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Abstract 

Estimating quantitative genetic and phenotypic (co)variances is crucial for investigating evolutionary 

ecological phenomena such as developmental integration, life history tradeoffs, and niche 

specialization, as well as for describing selection and predicting multivariate evolution in the wild. 

While most studies assume (co)variances are fixed over short timescales, environmental 

heterogeneity can rapidly modify the variation of and associations among organisms’ traits. Here I 

synthesize prior random regression and double hierarchical animal models to develop a novel 

covariance reaction norm (CRN) model for detecting how trait (co)variances respond to complex (i.e., 

continuous, multivariate, and potentially nonlinear) environmental change, even in the absence of 

repeated individual measurements or experimental breeding designs. After introducing the CRN 

model, I validate its implementation in Stan, demonstrating unbiased Bayesian inference. I then apply 

the model to long-term field data on cooperation among meerkats (Suricata suricatta). I find nonlinear 

effects of group size on the genetic (co)variances of cooperative behaviors, leading to increased social 

niche specialization among foraging and pup feeding versus babysitting tasks in larger groups. 

Multivariate gene-by-environment interactions are also observed in response to age, sex, and 

dominance status. R code and a tutorial are provided to aid empiricists in applying CRN models to their 

own datasets. 

 

Keywords: GxE, PxE, plasticity, context-dependent, social evolution, eco-evo 
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Introduction 

Accurately estimating phenotypic and quantitative genetic (co)variances is essential for 

understanding multivariate evolution in the wild. For instance, quantifying the (co)variances of 

thermoregulatory traits and growth rates is crucial for explaining differential patterns of population 

adaptation and divergence in response to climate change (de la Mata et al., 2022; Oomen & Hutchings, 

2022; Schaum et al., 2022). Empirical estimates of covariance between life history traits are also 

critical for testing theoretical models of putative tradeoffs (negative covariances) between growth, 

maintenance, survival, or reproduction (Haave-Audet et al., 2022; Chang et al., 2023), which are 

hypothesized to constrain the direction and rate of adaptive evolution (Stearns, 1989; Roff, 1996). 

Positive genetic covariances may instead accelerate adaptation across environments, such as in red 

flour beetles (Tribolium castaneum), where selection for drought resistance has been found to 

indirectly select for greater heat resistance via a correlated genetic response (Koch et al., 2020). 

Estimating phenotypic (co)variances is similarly important for addressing various challenges in 

evolutionary ecology, such as distinguishing between repeatable and stochastic patterns of trait 

selection in the wild (Damián et al., 2020; Niels Jeroen Dingemanse et al., 2021; Martin, 2021), testing 

theoretical models of developmental integration and niche specialization (Damián et al., 2020; Rolian, 

2020; Martin et al., 2023), as well as for making evolutionary predictions in systems undergoing rapid 

environmental change or exhibiting processes of non-genetic inheritance, such as cultural learning 

and niche construction (Danchin & Wagner, 2010; Fogarty & Wade, 2022).  

For polygenic and environmentally responsive traits, the quantitative genetic G matrix and 

phenotypic P matrix can be used to describe these multivariate (co)variances and predict their 

evolutionary consequences (Lande, 1979; Lande & Arnold, 1983). Various quantities derived from G 

and P matrices have also long been of interest in evolutionary genetics and ecology, such as covariance 

tensors and principal components (Schluter, 1996; Aguirre et al., 2014) for comparing divergence 

across populations (McGlothlin et al., 2018; Royauté et al., 2020), or canonical axes (Phillips & Arnold, 

1989; Blows & Brooks, 2003) for describing (non)linear selection on correlated phenotypes (Nussey et 

al., 2007; Dingemanse & Dochtermann, 2013; Brommer et al., 2019). Multivariate, multilevel 

regression models (also known as mixed effects, hierarchical, or random regression models) are well-

established in the literature and widely applied for empirically estimating G and P matrices (e.g. 

Nussey et al., 2007; Dingemanse & Dochtermann, 2013; Brommer et al., 2019). Multivariate animal 

models—a specific form of generalized multilevel regression model—are particularly useful for 

quantitative genetic analysis, as they can take full advantage of naturally occurring, continuous 

variation in genetic relatedness and environmental conditions across subjects (Kruuk, 2004; Wilson et 

al., 2010). This allows the animal model to provide greater flexibility and robustness for describing 

heritable (co)variation in wild populations, in comparison to classical methods that rely on the 

assumptions of balanced breeding experiments or specific kin-class comparisons (Kruuk & Hadfield, 

2007). Building on the well-established animal model, the present paper develops flexible extensions 

for predicting variation in G and P matrices attributable to continuous, nonlinear, and multivariate 

environmental effects. 

