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Abstract 19 

Estimating quantitative genetic and phenotypic (co)variances is crucial for investigating evolutionary 20 

ecological phenomena such as developmental integration, life history tradeoffs, and niche 21 

specialization, as well as for describing selection and predicting multivariate evolution in the wild. 22 

While most studies assume (co)variances are fixed over short timescales, environmental 23 

heterogeneity can rapidly modify the variation of and associations among organisms’ traits. Here I 24 

synthesize prior random regression and double hierarchical animal models to develop a novel 25 

covariance reaction norm (CRN) model for detecting how trait (co)variances respond to complex (i.e., 26 

continuous, multivariate, and potentially nonlinear) environmental change, even in the absence of 27 

repeated individual measurements or experimental breeding designs. After introducing the CRN 28 

model, I validate its implementation in Stan, demonstrating unbiased Bayesian inference. I then apply 29 

the model to long-term field data on cooperation among meerkats (Suricata suricatta). I find nonlinear 30 

effects of group size on the genetic (co)variances of cooperative behaviors, leading to increased social 31 

niche specialization among foraging and pup feeding versus babysitting tasks in larger groups. 32 

Multivariate gene-by-environment interactions are also observed in response to age, sex, and 33 

dominance status. R code and a tutorial are provided to aid empiricists in applying CRN models to their 34 

own datasets. 35 

 36 
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Introduction 38 

Accurately estimating phenotypic and quantitative genetic (co)variances is essential for 39 

understanding multivariate evolution in the wild. For instance, quantifying the (co)variances of 40 

thermoregulatory traits and growth rates is crucial for explaining differential patterns of population 41 

adaptation and divergence in response to climate change (de la Mata et al., 2022; Oomen & Hutchings, 42 

2022; Schaum et al., 2022). Empirical estimates of covariance between life history traits are also 43 

critical for testing theoretical models of putative tradeoffs (negative covariances) between growth, 44 

maintenance, survival, or reproduction (Haave-Audet et al., 2022; Chang et al., 2023), which are 45 

hypothesized to constrain the direction and rate of adaptive evolution (Stearns, 1989; Roff, 1996). 46 

Positive genetic covariances may instead accelerate adaptation across environments, such as in red 47 

flour beetles (Tribolium castaneum), where selection for drought resistance has been found to 48 

indirectly select for greater heat resistance via a correlated genetic response (Koch et al., 2020). 49 

Estimating phenotypic (co)variances is similarly important for addressing various challenges in 50 

evolutionary ecology, such as distinguishing between repeatable and stochastic patterns of trait 51 

selection in the wild (Damián et al., 2020; Dingemanse et al., 2021; Martin, 2021), testing theoretical 52 

models of developmental integration and niche specialization (Damián et al., 2020; Rolian, 2020; 53 

Martin et al., 2023), as well as for making evolutionary predictions in systems undergoing rapid 54 

environmental change or exhibiting processes of non-genetic inheritance, such as cultural learning 55 

and niche construction (Danchin & Wagner, 2010; Fogarty & Wade, 2022).  56 

For polygenic and environmentally responsive traits, the quantitative genetic G matrix and 57 

phenotypic P matrix can be used to describe these multivariate (co)variances and predict their 58 

evolutionary consequences (Lande, 1979; Lande & Arnold, 1983). Various quantities derived from G 59 

and P matrices have also long been of interest in evolutionary genetics and ecology, such as covariance 60 

tensors and principal components (Schluter, 1996; Aguirre et al., 2014) for comparing divergence 61 

across populations (McGlothlin et al., 2018; Royauté et al., 2020), or canonical axes (Phillips & Arnold, 62 

1989; Blows & Brooks, 2003) for describing (non)linear selection on correlated phenotypes (Nussey et 63 

al., 2007; Dingemanse & Dochtermann, 2013; Brommer et al., 2019). Multivariate, multilevel 64 

regression models (also known as mixed effects, hierarchical, or random regression models) are well-65 

established in the literature and widely applied for empirically estimating G and P matrices (e.g. 66 

Nussey et al., 2007; Dingemanse & Dochtermann, 2013; Brommer et al., 2019). Multivariate animal 67 

models—a specific form of generalized multilevel regression model—are particularly useful for 68 

quantitative genetic analysis, as they can take full advantage of naturally occurring, continuous 69 

variation in genetic relatedness and environmental conditions across subjects (Kruuk, 2004; Wilson et 70 

al., 2010). This allows the animal model to provide greater flexibility and robustness for describing 71 

heritable (co)variation in wild populations, in comparison to classical methods that rely on the 72 

assumptions of balanced breeding experiments or specific kin-class comparisons (Kruuk & Hadfield, 73 

2007). Building on the well-established animal model, the present paper develops flexible extensions 74 

for predicting variation in G and P matrices attributable to continuous, nonlinear, and multivariate 75 

environmental effects. 76 

Motivation for a novel method 77 

Despite longstanding theoretical interest in and empirical evidence for the micro- and 78 

macroevolutionary stability of G and P matrices ( Björklund, 1996; Estes & Arnold, 2007; Henry & 79 

Stinchcombe, 2023; McGlothlin et al., 2018), genetic and phenotypic (co)variances can also change 80 

rapidly across space and time, as individuals face continuously varying environmental conditions that 81 

predictably shape the expression and selection of their traits (Fig. 1). For example, previous research 82 

across a wide range of taxa (e.g. lizards, Yewers et al., 2017; Wittman et al., 2021; flies, Carvalho & 83 
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Mirth, 2015; frogs, Lofeu et al., 2017; mice, vom Saal, 1979; Huber et al., 2017; and primates, Montoya 84 

et al., 2013; Grebe et al., 2019) has shown that endocrine activity and the resulting hormonal milieu 85 

experienced during both prenatal and postnatal development exhibit dose-dependent effects on the 86 

integration (positive genetic covariance) of various morphological and behavioral phenotypes in adult 87 

organisms (Fig. 1a). As another example, consider that classic theoretical models (van Noordwijk & de 88 

Jong, 1986) predict associations among life history traits to be contingent on the relative importance 89 

of among-individual differences in resource acquisition versus allocation. As a consequence, spatial or 90 

temporal heterogeneity in factors such as resource availability are expected to cause continuous 91 

variation in the genetic effects acting to constrain (negative genetic covariance, i.e. tradeoffs) or 92 

facilitate (positive genetic covariance) ongoing adaptation (Mats Björklund, 2004; Mats Björklund & 93 

Gustafsson, 2015; Haave-Audet et al., 2022); Fig. 1b). Similarly, continuous fluctuations in selection 94 

are expected to occur when the fitness effects of quantitative traits vary across functional contexts, 95 

as described by changes in the covariance between relative fitness and phenotype (Russell Lande, 96 

1976). In many fish, for instance, large body size reduces predation risk and promotes greater mating 97 

and reproductive success (Barneche et al., 2018; Uusi-Heikkilä, 2020); however, commercial 98 

harvesting of fish also tends to target larger individuals (Sharpe & Hendry, 2009; Heino et al., 2015), 99 

facilitating continuous shifts in the strength and direction of selection on size as a function of the 100 

intensity of local harvesting (Fig. 1c). Both theory (Bonner, 2004; Jeanson et al., 2007) and extensive 101 

empirical study (e.g. Karsai & Wenzel, 1998;  Thomas & Elgar, 2003; Ferguson-Gow et al., 2014; Ulrich 102 

et al., 2018) have also demonstrated that division of labor can emerge spontaneously during colony 103 

growth in eusocial species, with workers exhibiting generalist phenotypes at small group sizes 104 

(average positive phenotypic covariance among tasks) but shifting toward specialist phenotypes as 105 

group size increases (negative phenotypic covariance; Fig. 1d). Each of these specific cases is likely 106 

subject to further multivariate environmental interactions, due to e.g. antagonistic effects among 107 

hormones (Trumble et al., 2015; Qi et al., 2019), feedbacks between resource availability and 108 

competition (Lankau, 2011; Koutsidi et al., 2024), fluctuating selection on body size as a function of 109 

local sex ratios and predator densities (Uusi-Heikkilä, 2020; Jusufovski & Kuparinen, 2020), as well as 110 

the role of colony age structure in shaping division of labor (Huang & Robinson, 1996; Enzmann & 111 

