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Abstract 28 

Estimating quantitative genetic and phenotypic (co)variances is crucial for investigating evolutionary 29 

ecological phenomena such as developmental integration, life history tradeoffs, and niche 30 

specialization, as well as for describing selection and predicting multivariate evolution in the wild. 31 

While most studies assume (co)variances are fixed over short timescales, environmental 32 

heterogeneity can rapidly modify the variation of and associations among organisms’ traits. Here I 33 

extend prior multilevel regression models for quantitative genetic inference (so-called animal models) 34 

to develop a novel covariance reaction norm (CRN) model, which can be used to detect how trait 35 

(co)variances respond to continuous, multivariate, and potentially nonlinear environmental 36 

change, even in the absence of repeated individual measurements or experimental breeding designs. 37 

After introducing the CRN model, I use simulations to validate its implementation for Bayesian 38 

inference in Stan, as well as to compare its performance to standard character state and random 39 

regression approaches. Findings demonstrate superior accuracy and power for detecting 40 

environmental effects on genetic covariance with modest sample sizes.  I then apply the CRN model 41 

to long-term field data on cooperation among meerkats (Suricata suricatta). I find nonlinear effects of 42 

group size on the genetic (co)variances of cooperative behaviors, leading to increased social niche 43 

specialization among foraging and pup feeding versus babysitting tasks in larger groups. Multivariate 44 

gene-by-environment interactions are also observed in response to age, sex, and dominance status. R 45 

code and a tutorial are provided to aid empiricists in applying CRN models to their own datasets. 46 

Keywords: GxE, PxE, plasticity, heterogeneity, context-dependent, eco-evo  47 
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Introduction 48 

Accurately estimating phenotypic and quantitative genetic (co)variances is essential for 49 

understanding multivariate evolution in the wild. For instance, quantifying the (co)variances of 50 

thermoregulatory traits and growth rates is crucial for explaining differential patterns of population 51 

adaptation and divergence in response to climate change (de la Mata et al., 2022; Oomen & Hutchings, 52 

2022; Schaum et al., 2022). Empirical estimates of covariance between life history traits are also 53 

critical for testing theoretical models of putative tradeoffs (negative covariances) between growth, 54 

maintenance, survival, or reproduction (Haave-Audet et al., 2022; Chang et al., 2023), which are 55 

hypothesized to constrain adaptive evolution when these traits are under positive selection (Stearns, 56 

1989; Roff, 1996). Positive genetic covariances may instead accelerate adaptation across 57 

environments, such as in red flour beetles (Tribolium castaneum), where selection for drought 58 

resistance has been found to indirectly select for greater heat resistance via a correlated genetic 59 

response (Koch et al., 2020). Estimating phenotypic (co)variances is similarly important for addressing 60 

various challenges in evolutionary ecology, such as distinguishing between repeatable and stochastic 61 

patterns of trait selection in the wild (Damián et al., 2020; Niels Jeroen Dingemanse et al., 2021; J. S. 62 

Martin, Araya-Ajoy, et al., 2024), testing theoretical models of developmental integration and niche 63 

specialization (Damián et al., 2020; J. S. Martin et al., 2023; Rolian, 2020), as well as for making 64 

evolutionary predictions in systems undergoing rapid environmental change or exhibiting processes 65 

of non-genetic inheritance, such as cultural learning and niche construction (Danchin & Wagner, 2010; 66 

Fogarty & Wade, 2022).  67 

For polygenic and environmentally responsive traits, the quantitative genetic 𝑮 matrix and 68 

phenotypic 𝑷 matrix can be used to describe these multivariate (co)variances and predict their 69 

evolutionary consequences (Lande, 1979; Lande & Arnold, 1983). Various quantities derived from 𝑮 70 

and 𝑷 have also long been of interest in evolutionary genetics and ecology, such as covariance tensors 71 

and principal components (Schluter, 1996; Aguirre et al., 2014) for comparing divergence across 72 
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populations (McGlothlin et al., 2018; Royauté et al., 2020), or canonical axes (Phillips & Arnold, 1989; 73 

Blows & Brooks, 2003) for describing (non)linear selection on correlated phenotypes (Nussey et al., 74 

2007; Dingemanse & Dochtermann, 2013; Brommer et al., 2019). Extensive theoretical work has 75 

investigated the evolution of these matrices under varying genetic, demographic, and environmental 76 

conditions (Arnold et al., 2008). For instance, epistasis is expected to shape 𝑮 by promoting the 77 

evolution of covarying mutational effects across traits (Jones et al., 2014). Migration can drive the 78 

evolution of genetic (co)variances by facilitating gene flow between diverging populations, reshaping 79 

𝑮 in response to the distinct selection pressures on introgressed alleles (Guillaume & Whitlock, 2007). 80 

Ecological conditions inducing correlational selection among multiple traits play a crucial role in the 81 

evolution of genetic covariance, as well as the stability of 𝑮 across time (Jones et al., 2003). Relatedly, 82 

environmental fluctuations within populations can cause correlated shifts in selective optima across 83 

multiple traits, promoting the evolution of 𝑮 by increasing pleiotropy and modularity in trait 84 

expression (do O & Whitlock, 2023). When the genotype-to-phenotype map is highly nonlinear, rapid 85 

and complex evolutionary changes in G may also occur that cannot be straightforwardly predicted by 86 

patterns of selection (Milocco & Salazar-Ciudad, 2022). 87 

While G matrices are expected to rapidly evolve under many scenarios, extensive work has 88 

also investigated and provided empirical support for the micro- and macroevolutionary stability of 𝑮 89 

and 𝑷 across time (Arnold et al., 2008; Delahaie et al., 2017; Estes & Arnold, 2007; Henry & 90 

Stinchcombe, 2023; McGlothlin et al., 2018; Rohner & Berger, 2023), motivating an emphasis on 91 

understanding the role of genetic (co)variances in channeling and constraining multivariate evolution 92 

(Chebib & Guillaume, 2017; Chevin, 2013; Garcia-Costoya et al., 2023; Phillips & Arnold, 1989; 93 

Schluter, 1996; Walsh & Blows, 2009). As a consequence, it is often underappreciated that estimated 94 

genetic and phenotypic (co)variances are the products of underlying genotype- and phenotype-by-95 

environment interactions (Mats Björklund & Gustafsson, 2015; de Jong, 1989; Elgart et al., 2022; J. S. 96 

Martin et al., 2023; J. S. Martin, Westneat, et al., 2024; Pigliucci, 1996; Service, Philip M. & Rose, 1985; 97 

Sara Via & Lande, 1985). When such interactions are relevant for fitness and the benefits of responding 98 
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to environmental variation outweigh the costs of producing a response, plasticity can evolve in 99 

multivariate trait expression (de Jong, 1995; Draghi & Whitlock, 2012; Gavrilets & Scheiner, 1993; 100 

Haaland et al., 2021). Genetic and phenotypic (co)variances may, therefore, also change rapidly across 101 

space and time, as individuals face continuously varying environmental conditions that predictably 102 

shape the expression and selection of their traits (Fig. 1). 103 

Consider, for example, that previous research across a wide range of taxa has shown that 104 

endocrine activity and the resulting hormonal milieu experienced during both prenatal and postnatal 105 

development exhibit dose-dependent effects on the integration (positive genetic covariance) of 106 

various morphological and behavioral phenotypes in adult organisms (e.g. in lizards, Yewers et al., 107 

2017, Wittman et al., 2021; Wittman et al., 2021 ; flies, Carvalho & Mirth, 2015 ; frogs, Lofeu et al., 108 

2017; mice, vom Saal, 1979; Huber et al., 2017; and primates, Montoya et al., 2013; Grebe et al., 2019; 109 

Fig. 1a). As another example, consider that classic theoretical models (van Noordwijk & de Jong, 1986) 110 

predict associations among life history traits to be contingent on the relative importance of among-111 

individual differences in resource acquisition versus allocation. As a consequence, spatial or temporal 112 

heterogeneity in factors such as resource availability are expected to cause continuous variation in 113 

the genetic effects acting to constrain or facilitate ongoing adaptation (Mats Björklund, 2004; Mats 114 

Björklund & Gustafsson, 2015; Haave-Audet et al., 2022); Fig. 1b). Similarly, continuous fluctuations 115 

in selection are expected to occur when the fitness effects of traits vary across functional contexts, as 116 

described by changes in the covariance between relative fitness and phenotype (Russell Lande, 1976). 117 

In many fish, for instance, large body size reduces predation risk and promotes greater mating and 118 

reproductive success (Barneche et al., 2018; Uusi-Heikkilä, 2020); however, commercial harvesting of 119 

fish also tends to target larger individuals (Sharpe & Hendry, 2009; Heino et al., 2015), facilitating 120 

continuous shifts in the strength and direction of selection on size as a function of the intensity of local 121 

harvesting (Fig. 1c). Both theory (Bonner, 2004; Jeanson et al., 2007) and extensive empirical study 122 

(e.g. Karsai & Wenzel, 1998;  Thomas & Elgar, 2003; Ferguson-Gow et al., 2014; Ulrich et al., 2018) 123 

have also demonstrated that division of labor can emerge spontaneously during colony growth in 124 
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eusocial species, with workers exhibiting generalist phenotypes at small group sizes (average positive 125 

phenotypic covariance among tasks) but shifting toward specialist phenotypes as group size increases 126 

(negative phenotypic covariance; Fig. 1d). Each of these specific cases is likely subject to further 127 

multivariate environmental interactions, due to e.g. antagonistic effects among hormones (Trumble 128 

et al., 2015; Qi et al., 2019), feedbacks between resource availability and competition (Lankau, 2011; 129 

Koutsidi et al., 2024), fluctuating selection on body size due to local sex ratios and predator densities 130 

(Uusi-Heikkilä, 2020; Jusufovski & Kuparinen, 2020), as well as the role of colony age structure in 131 

shaping division of labor (Huang & Robinson, 1996; Enzmann & Nonacs, 2021). 132 

Modeling such multivariate environmental interactions is a crucial but easily overlooked step 133 

in effectively explaining the ongoing evolution of plastic phenotypes in a rapidly changing world 134 

(Westneat et al., 2019; Hudak & Dybdahl, 2023). Dynamic and multivariate patterns of genotype-by-135 

environment (GxE), phenotype-by-environment (PxE), and fitness-by-environment interaction can be 136 

formally quantified by changes in 𝑮 and 𝑷 matrices across contexts. Important empirical efforts have 137 

been made to investigate the fluctuations in 𝑮 and 𝑷 that result from plasticity in multivariate traits, 138 

as well as potentially rapid microevolution, in response to environmental heterogeneity and ongoing 139 

change in natural populations (e.g. Björklund et al., 2013; Bolund et al., 2015; Wood & Brodie, 2015). 140 

Analytic tools for efficiently inferring these complex patterns have been limited, however, particularly 141 

outside of the laboratory or agricultural contexts, where organisms are often exposed to continuous 142 

and high-dimensional patterns of spatial and temporal variation in their local microhabitats. 143 

Multivariate, multilevel regression models (also known as mixed effects, hierarchical, and random 144 

regression models) are well-established in the literature and widely applied for empirically estimating 145 

𝑮 and 𝑷 (e.g. Nussey et al., 2007; Dingemanse & Dochtermann, 2013; Brommer et al., 2019). 146 

Multivariate animal models—a specific form of generalized multilevel regression model—are 147 

particularly useful for quantitative genetic analysis, as they can take full advantage of naturally 148 

occurring, continuous variation in genetic relatedness and environmental conditions across subjects 149 

(Kruuk, 2004; Wilson et al., 2010). This allows the animal model to provide greater flexibility and 150 
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robustness for describing heritable (co)variation in wild populations, in comparison to classical 151 

methods that rely on the assumptions of balanced breeding experiments or specific kin-class 152 

comparisons (Kruuk & Hadfield, 2007). While current implementations of the multivariate animal 153 

model can be used to investigate environmental effects on trait (co)variances, they remain limited in 154 

their general application to complex environments and for field studies of natural populations. 155 

Therefore, the present paper develops flexible extensions of current methods to better predict 156 

variation in 𝑮 and 𝑷 matrices attributable to continuous, nonlinear, and multivariate environmental 157 

effects, such as those discussion in Fig. 1, even in the absence of specialized breeding designs or 158 

repeated individual measurements.  159 
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Figure 1. Examples of empirical applications for covariance reaction norm models160 

 161 

Footnote. Four simplified examples (a-d) are shown of phenotypic domains (middle column) where 162 
continuous environmental variation (left column) is likely to cause continuous changes in quantitative 163 
genetic (G; top rows) and phenotypic (P; bottom rows) trait covariances, as formally described by 164 
hypothetical covariance reaction norms (CRNs; right column) quantifying patterns of continuous GxE 165 
and PxE across environmental states. Orange lines indicate potential interactions due to multivariate 166 
patterns of GxE and PxE, where the effect of one environmental gradient on trait (co)variation changes 167 
as a function of another environmental factor. See the main text for a detailed description of each 168 
scenario and Eq. 2-3 for a formal description of how such CRNs can be empirically estimated.  169 
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Motivation for a novel method 170 