Motivation for a novel method 

Despite longstanding theoretical interest in and empirical evidence for the micro- and 

macroevolutionary stability of G and P matrices (Mats Björklund, 1996; Estes & Arnold, 2007; Henry 

& Stinchcombe, 2023; McGlothlin et al., 2018), genetic and phenotypic (co)variances can also change 

rapidly across space and time, as individuals face continuously varying environmental conditions that 

predictably shape the expression and selection of their traits (Fig. 1). For example, previous research 

across a wide range of taxa (e.g. lizards, Yewers et al., 2017; Wittman et al., 2021; flies, Carvalho & 
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Mirth, 2015; frogs, Lofeu et al., 2017; mice, vom Saal, 1979; Huber et al., 2017; and primates, Montoya 

et al., 2013; Grebe et al., 2019) has shown that endocrine activity and the resulting hormonal milieu 

experienced during both prenatal and postnatal development exhibit dose-dependent effects on the 

integration (positive genetic covariance) of various morphological and behavioral phenotypes in adult 

organisms (Fig. 1a). As another example, consider that classic theoretical models (van Noordwijk & de 

Jong, 1986) predict associations among life history traits to be contingent on the relative importance 

of among-individual differences in resource acquisition versus allocation. As a consequence, spatial or 

temporal heterogeneity in factors such as resource availability are expected to cause continuous 

variation in the genetic effects acting to constrain (negative genetic covariance, i.e. tradeoffs) or 

facilitate (positive genetic covariance) ongoing adaptation (Mats Björklund, 2004; Mats Björklund & 

Gustafsson, 2015; Haave-Audet et al., 2022); Fig. 1b). Similarly, continuous fluctuations in selection 

are expected to occur when the fitness effects of quantitative traits vary across functional contexts, 

as described by changes in the covariance between relative fitness and phenotype (Russell Lande, 

1976). In many fish, for instance, large body size reduces predation risk and promotes greater mating 

and reproductive success (Barneche et al., 2018; Uusi-Heikkilä, 2020); however, commercial 

harvesting of fish also tends to target larger individuals (Sharpe & Hendry, 2009; Heino et al., 2015), 

facilitating continuous shifts in the strength and direction of selection on size as a function of the 

intensity of local harvesting (Fig. 1c). Both theory (Bonner, 2004; Jeanson et al., 2007) and extensive 

empirical study (e.g. Karsai & Wenzel, 1998;  Thomas & Elgar, 2003; Ferguson-Gow et al., 2014; Ulrich 

et al., 2018) have also demonstrated that division of labor can emerge spontaneously during colony 

growth in eusocial species, with workers exhibiting generalist phenotypes at small group sizes 

(average positive phenotypic covariance among tasks) but shifting toward specialist phenotypes as 

group size increases (negative phenotypic covariance; Fig. 1d). Each of these specific cases is likely 

subject to further multivariate environmental interactions, due to e.g. antagonistic effects among 

hormones (Trumble et al., 2015; Qi et al., 2019), feedbacks between resource availability and 

competition (Lankau, 2011; Koutsidi et al., 2024), fluctuating selection on body size as a function of 

local sex ratios and predator densities (Uusi-Heikkilä, 2020; Jusufovski & Kuparinen, 2020), as well as 

the role of colony age structure in shaping division of labor (Huang & Robinson, 1996; Enzmann & 

Nonacs, 2021).  

These dynamic and multivariate patterns of genotype-, phenotype-, and fitness-by-

environment interaction can be formally quantified by changes in P and G matrices across contexts. 