Nonacs, 2021).  112 

These dynamic and multivariate patterns of genotype-by-environment (GxE), phenotype-by-113 

environment (PxE), and fitness-by-environment interaction can be formally quantified by changes in 114 

P and G matrices across contexts. Current multivariate animal models are particularly well suited for 115 

characterizing discrete changes in trait (co)variances due to categorical environmental effects, such as 116 

experimental conditions (e.g., solitary versus group housing) and developmental stages (e.g. juvenile 117 

versus adult) or discretely binned environmental covariates from the field (e.g. high versus low quality 118 

habitats). This is typically achieved through a so-called character state approach, where separate 119 

models are fit for trait expression in each discrete environmental state and individuals’ additive 120 

genetic (breeding) values are allowed to correlate across models (Via & Lande, 1985; Lynch & Walsh, 121 

1998). However, as argued above, environmental effects on P and G matrices will often reflect 122 

continuous, multivariate, and potentially nonlinear processes that are challenging to describe with 123 

character state models (Fig. 1, 2a). These complex dynamics can be interpolated post-hoc from 124 

estimates across discrete states (see Mitchell & Houslay, 2021 for a detailed treatment). However, 125 

this strategy will often require prohibitively large sample sizes for accurate inference of complex 126 

environmental effects, due to discretizing the problem into at least 𝑘 = 𝑠
𝑝(𝑝+1)

2
 distinct and 127 

independently estimated (co)variance terms, where p is the number of phenotypes and s is the 128 

number of states necessary to effectively approximate the underlying function (which may be very 129 

large for multivariate environments, Fig. 2a). When appropriate data is available, heritable variation 130 
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in plasticity due to GxE effects can also be quantified. This requires specifying 𝑘 =
𝑠𝑝(𝑠𝑝+1)

2
 genetic 131 

covariances between character states across environments in a full model. Genetic correlations < 1 132 

across environmental states usually indicate heritable variation in plasticity due to GxE interactions 133 

(Mitchell & Houslay, 2021). Consequently, while the character state model is extremely useful for 134 

systems experiencing a small number of environmental states, it will tend have reduced statistical 135 

power for detecting complex functional relationships in more heterogeneous environments. Outside 136 

of controlled experiments, artificial binning of naturally occurring continuous variation will reduce 137 

statistical power for detecting true effects, while also increasing the risk of false positives and 138 

downwardly biasing effect sizes (e.g. Cohen, 1983; MacCallum et al., 2002). Qualitative inferential 139 

biases can also arise from insufficient sampling of discrete states in the presence of nonlinear and/or 140 

multivariate environments (Fig. 2a). 141 

Mathematically complementary reaction norm models (de Jong, 1995; Lynch & Walsh, 1998; 142 

Nussey et al., 2007) can be used to more directly and parsimoniously describe such continuous 143 

processes, taking full advantage of available environmental information with much fewer parameters. 144 

Multilevel models with random individual intercepts and slopes (or at any other hierarchical level of 145 

interest) are often termed random regression models in biology (Henderson, 1982), and they provide 146 

one common and well-established approach to the estimation of reaction norms, including continuous 147 

patterns of GxE and PxE under specific study designs. For instance, when experimental breeding is 148 

used to observe relatives across a continuous environmental gradient, such as in a full-sib, half-sib 149 

design with dams nested in sires (Falconer & Mackay, 1996), a random regression animal model can 150 

be used to estimate genetic slopes quantifying how character state (co)variances continuously change 151 

across the distinct environments experienced by siblings. However, these breeding designs may only 152 

be practical for a subset of species with desirable properties for experimental study, such as relatively 153 

small body sizes, short life spans, sessility or small home ranges, and simple mating systems, or those 154 

with extensive infrastructure and resource investment due to their role in biomedical, agricultural, or 155 

livestock applications. Given the large sample sizes necessary to achieve appropriate balancing of 156 

relatives across multivariate environments, these designs also generally rely on discretization of the 157 

environment or manipulation of a single environmental gradient, greatly simplifying the ecological 158 

reality experienced by natural populations. It is, therefore, unfeasible to use this as a general approach 159 

for studying multivariate patterns of GxE, which are likely to occur for many labile behavioral, 160 

physiological, and morphological traits (Fig. 2b). Indeed, many of the most pertinent multivariate 161 

causes of GxE and PxE relevant for explaining development and adaptation in contemporary 162 

populations may simply be unfeasible and/or unethical to experimentally control, such as the 163 

interacting effects of predation risk, resource scarcity, climate change, and anthropogenic disturbance 164 

on wild populations. 165 

Random regression models can also be applied in the absence of appropriate breeding designs 166 

when many repeated individual-level measurements are available (Nussey et al., 2007). For instance, 167 

consider a scenario where the genetic or phenotypic (co)variance between behavior and morphology 168 

increases as function of age and local resource availability. A field study design allowing for repeated 169 

observations of the same individuals across ages and levels of resource availability could then be used 170 

to estimate a random regression model with individual intercepts and slopes, which could in turn be 171 

used to calculate continuous changes in phenotypic and/or genetic (co)variance between behavior 172 

and morphology across environments. However, doing so would rely on the assumption that the 173 

(co)variance between these random intercepts and slopes is itself constant across environments. If, 174 

for example, the variation of and correlation among individuals’ intercepts and slopes also changes 175 

continuously as a function of age and resource availability, e.g. if younger individuals show more 176 
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variable and genetically integrated responses to local resource availability, a standard random 177 

regression model will not accurately predict the magnitude of GxE or PxE across environments. A 178 

typical solution in this case would be discretize age and estimate separate age class-specific 179 

(co)variances matrices of individuals’ intercepts and slopes, falling prey to the same limitations of 180 

discretization discussed above for character state approaches. Discretization can be avoided using 181 

interaction effects, such as by estimating random slopes for the effect of age x resource availability on 182 

both behavior and morphology, but this strategy requires repeated sampling designs that will often 183 

be unrealistic and burdensome, particularly for field studies, when quantifying multivariate 184 

environmental causes of GxE and PxE (Fig. 2b). For instance, the (co)variance between behavior and 185 

morphology may also vary continuously as a function of interactions between age, body size, 186 

conspecific density, and resource availability. In the general case, a research team will need to collect 187 

sufficient repeated individual measurements to estimate 𝑘 =
𝑣𝑝(𝑣𝑝+1)

2
 free parameters in a 188 

(co)variance matrix, where 𝑝 is the number of traits and 𝑣 is the number of individual-level parameters 189 

(intercepts and slopes) describing all environmental effects of interest. Such matrices can quickly grow 190 

quite large, even in simple cases such as a 2nd-order polynomial for two phenotypes, which requires 191 

estimating 𝑘 = 78 free individual-level parameters (Fig. 2b). Statistically identifying and reliably 192 

estimating such large matrices of random slopes on high-order interactions will simply be unfeasible 193 

for most empirical datasets (Matuschek et al., 2017). 194 

Overcoming the limitations discussed above will greatly improve empiricists’ ability to 195 

understand complex environmental effects on the development and evolution of complex traits. 196 

Therefore, to address this challenge, I here introduce a ‘covariance reaction norm’ (CRN) approach for 197 

estimating continuous, multivariate, and potentially nonlinear environmental effects on trait 198 

(co)variances, building on and generalizing beyond standard models currently used in the literature 199 

for investigating GxE and PxE. This is accomplished by synthesizing character state and random 200 

regression approaches with a broader class of multilevel regression models, which includes so-called 201 

double hierarchical animal models as a special case. After formally outlining this CRN model, I 202 

subsequently validate this model for empirical application with simulation-based calibration (Talts et 203 

al., 2018), and then demonstrate its utility through a worked empirical example using long-term field 204 

data on cooperative behavior among meerkats (Suricata suricatta). Accompanying code and a guided 205 

tutorial for implementation of CRN models in the R statistical environment (R Core Team, 2023) using 206 

the Stan statistical programming language (Carpenter et al., 2017) can be found on Github (see data 207 

availability). 208 

  209 
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Figure 1. Examples of empirical applications for covariance reaction norm models. 210 