Current multivariate animal models are particularly well suited for characterizing discrete 171 

changes in trait (co)variances due to categorical environmental effects, such as experimental 172 

conditions (e.g., solitary versus group housing) and developmental stages (e.g. juvenile versus adult) 173 

or discretely binned environmental covariates from the field (e.g. high versus low quality habitats). 174 

This is typically achieved through a so-called character state approach, where separate models are fit 175 

for trait expression in each discrete environmental state and individuals’ additive genetic (breeding) 176 

values are allowed to correlate across models (Lynch & Walsh, 1998; Sara Via & Lande, 1985). 177 

However, as argued above, environmental effects on 𝑷 and 𝑮 matrices will often reflect continuous, 178 

multivariate, and potentially nonlinear processes that are challenging to describe with character state 179 

models (Fig. 1, 2a). These complex dynamics can be interpolated post-hoc from estimates across 180 

discrete states (see Mitchell & Houslay, 2021 for a detailed treatment). However, this strategy will 181 

often require prohibitively large sample sizes for accurate inference of complex environmental effects, 182 

due to discretizing the problem into at least 𝑘 = 𝑠
𝑝(𝑝+1)

2
 distinct and independently estimated 183 

(co)variance terms, where p is the number of phenotypes and s is the number of states necessary to 184 

effectively approximate the underlying function (which may be very large for multivariate 185 

environments, Fig. 2a). When appropriate data is available, variation in the rank-order of individuals’ 186 

genetic values can also be quantified. This requires specifying 𝑘 =
𝑠𝑝(𝑠𝑝+1)

2
 genetic covariances 187 

between character states across environments in a full model. Genetic correlations < 1 across 188 

environmental contexts usually indicate heritable variation in plasticity due to GxE (Mitchell & 189 

Houslay, 2021). Consequently, while the character state model is extremely useful for systems 190 

experiencing a small number of environmental contexts, it will tend to have reduced statistical power 191 

for detecting complex functional relationships in more heterogeneous environments. Outside of 192 

controlled experiments, artificial binning of naturally occurring continuous variation will also reduce 193 

statistical power and tend to downwardly bias effect sizes (e.g. Cohen, 1983; MacCallum et al., 2002). 194 
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Qualitative inferential biases can also arise from insufficient sampling of discrete states in the 195 

presence of nonlinear and/or multivariate environments (Fig. 2a). 196 

Mathematically complementary reaction norm models (de Jong, 1995; Lynch & Walsh, 1998; 197 

Nussey et al., 2007) can be used to more directly and parsimoniously describe such continuous 198 

processes, taking full advantage of available environmental information with much fewer parameters. 199 

Multilevel models with random individual slopes are often termed random regression models in 200 

biology (Henderson, 1982), and they provide one common and well-established approach to the 201 

estimation of reaction norms, including continuous patterns of GxE and PxE under specific study 202 

designs. For instance, when experimental breeding is used to observe relatives across a continuous 203 

environmental gradient, such as in a full-sib, half-sib design with dams nested in sires (Falconer & 204 

Mackay, 1996), a random regression animal model can be used to estimate genetic slopes quantifying 205 

how character state (co)variances continuously change across the distinct environments experienced 206 

by siblings. However, these breeding designs may only be practical for a subset of species with 207 

desirable properties for experimental study, such as relatively small body sizes, short life spans, 208 

sessility or small home ranges, and simple mating systems, or those with extensive infrastructure and 209 

resource investment due to their role in biomedical, agricultural, or livestock applications. Given the 210 

large sample sizes necessary to achieve appropriate balancing of relatives across multivariate 211 

environments, these designs also generally rely on discretization of the environment or manipulation 212 

of a single environmental gradient, greatly simplifying the ecological reality experienced by natural 213 

populations. It is, therefore, unfeasible to use this as a general approach for studying multivariate 214 

patterns of GxE, which are likely to occur for many labile behavioral, physiological, and morphological 215 

traits (Fig. 2b). Indeed, many of the most pertinent multivariate causes of GxE and PxE relevant for 216 

explaining development and adaptation in contemporary populations may simply be unfeasible 217 

and/or unethical to experimentally control, such as the interacting effects of predation risk, resource 218 

scarcity, climate change, and anthropogenic disturbance. 219 
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Random regression models can also be applied in the absence of experimental breeding 220 

designs when repeated individual-level measurements are available (Nussey et al., 2007). For 221 

instance, consider a scenario where the genetic or phenotypic (co)variance between behavior and 222 

morphology increases as a function of age and local resource availability. A field study allowing for 223 

repeated observations of the same individuals across ages and resource levels could then be used to 224 

estimate a random regression model and calculate continuous changes in phenotypic and/or genetic 225 

(co)variance between these traits across environments. However, doing so would rely on the 226 

assumption that the (co)variance between random intercepts and slopes is itself constant across 227 

environments. If, for example, the variation in and correlation among individuals’ intercepts and 228 

slopes also changes continuously as a function of age and resource availability, e.g. if younger 229 

individuals show more variable and genetically integrated responses to local resource availability, a 230 

standard random regression model will not accurately predict the total magnitude of GxE or PxE across 231 

environments. 232 

A typical solution in this case would be to discretize age and estimate separate age class-233 

specific (co)variance matrices of individuals’ intercepts and slopes. This strategy falls prey to the same 234 

limitations of discretization discussed above for character state approaches. Discretization can instead 235 

be avoided using interaction effects, such as estimating random slopes for the effect of age x resource 236 

availability on both behavior and morphology. However, this strategy requires repeated sampling 237 

designs that will often be unrealistic and burdensome, particularly for field studies, when quantifying 238 

multivariate environmental causes of GxE and PxE (Fig. 2b). For instance, the (co)variance between 239 

behavior and morphology may also vary continuously as a function of interactions between age, body 240 

size, conspecific density, and resource availability. In the general case, a research team will need to 241 

collect sufficient repeated individual measurements to estimate 𝑘 =
𝑣𝑝(𝑣𝑝+1)

2
 free parameters in a 242 

(co)variance matrix, where 𝑝 is the number of traits and 𝑣 is the number of individual-level parameters 243 

(intercepts and slopes) describing all environmental effects of interest. Such matrices can quickly grow 244 
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quite large, even in simple cases such as a 2nd-order polynomial for two phenotypes, which requires 245 

estimating 𝑘 = 78 free parameters (Fig. 2b). Statistically identifying and reliably estimating such large 246 

matrices of random slopes on high-order interactions will simply be unfeasible for most empirical 247 

datasets (Matuschek et al., 2017). 248 

Overcoming the limitations discussed above will greatly improve empiricists’ ability to 249 

understand complex environmental effects on the development and evolution of complex traits. 250 

Therefore, to address this challenge, I here introduce a ‘covariance reaction norm’ (CRN) approach for 251 

estimating continuous, multivariate, and potentially nonlinear environmental effects on trait 252 

(co)variances, building on and generalizing beyond standard models currently used for investigating 253 

GxE and PxE. This is accomplished by synthesizing character state and random regression approaches 254 

within a broader class of multilevel regression models. After formally outlining the CRN model, I 255 

subsequently validate this model for empirical application with simulations, and then demonstrate its 256 

utility through a worked empirical example using long-term field data on cooperative behavior among 257 

meerkats (Suricata suricatta). Accompanying code and a guided tutorial for implementation of CRN 258 

models in the R statistical environment (R Core Team, 2023) using the Stan statistical programming 259 

language (Carpenter et al., 2017) can be found on Github (see data availability).  260 
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Figure 2. Challenges in estimating nonlinear and multivariate GxE interactions. 261 

 262 

Footnote. Examples are shown of complex environmental effects on the covariance between two traits 𝑧1 and 263 
𝑧2, demonstrating that even in simple cases the CRN model will generally require less free parameters k to 264 
accurately describe population patterns of GxE and PxE than standard approaches in the literature. Link 265 
functions are ignored for simplicity. (a) A nonlinear effect of a single continuous environment 𝑥1 on the 266 
covariance between two traits, where 𝜎𝑧1,𝑧2

= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥
2. The k needed to detect this expected 267 

relationship, without prior knowledge of whether effects occur on trait variances or correlations, are shown for 268 
the CRN model (left) in comparison to a character state approach (right), where a varying number of discrete 269 
environmental states (light blue circles) are used to interpolate the underlying continuous function (dark blue 270 
curve). Red lines indicate biased interpolation resulting from insufficient sampling of the environment: 271 
discretizing to a high and low state (yellow line) results in detecting no change (top-left); sampling low, mid, and 272 
high results in failing to detect nonlinearity, under- or overpredicting change at different levels of the 273 
environment (top-center); failing to sample sufficiently high (or low) environments leads to predicting linear or 274 
monotonic change (top-right); and sampling only high and low environments leads to predicting a non-existent 275 
plateau (bottom-left). If sufficient sampling is done of the entire environmental range (bottom-center), the curve 276 
can be accurately interpolated, but at the cost of needing to independently estimate more than twice as many 277 
parameters as the CRN model. (b) A nonlinear interaction between two continuous environments 𝑥1 and 𝑥2, 278 

where 𝜎𝑧1,𝑧2
= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥 + 𝛽3𝑥1

2 + 𝛽4𝑥2
2 + 𝛽5𝑥1𝑥2. This requires 𝑘 = 18 parameters to characterize 279 

with the CRN, assuming no prior knowledge. Interpolating such processes is very challenging with a character 280 
state approach but can be accomplished with a random regression model, given an appropriate study design to 281 
estimate individual-level intercepts and slopes for both traits across environments. The solid and dashed lines 282 
show two hypothetical individual RNs for 𝑥1 across two levels of 𝑥2 (blue and orange). Interpolating the 283 
population CRN without prior knowledge requires over 4x as many parameters in comparison to the CRN. 284 
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Covariance reaction norms 285 

The animal model is a multilevel regression model that allows for partitioning random 286 

quantitative genetic effects G and environmental effects on phenotypes. Extensive prior work has 287 

provided detailed overview of the animal model and its various extensions (e.g. Nussey et al., 2007; 288 

Wilson et al., 2010; Thomson et al., 2018; Martin & Jaeggi, 2022). Therefore, I focus herein on a highly 289 

simplified presentation of the animal model to highlight novel extensions, as well as to avoid detailed 290 

discussion of general issues in regression analysis such as the inclusion of various kinds of fixed and 291 

random effects. A multivariate animal model can be specified for each of p Gaussian phenotypes 292 

[𝒛𝟏
⊤ , … , 𝒛𝒑

⊤ ]
⊤
 measured for n individuals by 293 

[

𝑔𝑧1
(𝒛𝟏)

⋮
𝑔𝑧𝑝

(𝒛𝒑)
] = [

𝑿𝜷1 + 𝜶𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝜶𝒑 + 𝝐𝒑

] (𝟏. 𝟏) 294 

The functions 𝑔𝑧1
, … , 𝑔𝑧𝑝

 are link functions (e.g. identity, log, logit) that can be used to appropriately 295 

specify both Gaussian and non-Gaussian measurements on a latent linear scale. Linear predictors for 296 

these measurements are estimated with an n x b matrix X for b continuous and/or discrete covariates 297 

(e.g. local density, age, sex, resource abundance, seasonal precipitation and temperature, etc.), and 298 

[𝜷𝟏
⊤ , … , 𝜷𝒑

⊤ ]
⊤
 are b x 1 vectors of trait-specific fixed effect sizes including global intercepts. After 299 

adjusting for these effects, the model estimates trait-specific additive genetic (breeding) values 300 

[𝜶𝟏
⊤ , … , 𝜶𝒑

⊤ ]
⊤
 and residual environmental values [𝝐𝟏

⊤ , … , 𝝐𝒑
⊤ ]

⊤
. Further genetic effects due to dominance 301 

or epistasis can also be parameterized when relevant for the goals of the analysis, along with any other 302 

random intercepts or slopes of interest. If repeated individual-level measurements are available, 303 

residuals can also be further partitioned into permanent and stochastic environmental components. 304 

Trait (co)variances due to additive genetic and residual effects are assumed to be 305 

approximated by multivariate normal distributions 306 
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[

𝒂𝟏

⋮
𝒂𝒑

]~𝑵(𝟎,𝑮⨂𝑨); [

𝝐𝟏

⋮
𝝐𝒑

]~𝑵(𝟎, 𝚺) (𝟏. 𝟐)  307 

With the 𝑮 matrix being scaled using the Kronecker product ⊗ by a relatedness matrix 𝑨 that 308 

quantifies pairwise relatedness among subjects, calculated using standard pedigree methods or 309 

molecular approaches. This basic animal model structure assumes that trait (co)variances described 310 

by 𝑮 are constant across subjects, adjusted for any other fixed and random effects predicting 311 

phenotypic means. The goal is now to relax this assumption by allowing for continuous or discrete 312 

environmental factors to also predict variation in trait (co)variances. 313 

Modeling genetic (co)variances as reaction norms 314 

The 𝑮 matrix can be parameterized using genetic variances 𝜎𝑎
2 and correlations 𝑟𝑎 such that 315 

