

11 Cairns, M. & Prendergast, L. A. On ratio measures of heterogeneity for meta‐analyses. 606 

Research Synthesis Methods 13, 28-47 (2022). 607 
12 Rücker, G., Schwarzer, G., Carpenter, J. R. & Schumacher, M. Undue reliance on I2 in assessing 608 

heterogeneity may mislead. BMC medical research methodology 8, 1-9 (2008). 609 

13 Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta‐analysis. Statistics in 610 

medicine 21, 1539-1558 (2002). 611 
14 IntHout, J., Ioannidis, J. P., Rovers, M. M. & Goeman, J. J. Plea for routinely presenting 612 

prediction intervals in meta-analysis. BMJ open 6, e010247 (2016). 613 

15 Borenstein, M., Higgins, J. P., Hedges, L. V. & Rothstein, H. R. Basics of meta‐analysis: I2 is 614 

not an absolute measure of heterogeneity. Research synthesis methods 8, 5-18 (2017). 615 

16 Mathur, M. B. & VanderWeele, T. J. New metrics for meta‐analyses of heterogeneous 616 

effects. Statistics in Medicine 38, 1336-1342 (2019). 617 

17 O'Dea, R. E. et al. Preferred reporting items for systematic reviews and meta‐analyses in 618 

ecology and evolutionary biology: a PRISMA extension. Biological Reviews 96, 1695-1722 619 
(2021). 620 

18 Costello, L. & Fox, J. W. Decline effects are rare in ecology. Ecology, e3680 (2022). 621 
19 Noble, D. W., Lagisz, M., O'dea, R. E. & Nakagawa, S. Nonindependence and sensitivity 622 

analyses in ecological and evolutionary meta‐analyses. Molecular Ecology 26, 2410-2425 623 

(2017). 624 
20 Yang, Y. et al. Robust point and variance estimation for ecological and evolutionary meta-625 

analyses with selective reporting and dependent effect sizes. EcoEvoRxiv, 626 
doi:https://doi.org/10.32942/X20G6Q (2023). 627 

https://doi.org/10.32942/X20G6Q


21 Viechtbauer, W. & López‐López, J. A. Location‐scale models for meta‐analysis. Research 628 

synthesis methods 13, 697-715 (2022). 629 
22 Cochran, W. G. The combination of estimates from different experiments. Biometrics 10, 101-630 

129 (1954). 631 
23 Takkouche, B., Cadarso-Suarez, C. & Spiegelman, D. Evaluation of old and new tests of 632 

heterogeneity in epidemiologic meta-analysis. American journal of epidemiology 150, 206-633 
215 (1999). 634 

24 Cheung, M. W.-L. Modeling dependent effect sizes with three-level meta-analyses: a 635 
structural equation modeling approach. Psychological Methods 19, 211 (2014). 636 

25 Hansen, T. F., Pélabon, C. & Houle, D. Heritability is not evolvability. Evolutionary Biology 38, 637 
258-277 (2011). 638 

26 Nakagawa, S. et al. Meta‐analysis of variation: ecological and evolutionary applications and 639 

beyond. Methods in Ecology and Evolution 6, 143-152 (2015). 640 
27 Dochtermann, N. A. & Royauté, R. The mean matters: going beyond repeatability to interpret 641 

behavioural variation. Animal Behaviour 153, 147-150 (2019). 642 
28 Yang, Y. et al. Publication bias impacts on effect size, statistical power, and magnitude (Type 643 

M) and sign (Type S) errors in ecology and evolutionary biology. BMC biology 21, 1-20 (2023). 644 
29 Richter, S. H. Systematic heterogenization for better reproducibility in animal 645 

experimentation. Lab animal 46, 343-349 (2017). 646 
30 Nakagawa, S. et al. The orchard plot: Cultivating a forest plot for use in ecology, evolution, 647 

and beyond. Research Synthesis Methods 12, 4-12 (2021). 648 
31 van Aert, R. C., Schmid, C. H., Svensson, D. & Jackson, D. Study specific prediction intervals 649 

for random‐effects meta‐analysis: A tutorial: Prediction intervals in meta‐analysis. 650 

Research synthesis methods 12, 429-447 (2021). 651 

32 Knapp, G. & Hartung, J. Improved tests for a random effects meta‐regression with a single 652 

covariate. Statistics in medicine 22, 2693-2710 (2003). 653 
33 Bishop, J. & Nakagawa, S. Quantifying crop pollinator dependence and its heterogeneity 654 

using multi‐level meta‐analysis. Journal of Applied Ecology 58, 1030-1042 (2021). 655 

34 Jackson, C. H. Displaying uncertainty with shading. The American Statistician 62, 340-347 656 
(2008). 657 

35 Barrowman, N. J. & Myers, R. A. Raindrop plots: a new way to display collections of 658 
likelihoods and distributions. The American Statistician 57, 268-274 (2003). 659 

36 Cinar, O., Nakagawa, S. & Viechtbauer, W. Phylogenetic multilevel meta‐analysis: A 660 

simulation study on the importance of modelling the phylogeny. Methods in Ecology and 661 
Evolution 13, 383-395 (2022). 662 

37 Risely, A., Klaassen, M. & Hoye, B. J. Migratory animals feel the cost of getting sick: A meta‐663 

analysis across species. Journal of Animal Ecology 87, 301-314 (2018). 664 
38 Voelkl, B. et al. Reproducibility of animal research in light of biological variation. Nature 665 

Reviews Neuroscience, 1-10 (2020). 666 
39 Raue, A. et al. Structural and practical identifiability analysis of partially observed dynamical 667 

models by exploiting the profile likelihood. Bioinformatics 25, 1923-1929 (2009). 668 
40 Van den Noortgate, W., López-López, J. A., Marín-Martínez, F. & Sánchez-Meca, J. Three-level 669 

meta-analysis of dependent effect sizes. Behavior research methods 45, 576-594 (2013). 670 
41 Cheung, M. W.-L. A guide to conducting a meta-analysis with non-independent effect sizes. 671 

Neuropsychology review 29, 387-396 (2019). 672 
42 Viechtbauer, W. Conducting meta-analyses in R with the metafor package. Journal of 673 

statistical software 36, 1-48 (2010). 674 

  675 



Acknowledgements 676 

YY was funded by the National Natural Science Foundation of China (NO. 32102597). YY, 677 

SN, and ML were funded by the Australian Research Council Discovery Grant 678 

(DP210100812 & DP230101248). DWAN was supported by an ARC Future Fellowship 679 

(FT220100276). 680 

 681 

Author contributions 682 

YY: Conceptualization; data curation; formal analysis; investigation; methodology; software; 683 

visualization; writing – original draft; writing – review and editing. DWAN: Software; 684 

visualization; writing – review and editing. RS: Writing – review and editing. AMS: Writing 685 

– review and editing. ML: Visualization; writing – review and editing; funding acquisition; 686 

supervision. SN: Conceptualization; investigation; methodology; software; validation; writing 687 

– review and editing; funding acquisition; supervision. All authors approved the final 688 

manuscript. 689 

 690 

Competing interests 691 

All authors declare no competing interests. 692 

 693 

Additional information 694 

Supplementary materials will be available at the online version. 695 