 211 

Footnote. Four simplified examples (a-d) are shown of phenotypic domains (middle column) where 212 

continuous environmental variation (left column) is likely to cause continuous changes in quantitative 213 

genetic (G; top rows) and phenotypic (P; bottom rows) trait covariances, as formally described by 214 

hypothetical covariance reaction norms (CRNs; right column) quantifying patterns of continuous GxE 215 

and PxE across environmental states. Orange lines indicate potential interactions due to multivariate 216 

patterns of GxE and PxE, where the effect of one environmental gradient on trait (co)variation changes 217 

as a function of another environmental factor. See the main text for a detailed description of each 218 

scenario and Eq. 2-3 for a formal description of how such CRNs can be empirically estimated. 219 

 220 

 221 
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Figure 2. Challenges in estimating nonlinear and multivariate GxE interactions. 222 

 223 

Footnote. Examples are shown of complex environmental effects on the covariance between two traits 𝑧1 and 224 

𝑧2, demonstrating that even in simple cases the CRN model will generally require less free parameters k to 225 

accurately describe population patterns of GxE and PxE than standard approaches in the literature. (a) A 226 

nonlinear effect of a single continuous environment 𝑥1 on the covariance between two traits, where 𝜎𝑧1,𝑧2
=227 

𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥
2. The k needed to detect this expected relationship, without prior knowledge of whether 228 

effects occur on trait variances or correlations, are shown for the CRN model (left) in comparison to a character 229 

state approach (right), where a varying number of discrete environmental states (light blue circles) are used to 230 

interpolate the underlying continuous function (dark blue curve). Red lines indicate biased interpolation 231 

resulting from insufficient sampling of the environment: discretizing to a high and low state (yellow line) results 232 

in detecting no change (top-left); sampling low, mid, and high results in failing to detect nonlinearity, under- or 233 

overpredicting change at different levels of the environment (top-center); failing to sample sufficiently high (or 234 

low) environments leads to predicting linear or monotonic change (top-right); and sampling only high and low 235 

environments leads to predicting a non-existent plateau (bottom-left). If sufficient sampling is done of the entire 236 

environmental range (bottom-center), the curve can be accurately interpolated, but at the cost of needing to 237 

independently estimate more than twice as many parameters as the CRN model. (b) A nonlinear interaction 238 

between two continuous environments 𝑥1 and 𝑥2, where 𝜎𝑧1,𝑧2
= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥 + 𝛽3𝑥1

2 + 𝛽4𝑥2
2 + 𝛽5𝑥1𝑥2. 239 

This requires 𝑘 = 18 parameters to characterize with the CRN, assuming no prior knowledge. Interpolating such 240 

processes is very challenging with a character state approach but can be accomplished with a random regression 241 

model, where individual-level intercepts and slopes are estimated for both traits across environments. The solid 242 

and dashed lines show two individuals’ hypothetical RNs for 𝑥1 across two levels of 𝑥2 (blue and orange). In this 243 

case, interpolating the population average function without prior knowledge requires over 4x as many 244 

parameters in comparison to the CRN. 245 
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Covariance reaction norms 246 

Quantitative genetic analysis 247 

The animal model is a multilevel regression model that allows for partitioning random 248 

quantitative genetic effects G and environmental effects on phenotypes. Extensive prior work has 249 

provided detailed overview of the animal model and its various extensions (e.g. Nussey et al., 2007; 250 

Wilson et al., 2010; Thomson et al., 2018; Martin & Jaeggi, 2022). Therefore, I focus herein on a highly 251 

simplified presentation of the animal model to highlight novel extensions, as well as to avoid detailed 252 

discussion of general issues in regression analysis such as the inclusion of various kinds of fixed and 253 

random effects. A multivariate animal model can be specified for each of p Gaussian phenotypes 254 

[𝒛𝟏
⊤ , … , 𝒛𝒑

⊤ ]
⊤
 measured for n individuals by 255 

[

𝑔𝑧1
(𝒛𝟏)

⋮
𝑔𝑧𝑝

(𝒛𝒑)
] = [

𝑿𝜷1 + 𝜶𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝜶𝒑 + 𝝐𝒑

] (𝟏. 𝟏) 256 

The functions 𝑔𝑧1
, … , 𝑔𝑧𝑝

 are link functions (e.g. identity, log, logit, atanh, sqrt) that can be used to 257 

appropriately specify non-Gaussian measurements on a latent linear scale. Linear predictors for these 258 

measurements are estimated with an n x b matrix X for b continuous and/or discrete covariates (e.g. 259 

local density, age, sex, resource abundance, seasonal precipitation and temperature, etc.), and 260 

[𝜷𝟏
⊤ , … , 𝜷𝒑

⊤ ]
⊤
 are b x 1 vectors of trait-specific fixed effect sizes including global intercepts. After 261 

adjusting for these effects, the model estimates trait-specific additive genetic (breeding) values 262 

[𝜶𝟏
⊤ , … , 𝜶𝒑

⊤ ]
⊤
 and residual environmental values [𝝐𝟏

⊤ , … , 𝝐𝒑
⊤ ]

⊤
. Further genetic effects due to dominance 263 

or epistasis can also be parameterized when relevant for the goals of the analysis, along with any other 264 

random intercepts or slopes of interest. If repeated individual-level measurements are available, 265 

residuals can also be further partitioned into permanent and stochastic environmental components. 266 

Trait (co)variances due to additive genetic and residual effects are assumed to be 267 

approximated by multivariate normal distributions 268 

[

𝒂𝟏

⋮
𝒂𝒑

]~𝑵(𝟎,𝑮⨂𝑨); [

𝝐𝟏

⋮
𝝐𝒑

]~𝑵(𝟎, 𝚺) (𝟏. 𝟐)  269 

With the G matrix being scaled using the Kronecker product ⊗ by a relatedness matrix A that 270 

quantifies pairwise relatedness among subjects, calculated using standard pedigree methods or 271 

molecular approaches. This basic animal model structure assumes that phenotypic (co)variances 272 

described by the G matrix are constant across subjects, adjusted for any other fixed and random 273 

effects predicting phenotypic means. The goal is now to relax this assumption by also allowing for 274 

fixed effects due to continuous or discrete environmental factors to also predict variation in trait 275 

(co)variances. 276 

Predicting genetic (co)variances 277 

The G matrix can be parameterized using genetic variances 𝜎𝑎
2 and correlations 𝑟𝑎 such that 278 

𝑮: [

𝜎𝑎1
2 ⋯ 𝜎𝑎1,𝑝 

 ⋱ ⋮ 
  𝜎𝑎𝑝

2
] = [

𝜎𝑎1
2 ⋯ 𝑟𝑎1,𝑝

𝜎𝑎1
𝜎𝑎𝑝

 

 ⋱ ⋮ 
  𝜎𝑎𝑝

2
] (𝟏. 𝟑) 279 
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Here the genetic covariances 𝜎𝑎1,𝑝
= 𝑟𝑎1,𝑝

𝜎𝑎1
𝜎𝑎𝑝

 are given by the product of genetic correlations and 280 

standard deviations (square roots of the genetic variances). Note that bold symbols are used to 281 

distinguish vectors and matrices from scalars. Separating out the scale of variation 𝜎𝑎
2 for each variable 282 

from their standardized associations 𝑟𝑎 
 is crucial for further expanding the model, as environmental 283 

factors may exhibit independent effects on the variances and correlations of traits, which would 284 

otherwise be confounded together through direct prediction of the covariance. This parameterization 285 

also provides a straightforward solution to ensuring the positive definiteness of the G matrix during 286 

model estimation, as described further below (see computational efficiency).  287 

With Eq. 1.3, the basic animal model can now be expanded to a covariance reaction norm 288 

(CRN) model by using link functions to predict how genetic variances and correlations change in 289 

response to the same matrix 𝑿 of environmental covariates used to predict phenotypic means (or a 290 

relevant subset of these predictors). Using the subscript (𝑋𝑛) to denote the G matrix predicted from a 291 

CRN in the environmental context measured for subject n  292 

[

𝑔𝑧1
(𝒛𝟏)

⋮
𝑔𝑧𝑝

(𝒛𝒑)
] = [

𝑿𝜷1 + 𝜶(𝑿)𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝜶(𝑿)𝒑 + 𝝐𝒑

] (𝟐) 293 

[

𝒂(𝑿)𝟏

⋮
𝒂(𝑿)𝒑

]~𝑵(𝟎,𝑮(𝑿) ⊗ 𝑨); 𝑮(𝑿𝒏) : [

𝜎𝑎(𝑋𝑛)1
2 ⋯ 𝑟𝑎(𝑋𝑛)1,𝑝

𝜎𝑎(𝑋𝑛)1𝜎𝑎(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎𝑎(𝑋𝑛)𝑝

2
]  294 

[

log(𝝈𝒂(𝑿)𝟏
𝟐 )