𝑮: [

𝜎𝑎1
2 ⋯ 𝜎𝑎1,𝑝 

 ⋱ ⋮ 
  𝜎𝑎𝑝

2
] = [

𝜎𝑎1
2 ⋯ 𝑟𝑎1,𝑝

𝜎𝑎1
𝜎𝑎𝑝

 

 ⋱ ⋮ 
  𝜎𝑎𝑝

2
] (𝟏. 𝟑) 316 

Here the genetic covariances 𝜎𝑎1,𝑝
= 𝑟𝑎1,𝑝

𝜎𝑎1
𝜎𝑎𝑝

 are given by the product of genetic correlations and 317 

standard deviations (square roots of the genetic variances). Note that bold symbols are used to 318 

distinguish vectors and matrices from scalars. Separating out the scale of variation 𝜎𝑎
2 for each variable 319 

from their standardized associations 𝑟𝑎 
 is crucial for further expanding the model, as environmental 320 

factors may exhibit independent effects on the variances and correlations of traits, which would 321 

otherwise be confounded together through direct prediction of the covariance. This parameterization 322 

also provides a straightforward solution to ensuring the positive definiteness of the G matrix during 323 

model estimation, as described further in the supplementary material.  324 

With Eq. 1.3, the basic animal model can now be expanded to a covariance reaction norm 325 

(CRN) model by using link functions to predict how genetic variances and correlations change in 326 

response to the same matrix 𝑿 of environmental covariates used to predict phenotypic means (or a 327 
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relevant subset of these predictors). Using the subscript (𝑋𝑛) to denote the 𝑮 matrix predicted from a 328 

CRN in the environmental context measured for subject n  329 

[

𝑔𝑧1
(𝒛𝟏)

⋮
𝑔𝑧𝑝

(𝒛𝒑)
] = [

𝑿𝜷1 + 𝜶(𝑿)𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝜶(𝑿)𝒑 + 𝝐𝒑

] (𝟐) 330 

[

𝒂(𝑿)𝟏

⋮
𝒂(𝑿)𝒑

]~𝑵(𝟎,𝑮(𝑿) ⊗ 𝑨); 𝑮(𝑿𝒏) : [

𝜎𝑎(𝑋𝑛)1
2 ⋯ 𝑟𝑎(𝑋𝑛)1,𝑝

𝜎𝑎(𝑋𝑛)1𝜎𝑎(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎𝑎(𝑋𝑛)𝑝

2
]  331 

[

log(𝝈𝒂(𝑿)𝟏
𝟐 )

⋮

log (𝝈𝒂(𝑿)𝒑
𝟐 )

] = [

𝑿𝜷𝝈𝟏
𝟐

⋮
𝑿𝜷𝝈𝒑

𝟐  

] ;     [

atanh(𝒓𝒂(𝑿)𝟏,𝟐
)

⋮

atanh (𝒓𝒂(𝑿)𝒑−𝟏,𝒑
)

] = [

𝑿𝜷𝒓𝟏

⋮
𝑿𝜷𝒓𝒑−𝟏,𝒑

] 332 

Rather than defining a single genetic variance and set of correlations for each response variable, as in 333 

the standard animal model (Eq. 1), the CRN animal model predicts n 𝑮 matrices 𝑮(𝑿) =334 

(𝑮(𝑿𝟏), … , 𝑮(𝑿𝒏)) each composed of context-specific genetic variances 𝝈𝒂(𝑿)𝒑
𝟐 =335 

[𝜎𝑎(𝑋1)𝑝
2 , … , 𝜎𝑎(𝑋𝑛)𝑝

2 ]′, and correlations 𝒓𝒂(𝑿)𝟏,𝒑
= [𝑟𝑎(𝑋1)1,𝑝

, … , 𝑟𝑎(𝑋𝑛)1,𝑝
]′, which are predicted by the 336 

product of the environmental matrix 𝑿 and the respective trait-specific CRN parameters (additive fixed 337 

effects, including global intercepts) for genetic variances [𝜷
𝝈𝟏

𝟐
⊤ , … , 𝜷

𝝈𝒑
𝟐

⊤ ]
⊤

 and correlations 338 

[𝜷𝒓𝟏,𝟐
⊤ , … , 𝜷𝒓𝒑−𝟏,𝒑

⊤ ]
⊤

. There are, therefore, as many unique 𝑮(𝑿) matrices predicted as the number of 339 

unique multivariate environmental contexts, but this is achieved by estimating a much smaller set of 340 

CRN parameters. Herein I use the term “environmental context” to refer to any specific and unique 341 

combination of values for the given set of variables included in 𝑿. For example, if one is interested in 342 

predicting how average seasonal temperature and precipitation affect the genetic (co)variance 343 

between growth and reproductive traits, each combination of temperature and precipitation values 344 

for a given season will define a different environmental context, with corresponding context-specific 345 

predictions for the expected genetic variances, correlations, and covariances among the traits 346 

measured under these conditions. 347 
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The log and inverse hyperbolic tangent link functions are respectively used to infer the trait-348 

specific CRN parameters defined on the transformed linear scale of genetic variances and correlations. 349 

The link function atanh(𝑟) =
1

2
logit (

𝑟+1

2
) , also known as Fisher’s z-transformation, extends the logit 350 

transformation defined for probability scale values to the scale of correlation coefficients. It is 351 

approximately linear in the range of −0.3 ≤ 𝑟 ≤ 0.3, becoming increasingly sigmoidal in shape for 352 

larger correlation coefficients. The link function log(𝜎2) facilitates linear prediction while ensuring 353 

positive values on the original scale of the necessarily non-zero variance terms. Importantly, this 354 

function implies exponential change in genetic variance 𝝈𝒂(𝑿) 
𝟐 = 𝑒

𝑿𝜷
𝝈 
𝟐  across environments, in 355 

contrast to the quadratic change assumed by standard random regression models where individual 356 

slopes are expressed as Gaussian deviations from linear responses. Given that mean-centering is a 357 

common and generally well-motivated choice in regression analysis (Schielzeth, 2010; but see Mitchell 358 

& Houslay, 2021; Westneat et al., 2020), quadratic change is likely to be an unrealistic assumption for 359 

many traits and environments, as it implies symmetric increases in genetic variance across positive 360 

and negative values. In contrast, exponential functions allow for asymmetric change, such that, for 361 

example, temperature can both rapidly increase and, at the extreme, sharply decrease genetic 362 

variance irrespective of centering, consistent with established relationships for many metabolic and 363 

growth traits (Schulte, 2015). See Eq. S8 and Fig. S2 for an example of individual reaction norms 364 

generating exponential change in genetic variance. An alternative inverse softplus link function can 365 

also be an appropriate choice for genetic variances in the CRN model, as it produces less convex 366 

change on the variance scale in comparison to the more commonly used log link, providing greater 367 

flexibility for prediction (see Fig. S3 and supplementary materials for further discussion). 368 

In the general case, there will be 𝑏𝑝 CRN parameters for genetic variances and 𝑏
𝑝(𝑝−1)

2
 369 

parameters for the genetic correlations, where 𝑏 is the number of columns in 𝑿 (regression 370 

coefficients), resulting in 𝑘 = 𝑏
𝑝(𝑝+1)

2
 total free parameters. In comparison to alternative methods, 371 

the CRN model is expected to greatly reduce the number of parameters required to estimate 372 
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continuous changes in trait (co)variances in the presence of nonlinear effects and multivariate 373 

interactions (Fig. 2). Given that 𝑿 can include binary or categorical predictors, it is important to also 374 

note that the CRN straightforwardly generalizes the character state approach to more complex cases 375 

involving, for example, a combination of interacting continuous and discrete environmental factors. 376 

Any non-zero fixed effects predicting 𝑮(𝑿) provide evidence for gene-by-environment (GxE) 377 

interaction, i.e. the expected effect of individuals’ genotypes on their phenotypes changes as a 378 

function of the environment. Given the assumption that environmental effects are independent of 379 

genetic effects, this GxE necessarily implies plasticity in the phenotype. Direct interpretation of the 380 

CRN fixed effect sizes will generally be challenging due to the distinct scales of link functions used for 381 

genetic variances and correlations. Therefore, once the model is estimated, I encourage researchers 382 

to use model predictions from Eq. 2 for more directly visualizing and quantifying total environmental 383 

effects on the more intuitive scales of genetic variances, correlations, and covariances, where 384 

𝜎𝑎(𝑋𝑛)1,𝑝
= 𝑟𝑎(𝑋𝑛)1,𝑝

𝜎𝑎(𝑋𝑛)1𝜎𝑎(𝑋𝑛)𝑝. A worked example is provided below. When relevant, the same 385 

CRN approach outlined above can also be taken to predict continuous effects on residual or 386 

permanent environmental (co)variances. 387 

A regression analysis involving direct prediction of trait variances is often called a double 388 

hierarchical model (Lee & Nelder, 2006; Rönnegård et al., 2010). The CRN can, therefore, be 389 

conceptualized as a form of double hierarchical animal model flexibly extended for multivariate 390 

prediction of both genetic variances and correlations. The term “double hierarchical” can be 391 

somewhat confusing, given that any distributional parameter could be modeled as a function of 392 

covariates, giving rise to the possibility of triple, quadruple, etc. hierarchical models. Therefore, I 393 

emphasize that the CRN is principally a multilevel model, as this is a more general class extending 394 

beyond the double hierarchical models applied in prior literature. 395 
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Phenotypic CRNs 396 

Empirical studies may lack the genetic information necessary to estimate Eq. 2 or otherwise 397 

be principally interested in estimating phenotypic (co)variances. Without genetic data or repeated 398 

measurements, among- and within-individual patterns of phenotypic (co)variance will be confounded 399 

together, potentially biasing evolutionary predictions with measurement error and ephemeral 400 

environmental effects (Dingemanse et al., 2021; Martin et al., 2024). However, if multiple 401 

measurements are made on the same subjects across time, then repeatable among-individual 402 

differences in phenotype, due to both genetic variation and permanent environmental effects, can be 403 

effectively partitioned from stochastic variation using individual-level random effects. Eq. 2 can be 404 

straightforwardly modified to produce a phenotypic CRN, described by a simplified multivariate 405 

normal distribution 406 

[

𝑔𝑧1
(𝒛𝟏)

⋮
𝑔𝑧𝑝

(𝒛𝒑)
] = [

𝑿𝜷1 + 𝑾𝝁(𝑿)𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝑾𝝁(𝑿)𝒑 + 𝝐𝒑

] (𝟑) 407 

[

𝒖(𝑿)𝟏

⋮
𝒖(𝑿)𝒑

]~𝑵(𝟎,𝑷(𝑿)); 𝑷(𝑿𝒏) : [

𝜎(𝑋𝑛)1
2 ⋯ 𝑟(𝑋𝑛)1,𝑝

𝜎(𝑋𝑛)1𝜎(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎(𝑋𝑛)𝑝

2
] 408 

Here 𝑾 is a n x i matrix indexing repeated measurements for the random intercepts across i individuals 409 

and n total measurements of each phenotype. Note that I use 𝑾 rather than 𝒁 to avoid confusion of 410 

this random effect matrix with the vector of phenotypic measures z. This matrix can also be introduced 411 

to Eq. 2 when repeated measures are used to infer genetic effects. See Eq. S9 for further generalization 412 

to random regression CRN models. The phenotypic random effects [𝝁(𝒙)𝟏
⊤ , … , 𝝁(𝒙)𝒑

⊤ ]
⊤

 are assumed to 413 

be independently distributed among individuals. As with the quantitative genetic model, 𝑷(𝑿𝒏) is a 414 

matrix of among-individual phenotypic (co)variances predicted in response to the environmental 415 

context of measurement n for subject i, as determined by CRN fixed effect parameters for phenotypic 416 

variances [𝜷
𝝈𝟏

𝟐
⊤ , … , 𝜷

𝝈𝒑
𝟐

⊤ ]
⊤

 and correlations  [𝜷𝒓𝟏,𝟐
⊤ , … , 𝜷𝒓𝒑−𝟏,𝒑

⊤ ]
⊤

 estimated on transformed scales, 417 
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equivalently to Eq. 2 (not shown here for brevity). Any non-zero fixed effects predicting 𝑷(𝑿) provide 418 

evidence for phenotype-by-environment (PxE) interactions, i.e. plasticity. See Bliard, Martin et al. 419 

(2024) for detailed discussion and applications of bivariate phenotypic CRNs to detect life history 420 

tradeoffs under multiple sampling regimes common in population ecology. 421 

Model extensions 422 

The CRN is a method for facilitating the direct prediction of 𝑷 and 𝑮 matrices, rather than a 423 

specific model structure per se, and so it is important to emphasize that the models presented in Eq. 424 

2-3 are simplified for ease of comprehension, focusing solely on linear prediction using fixed 425 

regression coefficients. When applying the CRN for empirical analysis, researchers should always 426 

consider whether this basic model structure requires further extension to effectively describe their 427 

system. For instance, additional random intercepts and slopes may be useful CRN parameters to 428 

capture stochastic change in trait (co)variances across environmental contexts, due to factors such as 429 

unmeasured fluctuations in climate or habitat quality across nest sites or years (see the CRN tutorial 430 

for example code, data availability). The choice of model structure for a specific empirical application 431 

of the CRN is in principle no different than for any other regression analysis and so should be informed 432 

by the same general considerations, such as whether it is pertinent to explicitly model measurement 433 

error in environmental predictors, to account for censoring and non-random missingness of data, or 434 

to use non-Gaussian distributions to describe trait (co)variation (see Bolker et al., 2009; Gelman et al., 435 