Current multivariate animal models are particularly well suited for characterizing discrete changes in 

trait (co)variances due to categorical environmental effects, such as experimental conditions (e.g., 

solitary versus group housing) and developmental stages (e.g. juvenile versus adult) or discretely 

binned environmental covariates from the field (e.g. high versus low quality habitats). This is typically 

achieved through a so-called character state approach, where separate models are fit for trait 

expression in each discrete environmental state and individuals’ additive genetic (breeding) values are 

allowed to correlate across models (Via & Lande, 1985; Lynch & Walsh, 1998). However, as argued 

above, environmental effects on P and G matrices will often reflect continuous, multivariate, and 

potentially nonlinear processes that are challenging to describe with character state models (Fig. 1, 

2a). These complex dynamics can be interpolated post-hoc from estimates across discrete states (see 

Mitchell & Houslay, 2021 for a detailed treatment). However, this strategy will often require 

prohibitively large sample sizes for accurate inference of complex environmental effects, due to 

discretizing the problem into 𝑘 = 𝑘 = 𝑠
𝑝(𝑝+1)

2
 distinct and independently estimated (co)variance 

terms, where p is the number of phenotypes and s is the number of states necessary to effectively 

approximate the underlying function (which may be very large for multivariate environments, Fig. 2a). 

Consequently, reliance on interpolation through character state models will generally reduce 
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statistical power for detecting complex functional relationships in heterogeneous environments. 

Moreover, outside of controlled experiments, artificial binning of naturally occurring continuous 

variation can in itself reduce statistical power for detecting true effects, while also increasing the rate 

of false positives and downwardly biasing effect sizes (e.g. Cohen, 1983; MacCallum et al., 2002). 

Qualitative inferential biases can also arise from insufficient sampling of discrete states in the 

presence of nonlinear and/or multivariate environments (Fig. 2a). 

Mathematically complementary reaction norm models (de Jong, 1995; Lynch & Walsh, 1998; 

Nussey et al., 2007) can be used to more directly and parsimoniously describe such continuous 

processes, taking full advantage of available environmental information with much fewer parameters. 

Multilevel models with random individual intercepts and slopes (or at any other hierarchical level of 

interest) are often termed random regression models in biology (Henderson, 1982), and they provide 

one common and well-established approach to the estimation of reaction norms, including continuous 

patterns of GxE and PxE under specific study designs. For instance, when experimental breeding is 

used to observe relatives across a continuous environmental gradient, such as in a full-sib, half-sib 

design with dams nested in sires (Falconer & Mackay, 1996), a random regression animal model can 

be used to estimate genetic slopes quantifying how character state (co)variances continuously change 

across the distinct environments experienced by siblings. However, these breeding designs may only 

be practical for a subset of species with desirable properties for experimental study, such as relatively 

small body sizes, short life spans, sessility or small home ranges, and simple mating systems, or those 

with extensive infrastructure and resource investment due to their role in biomedical, agricultural, or 

livestock applications. Given the large sample sizes necessary to achieve appropriate balancing of 

relatives across multivariate environments, these designs also generally rely on discretization of the 

environment or manipulation of a single environmental gradient, greatly simplifying the ecological 

reality experienced by natural populations. It is, therefore, unfeasible to use this as a general approach 

for studying multivariate patterns of GxE, which are likely to occur for many labile behavioral, 

physiological, and morphological traits (Fig. 2b). Indeed, many of the most pertinent multivariate 

causes of GxE and PxE relevant for explaining development and adaptation in contemporary 

populations may simply be unfeasible and/or unethical to experimentally control, such as the 

interacting effects of predation risk, resource scarcity, climate change, and anthropogenic disturbance 

on wild populations. 

Random regression models can also be applied in the absence of appropriate breeding designs 

when many repeated individual-level measurements are available (Nussey et al., 2007). For instance, 

consider a scenario where the genetic or phenotypic (co)variance between behavior and morphology 

increases as function of age and local resource availability. A field study design allowing for repeated 

observations of the same individuals across ages and levels of resource availability could then be used 

to estimate a random regression model with individual intercepts and slopes, which could in turn be 

used to calculate continuous changes in phenotypic and/or genetic (co)variance between behavior 

and morphology across environments. However, doing so would rely on the assumption that the 

(co)variance between these random intercepts and slopes is itself constant across environments. If, 

for example, the variation of and correlation among individuals’ intercepts and slopes also changes 

continuously as a function of age and resource availability, e.g. if younger individuals show more 

variable and genetically integrated responses to local resource availability, a standard random 

regression model will not accurately predict the magnitude of GxE or PxE across environments. A 

typical solution in this case would be discretize age and estimate separate age class-specific 