⋮

log (𝝈𝒂(𝑿)𝒑
𝟐 )

] = [

𝑿𝜷𝝈𝟏
𝟐

⋮
𝑿𝜷𝝈𝒑

𝟐  

] ;     [

atanh(𝒓𝒂(𝑿)𝟏,𝟐
)

⋮

atanh (𝒓𝒂(𝑿)𝒑−𝟏,𝒑
)

] = [

𝑿𝜷𝒓𝟏

⋮
𝑿𝜷𝒓𝒑−𝟏,𝒑

] 295 

Rather than defining a single genetic variance and set of correlations for each response variable, as in 296 

the standard animal model (Eq. 1), the CRN animal model predicts n G matrices 𝑮(𝑿) =297 

(𝑮(𝑿𝟏), … , 𝑮(𝑿𝒏)) each composed of context-specific genetic variances 𝝈𝒂(𝑿)𝒑
𝟐 =298 

[𝜎𝑎(𝑋1)𝑝
2 , … , 𝜎𝑎(𝑋𝑛)𝑝

2 ]′, and correlations 𝒓𝒂(𝑿)𝟏,𝒑
= [𝑟𝑎(𝑋1)1,𝑝

, … , 𝑟𝑎(𝑋𝑛)1,𝑝
]′. There are as many unique 299 

G matrices as the number of unique multivariate contexts defined by the environmental covariates in 300 

X, yet the prediction of these matrices only requires estimating a much smaller set of CRN parameters. 301 

The log and inverse hyperbolic tangent link functions are respectively used to infer these trait-specific 302 

parameters (additive fixed effects, including global intercepts) defined on the transformed linear scale 303 

of genetic variances [𝜷
𝝈𝟏

𝟐
⊤ , … , 𝜷

𝝈𝒑
𝟐

⊤ ]
⊤

 and genetic correlations [𝜷𝒓𝟏,𝟐
⊤ , … , 𝜷𝒓𝒑−𝟏,𝒑

⊤ ]
⊤

. Note that the link 304 

function atanh(𝑟) = logit (
𝑟+1

2
) /2 extends the logit transformation defined for probability scale 305 

values to the scale of correlation coefficients. The variance and correlation parameters of the CRN 306 

may also include coefficients for more flexible non-parametric and generalized additive functions, 307 

such as splines or Gaussian processes (Pedersen et al., 2019; Riutort-Mayol et al., 2022), which are 308 

useful for capturing environmental effects such as spatiotemporal autocorrelation that are difficult to 309 

estimate with standard polynomials. 310 

In the general case, there will be 𝑏𝑝 CRN parameters for genetic variances and 𝑏
𝑝(𝑝−1)

2
 311 

parameters for the genetic correlations, where 𝑏 is the number of columns in 𝑿 (regression 312 

coefficients), resulting in 𝑘 = 𝑏
𝑝(𝑝+1)

2
 total free parameters. In comparison to current methods, the 313 

CRN model is expected to greatly reduce the number of parameters required to estimate continuous 314 
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changes in trait (co)variances in the presence of nonlinear effects and multivariate interactions (Fig. 315 

2). Given that 𝑿 can include binary or categorical predictors, it is important to also note that the CRN 316 

straightforwardly generalizes the character state approach to more complex cases involving, for 317 

example, a combination of interacting continuous and discrete environmental factors. 318 

Any non-zero fixed effects predicting 𝑮(𝑿) provide evidence for gene-by-environment (GxE) 319 

interaction. In general, however, direct interpretation of these CRN fixed effect sizes will be 320 

challenging due to the distinct scales of link functions used for genetic variances and correlations. 321 

Therefore, once the model is estimated, I encourage researchers to use model predictions from Eq. 2 322 

for more directly visualizing and quantifying total environmental effects on the more intuitive scales 323 

of genetic variances, correlations, and covariances, where 𝜎𝑎(𝑋𝑛)1,𝑝
= 𝑟𝑎(𝑋𝑛)1,𝑝

𝜎𝑎(𝑋𝑛)1𝜎𝑎(𝑋𝑛)𝑝. A 324 

worked example is provided below. When relevant, the same approach outlined above can be taken 325 

to predict continuous and/or discrete effects on residual or permanent environmental (co)variances. 326 

Prediction of trait variances as a function of continuous and/or discrete variables is often 327 

called a double hierarchical model (Lee & Nelder, 2006; Rönnegård et al., 2010). The CRN can, 328 

therefore, be conceptualized as a form of double hierarchical animal model flexibly extended for 329 

multivariate prediction of both genetic variances and correlations. The term “double hierarchical” can 330 

be somewhat confusing, however, given that any distributional parameter could be modeled as a 331 

function of covariates, giving rise to the possibility of triple, quadruple, etc. hierarchical models of 332 

non-Gaussian responses. Therefore, I emphasize that the CRN is principally a multilevel model, as this 333 

is a more general class extending beyond the double hierarchical models applied in prior literature.  334 

Random regression CRN 335 

When repeated individual measures are available or a proper breeding experiment has been 336 

implemented, random individual-level slopes can be introduced to the model, so that the CRN 337 

describes changes in the (co)variances of the intercepts and slopes governing RNs of trait means. For 338 

instance, empiricists may be interested in testing theoretical predictions of how the genetic 339 

integration between individuals’ mean trait value and plasticity to the environment changes across 340 

developmental or social contexts (Kraft et al., 2006; Stamps et al., 2018; Dingemanse et al., 2020; 341 

Bucklaew & Dochtermann, 2021; Martin et al., 2023). A random regression CRN can be implemented 342 

under a proper breeding design for detecting GxE and/or with repeated measurements, where 343 

individuals’ breeding values for environmental slopes can be estimated from observations of related 344 

individuals’ trait values across at least two or more environmental states. To do so, new vectors and 345 

matrices need to be introduced:  v*i x 1 vectors u for each phenotype containing v random effects 346 

(intercepts and slopes) for i individuals, and n x v*i block diagonal design matrices 𝑾 indexing 347 

repeated measurements and scaling the v random effects for i individuals across n total measurements 348 

of each phenotype. Note that I use 𝑾 rather than 𝒁 to avoid confusion of this random effect matrix 349 

with the vector of phenotypic measures z.  The random regression CRN is given by 350 

[

𝑔𝑧1
(𝒛𝟏)

⋮
𝑔𝑧𝑝

(𝒛𝒑)
] = [

𝑿𝜷1 + 𝑾𝒖(𝑿)𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝑾𝒖(𝑿)𝒑 + 𝝐𝒑

] (𝟑) 351 

[

𝒖(𝑿)𝟏

⋮
𝒖(𝑿)𝒑

]~𝑵(𝟎,𝑮(𝑿) ⊗ 𝑨); 𝑮(𝑿𝒏) : [

𝜎𝛼(𝑋𝑛)1
2 ⋯ 𝑟𝑎𝑋𝐼1

(𝑋𝑛)1,𝑏𝑋𝐼𝑏
(𝑋𝑛)𝑝𝜎𝑎𝑋𝐼1

(𝑋𝑛)1𝜎𝑏𝑋𝑏
(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎𝛽𝑏(𝑋𝑛)𝑝

2
]  352 
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Note that the design matrix  𝑾 = blockdiag(𝑿𝒗𝟏, … , 𝑿𝒗𝒊) is a block diagonal matrix containing 353 

repeated observations of individuals 1 to i from the subset of v columns in the full environmental 354 

matrix 𝑿 over which individual intercepts 𝒂(𝑿)𝒑  and slopes 𝜷𝟏(𝑿)𝒑 , … , 𝜷𝒗−𝟏(𝑿)𝒑 are defined in the 355 

model for trait p. The process of prediction for the elements in 𝑮(𝑿) is equivalent to Eq. 2, though the 356 

total number of parameters to estimate in a full random regression CRN model expands to 𝑘 =357 

𝑏
𝑣𝑝(𝑣𝑝+1)