2020; Gelman & Hill, 2006; McElreath, 2020; Schielzeth, 2010). In the supplementary material, further 436 

details are given on how the CRN can be extended for specific issues related to the use of repeated 437 

individual measures, genetic prediction for unobserved phenotypes, and the estimation of cross-438 

environment correlations. I also present random regression CRN models that can be used to 439 

investigate nested patterns of GxE within and across environments by combining RNs of trait means 440 

and (co)variances (Eq. S9). 441 

 442 
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Statistical implementation 443 

CRNs cannot currently be estimated using standard statistical software packages, due to a lack 444 

of in-built functionality for expressing elements of covariance matrices as generalized linear 445 

predictors. Fortunately, however, the extremely flexible Stan probabilistic programming language can 446 

be used to construct bespoke animal models of desired complexity within a Bayesian inferential 447 

framework, facilitating estimation of CRNs models using cutting-edge Markov Chain Monte Carlo 448 

(MCMC) methods (Hoffman & Gelman, 2011; Nishio & Arakawa, 2019; Martin & Jaeggi, 2022). This 449 

includes CRNs incorporating various kinds of complexity not discussed here, such as spatiotemporal 450 

autocorrelation. Interested readers should consult the Stan User’s Guide and Reference Manual 451 

(https://mc-stan.org/docs/) and growing body of worked Case Studies (https://mc-stan.org/learn-452 

stan/case-studies.html) for further details. Detailed discussion of contemporary Bayesian statistics 453 

and general issues in multilevel Bayesian modeling are also beyond the scope of this paper. However, 454 

I encourage readers to consult some of the excellent primers available on Bayesian data analysis (e.g. 455 

Gelman et al., 2013, 2020; McElreath, 2020) for thorough introductions, including extensive tips and 456 

suggestions for key decisions such as the choice of priors, model validation and comparison, variable 457 

selection, and the interpretation of posterior estimates. As a general rule of thumb, I suggest using 458 

weakly regularizing priors when estimating CRN models, to reduce the risk of inferential bias while 459 

promoting efficient model convergence (Lemoine, 2019; McElreath, 2020). Despite it still being 460 

common to see thinning of MCMC chains reported in the literature, note that this is generally 461 

unnecessary (Link & Eaton, 2011).  462 

Prediction of large covariance matrices is computationally burdensome in a Bayesian 463 

framework, even with the use of appropriately regularizing priors and efficient MCMC algorithms, 464 

because the probability of observing a permissible (i.e. positive-definite) covariance or correlation 465 

matrix declines rapidly with increasing dimensionality of the matrix (Dean & Majumdar, 2008). 466 

Therefore, estimation of the CRN in Stan is best achieved through use of a mathematically equivalent 467 

https://mc-stan.org/docs/
https://mc-stan.org/learn-stan/case-studies.html
https://mc-stan.org/learn-stan/case-studies.html
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but more efficient reparameterization of the 𝑮(𝑿) and 𝑷(𝑿) matrices than is described by the standard 468 

parameterization presented in Eq. 2-3. These computational solutions are extensively discussed in the 469 

supplementary material (Eq. S1-5). Fortunately, in many cases, such details can be safely ignored by 470 

empiricists applying the CRN model, as R functions and a tutorial are provided (see data availability) 471 

to straightforwardly facilitate these computational gains, while also generating more intuitive model 472 

estimates and predictions with respect to the standard model structure presented above.  473 

Validation for Bayesian inference 474 

I used simulation-based calibration, a gold-standard procedure for validating Bayesian 475 

algorithms (Gelman et al., 2020), to validate the proposed CRN model implementation in Stan. Briefly, 476 

simulation-based calibration involves simulating datasets across a broad range of effect size 477 

distributions, applying the proposed Bayesian model to these datasets, and then formally comparing 478 

the distributions of simulated and estimated parameter values (Talts et al., 2018; Fig. S1a). Further 479 

details on these simulations and discussion of simulation-based calibration as a methodology are 480 

provided in the supplementary material. As can been seen in supplementary Fig. S1b, results 481 

indicated that estimated CRN parameter values were congruent with and not systematically biased 482 

from the true values used to generate the simulated datasets, demonstrating that the proposed CRN 483 

implementation in Stan facilitates valid inference across a broad range of effect sizes, even in the 484 

absence of repeated measures or large sample size. 485 

Comparison to alternative methods 486 

The SBC validated the CRN model but did not test its performance in comparison to closely 487 

related approaches. Therefore, I performed an additional simulation to more directly compare the 488 

accuracy and power of inferences from the CRN model to a standard character state model relying on 489 

discretizing the environment, as well as a random regression model relying on estimation of individual 490 

intercepts and slopes. The simulation considered the effect of a single environmental variable on the 491 

genetic covariance among two Gaussian traits with modest marginal heritability (𝜎𝐺(𝑥=0)
 /𝜎𝑃(𝑥=0)

 =492 
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0.3), such as a growth and metabolic trait. The environmental variable was conceptualized as a 493 

measure of average temperature during the summer and winter months, and individuals were 494 

measured across 5 years, resulting in 5 * 2 = 10 environmental contexts. This relatively small number 495 

of distinct environmental contexts ensured results relevant for a broader range of field studies lacking 496 

deep time series. Stochastic time series of seasonal temperature were generated with varying degrees 497 

of autocorrelation and weak directional trend (Fig. 3a; see supplementary material for details). 498 

Individuals were assumed to have an annual life cycle and be measured during both seasons of a 499 

randomly selected year, so that each subject had two repeated measurements, allowing for the 500 

estimation of individual slopes in the random regression model and between-context genetic 501 

correlations in the character state model. Continuous environmental information was retained for the 502 

random regression and CRN analyses, while measures were binned into ‘summer’ and ‘winter’ 503 

environments for the character state model. The simulated scenario isolated the performance of the 504 

models under the idealized condition of a single varying environmental factor, minimizing divergence 505 

in the number of free parameters, which is otherwise expected to favor the CRN in more complex 506 

scenarios with multiple predictors and highly nonlinear effects (Fig. 2).  507 

Effect sizes in evolutionary ecology tend to be rather small (Kimmel et al., 2023). Therefore, 508 

in one simulated condition, I assumed small effect sizes for the impact of temperature on the genetic 509 

variances and correlation (𝛽𝜎𝛼
2 = 0.3, 𝛽𝑟𝛼

 = 0.1), resulting in a very small GxE effect (Δ𝐺1,2 = 0.04 for 510 

Δ𝑥 = 1) on the genetic covariance (Fig. 3a). The simulation thus assessed each models’ performance 511 

in estimating a minimally detectable but biologically realistic effect size. I also simulated a condition 512 

with larger effect sizes (𝛽𝜎𝛼
2 = 0.6, 𝛽𝑟𝛼

 = 0.2, Δ𝐺1,2 = 0.11) for comparison. In both conditions, cross-513 

environment correlations were positive but not unity (𝑟 = 0.8), producing modest among-individual 514 

variation in the rank-order of genetic values across environmental contexts. Simulated datasets varied 515 

in the number of subjects (300, 600) sampled to assess the influence of sample size on each model’s 516 

performance. I simulated and applied each model to 50 datasets per sample and effect size condition.  517 
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Performance was compared using the predicted change in genetic covariance among traits 518 

following a 1 SD increase in temperature from the mean (Fig. 3a). Note that this is a conservative 519 

comparison favorable to the alternative methods, as the character state model would otherwise show 520 

increasing bias for both smaller and larger temperature changes (due to standardizing temperature), 521 

and the random regression would show increasing bias for negative temperature changes (due to the 522 

assumption of quadratic change). I compared relative bias among models to capture accuracy in 523 

recovering the simulated GxE, calculated by 
Δ𝐺1,2− Δ�̂�1,2

Δ𝐺1,2
 where Δ𝐺1,2 and Δ�̂�1,2 are respectively the 524 

true and estimated change between 𝑥 = 0 and 𝑥 = 1. I also used the posterior probability 525 

𝑝(Δ𝐺1,2 > 0) to quantify statistical power for Bayesian inference. This measure captures the degree 526 

of posterior uncertainty in the presence and direction of GxE. 527 

Results are shown in Fig. 3b. The CRN exhibited accurate and unbiased detection of the true 528 

change in genetic covariance across sample and effect sizes, with increasing precision at larger sample 529 

and effect sizes. The CRN also exhibited the highest power for detecting GxE, which also increased 530 

steadily with sample and effect size.  The character state model showed the lowest precision across 531 

conditions and tended to underestimate the larger effect size with the smaller sample. As expected, 532 

binning of temperature variation also resulted in the character state model having the lowest power 533 

for detecting GxE, as well as a very modest increase in power with increasing sample size. The random 534 

regression model exhibited high precision but largely because it consistently underestimated the true 535 

effect size (relative bias > 0). The power of the random regression was greater than the character state 536 

model and comparable but slightly lower than the CRN across conditions. These findings indicate that 537 

the CRN model performs well at modest sample and effect sizes. They show that, even for a simple 538 

and idealized univariate comparison, the CRN can outperform standard character state and random 539 

regression models in detecting and quantifying environmental effects on genetic covariance.  540 
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Figure 3. Model performance and comparison at minimal effect size. 541 

Footnote. (a) Overview of the simulation. Left plot: each synthetic dataset contained 5 years of 542 
summer (green) and winter (orange) temperatures, standardized to unit variance (std.). See 543 
supplementary materials for details. Each simulation run generated a unique time series (different 544 
line types), with varying degrees of stochasticity and directional change. Middle plot: Time series also 545 
differed in their degree of temporal autocorrelation. Right plot: trait values were simulated for two 546 
Gaussian phenotypes 𝑧1 and 𝑧2 (e.g. a growth and metabolic trait), assuming small (Δ𝐺1,2 = 0.04) or 547 

moderate effects (Δ𝐺1,2 = 0.11) of temperature on their genetic covariance. Under an average 548 
temperature (𝑥 = 0), there was no covariance among traits (solid ellipse), while in relatively warm 549 
seasons (𝑥 = 1), there was positive genetic covariance (dashed ellipses) depending on effect size 550 
(color). (b) Results from 50 simulated datasets per sample and effect size condition. Performance was 551 
compared among models (red = covariance reaction norm [CRN], purple = character state [CS], blue = 552 
random regression [RR]) for detecting the true change in genetic covariance with increasing 553 
temperature. Top plot: relative bias (values close to 0 indicate accurate recovery of the effect size). 554 
Bottom plot: posterior probability (Bayesian power) in support of a positive temperature effect on the 555 
genetic covariance. Values closer to 1 indicate stronger support for the presence of GxE. Results are 556 
summarized with box plots.  557 
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Worked example: social niche specialization in meerkats 558 

To further demonstrate the utility of the proposed framework, I applied a CRN model to 559 

analyze an openly available dataset from a long-term study (Houslay et al., 2021) on the heritability of 560 

three cooperative behaviors (babysitting, pup feeding and foraging, and vigilant guarding/sentinel 561 

activity) in wild meerkats (Fig. 4a). The goal of my analysis was to estimate the interactive effects of 562 

age, sex, and dominance status on the genetic (co)variance of these cooperative behaviors, as well as 563 

to investigate whether group size has a negative effect on genetic correlations. Prior work suggests 564 

that cooperative task generalization decreases while specialization subsequently increases in larger 565 

social groups, due to synergistic fitness benefits among individuals who benefit from investing more 566 

time performing distinct and complementary behaviors in larger groups (e.g. Bonner, 2004; Jeanson 567 

et al., 2007; Ulrich et al., 2018; Martin et al., 2023). If so, we would expect to observe positive genetic 568 

correlations among cooperative behaviors in small groups, but negative genetic correlations in large 569 

groups (Fig. 1d). Accordingly, fluctuations in group size within organisms’ lifetimes may select for 570 

social plasticity in cooperative behavior to track these shifting fitness optima across social groups (de 571 

Jong, 1995; J. S. Martin et al., 2023), leading to the evolution of a group size dependent CRN and GxE 572 

in the expression of different tasks. Meerkats engage in extensive cooperative breeding, defense, and 573 

foraging in groups of variable size and composition (Clutton-Brock et al., 2001), providing a valuable 574 

system to further investigate these predictions. 575 

Using only data of individuals with measures available for all three behaviors in the study of 576 

(Hendry, 2016; Hutchings, 2011; Kuzawa & Bragg, 2012; Paenke et al., 2007; Pfennig, 2021; Via et al., 577 

1995), the total sample size for the analysis was 1560 pedigreed individuals with 6751 (babysitting), 578 