(co)variances matrices of individuals’ intercepts and slopes, falling prey to the same limitations of 

discretization discussed above for character state approaches. Discretization can be avoided using 

interaction effects, such as by estimating random slopes for the effect of age x resource availability on 
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both behavior and morphology, but this strategy requires repeated sampling designs that will often 

be unrealistic and burdensome, particularly for field studies, when quantifying multivariate 

environmental causes of GxE and PxE (Fig. 2b). For instance, the (co)variance between behavior and 

morphology may also vary continuously as a function of interactions between age, body size, 

conspecific density, and resource availability. In the general case, a research team will need to collect 

sufficient repeated individual measurements to estimate 𝑘 =
𝑣𝑝(𝑣𝑝+1)

2
 free parameters in a 

(co)variance matrix, where 𝑝 is the number of traits and 𝑣 is the number of individual-level parameters 

(intercepts and slopes) describing all environmental effects of interest. Such matrices can quickly grow 

quite large, even in simple cases such as a 2nd-order polynomial for two phenotypes, which requires 

estimating 𝑘 = 78 free parameters (Fig. 2b). Statistically identifying and reliably estimating such large 

matrices of random slopes on high-order interactions will simply be unfeasible for most empirical 

datasets (Matuschek et al., 2017). 

Overcoming the limitations discussed above will greatly improve empiricists’ ability to 

understand complex environmental effects on the development and evolution of complex traits. 

Therefore, to address this challenge, I here introduce a ‘covariance reaction norm’ (CRN) approach for 

estimating continuous, multivariate, and potentially nonlinear environmental effects on trait 

(co)variances, building on and generalizing beyond standard models currently used in the literature 

for investigating GxE and PxE. This is accomplished by synthesizing character state and random 

regression approaches with a broader class of multilevel regression models, which includes so-called 

double hierarchical animal models as a special case. After formally outlining this CRN model, I 

subsequently validate this model for empirical application with simulation-based calibration (Talts et 

al., 2018), and then demonstrate its utility through a worked empirical example using long-term field 

data on cooperative behavior among meerkats (Suricata suricatta). Accompanying code and a guided 

tutorial for implementation of CRN models in the R statistical environment (R Core Team, 2023) using 

the Stan statistical programming language (Carpenter et al., 2017) can be found on Github (see data 

availability). 
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Figure 1. Examples of empirical applications for covariance reaction norm models. 

 

Footnote. Four simplified examples (a-d) are shown of phenotypic domains (middle column) where 

continuous environmental variation (left column) is likely to cause continuous changes in quantitative 

genetic (G; top rows) and phenotypic (P; bottom rows) trait covariances, as formally described by 

hypothetical covariance reaction norms (CRNs; right column) quantifying patterns of continuous GxE 

and PxE across environmental states. Orange lines indicate potential interactions due to multivariate 

patterns of GxE and PxE, where the effect of one environmental gradient on trait (co)variation changes 

as a function of another environmental factor. See the main text for a detailed description of each 

scenario and Eq. 2-3 for a formal description of how such CRNs can be empirically estimated. 
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Figure 2. Challenges in estimating nonlinear and multivariate GxE interactions. 

 

Footnote. Examples are shown of complex environmental effects on the covariance between two traits 𝑧1 and 𝑧2, 

demonstrating that even in simple cases the CRN model will generally require less free parameters k to accurately 

describe GxE and PxE than standard approaches in the literature. (a) A nonlinear effect of a single continuous 

environment 𝑥1 on the covariance between two traits, where 𝜎𝑧1,𝑧2
= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥

2. The k needed to detect 

this relationship, without prior knowledge of whether effects occur on trait variances or correlations, are shown for 

the CRN model (left) in comparison to a character state approach (right), where a varying number of discrete 

environmental states (light blue circles) are used to interpolate the underlying continuous function (dark blue curve). 

Red lines indicate biased interpolation resulting from insufficient sampling of the environment: discretizing to a high 

and low state (yellow line) results in detecting no change (top-left); sampling low, mid, and high results in failing to 

detect nonlinearity, under- or overpredicting change at different levels of the environment (top-center); failing to 

sample sufficiently high (or low) environments leads to predicting linear or monotonic change (top-right); and 

sampling only high and low environments leads to predicting a non-existent plateau (bottom-left). If sufficient 

sampling is done of the entire environmental range (bottom-center), the curve can be accurately interpolated, but 

at the cost of needing to independently estimate more than twice as many parameters as the CRN model. (b) A 

nonlinear interaction between two continuous environments 𝑥1 and 𝑥2, where 𝜎𝑧1,𝑧2
= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥 + 𝛽3𝑥1

2 +

𝛽4𝑥2
2 + 𝛽5𝑥1𝑥2. This requires 𝑘 = 18 parameters to characterize with the CRN, assuming no prior knowledge. 