2
, where 𝑏 is the number of environmental CRN parameters and 𝑣 is the number of individual 358 

effects (random intercept + 𝑣 − 1 random slopes). 359 

Phenotypic analysis 360 

Empirical studies may lack the genetic information necessary to estimate Eq. 2-3 or otherwise be 361 

principally interested in estimating phenotypic (co)variances. Without genetic data or repeated 362 

measurements, among- and within-individual patterns of phenotypic (co)variance will be confounded 363 

together, potentially biasing evolutionary predictions with measurement error and ephemeral 364 

environmental effects (Dingemanse et al., 2021; J. Martin, 2021). However, if multiple measurements 365 

are made on the same subjects across time, as with the random regression CRN introduced above, 366 

then repeatable among-individual differences in phenotype, due to both genetic variation and 367 

permanent environmental effects, can be effectively partitioned from stochastic variation using 368 

individual-level random effects. Eq. 3 can be straightforwardly modified to produce a phenotypic CRN, 369 

described by a simplified multivariate normal distribution 370 

[

𝒖(𝑿)𝟏

⋮
𝒖(𝑿)𝒑

]~𝑵(𝟎,𝑷(𝑿)); 𝑷(𝑿𝒏) : [

𝜎(𝑋𝑛)1
2 ⋯ 𝑟(𝑋𝑛)1,𝑝

𝜎(𝑋𝑛)1𝜎(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎(𝑋𝑛)𝑝

2
] (𝟒) 371 

where the phenotypic random effects [𝝁(𝒙)𝟏
⊤ , … , 𝝁(𝒙)𝒑

⊤ ]
⊤

 are now assumed to be independently 372 

distributed among individuals. As with the quantitative genetic model, 𝑷(𝑿𝒏) is a matrix of among-373 

individual phenotypic (co)variances predicted in response to the environmental context of 374 

measurement n for subject i, as determined by CRN fixed effect parameters for phenotypic variances 375 

[𝜷
𝝈𝟏

𝟐
⊤ , … , 𝜷

𝝈𝒑
𝟐

⊤ ]
⊤

 and correlations  [𝜷𝒓𝟏,𝟐
⊤ , … , 𝜷𝒓𝒑−𝟏,𝒑

⊤ ]
⊤

 estimated on transformed scales, equivalently to 376 

Eq. 2. Any non-zero fixed effects predicting 𝑷(𝑿) provide evidence for phenotype-by-environment 377 

(PxE) interactions. See Bliard, Martin et al. (2024) for detailed discussion and applications of bivariate 378 

phenotypic CRNs to detect life history tradeoffs under multiple sampling regimes common in 379 

population ecology. 380 

Statistical implementation 381 

Bayesian inference in Stan 382 

The CRN model (Eq. 2-3) cannot currently be estimated using standard statistical software packages 383 

for multivariate animal models and multilevel models more generally, due to a lack of in-built 384 

functionality for expressing elements of covariance matrices as generalized linear predictors. 385 

Fortunately, however, the extremely flexible Stan statistical programming language can be used to 386 

construct bespoke animal models of desired complexity within a Bayesian inferential framework, 387 

facilitating general estimation of CRNs models using cutting-edge Markov Chain Monte Carlo (MCMC) 388 

methods (Hoffman & Gelman, 2011; Nishio & Arakawa, 2019; Martin & Jaeggi, 2022). Detailed 389 

discussion of contemporary Bayesian statistics is beyond the scope of this paper. However, I 390 

encourage readers to consult some of the excellent primers available on Bayesian data analysis (e.g. 391 

Gelman et al., 2013, 2020; McElreath, 2020) for thorough introductions, including extensive tips and 392 
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suggestions for key decisions such as the choice of priors, model validation and comparison, variable 393 

selection, and the interpretation of posterior estimates. As a general rule of thumb, I suggest using 394 

weakly regularizing priors when estimating CRN models, to reduce the risk of inferential bias while 395 

promoting efficient model convergence (Lemoine, 2019; McElreath, 2020). Despite it still being 396 

common to see thinning of MCMC chains reported in the literature, note that this is generally 397 

unnecessary (Link & Eaton, 2011). 398 

Computational efficiency 399 

This subsection covers formal details on efficient implementation of CRN models in Stan, which can 400 

be safely overlooked by empiricists without impeding interpretation or practical implementation. 401 

Prediction of large covariance matrices is computationally burdensome in a Bayesian framework, even 402 

with the use of appropriately regularizing priors and efficient MCMC algorithms, because the 403 

probability of observing a permissible (i.e. positive-definite) covariance or correlation matrix declines 404 

rapidly with increasing dimensionality of the matrix (Dean & Majumdar, 2008). Estimation of the CRN 405 

model with three or more traits can, therefore, be best achieved through use of a mathematically 406 

equivalent but more computationally efficient reparameterization of the 𝑮(𝑿) and 𝑷(𝑿) matrices than 407 

is described by the standard parameterization presented in Eq. 2-4.  408 

Firstly, the p x p correlation matrix 𝑹𝒂 containing all genetic (or phenotypic) correlations for p 409 

phenotypes can be decomposed using a Cholesky factorization such that 410 

𝑹𝒂 = 𝑳𝑹𝑳𝑹
⊤ (𝟓) 411 

where 𝑳𝑹 is a lower-triangular matrix with unit length rows and positive diagonal elements. These 412 
assumptions reduce the number of free parameters necessary for calculating 𝑹𝒂, as the diagonal 413 
elements of 𝑳𝑹 are determined by the off-diagonal elements of each row. Therefore, estimating 𝑳𝑹 414 
and subsequently deriving 𝑹𝒂 using Eq. 5 improves computational time of the model (Stan 415 
Development Team, 2023). Following previous work on the prediction of covariance matrices 416 
(Lewandowski et al., 2009; Bloome & Schrage, 2021), computational efficiency can then be further 417 

increased by decomposing 𝑳𝑹 into a vector 𝛚 of length 
𝑝(𝑝−1)

2
 containing the canonical partial 418 

correlations constitutive of all unique lower-triangular elements in this matrix. The canonical partial 419 
correlations in 𝛚 are of the same sign as their corresponding elements in 𝑳𝑹, but their magnitudes 420 
represent residual correlations between corresponding row and column variables after regressing 421 
both on all prior occurring row variables. In the general case, the canonical partial correlation 𝜔𝑢, 422 

where 𝑢 =
2𝑐𝑝−𝑐2+2𝑟−3𝑐−2

2
 is the vector element corresponding to unique lower-triangular Cholesky 423 

factor 𝐿𝑅[𝑟,𝑐] at row r and column c, is given by  424 

𝜔𝑢 = {

𝐿𝑅[𝑟,𝑐]
 ,                                                 if 𝑐 = 1 < 𝑟

𝐿𝑅[𝑟,𝑐] / (1 − ∑𝐿𝑅[𝑟,1:𝑐−1]
2 )

1
2, if 1 < 𝑐 ≤ 𝑟

(𝟔. 𝟏) 425 

such that the Cholesky factor can in turn be derived from 𝜔𝑢 by 426 

𝐿𝑅[𝑟,𝑐]
 = {

𝜔𝑢,                                                  if 𝑐 = 1 < 𝑟

𝜔𝑢 ∗  (1 − ∑𝐿𝑅[𝑟,1:𝑐−1]
2 )

1
2, if 1 < 𝑐 ≤ 𝑟

(𝟔. 𝟐) 427 

This general decomposition strategy can be adapted for the CRN model by extending each element in 428 

the vector 𝛚 to its own vector of context-specific canonical partial correlations. Using the same 429 

approach developed above (Eq. 2-4), continuous environmental effects can then be specified and 430 

estimated more efficiently as predictors of the transformed canonical partial correlations 431 
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[
 
 
 
 atanh (𝛚(𝐗)𝟏

)

⋮

atanh(𝛚(𝐗)𝑝(𝑝−1)
2

)
]
 
 
 
 

= [

𝑿𝜷𝝎𝟏

⋮
𝑿𝜷𝝎𝑝(𝑝−1)

2

] (𝟕) 432 

Applying the inverse link function tanh() and using Eq. 6.2 to calculate Cholesky factorized matrices 433 

𝑳𝑹(𝑿), the original context-specific correlation matrices can then be derived 𝑹𝒂(𝑿) and subsequently 434 

applied to generate model predictions for estimating environmental effects on a more familiar scale. 435 