6461 (pup feeding), and 11532 (guarding/sentinel activity) total observations. I simplified certain 579 

components of the animal models employed by these authors to focus attention on the CRN, using 580 

only the covariates (age, sex, dominance status, group size) that were available for all traits and were 581 

identified as important for understanding mean phenotypic differences in the meerkats’ behavior. 582 
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Additional random effects were included for each trait to capture individual-level permanent 583 

environmental effects, group identity during observation, breeding season (accounting for temporal 584 

trends within and across years from 1997 to 2018), and individual-by-season interactions. The three 585 

phenotypes were modeled using binomial (half-days observed babysitting/total days) and Poisson 586 

(count of pup feeding and minutes in sentinel activity) distributions. Following Eq. 2 and using the 587 

computational strategy explained in Eq. S1-5, the same environmental covariates used to predict 588 

phenotypic means were also used to predict potential changes in quantitative genetic (co)variances 589 

among cooperative behaviors. Consider that from the perspective of a gene, organismal attributes 590 

such as sex, age, and dominance (serving as proxies for various attendant changes in hormonal 591 

activity, social experiences, etc.) are just as much aspects of ‘the environment’ potentially modulating 592 

its expression as more exogenous factors like group size (Hendry, 2016; Hutchings, 2011; Kuzawa & 593 

Bragg, 2012; Paenke et al., 2007; Pfennig, 2021; S. Via et al., 1995). These covariates also allowed for 594 

appropriately testing the independent (age, sex, and dominance adjusted) effect of group size on 595 

genetic correlations among cooperative behaviors. A coding tutorial accompanying this worked 596 

example is provided on Github (see data availability). 597 

Results 598 

The CRN analysis uncovered continuous changes in the genetic variances and correlations of 599 

meerkats’ cooperative behaviors in response to the interactive effects of age, dominance status, and 600 

sex, as well as the nonlinear effects of group size, providing clear evidence for GxE shaping the 𝑮 601 

matrix across environments. These effects are visualized as CRNs in Fig. 4b-c and summarized 602 

quantitatively in Table S1. Firstly, considering genetic variances, increasing age was strongly 603 

associated with greater genetic variance in babysitting behavior (BS), while age had weaker and more 604 

uncertain effects on the genetic variance of foraging and pup feeding (FD) and vigilant guarding 605 

behavior (GD). This indicates that heritable individual differences in BS are expected to increase across 606 

the lifespan, independently of sex and dominance status. Sex did not have a main effect on the genetic 607 
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variance of any traits, while dominance status had moderate to strong positive effects on the genetic 608 

variance of FD and GD. Changes in dominance status were, therefore, a primary driver of changes in 609 

the magnitude of heritable individual differences in cooperative behaviors (personality). Dominant 610 

individuals showed greater genetic variation than subordinates in their magnitude of FD and GD. 611 

Multivariate interactions also occurred between age, sex, and dominance. Genetic variance in BS 612 

reduced in response to the interaction of age and sex with dominance, while genetic variance in GD 613 

increased as a function of the interaction between age and dominance as well as the three-way 614 

interaction among age, sex, and dominance.   615 

Environmental variation was also associated with changes in the genetic correlations among 616 

cooperative behaviors (Table S1). Among subordinates, males exhibited relatively stronger genetic 617 

correlations for BS ~ GD than females, which increased with age (Fig. 4b). Some evidence was found 618 

for reversed sex effects among dominant individuals, but dominance effects exhibited moderate to 619 

high statistical uncertainty overall. A clear main effect of age was observed for FD ~ BS, indicating that 620 

this genetic correlation tended to decrease across the lifespan, with older individuals being more likely 621 

to specialize in FD or BS than younger individuals. Negative age effects were also estimated for FD~BS 622 

and BS~GD but with greater statistical uncertainty. Group size decreased both FD~BS and FD~GD, 623 

independently of age, sex, and dominance effects, with more uncertainty in the positive effect of 624 

group size on BS~GD. Evidence was also found for a positive quadratic effect of group size on FD ~ GD, 625 

such that the negative effect was diminished for larger group sizes. 626 

Combined effects of the multivariate environment on genetic variances and correlations 627 

generate nonlinear CRNs that are visualized in Fig. 5b-c. Subordinate males typically show more 628 

positive genetic (co)variances across ages than subordinate females, indicating more generalized 629 

genetic effects on and heritable individual differences in cooperative behavior. Subordinate females 630 

are in turn expected to show more negative genetic covariances among behaviors as they age (Fig. 631 

4b). However, these patterns were complicated among dominant breeders. The direct effects of 632 
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dominance status on genetic correlations were highly uncertain (Table S1) and should be interpreted 633 

cautiously, as is reflected by the much larger credible intervals for the predicted age CRNs of dominant 634 

individuals (bottom row plots in Fig. 4b). Independently of these effects, negative genetic covariance 635 

is expected between FD and BS in larger social groups, while a positive genetic covariance is expected 636 

between BS and GD in larger social groups (Fig. 4c). The genetic covariance between FD and GD is 637 

positive in small groups but declines nonlinearly and remains near to zero in average and larger than 638 

average group sizes. Taken together, these results provide support for the prediction that fluctuations 639 

in group size select for plasticity in the expression of generalized versus specialized cooperative 640 

behavior across social groups. Consistent with prior research (Clutton-Brock et al., 2003), social niche 641 

specialization is not observed on average across social groups. However, the CRN model reveals that 642 

this is because small group sizes promote more positively integrated (𝜎𝑎
 > 0) genetic effects across 643 

cooperative behaviors, while larger group sizes promote negative genetic correlations (𝜎𝑎
 < 0) 644 

indicative of specialized performance of FD versus BS and GD tasks.  645 
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Figure 5. Multivariate CRN of cooperative behavior among meerkats. 646 

 647 

Footnote. Posterior estimates are shown for multivariate and nonlinear environmental effects on the 648 
genetic covariances 𝜎𝑎

  among (a) meerkats’ foraging and pup feeding (FD), babysitting (BS), and 649 
vigilant guarding (GD) behavior. Creative commons picture credit: Bernard DUPONT and Jon Pinder 650 
(Flickr). (b) Posterior CRNs for the interactive effects of sex (orange = female, blue = male), dominance 651 
status (top row = subordinate, bottom = dominant), and age (units of months, SD standardized) on 𝜎𝑎

2 652 
(left row = FD~BS, center = FD~GD, right = BS~GD). Shaded bands indicate 10–90% posterior CI from 653 
the darkest to lightest bands, respectively, while the dark lines indicate posterior median values. CRN 654 
slopes greater or less than zero provide evidence for GxE interactions.  (c) CRNs for the effect of group 655 
size (units of 5, SD standardized) on 𝜎𝑎

 , adjusted for the interactive effects of sex, age, and dominance 656 
status. Dotted vertical lines indicate the expected covariance at the average group size (0), while 657 
dotted horizontal lines indicate 𝜎𝑎

 = 0, so that values above this line provide evidence for task 658 
generalization (𝜎𝑎

 > 0) and values below provide evidence for task specialization (𝜎𝑎
 < 0). 659 
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Conclusion 660 

A longstanding goal unifying diverse fields of ecological and evolutionary science is to 661 

understand the role of phenotypic plasticity in the adaptation of complex traits (Via et al., 1995; 662 

Paenke et al., 2007; Hutchings, 2011; Kuzawa & Bragg, 2012; Hendry, 2016; Pfennig, 2021). In many 663 

cases, this plasticity will be reflected in average trait values; however, when fitness-relevant variation 664 

also occurs with respect to trait (co)variances within individuals’ lifetimes (e.g. through fluctuating 665 

correlational selection, Revell, 2007; Roff & Fairbairn, 2012), adaptive plasticity can evolve in trait 666 

variances and correlations (Fig. 1, 5). Current character state approaches for analyzing such changes 667 

in trait (co)variances rely on discretizing the environment, as well as often unrealistic sample size 668 

requirements, resulting in undesirable inferential risks (Fig. 2a, 3). Random regression approaches 669 

suffer from similar considerations (Fig. 2b), particularly in the presence of complex, interactive 670 

environmental effects and/or systems where repeated individual measurements or experimental 671 

breeding designs across environments are not feasible. Ultimately, these constraints limit empiricists’ 672 

ability to robustly infer continuous, multivariate, and potentially nonlinear environmental processes 673 

underlying GxE and PxE in the wild (Fig. 1), and thus to study the development and adaptation of 674 

plastic phenotypes (Fig. 5). The CRN model proposed here provides a validated solution (Fig. S1) to 675 

this challenge that outperforms alternative approaches (Fig. 3), extending the standard animal model 676 

(Kruuk, 2004) to increase its flexibility for describing multivariate environmental effects on all aspects 677 

of quantitative genetic expression. As demonstrated by the worked example in meerkats (Fig. 4a), 678 

building on prior research by Houslay et al. (2021) using standard quantitative genetic methods, CRNs 679 

can harness the rich information in long-term field datasets to generate fresh insights into 680 

longstanding empirical questions, such as the effects of group size on social niche specialization in 681 

animal societies (Fig. 4c), while also uncovering previously undescribed multivariate GxE interactions, 682 

such as among sex, age, and dominance status (Fig. 4b), which would require many more parameters 683 

and larger sample sizes to effectively estimate using standard methods (Fig. 2).  684 
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In addition to the benefits of the CRN model, researchers should also be mindful of its 685 

limitations and key areas for future extension. Statistical power will in many cases be a pertinent issue 686 

and potential limitation to consider when applying the CRN to estimate multivariate environmental 687 

effects on multiple traits. While ‘power’ in the classical sense does not straightforwardly translate to 688 

fully Bayesian inference, Bayesian power as considered here (the expected probability in support of a 689 

hypothesis) is an intuitively analogous quantity of similar importance. The reported simulations 690 

suggest that the CRN performs better than alternative methods even for univariate cases and exhibits 691 

steadily increasing power with increasing sample size (Fig. 3b). However, precisely estimating and 692 

detecting the partial effects of multiple variables will inevitably require larger sample sizes than for 693 

detecting the total effect of a single variable, as well as greater sampling effort across environmental 694 

contexts, to achieve comparable performance. This will particularly be the case for binary measures 695 

(e.g. survival or mating success), which generally provide less information per observation in 696 

comparison to continuous data (Fay et al., 2022). Even in the univariate case, my simulations suggest 697 

that confident detection of small effects will require large sample sizes. Therefore, despite the 698 

promising results presented here, investigations of multivariate CRNs will be most fruitfully 699 

accomplished with data from experiments and long-term field studies facilitating both large sample 700 

sizes and a diverse set of environmental contexts through which the direct influence of distinct factors 701 

can be effectively disentangled, such as in the worked example on meerkat social behavior. While 702 

general heuristics are useful, power can also vary widely as a function of data structure, model 703 

complexity, and effect sizes appropriate for the context under consideration (Johnson et al., 2015). 704 

Researchers should, therefore, consider carrying out their own a priori power analyses for the 705 

conditions relevant to their intended application of a CRN model. 706 

Fortunately, the CRN is expected to provide unbiased inferences even when statistical 707 

uncertainty is relatively large (Fig. S1, 3). However, the biological validity of these inferences will 708 

always be contingent on how well the structure of the CRN approximates the underlying empirical 709 

reality being described. As with any regression analysis, researchers should be particularly cautious in 710 
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naively interpreting direct effects in the CRN as indicative of causal effects, without thoughtful 711 

application of the principles and contemporary techniques required for causal inference (Pearl, 712 

Glymour, Jewell, 2016), particularly in observational studies of wild populations. Dynamic feedback 713 

between organismal traits and environments may, for instance, induce so-called collider biases (Pearl 714 

et al., 2016) that generate spurious associations among causally interdependent environmental 715 

factors and trait (co)variances. In this regard, investigating how the CRN performs for environmentally 716 

modifying and niche constructing traits (e.g. building on recent quantitative genetic models, Fogarty 717 

& Wade, 2022) will be a valuable direction for future research. More generally, future development 718 

of the CRN model should aim to better incorporate dynamic relationships to infer directionality and 719 

potential reciprocal causality between the environment effects shaping trait expression across 720 

multiple spatial and temporal scales. Methods extending ordinary differential equations in Stan to 721 

study multivariate trait evolution across phylogenetic trees (Ringen et al., 2021) provide a useful 722 

starting point for considering how this might be accomplished, extending the CRN model to study 723 

dynamic patterns of GxE using time series of sufficient depth. 724 

Regardless of the specific CRN model being employed, particular attention should always be 725 

given to appropriate handling of spatiotemporal variation, as quantitative genetic inference in the wild 726 

can be easily biased by unadjusted environmental effects that are correlated among related 727 

individuals across space and time (Kruuk & Hadfield, 2007; Munar-Delgado et al., 2023). When 728 

interpreting the results of a CRN model, researchers should consider whether apparent evidence of 729 