Interpolating such processes is very challenging with a character state approach but can be accomplished with a 

random regression model, where individual-level intercepts and slopes are estimated for both traits across 

environments. The solid and dashed lines show two individuals’ hypothetical RNs for 𝑥1 across two levels of 𝑥2 (blue 

and orange). In this case, interpolating the population average function without prior knowledge requires over 4x as 

many parameters in comparison to the CRN. 
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Covariance reaction norms 

Quantitative genetic analysis 

The animal model is a multilevel regression model that allows for partitioning random 

quantitative genetic effects G and environmental effects on phenotypes. Extensive prior work has 

provided detailed overview of the animal model and its various extensions (e.g. Nussey et al., 2007; 

Wilson et al., 2010; Thomson et al., 2018; Martin & Jaeggi, 2022). Therefore, I focus herein on a highly 

simplified presentation of the animal model to highlight novel extensions, as well as to avoid detailed 

discussion of general issues in regression analysis such as the inclusion of various kinds of fixed and 

random effects. A multivariate animal model can be specified for each of p Gaussian phenotypes 

[𝒛𝟏
⊤ , … , 𝒛𝒑

⊤ ]
⊤
 measured for n individuals by 

[

𝑔𝑧1
(𝒛𝟏)

⋮
𝑔𝑧𝑝

(𝒛𝒑)
] = [

𝑿𝜷1 + 𝜶𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝜶𝒑 + 𝝐𝒑

] (𝟏. 𝟏) 

The functions 𝑔𝑧1
, … , 𝑔𝑧𝑝

 are link functions (e.g. identity, log, logit, atanh, sqrt) that can be used to 

appropriately specify non-Gaussian measurements on a latent linear scale. Linear predictors for these 

measurements are estimated with an n x b matrix X for b continuous and/or discrete covariates (e.g. 

local density, age, sex, resource abundance, seasonal precipitation and temperature, etc.), and 

[𝜷𝟏
⊤ , … , 𝜷𝒑

⊤ ]
⊤
 are b x 1 vectors of trait-specific fixed effect sizes including global intercepts. After 

adjusting for these effects, the model estimates trait-specific additive genetic (breeding) values 

[𝜶𝟏
⊤ , … , 𝜶𝒑

⊤ ]
⊤
 and residual environmental values [𝝐𝟏

⊤ , … , 𝝐𝒑
⊤ ]

⊤
. Further genetic effects due to dominance 

or epistasis can also be parameterized when relevant for the goals of the analysis, along with any other 

random intercepts or slopes of interest. If repeated individual-level measurements are available, 

residuals can also be further partitioned into permanent and stochastic environmental components. 

Trait (co)variances due to additive genetic and residual effects are assumed to be 

approximated by multivariate normal distributions 

[

𝒂𝟏

⋮
𝒂𝒑

]~𝑵(𝟎,𝑮⨂𝑨); [

𝝐𝟏

⋮
𝝐𝒑

]~𝑵(𝟎, 𝚺) (𝟏. 𝟐)  

With the G matrix being scaled using the Kronecker product ⊗ by a relatedness matrix A that 

quantifies pairwise relatedness among subjects, calculated using standard pedigree methods or 

molecular approaches. This basic animal model structure assumes that phenotypic (co)variances 

described by the G matrix are constant across subjects, adjusted for any other fixed and random 

effects predicting phenotypic means. The goal is now to relax this assumption by also allowing for 

fixed effects due to continuous or discrete environmental factors to also predict variation in trait 

(co)variances. 

Predicting genetic (co)variances 

The G matrix can be parameterized using genetic variances 𝜎𝑎
2 and correlations 𝑟𝑎 such that 

𝑮: [

𝜎𝑎1
2 ⋯ 𝜎𝑎1,𝑝 

 ⋱ ⋮ 
  𝜎𝑎𝑝

2
] = [

𝜎𝑎1
2 ⋯ 𝑟𝑎1,𝑝

𝜎𝑎1
𝜎𝑎𝑝

 

 ⋱ ⋮ 
  𝜎𝑎𝑝

2
] (𝟏. 𝟑) 
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Here the genetic covariances 𝜎𝑎1,𝑝
= 𝑟𝑎1,𝑝

𝜎𝑎1
𝜎𝑎𝑝

 are given by the product of genetic correlations and 

standard deviations (square roots of the genetic variances). Note that bold symbols are used to 

distinguish vectors and matrices from scalars. Separating out the scale of variation 𝜎𝑎
2 for each variable 

from their standardized associations 𝑟𝑎 
 is crucial for further expanding the model, as environmental 

factors may exhibit independent effects on the variances and correlations of traits, which would 

otherwise be confounded together through direct prediction of the covariance. This parameterization 

also provides a straightforward solution to ensuring the positive definiteness of the G matrix during 

model estimation, as described further below (see computational efficiency).  