It is important to reiterate that the proposed implementation in Stan (Eq. 5-7) ensures the positive 436 

definiteness of the resulting correlation matrices 𝑹𝒂(𝑿) predicted by the CRN. Given that 437 

environmental effects are specified separately for trait correlations and variances in the CRN model 438 

(Eq. 1.3), the context-specific (co)variance matrices 𝑮(𝑿) derived from context-specific correlation 439 

matrices 𝑹𝒂(𝑿) will necessarily be positive definite. 440 

Covarying environmental predictors can reduce the efficiency and accuracy of CRN parameter 441 

estimation. To reduce the effects of collinearity, the CRN fixed effects 𝜷𝝈𝟐 and 𝜷𝝎 (or 𝜷𝒓) can also be 442 

more efficiently estimated using a so-called thin QR factorization of the X matrix (Harville, 1997). This 443 

involves decomposing the predictor matrix 𝑿 = 𝑸∗𝑹∗ into an orthogonal matrix 𝑄∗ = 𝑄√𝑛 − 1 and 444 

upper-triangle matrix 𝑅∗ =
𝑅

√𝑛−1
, estimating trait-specific regression coefficients using the orthogonal 445 

vectors 𝑸∗𝜷∗, and then returning regression coefficients appropriately scaled to the original data scale 446 

of 𝑿 using 𝜷 = 𝑹∗−𝟏𝜷∗. The QR decomposition increases efficiency by reducing posterior correlations 447 

during model sampling that would otherwise result from covariation among predictors. 448 

Finally, the Cholesky matrices 𝑳𝑹(𝑿) can also be used to more efficiently predict individuals’ context-449 

specific additive genetic values from the CRN model. Following previous work by (Martin & Jaeggi, 450 

2022), this can be accomplished using a matrix normal sampling distribution (Dutilleul, 1999), which 451 

extends the vectorized multivariate normal distribution to the sampling of multivariate normally 452 

distributed matrices. Using a 𝑛 x p matrix 𝒁𝑮 of standardized individual-level additive genetic 453 

deviations (i.e. z-scores of breeding values), a lower-triangular Cholesky decomposition 𝑳𝑨 of the 454 

relatedness matrix, and a diagonal matrix 𝑺𝒂(𝑿𝒏) = diag ([𝜎𝑎(𝑋𝑛)1
 , … , 𝜎𝑎(𝑋𝑛)𝑝

 ]) of context-specific 455 

genetic standard deviations, an n x p matrix of context-specific genetic values for each phenotype can 456 

be predicted by 457 

[𝒂(𝑿𝒏)𝟏 , … , 𝒂(𝑿𝒏)𝒑] = 𝐋𝐀𝒁𝑮(𝐒𝐚(𝐗𝐧)𝑳𝑹(𝑿𝒏))
⊤
~ Matrix Normal(𝟎nxp, 𝑨, 𝑮(𝑿𝒏)) (𝟖) 458 

→ vec ([𝒂(𝑿𝒏)𝟏 , … , 𝒂(𝑿𝒏)𝒑])~ 𝑵(𝟎,𝑮(𝑿𝒏) ⊗ 𝑨) 459 

Easy-to-use R functions are provided (see data availability) to straightforwardly facilitate 460 

computational gains from Eq. 5-8 while also generating more intuitive model estimates and 461 

predictions with respect to the standard parameterization of the CRN model (Eq. 2-4). 462 

Model validation 463 

To provide a general validation of the proposed model, I conducted a simulation-based calibration 464 

(SBC) procedure to assess whether the quantitative genetic CRN (Eq. 2) is an unbiased Bayesian 465 

estimator. Note that the phenotypic CRN (Eq. 4) is simply a variant of the quantitative genetic model 466 

with independent random effects and thus does not require additional validation. SBC is a procedure 467 

for assessing the performance of a Bayesian algorithm across a broad range of possible parameter 468 

values generated from the prior distributions of a generative model (see Talts et al., 2018 for further 469 
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details). This approach removes the need for arbitrarily picking a limited range of effect sizes for 470 

assessing performance and reduces the risk of missing unexpected sources of bias in uninvestigated 471 

regions of parameter space. Visual inspection of the correspondence between the generative prior 472 

distributions (expected values) and subsequent posterior distributions (inferred values) estimated 473 

during SBC is used to detect sources of bias, such as overdispersion in the estimator or inconsistent 474 

performance for extreme values. 475 

100 datasets were simulated for SBC under very minimal sampling conditions of 200 individuals with 476 

a single measurement of 3 traits. Measurements were taken across environments characterized the 477 

interaction between 10 measured values of two continuous covariates (e.g. monthly temperatures, 478 

ages, plot densities). Parameter values were generated using standard weakly regularizing priors 479 

(Lemoine, 2019; McElreath, 2020), such that 𝜷~𝑁(0,1) for RN fixed effects determining phenotypic 480 

means and genetic (co)variances, and 𝑹𝝐~LKJ(10) for residual correlation matrices with fixed σ𝜖 = 1 481 

residual standard deviations. Relatedness matrices were simply positive-definite correlation matrices 482 

simulated from 𝑨~LKJ(1). Posteriors for each dataset were estimated using 2000 MCMC samples 483 

across 4 chains with 500 samples each for warmup. Results from the SBC analysis showed that the 484 

distributions of inferred parameter values were congruent with the distributions of expected 485 

parameter values across the CRN fixed effects predicting genetic (co)variances (Fig. 2), with a 0.95+ 486 

probability that posterior inferences were not systematically upwardly or downwardly biased from 487 

the true values used to generate the data. This provides strong evidence that the proposed Bayesian 488 

estimator provides unbiased inference of CRNs even under conditions of very minimal sampling effort 489 

and a reasonably broad range of effect sizes. It is important to emphasize that these results concern 490 

bias per se in estimates of expected values and do not quantify the statistical uncertainty or power of 491 

hypothesis tests for detecting these effects. Achieving high levels of power and low levels of 492 

uncertainty will generally require much larger sample sizes, as it is the case for any quantitative genetic 493 

analysis. Simulations functions are provided (see data availability) to aid researchers in carrying out a 494 

priori power analyses for effect and sample size ranges of interest.  495 
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Figure 3. Simulation-based calibration of the CRN model. 496 

 497 

Footnote. Results are shown for SBC analysis of 100 simulated datasets of 3 traits under minimal 498 

sampling conditions (N = 200 / 10 environmental contexts) generated from prior distributions defined 499 

over the parameters of the quantitative genetic CRN model (Eq. 2). The CRN contained four 500 

parameters for each genetic variance (𝜎𝛼
2) and correlation (𝑟𝛼): 𝛽0  for the trait-specific intercepts, 𝛽𝑥1

 501 

and 𝛽𝑥2
 for the main effects of two continuous and independently distributed environments, and 502 

𝛽𝑥1𝑥2
 for the interaction effect of these continuous environments.  Plots show the difference (y-axis) 503 

between the empirical cumulative density functions (ECDFs) for CRN parameters from the generative 504 

prior distributions used to simulate datasets and the ECDFs of the estimated posterior distributions 505 

across datasets. This difference is shown by the black line and plotted as a function of the relative 506 

fractional rank (x-axis) of the simulated values in comparison to inferred values. Blue ellipses show 507 

regions providing 0.95+ probability of uniformity between the ECDFs of the simulated and estimated 508 

parameter distributions, providing support for a well-calibrated model without systematic bias (Talts 509 

et al., 2018). Therefore, while stochastic fluctuations are expected at computationally efficient sample 510 

sizes, black lines should remain within the blue ellipses across fractional ranks if the model generates 511 

unbiased posterior estimates of parameter values, with respect to the prior simulated values. 512 

Consistent deviations of the black line beyond the blue ellipse provide statistical evidence of bias in 513 

the region of parameter space indicated by the fractional ranks. For instance, if a model systematically 514 

underestimates parameter values, we expect the black lines to peak outside the blue ellipses at high 515 

fractional ranks, indicating that prior values were systematically larger than inferred estimates.  516 
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Worked example: social niche specialization in meerkats 517 