GxE may instead reflect unmeasured or unquantified associations between genes and environmental 730 

contexts that were not appropriately adjusted for. For instance, genetic subgroups that are 731 

differentially distributed in space (Hadfield et al., 2010) as well as the effects of drift, inbreeding, and 732 

selection on a population across time (Sorensen et al., 2001; Sorensen & Kennedy, 1984) can both 733 

confound inferences of environmentally induced changes in genetic expression. Statistical tools for 734 

handling such issues are already available in the literature and, using the flexible probabilistic 735 

programming provided by Stan, can be readily incorporated into a CRN analysis.  736 
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Further exploration of how the CRN model performs and where in may exhibit bias in 737 

recovering patterns of GxE and PxE under more realistic ecological scenarios, where spatiotemporal 738 

dynamics are often difficult to effectively measure and formalize, is another important direction for 739 

future methodological research, building on the simplified simulations presented here (where 740 

temporal autocorrelation was appropriately incorporated into the CRN analysis, Fig. 3). In this regard, 741 

a key extension of the basic CRN model (Eq. 2) will be to use more flexible non-parametric and 742 

generalized additive functions, such as splines or Gaussian processes (Pedersen et al., 2019; Riutort-743 

Mayol et al., 2022), that can better capture nonlinear spatiotemporal autocorrelation and 744 

environmental effects on trait (co)variances, which are otherwise difficult to estimate with standard 745 

polynomials (see the CRN tutorial for example code, data availability). Given thoughtful consideration 746 

of these limitations and potential extensions, future applications of the CRN model have the potential 747 

to greatly enhance our understanding of the evolutionary ecology of multivariate plasticity across a 748 

variety of phenotypes in the wild (Fig. 5).  749 
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Figure 5. Environmental effects on the expression and evolution of multivariate phenotypes. 750 

 751 

Footnote. A conceptual figure of GxE and PxE for multivariate traits, modified with permission 752 
from Milocco and Salazar-Ciudad (2022). The phenotype-to-genotype map, shown here by 753 
lines connecting populations of genotypes (lowest surface) to distributions of phenotypes 754 
(highest), is mediated through RNs and the distribution of environments within and across 755 
generations. RNs not only structure the expression of trait means, but also the variances, 756 
correlations, and (co)variances among traits (i.e. CRNs). Therefore, 𝑮 and 𝑷 matrices 757 
describing the mapping between genetic and phenotypic variation are often highly sensitive 758 
to the environmental contexts in which individuals are measured (GxE and PxE, indicated by 759 
green arrows). CRNs may evolve in response to diverse environmental contexts such as the 760 
quality and consistency of early parental care, opportunities for and costs of learning, 761 
variability and harshness of the climate, habitat degradation, magnitude and predictability of 762 
local resources, the density of predators and parasites, the strengths of intra and intersexual 763 
competition, social network position and mating system, food web structure, etc. When such 764 
environments change (dotted lines) and developmental and/or contextual plasticity has 765 
evolved in a population, trait (co)variances may rapidly respond to spatiotemporal 766 
heterogeneity within and across generations (top layer planes). Mechanistically and 767 
ecologically informed CRN models can be used to better predict how GxE will shape the 768 
expression and adaptive evolution of multivariate traits in response to ongoing socio-eco-769 
evolutionary dynamics (Martin et al., 2024). Creative commons picture credit: NickJack and 770 
Alexas_Fotos (Pixabay) and Luz Adriana Villa and Corvus moneduloides (Flickr).  771 

https://www.flickr.com/photos/corvus_moneduloides/
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Computational efficiency 1102 

As noted in the main text, direct prediction of large positive-definite covariance matrices is 1103 

computationally challenging. Therefore, the CRN can be most efficiently estimated in Stan by using 1104 

reparameterizations of the 𝑮(𝑿) and 𝑷(𝑿) matrices that are mathematically equivalent to the more 1105 

intuitive parameterizations presented in Eq. 2-4. Firstly, the p x p correlation matrix 𝑹𝒂 containing all 1106 

genetic (or phenotypic) correlations for p phenotypes can be decomposed using a Cholesky 1107 

factorization such that 1108 

𝑹𝒂 = 𝑳𝑹𝑳𝑹
⊤ (𝐒𝟏) 1109 

where 𝑳𝑹 is a lower-triangular matrix with unit length rows and positive diagonal elements. These 1110 

assumptions reduce the number of free parameters necessary for calculating 𝑹𝒂, as the diagonal 1111 

elements of 𝑳𝑹 are determined by the off-diagonal elements of each row. Therefore, estimating 𝑳𝑹 1112 

and subsequently deriving 𝑹𝒂 using improves computational time of the model (Stan Development 1113 

Team, 2023). Following previous work on the prediction of covariance matrices (Lewandowski et al., 1114 

2009; Bloome & Schrage, 2021), computational efficiency can then be further increased by 1115 

decomposing 𝑳𝑹 into a vector 𝛚 of length 
𝑝(𝑝−1)

2
 containing the canonical partial correlations 1116 

constitutive of all unique lower-triangular elements in this matrix. The canonical partial correlations 1117 

in 𝛚 are of the same sign as their corresponding elements in 𝑳𝑹, but their magnitudes represent 1118 

residual correlations between corresponding row and column variables after regressing both on all 1119 

prior occurring row variables. In the general case, the canonical partial correlation 𝜔𝑢, where 𝑢 =1120 

2𝑐𝑝−𝑐2+2𝑟−3𝑐−2

2
 is the vector element corresponding to unique lower-triangular Cholesky factor 𝐿𝑅[𝑟,𝑐] 1121 

at row r and column c, is given by  1122 

𝜔𝑢 = {

𝐿𝑅[𝑟,𝑐]
 ,                                                 if 𝑐 = 1 < 𝑟

𝐿𝑅[𝑟,𝑐] / (1 − ∑𝐿𝑅[𝑟,1:𝑐−1]
2 )

1
2, if 1 < 𝑐 ≤ 𝑟

(𝐒𝟐) 1123 

such that the Cholesky factor can in turn be derived from 𝜔𝑢 by 1124 
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𝐿𝑅[𝑟,𝑐]
 = {

𝜔𝑢,                                                  if 𝑐 = 1 < 𝑟

𝜔𝑢 ∗  (1 − ∑𝐿𝑅[𝑟,1:𝑐−1]
2 )

1
2, if 1 < 𝑐 ≤ 𝑟

(𝐒𝟑) 1125 

This general decomposition strategy can be adapted for the CRN model by extending each element in 1126 

the vector 𝛚 to its own vector of context-specific canonical partial correlations. Using the same 1127 

approach developed in the main text (Eq. 2), environmental effects can then be specified and 1128 

estimated more efficiently as predictors of the transformed canonical partial correlations 1129 

[
 
 
 
 atanh (𝛚(𝐗)𝟏

)

⋮

atanh(𝛚(𝐗)𝑝(𝑝−1)
2

)
]
 
 
 
 

= [

𝑿𝜷𝝎𝟏

⋮
𝑿𝜷𝝎𝑝(𝑝−1)

2

] (𝐒𝟒) 1130 

Applying the inverse link function tanh() and using Eq. S3 to calculate Cholesky factorized matrices 1131 

𝑳𝑹(𝑿), the original context-specific correlation matrices can then be derived 𝑹𝒂(𝑿) and subsequently 1132 

applied to generate model predictions for estimating environmental effects on a more familiar scale. 1133 

It is important to emphasize that the proposed implementation in Stan (Eq. S1-4) ensures the positive 1134 

definiteness of the resulting correlation matrices 𝑹𝒂(𝑿) predicted by the CRN. Given that 1135 

environmental effects are specified separately for trait correlations and variances in the CRN model 1136 

(Eq. 2), the context-specific (co)variance matrices 𝑮(𝑿) derived from correlation matrices 𝑹𝒂(𝑿) (Eq. 1137 

1.3) will necessarily be positive definite. 1138 

Covarying environmental predictors can also reduce the efficiency and accuracy of CRN parameter 1139 

estimation. To reduce the effects of collinearity, the CRN fixed effects 𝜷𝝈𝟐  and 𝜷𝝎 (or 𝜷𝒓) can also be 1140 

more efficiently estimated using a so-called thin QR factorization of the 𝑿 matrix (Harville, 1997). This 1141 

involves decomposing the predictor matrix 𝑿 = 𝑸∗𝑹∗ into an orthogonal matrix 𝑸∗ = 𝑸√𝑛 − 1 and 1142 

upper-triangle matrix 𝑹∗ =
𝑹

√𝑛−1
, estimating trait-specific regression coefficients using the orthogonal 1143 

vectors 𝑸∗𝜷∗, and then returning regression coefficients appropriately scaled to the original data scale 1144 

of 𝑿 using 𝜷 = 𝑹∗−𝟏𝜷∗. The QR decomposition increases efficiency by reducing posterior correlations 1145 

during model sampling that would otherwise result from covariation among predictors. 1146 
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Finally, the Cholesky matrices 𝑳𝑹(𝑿) can be further used to more efficiently predict individuals’ context-1147 

specific additive genetic values from the CRN model. Following previous work by (Martin & Jaeggi, 1148 

2022), this can be accomplished using a matrix normal sampling distribution (Dutilleul, 1999), which 1149 

extends the vectorized multivariate normal distribution to the sampling of multivariate normally 1150 

distributed matrices. Using a 𝑛 x p matrix 𝒁𝑮 of standardized individual-level additive genetic 1151 

deviations (i.e. z-scores of breeding values), a lower-triangular Cholesky decomposition 𝑳𝑨 of the 1152 

relatedness matrix, and a diagonal matrix 𝑺𝒂(𝑿𝒏) = diag ([𝜎𝑎(𝑋𝑛)1
 , … , 𝜎𝑎(𝑋𝑛)𝑝

 ]) of context-specific 1153 

genetic standard deviations, an n x p matrix of context-specific genetic values for each phenotype can 1154 

be predicted by 1155 

[𝒂(𝑿𝒏)𝟏 , … , 𝒂(𝑿𝒏)𝒑] = 𝐋𝐀𝒁𝑮(𝐒𝐚(𝐗𝐧)𝑳𝑹(𝑿𝒏))
⊤
~ Matrix Normal(𝟎nxp, 𝑨, 𝑮(𝑿𝒏)) (𝐒𝟓) 1156 

→ vec ([𝒂(𝑿𝒏)𝟏 , … , 𝒂(𝑿𝒏)𝒑])~ 𝑵(𝟎,𝑮(𝑿𝒏) ⊗ 𝑨) 1157 

R functions are provided to facilitate these computational gains while also generating more intuitive 1158 

model estimates and predictions with respect to the standard parameterizations presented in the main 1159 

text.  See the `CRN functions.R` file in the corresponding Github repository for further details.  1160 
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Simulation-based calibration (model validation) 1161 

To provide a general validation of the proposed model, I conducted a simulation-based calibration 1162 

(SBC) procedure to assess whether the CRN (Eq. 2) is an unbiased Bayesian estimator.  SBC is a gold-1163 

standard procedure for assessing the performance of a Bayesian algorithm across a broad range of 1164 

effect sizes, using synthetic datasets generated from simulated distributions of parameter values (Talts 1165 

et al., 2018). This approach removes the need for arbitrarily picking a limited, discrete range of effect 1166 

sizes for assessing the validity of inferences and, in so doing, reduces the risk of missing unexpected 1167 

sources of bias in unexplored regions of parameter space. Instead, during SBC, generative distributions 1168 

of parameter values are simulated, covering both the range of small to moderate effect sizes typically 1169 

considered in standard biological applications, as well as extremely small or large values that are likely 1170 

to be rare but in principle possible to observe in practice. The proposed model is then applied to the 1171 

synthetic datasets generated from these simulated distributions of parameter values (priors), in turn 1172 

producing distributions of estimated parameter values (posteriors). The formal correspondence 1173 

between the simulated distributions of expected parameter values and the inferred distributions of 1174 

estimated parameter values can then be assessed. In particular, if the proposed model implementation 1175 

facilitates valid and unbiased Bayesian inference, such that the generative values are not systematically 1176 

over or underestimated compared to the estimated values, the ranks of prior versus posterior values 1177 

will be uniformly distributed (Talts et al., 2018). A null hypothesis of uniformity can be assessed by 1178 

visualizing the difference in empirical cumulative density functions (ECDFs) with respect to the 1179 

distribution of fractional ranks among the generative versus estimated values (Säilynoja, Bürkner, & 1180 

Vehtari, 2022). If the difference falls within the ECDF difference 95% probability interval of the null 1181 

hypothesis of uniformity, results support a valid model that generates unbiased inference across the 1182 

range of generated effect sizes. See Fig. S1a for a visualization of the SBC procedure. 1183 

200 datasets were simulated for SBC under modest sampling conditions of 300 individuals with a single 1184 

measurement for each of 3 traits. Measurements were taken in 10 environmental contexts capturing 1185 

the main effects and interaction between two continuous covariates (e.g. monthly temperatures, ages, 1186 
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plot densities). This design was used to validate inference from the CRN in cases with minimal 1187 

information available for estimation of a complex function (no repeated measures, relatively low 1188 

sample size, very few environmental contexts), which is common in field applications of the animal 1189 

model. Parameter values were generated using distributions appropriate for typical effect sizes in 1190 

biological applications (Lemoine, 2019; McElreath, 2020), such that 𝜷~𝑁(0,1) for RN fixed effects 1191 

determining phenotypic means and genetic (co)variances, and 𝑹𝝐~LKJ(10) and 𝛔𝝐~exponential(2)  1192 

for residual correlation matrices and standard deviations respectively.  Following previous work 1193 