With Eq. 1.3, the basic animal model can now be expanded to a covariance reaction norm 

(CRN) model by using link functions to predict how genetic variances and correlations change in 

response to the same matrix 𝑿 of environmental covariates used to predict phenotypic means (or a 

relevant subset of these predictors). Using the subscript (𝑋𝑛) to denote the G matrix predicted from a 

CRN in the environmental context measured for subject n  

[

𝑔𝑧1
(𝒛𝟏)

⋮
𝑔𝑧𝑝

(𝒛𝒑)
] = [

𝑿𝜷1 + 𝜶(𝑿)𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝜶(𝑿)𝒑 + 𝝐𝒑

] (𝟐) 

[

𝒂(𝑿)𝟏

⋮
𝒂(𝑿)𝒑

]~𝑵(𝟎,𝑮(𝑿) ⊗ 𝑨); 𝑮(𝑿𝒏) : [

𝜎𝑎(𝑋𝑛)1
2 ⋯ 𝑟𝑎(𝑋𝑛)1,𝑝

𝜎𝑎(𝑋𝑛)1𝜎𝑎(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎𝑎(𝑋𝑛)𝑝

2
]  

[

log(𝝈𝒂(𝑿)𝟏
𝟐 )

⋮

log (𝝈𝒂(𝑿)𝒑
𝟐 )

] = [

𝑿𝜷𝝈𝟏
𝟐

⋮
𝑿𝜷𝝈𝒑

𝟐  

] ;     [

atanh(𝒓𝒂(𝑿)𝟏,𝟐
)

⋮

atanh (𝒓𝒂(𝑿)𝒑−𝟏,𝒑
)

] = [

𝑿𝜷𝒓𝟏

⋮
𝑿𝜷𝒓𝒑−𝟏,𝒑

] 

Rather than defining a single genetic variance and set of correlations for each response variable, as in 

the standard animal model (Eq. 1), the CRN animal model predicts n G matrices 𝑮(𝑿) =

(𝑮(𝑿𝟏), … , 𝑮(𝑿𝒏)) each composed of context-specific genetic variances 𝝈𝒂(𝑿)𝒑
𝟐 =

[𝜎𝑎(𝑋1)𝑝
2 , … , 𝜎𝑎(𝑋𝑛)𝑝

2 ]′, and correlations 𝒓𝒂(𝑿)𝟏,𝒑
= [𝑟𝑎(𝑋1)1,𝑝

, … , 𝑟𝑎(𝑋𝑛)1,𝑝
]′. There are as many unique 

G matrices as the number of unique multivariate contexts defined by the environmental covariates in 

X, yet the prediction of these matrices only requires estimating a much smaller set of CRN parameters. 

The log and inverse hyperbolic tangent link functions are respectively used to infer these trait-specific 

parameters (additive fixed effects, including global intercepts) defined on the transformed linear scale 

of genetic variances [𝜷
𝝈𝟏

𝟐
⊤ , … , 𝜷

𝝈𝒑
𝟐

⊤ ]
⊤

 and genetic correlations [𝜷𝒓𝟏,𝟐
⊤ , … , 𝜷𝒓𝒑−𝟏,𝒑

⊤ ]
⊤

. Note that the link 

function atanh(𝑟) = logit (
𝑟+1

2
) /2 extends the logit transformation defined for probability scale 

values to the scale of correlation coefficients. The variance and correlation parameters of the CRN 

may also include coefficients for more flexible non-parametric and generalized additive functions, 

such as splines or Gaussian processes (Pedersen et al., 2019; Riutort-Mayol et al., 2022), which are 

useful for capturing environmental effects such as spatiotemporal autocorrelation that are difficult to 

estimate with standard polynomials. 