To demonstrate the utility of the proposed framework, I applied a CRN model to analyze an 518 

openly available dataset from a long-term study (Houslay et al., 2021) on the heritability of three 519 

cooperative behaviors (babysitting, pup feeding and foraging, and vigilant guarding/sentinel activity) 520 

in wild meerkats (Fig. 4a). The goal of the analysis was to estimate the interactive effects of age, sex, 521 

and dominance status on the genetic (co)variance of these cooperative behaviors, as well as to 522 

investigate whether group size has a negative effect on genetic correlations. Prior work suggests that 523 

cooperative task generalization decreases while specialization subsequently increases in larger social 524 

groups, due to synergistic fitness benefits among individuals who benefit from investing more time 525 

performing distinct and complementary behaviors in larger groups (e.g. Bonner, 2004; Jeanson et al., 526 

2007; Ulrich et al., 2018; Martin et al., 2023). If so, we would expect to observe positive genetic 527 

correlations among cooperative behaviors in small groups, but negative genetic correlations in large 528 

groups (Fig. 1d). Accordingly, fluctuations in group size within organisms’ lifetimes may select for 529 

social plasticity in cooperative behavior to track these shifting fitness optima across social groups (de 530 

Jong, 1995; Martin et al., 2023), leading to the evolution of a group size dependent CRN and GxE in 531 

the expression of different tasks. Meerkats engage in extensive cooperative breeding, defense, and 532 

foraging in groups of variable size and composition (Clutton-Brock et al., 2001), providing a valuable 533 

system to further investigate these predictions. 534 

Using only data of individuals with measures available for all three behaviors in the study of 535 

Houslay et al. (2021), the total sample size for the analysis was 1560 pedigreed individuals with 6751 536 

(babysitting), 6461 (pup feeding), and 11532 (guarding/sentinel activity) total observations. I 537 

simplified certain components of the animal models employed by these authors to focus attention on 538 

the CRN, using only the covariates (age, sex, dominance status, group size) that were available for all 539 

traits and were identified as important for understanding mean phenotypic differences in the 540 

meerkats’ behavior. Additional random effects were included for each trait to capture individual-level 541 

permanent environmental effects, group identity during observation, breeding season, and individual-542 

by-season interactions. The three phenotypes were modeled using binomial (half-days observed 543 

babysitting/total days) and Poisson (count of pup feeding and minutes in sentinel activity) 544 

distributions. Following Eq. 2 and using the computational strategy explained in Eq. 5-8, the same 545 

environmental covariates used to predict phenotypic means were also used to predict potential 546 

changes in quantitative genetic (co)variances among cooperative behaviors. Consider that from the 547 

perspective of a gene, organismal attributes such as sex, age, and dominance (serving as proxies for 548 

various attendant changes in hormonal activity, social experiences, etc.) are just as much aspects of 549 

‘the environment’ potentially modulating its expression as more exogenous factors like group size 550 

(Service & Rose, 1985; Via & Lande, 1985; Pigliucci, 1996; Elgart et al., 2022; Martin et al., 2023). These 551 

covariates also allowed for appropriately testing the independent (age, sex, and dominance adjusted) 552 

effect of group size on genetic correlations among cooperative behaviors. A coding tutorial 553 

accompanying this worked example is provided on Github (see data availability). 554 

Results 555 

The CRN analysis uncovered continuous changes in the genetic variances and correlations of 556 

meerkats’ cooperative behaviors in response to the interactive effects of age, dominance status, and 557 

sex, as well as the nonlinear effects of group size, providing clear evidence for GxE shaping the G matrix 558 

across environments. These effects are visualized as CRNs in Fig. 4b-c and summarized quantitatively 559 

in Table 1. Firstly, considering genetic variances, increasing age was strongly associated with greater 560 

genetic variance in babysitting behavior (BS), while age had weaker and more uncertain effects on the 561 

genetic variance of foraging and pup feeding (FD) and vigilant guarding behavior (GD). This indicates 562 
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that heritable individual differences in BS are expected to increase across the lifespan, independently 563 

of sex and dominance status. Sex did not have a main effect on the genetic variance of any traits, while 564 

dominance status had moderate to strong positive effects on the genetic variance of FD and GD. 565 

Changes in dominance status were, therefore, a primary driver of changes in the magnitude of 566 

heritable individual differences in cooperative behaviors (personality). Dominant individuals showed 567 

greater genetic variation than subordinates in their magnitude of FD and GD. Multivariate interactions 568 

also occurred between age, sex, and dominance. Genetic variance in BS reduced in response to the 569 

interaction of age and sex with dominance, while genetic variance in GD increased as a function of the 570 

interaction between age and dominance as well as the three-way interaction among age, sex, and 571 

dominance.   572 

Environmental variation was also associated with changes in the genetic correlations among 573 

cooperative behaviors (Table 1). Among subordinates, males exhibited relatively stronger genetic 574 

correlations for BS ~ GD than females, which increased with age (Fig. 4b). Some evidence was found 575 

for reversed sex effects among dominant individuals, but dominance effects exhibited moderate to 576 

high statistical uncertainty overall. A clear main effect of age was observed for FD ~ BS, indicating that 577 

this genetic correlation tended to decrease across the lifespan, with older individuals being more likely 578 

to specialize in FD or BS than younger individuals. Negative age effects were also estimated for FD~BS 579 

and BS~GD but with greater statistical uncertainty. Group size decreased both FD~BS and FD~GD, 580 

independently of age, sex, and dominance effects, with more uncertainty in the positive effect of 581 

group size on BS~GD. Evidence was also found for a positive quadratic effect of group size on FD ~ GD, 582 

such that the negative effect was diminished for larger group sizes. 583 

Combined effects of the multivariate environment on genetic variances and correlations 584 

generate nonlinear CRNs that are visualized in Fig. 4b-c. Subordinate males typically show more 585 

positive genetic (co)variances across ages than subordinate females, indicating more generalized 586 

genetic effects on and heritable individual differences in cooperative behavior. Subordinate females 587 

are in turn expected to show more negative genetic covariances among behaviors as they age (Fig. 588 

4b). However, these patterns were complicated among dominant breeders. The direct effects of 589 

dominance status on genetic correlations were highly uncertain (Table 1) and should be interpreted 590 

cautiously, as is reflected by the much larger credible intervals for the predicted age CRNs of dominant 591 

individuals (bottom row plots in Fig. 4b). Independently of these effects, negative genetic covariance 592 

is expected between FD and BS in larger social groups, while a positive genetic covariance is expected 593 

between BS and GD in larger social groups (Fig. 4c). The genetic covariance between FD and GD is 594 

positive in small groups but declines nonlinearly and remains near to zero in average and larger than 595 

average group sizes. These results provide support for the prediction that fluctuations in group size 596 

select for plasticity in the expression of generalized versus specialized cooperative behavior across 597 

social groups. Consistent with prior research (Clutton-Brock et al., 2003), social niche specialization is 598 

not observed on average across social groups. However, the CRN model reveals that this is because 599 

small group sizes promote more positively integrated (𝜎𝑎
 > 0) genetic effects across cooperative 600 

behaviors, while larger group sizes promote negative genetic correlations (𝜎𝑎
 < 0) indicative of 601 

specialized performance of FD versus BS and GD tasks.  602 
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Table 1. Summary of CRN parameter posterior distributions. 603 

Regression coefficient 
variance reaction norm 𝜷𝝈𝜶

𝟐  correlation reaction norm 𝜷𝒓𝜶
 

median 𝑝+/− median 𝑝+/− 

foraging and feeding pups (FD) FD ~ BS 

age 0.19 0.81 -0.34 0.98 

sex 0.10 0.62 0.31 0.90 

dominance status 1.10 1.00 0.17 0.77 

age * sex -0.07 0.61 0.11 0.70 

age * dominance -0.10 0.64 0.25 0.79 

sex * dominance -0.36 0.84 -0.28 0.80 

age * sex * dominance -0.17 0.65 -0.65 0.93 

group size 0.20 1.00 -0.12 0.98 

group size2 0.21 1.00 -0.04 0.73 

babysitting (BS) FD ~ GD 

age 0.96 1.00 -0.21 0.90 

sex -0.21 0.75 0.15 0.77 

dominance status -0.02 0.52 0.19 0.80 

age * sex -0.13 0.66 -0.01 0.52 

age * dominance -0.85 0.99 0.34 0.92 

sex * dominance 0.76 0.96 -0.20 0.77 

age * sex * dominance -0.01 0.56 -0.10 0.60 

group size -0.12 0.97 -0.10 0.98 

group size2 0.08 0.87 0.11 0.99 

vigilant guarding (GD) BS ~ GD 

age -0.19 0.94 -0.16 0.77 

sex 0.12 0.77 0.32 0.96 

dominance status 0.49 0.99 0.23 0.85 

age * sex -0.12 0.81 0.30 0.96 

age * dominance 0.47 0.99 0.15 0.71 

sex * dominance -0.01 0.52 -0.37 0.84 

age * sex * dominance 0.65 0.98 -0.13 0.60 

group size 0.02 0.72 0.07 0.88 

group size2 0.05 0.94 0.05 0.79 

 604 

Footnote. Posterior distributions of CRN parameters (regression coefficients) for the genetic variances (𝜷𝝈𝜶
𝟐 ) and 605 

genetic correlations (𝜷𝒓𝜶
) among three meerkat social behaviors: foraging and pup feeding (FD), babysitting (BS), and 606 

vigilant guarding (GD). Posteriors are summarized by their median and the probability of a directional effect (𝑝+/−). 607 