(Thomson et al., 2018), 10-generation pedigrees were simulated using variable degrees of extra-pair 1194 

paternity (15-25%) and successful offspring recruitment into the breeding pool (40-70%), generating 1195 

relatively sparse A matrices comparable to those typically observed in natural populations. Posterior 1196 

distributions for each dataset were estimated using 2000 MCMC samples across 4 chains with 500 1197 

MCMC samples each for warmup. See the ‘SBC_CRN.R’ file in Github repository for full details on the 1198 

simulation and model structure.  1199 

Results from the SBC analysis are visualized in Fig. S1b. The formal analysis using fractional ranks shows 1200 

that with a 0.95+ probability, posterior inferences were not systematically upwardly or downwardly 1201 

biased from the true values used to generate the data, indicating that the proposed Bayesian estimator 1202 

facilitates valid inference of CRNs even under conditions of modest sampling effort and a broad range 1203 

of effect sizes.  1204 
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Model comparison simulation 1205 

For interpretability, the environmental variable was conceptualized as a measure of average 1206 

temperature during the summer and winter months individuals were measured across 5 years, 1207 

resulting in 5 * 2 = 10 environmental contexts. This relatively small number of distinct environmental 1208 

contexts ensured results relevant for typical field studies lacking deep time series. Seasonal 1209 

temperatures of arbitrary scale were generated for year t from a stationary autoregressive moving-1210 

average function of the form  1211 

𝑥𝑡
∗ = 𝜇 + 0.9Δ𝑥𝑡−1 − 0.5Δ𝑥𝑡−2 + 0.9Δ𝜖𝑡−1 (𝐒𝟔. 𝟏) 1212 

𝝐~𝑁(0,0.1) 1213 

𝜇 = {
1, 𝑠𝑢𝑚𝑚𝑒𝑟
0, 𝑤𝑖𝑛𝑡𝑒𝑟

 1214 

A small cumulative value was then added to simulate weak directional change (i.e. climate warming).  1215 

𝑥𝑡 = 𝑥𝑡
∗ + 0.1𝑡 (𝐒𝟔. 𝟐) 1216 

For each simulated dataset, this produced an autocorrelated time series of seasonal temperatures with 1217 

a small upward directional trend (Fig. 3a), reflecting a combination of stochastic temperature 1218 

fluctuations and weak climate warming across years. The temperature variable 𝒙 was subsequently 1219 

standardized to unit variance to charitably compare the performance of the CRN and character state 1220 

models with binned environmental states (summer = 𝑥𝑡 > 0, winter = 𝑥𝑡 < 0), given that �̅�summer −1221 

�̅�winter = 1. This allowed for more direct comparison of the expected change in genetic (co)variance 1222 

under a 1-unit change between the continuous temperature variable and binned seasonal state. 1223 

Genetic covariances were simulated from a CRN model for two Gaussian phenotypes such that 1224 

[
𝒛𝟏

𝒛𝟐
] = [

𝟎 + 𝜶(𝑿)𝟏 + 𝝐𝟏

𝟎 + 𝜶(𝑿)𝟐 + 𝝐𝟐
] (𝐒𝟕) 1225 

[
𝒂(𝑿)𝟏
𝒂(𝑿)𝟐

] ~𝑵(𝟎,𝑮(𝑿) ⊗ 𝑨); 𝑮(𝑿𝒏) : [
𝜎𝑎(𝑋𝑛)1

2 𝑟𝑎(𝑋𝑛)1,𝑝
𝜎𝑎(𝑋𝑛)1𝜎𝑎(𝑋𝑛)𝑝

 𝜎𝑎(𝑋𝑛)2
2 ]  1226 
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small effect size: [
log(𝝈𝒂(𝑿)𝟏

𝟐 )

log(𝝈𝒂(𝑿)𝟐
𝟐 )

] = [
[𝟏 𝒙] [

−1.2
0.3

]

[𝟏 𝒙] [
−1.2
0.3

]
] ;     [

atanh(𝒓𝒂(𝑿)𝟏,𝟐
)

atanh (𝒓𝒂(𝑿)𝒑−𝟏,𝒑
)
] = [

[𝟏 𝒙] [
0

0.1
]

[𝟏 𝒙] [
0

0.1
]
] 1227 

medium effect size: [
log(𝝈𝒂(𝑿)𝟏

𝟐 )

log(𝝈𝒂(𝑿)𝟐
𝟐 )

] = [
[𝟏 𝒙] [

−1.2
0.6

]

[𝟏 𝒙] [
−1.2
0.6

]
] ;     [

atanh(𝒓𝒂(𝑿)𝟏,𝟐
)

atanh (𝒓𝒂(𝑿)𝒑−𝟏,𝒑
)
] = [

[𝟏 𝒙] [
0

0.2
]

[𝟏 𝒙] [
0

0.2
]
] 1228 

𝝐~𝑁(0, 𝚺);  𝚺 = 𝐒𝑹𝐒 1229 

𝑹~𝐿𝐾𝐽(10) 1230 

𝐒 = diag(√0.7, √0.7) 1231 

Mean trait changes with temperature were ignored for simplicity given the purposes of the simulation, 1232 

though this is of course biologically unrealistic. Note that exp(−1.2) = 𝝈𝒂(𝒙=𝟎) 
𝟐 ≈ 0.3 and tanh(0) =1233 

𝒓𝒂(𝒙=𝟎) 
 = 0, so that for the average temperature (x = 0), traits exhibited modest heritability ℎ2 =1234 

0.3

0.3+0.7
 and were uncorrelated. Cross-environment correlations were fixed to r = 0.8 by simulating 10 1235 

correlated standardized genetic values across i individuals for each of the 2 traits, constructing 10 𝒁𝑮 1236 

matrices (i x 2) from these correlated standard normal values, and subsequently scaling them using 1237 

context-specific 𝑮(𝑿) matrices following Eq. S5. Relatedness matrices 𝑨 were simulated following the 1238 

same procedure used for the SBC as described above. See the ‘methods comparison.R’ script in the 1239 

accompanying Github repository for further details. 1240 

 It may be argued that this simulation unfairly privileges the CRN model over the random 1241 

regression, given that the pattern of genetic change is not simulated directly from an individual-level 1242 

model with corresponding intercepts and slopes. However, there are two key points to consider. Firstly, 1243 

I have only assessed performance with respect to positive temperature change, i.e. Δ𝐺1,2 = 0.04 =1244 

𝐺1,2(𝑥=1) − 𝐺1,2(𝑥=0) (Fig. 3a), thus effectively ignoring the larger bias expected for negative values, 1245 

where the random regression model will incorrectly infer symmetric change due to predicting 1246 

quadratic change in (co)variances. Secondly, given the effect sizes simulated, linear slopes can 1247 
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effectively approximate the pattern of individual trait change that would be expected, over the 1248 

simulated range of the temperature variable, to generate the observed pattern of genetic change 1249 

simulated from the CRN. In particular, focusing on a single trait 𝑧 for the small effect size condition and 1250 

ignoring non-genetic effects, assume the data were simulated by a random regression model of the 1251 

form 1252 

𝑧1𝑖 = 1 + 𝒃𝑒0.15𝑥 (𝐒𝟖. 𝟏) 1253 

𝒃 ~𝑁(0,1𝑨) 1254 

where 𝒃 are additive genetic random slopes. The expected variance of the trait at a given value of x is 1255 

𝜎𝑧1
2 = 𝜎𝒃

2exp(0.3x) = exp(0.3𝑥) (𝐒𝟖. 𝟏) 1256 

Consistent with the simulated variance CRN (Eq. S7). Plotting this function for different values of 𝒃 1257 

over the typical range of standardized temperature values [−1,1], as shown in Figure S2 below, 1258 

demonstrates that this function can be well approximated by a standard random regression model 1259 

with genetically varying intercepts and linear slopes. Of course, when two models make distinct 1260 

empirical assumptions about the functional form of trait change, it is difficult to use synthetic data to 1261 

make impartial comparisons between them. A valuable target for future empirical research will, 1262 

therefore, be to more directly quantify the curvature of GxE for trait (co)variances across many traits, 1263 

environments, and clades. This will provide general heuristics for the conditions under which specific 1264 

functional forms are likely to provide better approximations to the underlying reality, which can then 1265 

be incorporated into specific CRN models.  1266 
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Estimating cross-environment correlations 1267 

Cross-environment correlations are determined by the genetic variance in and covariance among the 1268 

intercepts and slopes of individuals’ mean reaction norms (Brommer, 2013; Mitchell & Houslay, 2021), 1269 

providing crucial information for predicting evolutionary change when organisms exhibit heritable 1270 

variation in their plasticity toward the environment (Martin et al., 2024). The basic CRN model (Eq. 2) 1271 

does not directly estimate cross-environment correlations. However, it can be readily extended to do 1272 

so with an appropriate breeding design or when repeated measures are available on the same 1273 

individuals across environments.  1274 

Note that when repeated measures are available, such that the number of subjects 𝑖 < 𝑛, the matrix 1275 

of standardized individual-level additive genetic deviations 𝒁𝑮 can instead be modeled as an 𝑖 𝑥 𝑝 1276 

matrix that is constant across environmental contexts. This implies constant rank-order among 1277 

subjects (cross-environmental genetic correlations 𝑟 = 1) and thus the absence of individual-level 1278 

variation in plasticity (Brommer, 2013) with respect to the traits being measured. This approach will 1279 

generally be most applicable when individuals are measured repeatedly within rather than across 1280 

environmental contexts, such that only population-level GxE can be estimated. Alternatively, when 1281 

individuals are measured repeatedly across rather than within environmental contexts, the most 1282 

flexible and straightforward approach to allow for 𝑟 < 1 is to keep 𝒁𝑮 as an 𝑛 𝑥 𝑝 matrix just as in the 1283 

CRN model without repeated measurements. This freely estimates subjects’ standardized values and 1284 

rank-order in each unique context. Cross-environment correlations can then be manually computed 1285 

from the posterior distributions of these context-specific values, allowing for flexible estimation of any 1286 

within- or among-individual correlations of interest (e.g. genetic assortment coefficients, Martin & 1287 

Jaeggi, 2022), even in cases where only a subset of individuals are repeated measured across contexts. 1288 

Cross-environment correlations can also be directly estimated in the model by expanding 𝒁𝑮 to an 1289 

𝑛 𝑥 𝑝 ∗ 𝑐 matrix for c contexts, as in a standard character state model, while still allowing for the CRN 1290 

to predict genetic (co)variances among traits.  1291 
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Genetic prediction 1292 

If one is interested in predicting genetic values for all individuals across all contexts, a more general 1293 

form is to specify  𝒁𝑮 as a C-dimensional array of 𝑖 𝑥 𝑝 matrices, estimating individuals’ expected values 1294 

for all contexts, even those they weren’t observed in. In other words, one can simply extend the basic 1295 

model to include standardized (unscaled) random effects for all individuals in all possible contexts. This 1296 

can be useful for various purposes, including estimating cross-environment correlations when some 1297 

subjects are only observed in a subset of environmental contexts. However, this strategy can become 1298 

cumbersome very rapidly for models with many environmental contexts and will result in much slower 1299 

sampling. This motivates use of random regression techniques for high-dimensional and continuously 1300 

varying environments. 1301 

Random regression CRN 1302 

Random regression and CRN models can be synthesized to determine how the cross-environment 1303 

correlations among individuals’ genetic values as well as the genetic (co)variances among traits are 1304 

shaped by nested patterns of environmental variation. Random individual-level slopes can be 1305 

introduced to the CRN model so that the CRN describes changes in the (co)variances of the intercepts 1306 

and slopes governing RNs of trait means. For instance, empiricists may be interested in testing 1307 

theoretical predictions of how the genetic integration between individuals’ mean trait value and 1308 

plasticity to the environment changes across developmental or social contexts (Kraft et al., 2006; 1309 

Stamps et al., 2018; Dingemanse et al., 2020; Bucklaew & Dochtermann, 2021; Martin et al., 2023). A 1310 

random regression CRN can be implemented under a proper experimental design for detecting GxE 1311 

and/or with repeated measurements, where individuals’ breeding values for environmental slopes can 1312 

be estimated from observations of related individuals’ trait values across at least two or more 1313 

environmental contexts. To do so, new vectors and matrices need to be introduced:  v*i x 1 vectors u 1314 

for each phenotype containing v random effects (intercepts and slopes) for i individuals, and n x v*i 1315 

block diagonal design matrices 𝑾 indexing repeated measurements and scaling the v random effects 1316 
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for i individuals across n total measurements of each phenotype.  The random regression CRN is then 1317 

given by 1318 

[

𝑔𝑧1
(𝒛𝟏)