In the general case, there will be 𝑏𝑝 CRN parameters for genetic variances and 𝑏
𝑝(𝑝−1)

2
 

parameters for the genetic correlations, where 𝑏 is the number of columns in 𝑿 (regression 

coefficients), resulting in 𝑘 = 𝑏
𝑝(𝑝+1)

2
 total free parameters. In comparison to current methods, the 

CRN model is expected to greatly reduce the number of parameters required to estimate continuous 
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changes in trait (co)variances in the presence of nonlinear effects and multivariate interactions (Fig. 

2). Given that 𝑿 can include binary or categorical predictors, it is important to also note that the CRN 

straightforwardly generalizes the character state approach to more complex cases involving, for 

example, a combination of interacting continuous and discrete environmental factors. The parameters 

of the CRN characterizing  more flexible non-parametric methods and generalized additive functions 

such as splines or Gaussian processes (Pedersen et al., 2019; Riutort-Mayol et al., 2022), such as to 

incorporate spatiotemporal autocorrelation 

Any non-zero fixed effects predicting 𝑮(𝑿) provide evidence for gene-by-environment (GxE) 

interaction. In general, however, direct interpretation of these CRN fixed effect sizes will be 

challenging due to the distinct scales of link functions used for genetic variances and correlations. 

Therefore, once the model is estimated, I encourage researchers to use model predictions from Eq. 2 

for more directly visualizing and quantifying total environmental effects on the more intuitive scales 

of genetic variances, correlations, and covariances, where 𝜎𝑎(𝑋𝑛)1,𝑝
= 𝑟𝑎(𝑋𝑛)1,𝑝

𝜎𝑎(𝑋𝑛)1𝜎𝑎(𝑋𝑛)𝑝. A 

worked example is provided below. When relevant, the same approach outlined above can be taken 

to predict continuous and/or discrete effects on residual or permanent environmental (co)variances. 

Prediction of trait variances as a function of continuous and/or discrete variables is often 

called a double hierarchical model (Lee & Nelder, 2006; Rönnegård et al., 2010). The CRN can, 

therefore, be conceptualized as a form of double hierarchical animal model flexibly extended for 

multivariate prediction of both genetic variances and correlations. The term “double hierarchical” can 

be somewhat confusing, however, given that any distributional parameter could be modeled as a 

function of covariates, giving rise to the possibility of triple, quadruple, etc. hierarchical models of 

non-Gaussian responses. Therefore, I emphasize that the CRN is principally a multilevel model, as this 

is a more general class extending beyond the double hierarchical models applied in prior literature.  

Random regression CRN 

When repeated individual measures are available or a proper breeding experiment has been 

implemented, random individual-level slopes can be introduced to the model, so that the CRN 

describes changes in the (co)variances of the intercepts and slopes governing RNs of trait means. For 

instance, empiricists may be interested in testing theoretical predictions of how the genetic 

integration between individuals’ mean trait value and plasticity to the environment changes across 

developmental or social contexts (Kraft et al., 2006; Stamps et al., 2018; Dingemanse et al., 2020; 

Bucklaew & Dochtermann, 2021; Martin et al., 2023). A random regression CRN can be implemented 

under a proper breeding design for detecting GxE and/or with repeated measurements, where 

individuals’ breeding values for environmental slopes can be estimated from observations of related 

individuals’ trait values across at least two or more environmental states. To do so, new vectors and 

matrices need to be introduced:  v*i x 1 vectors u for each phenotype containing v random effects 

(intercepts and slopes) for i individuals, and n x v*i block diagonal design matrices 𝑾 indexing 

repeated measurements and scaling the v random effects for i individuals across n total measurements 

of each phenotype. Note that I use 𝑾 rather than 𝒁 to avoid confusion of this random effect matrix 

with the vector of phenotypic measures z.  The random regression CRN is given by 

[

𝑔𝑧1
(𝒛𝟏)

⋮
𝑔𝑧𝑝

(𝒛𝒑)
] = [

𝑿𝜷1 + 𝑾𝒖(𝑿)𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝑾𝒖(𝑿)𝒑 + 𝝐𝒑

] (𝟑) 
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[

𝒖(𝑿)𝟏

⋮
𝒖(𝑿)𝒑

]~𝑵(𝟎,𝑮(𝑿) ⊗ 𝑨); 𝑮(𝑿𝒏) : [

𝜎𝛼(𝑋𝑛)1
2 ⋯ 𝑟𝑎𝑋𝐼1

(𝑋𝑛)1,𝑏𝑋𝐼𝑏
(𝑋𝑛)𝑝𝜎𝑎𝑋𝐼1

(𝑋𝑛)1𝜎𝑏𝑋𝑏
(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎𝛽𝑏(𝑋𝑛)𝑝

2
]  