Note that 𝑝+/−closer to 1 provide stronger support for a positive or negative effect, contingent on the sign of the median 608 

effect size. Reference categories for sex and dominance are female and subordinate. 609 

 610 
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Figure 4. Multivariate CRN of cooperative behavior among meerkats. 611 

 612 

 613 

Footnote. Posterior estimates are shown for multivariate and nonlinear environmental effects on the 614 

genetic covariances 𝜎𝑎
  among (a) meerkats’ foraging and pup feeding (FD), babysitting (BS), and 615 

vigilant guarding (GD) behavior. Creative commons picture credit: Bernard DUPONT and Jon Pinder 616 

(Flickr). (b) Posterior CRNs for the interactive effects of sex (orange = female, blue = male), dominance 617 

status (top row = subordinate, bottom = dominant), and age (units of months, SD standardized) on 𝜎𝑎
2 618 

(left row = FD~BS, center = FD~GD, right = BS~GD). Shaded bands indicate 10–90% posterior CI from 619 

the darkest to lightest bands, respectively, while the dark lines indicate posterior median values. CRN 620 

slopes greater or less than zero provide evidence for GxE interactions.  (x) CRNs for the effect of group 621 

size (units of 5, SD standardized) on 𝜎𝑎
 , adjusted for the interactive effects of sex, age, and dominance 622 

status. Dotted vertical lines indicate the expected covariance at the average group size (0), while 623 

dotted horizontal lines indicate 𝜎𝑎
 = 0, so that values above this line provide evidence for task 624 

generalization (𝜎𝑎
 > 0) and values below provide evidence for task specialization (𝜎𝑎

 < 0). 625 
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Conclusion 626 

A longstanding goal unifying diverse fields of ecological and evolutionary science is to 627 

understand the role of phenotypic plasticity in the adaptation of complex traits (Via et al., 1995; 628 

Paenke et al., 2007; Hutchings, 2011; Kuzawa & Bragg, 2012; Hendry, 2016; Pfennig, 2021). While 629 

strong theoretical emphasis has been placed on understanding the role of genetic (co)variances in 630 

constraining multivariate evolution (Phillips & Arnold, 1989; Walsh & Blows, 2009; Chebib & 631 

Guillaume, 2017), it is often underappreciated that genetic and phenotypic (co)variances are 632 

themselves the product of underlying genotype- and phenotype-by-environment interactions (Service 633 

& Rose, 1985; de Jong, 1989; Pigliucci, 1996; Elgart et al., 2022; Martin et al., 2023). Modeling these 634 

dynamic environmental interactions is, therefore, a crucial but easily overlooked step in effectively 635 

explaining ongoing adaptation in a rapidly changing world (Westneat et al., 2019; Hudak & Dybdahl, 636 

2023). Analytic tools for efficiently inferring these complex patterns have been limited, however, 637 

particularly outside of the laboratory or agricultural contexts, where organisms are exposed to 638 

continuous and multivariate patterns of spatial and temporal variation in their local microhabitats. 639 

When such environmental variation is relevant for fitness and the benefits of responding to it 640 

outweigh the costs of producing a response, adaptive plasticity is expected to evolve in trait 641 

expression (Gavrilets & Scheiner, 1993; de Jong, 1995; Haaland et al., 2021). In many cases, this 642 

plasticity will be reflected in average trait values; however, when fitness-relevant variation also occurs 643 

with respect to trait (co)variances within individuals’ lifetimes (e.g. through fluctuating correlational 644 

selection, Revell, 2007; Roff & Fairbairn, 2012), adaptive plasticity can evolve in trait variances and 645 

correlations (Fig. 1, 5). 646 

Important empirical efforts have been made to investigate the fluctuations in G and P matrices 647 

that result from such plasticity, as well as potentially rapid microevolution, in response to 648 

environmental heterogeneity and ongoing change in natural populations (Björklund et al., 2013; 649 

Bolund et al., 2015; Wood & Brodie, 2015). However, current character state approaches for analyzing 650 

changes in trait (co)variances rely on discretizing the environment, as well as often unrealistic sample 651 

size requirements, resulting in undesirable inferential risks (Fig. 2a). Random regression approaches 652 

suffer from similar considerations (Fig. 2b), particularly in the presence of complex, interactive 653 

environmental effects and/or systems where repeated individual measurements or experimental 654 

breeding designs across environments are not feasible. Ultimately, these constraints limit empiricists’ 655 

ability to robustly infer continuous, multivariate, and potentially nonlinear environmental processes 656 

underlying GxE and PxE interactions in the wild (Fig. 1). The CRN model proposed here provides a 657 

validated solution (Fig. 3) to this challenge, extending the standard animal model (Kruuk, 2004) to 658 

increase its flexibility for describing multivariate environmental effects on all aspects of quantitative 659 

genetic expression. As demonstrated by the worked example in meerkats, building on prior research 660 

by Houslay et al. (2021), CRNs can harness the rich information in long-term field datasets to generate 661 

fresh insights into longstanding empirical questions, such as the effects of group size on social niche 662 

specialization in animal societies (Fig. 4c). The CRN also uncovered multivariate GxE interactions 663 

among sex, age, and dominance status (Fig. 4b), which would require many more parameters and 664 

larger sample sizes to effectively estimate using alternative methods (Fig. 2). Further application of 665 

the CRN model (Eq. 2-4) is, therefore, likely to enhance our understanding of the evolution and ecology 666 

of multivariate plasticity across a variety of complex phenotypes in the wild. 667 

 668 

 669 

 670 
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Figure 5. Environmental effects on the expression of multivariate phenotypes. 671 

 672 

Footnote. A conceptual figure of GxE and PxE on multivariate traits, modified with permission from 673 

Milocco and Salazar-Ciudad (2022). The phenotype-to-genotype map, shown here by lines connecting 674 

populations of genotypes (lowest surface) to distributions of phenotypes (highest), is mediated 675 

through individuals’ RNs and the distribution of environments within and across generations. RNs not 676 

only structure the expression of trait means, but also the variances, correlations, and (co)variances 677 

among traits (i.e. CRNs). Therefore, G and P matrices describing the mapping between genetic and 678 

phenotypic variation are often highly sensitive to the environmental contexts in which individuals are 679 

measured (GxE and PxE interactions, indicated by green arrows). CRNs may evolve in response to 680 

diverse environmental contexts such as the quality and consistency of early parental care, 681 

opportunities for and costs of learning, variability and harshness of the climate, habitat degradation, 682 

magnitude and predictability of local resources, the density of predators and parasites, the strengths 683 

of intra and intersexual competition, social network position and mating system, food web structure, 684 

etc. When such environments change (dotted lines) and developmental and/or contextual plasticity 685 

has evolved in a population, trait (co)variances may rapidly respond to spatiotemporal heterogeneity 686 

within and across generations (top layer planes). Mechanistically and ecologically informed CRN 687 

models can be used to better predict how GxE will shape the expression and evolution of multivariate 688 

traits in response to ongoing socio-eco-evolutionary dynamics. Creative commons picture credit: 689 

NickJack and Alexas_Fotos (Pixabay) and Luz Adriana Villa and Corvus moneduloides (Flickr).  690 

https://www.flickr.com/photos/corvus_moneduloides/
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