⋮
𝑔𝑧𝑝

(𝒛𝒑)
] = [

𝑿𝜷1 + 𝑾𝒖(𝑿)𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝑾𝒖(𝑿)𝒑 + 𝝐𝒑

] (𝐒𝟗) 1319 

[

𝒖(𝑿)𝟏

⋮
𝒖(𝑿)𝒑

]~𝑵(𝟎,𝑮(𝑿) ⊗ 𝑨); 𝑮(𝑿𝒏) : [

𝜎𝛼(𝑋𝑛)1
2 ⋯ 𝑟𝑎𝑋𝐼1

(𝑋𝑛)1,𝑏𝑋𝐼𝑏
(𝑋𝑛)𝑝𝜎𝑎𝑋𝐼1

(𝑋𝑛)1𝜎𝑏𝑋𝑏
(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎𝛽𝑏(𝑋𝑛)𝑝

2
]  1320 

Note that the design matrix  𝑾 = blockdiag(𝑿𝒗𝟏, … , 𝑿𝒗𝒊) is a block diagonal matrix containing 1321 

repeated observations of individuals 1 to i from the subset of v columns in the full environmental 1322 

matrix 𝑿 over which individual intercepts 𝒂(𝑿)𝒑  and slopes 𝜷𝟏(𝑿)𝒑 , … , 𝜷𝒃(𝑿)𝒑 are defined in the model 1323 

for trait p. The process of prediction for the elements in 𝑮(𝑿) is equivalent to Eq. 2, though the total 1324 

number of parameters to estimate in a full random regression CRN model expands to 𝑘 = 𝑏
𝑣𝑝(𝑣𝑝+1)

2
, 1325 

where 𝑏 is the number of environmental CRN parameters and 𝑣 is the number of individual effects. A 1326 

phenotypic version of the random regression CRN can also be implemented following Eq. 3. 1327 

 By allowing genetic variation in response to the environment to also change across 1328 

environments, the random regression CRN can simultaneously quantify both population- and 1329 

individual-level parameters shaping environmental effects on the G matrix, providing more accurate 1330 

predictions about the dual consequences of developmental and contextual plasticity across multiple 1331 

scales. Pragmatically, this model will be particularly useful when individuals are only measured across 1332 

a subset of relevant environmental contexts. For instance, subjects may be repeatedly measured under 1333 

varying microclimatic and resource conditions within their local patch, providing information to 1334 

estimate the average within-patch (co)variation of intercepts and slopes, without experiencing among-1335 

patch variation in community composition and habitat quality, which may further shape genetic 1336 

(co)variation of these parameters and thus the magnitude of GxE across environments. 1337 
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Link functions for trait variances 1338 

 Using the log (𝜎2) function for trait variances facilitates unbiased inference on the latent scale 1339 

of the CRN model (Fig. S1), as well as the observed scale when it is characterized by exponential change 1340 

(over the range of prediction) in response to the environment (Fig. 3). The log link is also a commonly 1341 

used and familiar function that facilitates intuitive interpretation. However, this function may not 1342 

always be the best choice when estimating a CRN. Below I consider two alternatives, one which is 1343 

generally not recommended (square root) and another which is likely to be much more broadly 1344 

applicable (inverse softplus).  1345 

Square root link 1346 

The Gaussian linear random regression model assumes that trait variances change exponentially with 1347 

respect to the environment, which in turn implies linear change in genetic standard deviations for 1348 

positive values (with negative values leading in the extreme to predictions of improper negative 1349 

standard deviations; see Fig. S3 for a comparison). As discussed in the main text, this is unlikely to be 1350 

a realistic assumption for many traits, given its implication of symmetric change in genetic variance 1351 

across positive and negative values of the environment. However, when quadratic change is the true 1352 

functional form for the variance, one can instead use a square root link function directly on the genetic 1353 

variance, such that √𝝈𝟐 = |𝑿|𝜷𝝈 where predictors are constrained to be positive 𝜷𝝈 > 𝟎 in the model 1354 

likelihood to ensure identifiability. This implies that (|𝑿|𝜷𝝈)
2 = 𝜎2, so that the variance changes 1355 

quadratically as a function of the positive linear environmental effects on the standard deviation. The 1356 

key issue here is ensuring that 𝑿𝜷𝝈 > 0, so this must be accomplished by scaling both the linear 1357 

predictors and the environmental values (by taking the absolute value) to be strictly positive, unless 1358 

one is modeling data where there is no risk of predicting impossible negative values. To the degree 1359 

that one is certain this model is appropriate, it will generally be much more straightforward and 1360 

interpretable to fit a standard or CRN random regression model (Eq. S9), and thus I cannot recommend 1361 
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it for general use outside of very specific cases (e.g. when repeated measures are unavailable but prior 1362 

work informs a strong expectation of quadratic change). 1363 

Inverse softplus link 1364 

Another less commonly employed link function may be more useful for modelling genetic variance in 1365 

the CRN model. An important limitation of the log link is that, for larger effect sizes, it can be prone to 1366 

upwardly bias estimates on the original data scale, due to the asymmetric influence of estimation error. 1367 

This follows from Jensen’s inequality, where for some convex function 𝑓 and random variable 𝑥 1368 

𝑓(E(𝑥)) ≤ E(𝑓(𝑥)) (𝐒𝟏𝟎. 𝟏) 1369 

which implies that 1370 

𝑓(𝜎2) < E (exp(𝜎2̂)) (𝐒𝟏𝟎. 𝟐) 1371 

 𝜎2̂~𝑁(𝜎2, 𝛿) 1372 

for the true trait variance 𝜎2 estimated by 𝜎2̂ with random Gaussian error of magnitude 𝛿. In other 1373 

words, even if error is truly random and thus the expected estimate is unbiased on the log scale, the 1374 

expected variance estimated on the original scale exp(𝜎2̂) will still tend to be upwardly biased from 1375 

the true value, due to application of the convex exponential inverse link function. The importance of 1376 

this upward bias will be contingent on factors such as the sample size, which will generally decrease 1377 

error in estimates, as well as the degree to which one is focused on unbiasedly estimating CRN model 1378 

coefficients on the link scale or predicting exact magnitudes of change in genetic variance on the 1379 

original data scale. The former will generally be of greater importance for basic research, where theory 1380 

is most often tested by qualitative predictions (e.g. covariances will become more positive/negative) 1381 

rather than exact quantitative predictions. The log link should, therefore, be a fine choice for most 1382 

purposes. One can always hedge their bets by expecting that there may be a small upward bias in 1383 

original scale predictions in the presence of high statistical uncertainty, while being confident that 1384 
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latent scale predictions and thus the quantities most often used for hypothesis testing (e.g. CRN 1385 

parameters) are expected to be unbiasedly estimated. 1386 

 In some cases, however, it may be desirable to use the inverse softplus link function, where 1387 

log(𝑒𝑥𝑝( 𝝈𝟐) − 1) = 𝑿𝜷𝝈 
𝟐  predicts the latent scale values and the softplus function 𝝈𝟐 =1388 

log(1 + 𝑒𝑥𝑝(𝑿𝜷𝝈 
𝟐)) returns the variance on the original scale. Latent predictions from the softplus 1389 

tend to scale much less convexly with respect to the original data scale (Fig. S3). The clear benefit of 1390 

this link function is, therefore, that stochastic estimation error on the link scale tends to generate less 1391 

upward bias with respect to the original variance and standard deviation scales, in comparison to the 1392 

log link. Moreover, because the softplus approximates the identity function as it moves further away 1393 

from 0 variance, it provides a natural solution for flexibly testing distinct functional forms for the 1394 

variance components. For instance, one can specify a 2nd-order polynomial on the link scale to more 1395 

directly test for approximately quadratic change. Note that the softplus can be implemented in Stan 1396 

using the ‘log1p_exp’ function. 1397 
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Figure S1. Simulation-based calibration of the CRN model. 1398 

Footnote. Results are shown for SBC analysis of 200 simulated datasets of 3 traits under minimal 1399 
sampling conditions (N = 300 / 10 environmental contexts) generated from prior distributions defined 1400 
over the parameters of the quantitative genetic CRN model (Eq. 2). (a) Conceptual overview of the SBC 1401 
procedure. (b) The CRN contained four parameters for each genetic variance (𝜎𝛼

2) and correlation (𝑟𝛼): 1402 
𝛽0  for the trait-specific intercepts, 𝛽𝑥1

 and 𝛽𝑥2
 for the main effects of two continuous and 1403 

independently distributed environments, and 𝛽𝑥1𝑥2
 for the interaction effect of these continuous 1404 

environments.  Plots show the difference (y-axis) between the empirical cumulative density functions 1405 
(ECDFs) for CRN parameters from the generative prior distributions used to simulate datasets and the 1406 
ECDFs of the estimated posterior distributions across datasets. This difference is shown by the black 1407 
line and plotted as a function of the relative fractional rank (x-axis) of the simulated values in 1408 
comparison to inferred values. Blue ellipses show regions providing 0.95+ probability of uniformity 1409 
between the ECDFs of the simulated and estimated parameter distributions, providing support for a 1410 
well-calibrated model without systematic bias (Talts et al., 2018). Therefore, while stochastic 1411 
fluctuations are expected at computationally efficient sample sizes, black lines should remain within 1412 
the blue ellipses across fractional ranks if the model generates unbiased posterior estimates of 1413 
parameter values, with respect to the prior simulated values. Consistent deviations of the black line 1414 
beyond the blue ellipse provide statistical evidence of bias in the region of parameter space indicated 1415 
by the fractional ranks. For instance, if a model systematically underestimates parameter values, we 1416 
expect the black lines to peak outside the blue ellipses at high fractional ranks, indicating that prior 1417 
values were systematically larger than inferred estimates. 1418 
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Figure S2. Individual reaction norms generating exponential change. 1419 

Footnote. Examples of individual-level responses (Eq. S6) that generate the exponential change in 1420 
genetic variance assumed by the CRN model used to simulate datasets for the model comparison (Eq. 1421 
S7). The true function (black text) incorporates Gaussian random slopes 𝒃 determining how 1422 
individuals’ trait expression (z) changes in response to temperature (x). Three lines of varying color are 1423 
shown for individuals (i) with differing random slope values. The visualization demonstrates that over 1424 
the typical range of temperature values used in the simulation, individual reaction norms from this 1425 
exponential function could be well approximated by a standard linear random regression model.   1426 
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Figure S3. Comparison of link functions for the genetic variance. 1427 

 1428 

Footnote. The relationship is plotted between the value of the linear predictor 𝜂 = 𝑿𝒏𝜷 (x-axis) and 1429 
the original scale variance (left plot) and standard deviation (right plot) as a function of assuming a log 1430 
link (exponential for original scale; red), square root link (quadratic change; blue), or inverse softplus 1431 
link (purple). As can be seen, the inverse softplus link exhibits much less convexity than the log link on 1432 
the original scale, facilitating approximately sublinear prediction of the variance and standard 1433 
deviation for small values (the function becomes increasingly linear with larger values).   1434 
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Table S1. Summary of meerkat CRN parameter posterior distributions. 1435 

 1436 

Regression coefficient 
variance reaction norm 𝜷𝝈𝜶

𝟐  correlation reaction norm 𝜷𝒓𝜶
 

median 𝑝+/− median 𝑝+/− 

foraging and feeding pups (FD) FD ~ BS 
age 0.19 0.81 -0.34 0.98 
sex 0.10 0.62 0.31 0.90 
dominance status 1.10 1.00 0.17 0.77 
age * sex -0.07 0.61 0.11 0.70 
age * dominance -0.10 0.64 0.25 0.79 
sex * dominance -0.36 0.84 -0.28 0.80 
age * sex * dominance -0.17 0.65 -0.65 0.93 
group size 0.20 1.00 -0.12 0.98 
group size2 0.21 1.00 -0.04 0.73 

babysitting (BS) FD ~ GD 
age 0.96 1.00 -0.21 0.90 
sex -0.21 0.75 0.15 0.77 
dominance status -0.02 0.52 0.19 0.80 
age * sex -0.13 0.66 -0.01 0.52 
age * dominance -0.85 0.99 0.34 0.92 
sex * dominance 0.76 0.96 -0.20 0.77 
age * sex * dominance -0.01 0.56 -0.10 0.60 
group size -0.12 0.97 -0.10 0.98 
group size2 0.08 0.87 0.11 0.99 

vigilant guarding (GD) BS ~ GD 
age -0.19 0.94 -0.16 0.77 
sex 0.12 0.77 0.32 0.96 
dominance status 0.49 0.99 0.23 0.85 
age * sex -0.12 0.81 0.30 0.96 
age * dominance 0.47 0.99 0.15 0.71 
sex * dominance -0.01 0.52 -0.37 0.84 
age * sex * dominance 0.65 0.98 -0.13 0.60 
group size 0.02 0.72 0.07 0.88 
group size2 0.05 0.94 0.05 0.79 

 1437 

Footnote. Posterior distributions of CRN parameters (regression coefficients) for the genetic variances (𝜷𝝈𝜶
𝟐 ) and 1438 

genetic correlations (𝜷𝒓𝜶
) among three meerkat social behaviors: foraging and pup feeding (FD), babysitting (BS), and 1439 

vigilant guarding (GD). Posteriors are summarized by their median and the probability of a directional effect (𝑝+/−). 1440 
Note that 𝑝+/−closer to 1 provide stronger support for a positive or negative effect, contingent on the sign of the 1441 
median effect size. Reference categories for sex and dominance are female and subordinate. 1442 

1443 
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