Note that the design matrix  𝑾 = blockdiag(𝑿𝒗𝟏, … , 𝑿𝒗𝒊) is a block diagonal matrix containing 

repeated observations of individuals 1 to i from the subset of v columns in the full environmental 

matrix 𝑿 over which individual intercepts 𝒂(𝑿)𝒑  and slopes 𝜷𝟏(𝑿)𝒑 , … , 𝜷𝒃(𝑿)𝒑 are defined in the model 

for trait p. The process of prediction for the elements in 𝑮(𝑿) is equivalent to Eq. 2, though the total 

number of parameters to estimate in a full random regression CRN model expands to 𝑘 = 𝑏
𝑣𝑝(𝑣𝑝+1)

2
, 

where 𝑏 is the number of environmental CRN parameters and 𝑣 is the number of individual effects. 

Phenotypic analysis 

Empirical studies may lack the genetic information necessary to estimate Eq. 2-3 or otherwise be 

principally interested in estimating phenotypic (co)variances. Without genetic data or repeated 

measurements, among- and within-individual patterns of phenotypic (co)variance will be confounded 

together, potentially biasing evolutionary predictions with measurement error and ephemeral 

environmental effects (Dingemanse et al., 2021; J. Martin, 2021). However, if multiple measurements 

are made on the same subjects across time, as with the random regression CRN introduced above, 

then repeatable among-individual differences in phenotype, due to both genetic variation and 

permanent environmental effects, can be effectively partitioned from stochastic variation using 

individual-level random effects. Eq. 3 can be straightforwardly modified to produce a phenotypic CRN, 

described by a simplified multivariate normal distribution 

[

𝒖(𝑿)𝟏

⋮
𝒖(𝑿)𝒑

]~𝑵(𝟎,𝑷(𝑿)); 𝑷(𝑿𝒏) : [

𝜎(𝑋𝑛)1
2 ⋯ 𝑟(𝑋𝑛)1,𝑝

𝜎(𝑋𝑛)1𝜎(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎(𝑋𝑛)𝑝

2
] (𝟒) 

where the phenotypic random effects [𝝁(𝒙)𝟏
⊤ , … , 𝝁(𝒙)𝒑

⊤ ]
⊤

 are now assumed to be independently 

distributed among individuals. As with the quantitative genetic model, 𝑷(𝑿𝒏) is a matrix of among-

individual phenotypic (co)variances predicted in response to the environmental context of 

measurement n for subject i, as determined by CRN fixed effect parameters for phenotypic variances 

[𝜷
𝝈𝟏

𝟐
⊤ , … , 𝜷

𝝈𝒑
𝟐

⊤ ]
⊤

 and correlations  [𝜷𝒓𝟏,𝟐
⊤ , … , 𝜷𝒓𝒑−𝟏,𝒑

⊤ ]
⊤

 estimated on transformed scales, equivalently to 

Eq. 2. Any non-zero fixed effects predicting 𝑷(𝑿) provide evidence for phenotype-by-environment 

(PxE) interactions. See Bliard, Martin et al. (2024) for detailed discussion and applications of bivariate 

phenotypic CRNs to detect life history tradeoffs under multiple sampling regimes common in 

population ecology. 
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Statistical implementation 

Bayesian inference in Stan 

The CRN model (Eq. 2-3) cannot currently be estimated using standard statistical software packages 

for multivariate animal models and multilevel models more generally, due to a lack of in-built 

functionality for expressing elements of covariance matrices as generalized linear predictors. 

Fortunately, however, the extremely flexible Stan statistical programming language can be used to 

construct bespoke animal models of desired complexity within a Bayesian inferential framework, 

facilitating general estimation of CRNs models using cutting-edge Markov Chain Monte Carlo (MCMC) 

methods (Hoffman & Gelman, 2011; Nishio & Arakawa, 2019; Martin & Jaeggi, 2022). Detailed 

discussion of contemporary Bayesian statistics is beyond the scope of this paper. However, I 

encourage readers to consult some of the excellent primers available on Bayesian data analysis (e.g. 

Gelman et al., 2013, 2020; McElreath, 2020) for thorough introductions, including extensive tips and 

suggestions for key decisions such as the choice of priors, model validation and comparison, variable 

selection, and the interpretation of posterior estimates. As a general rule of thumb, I suggest using 

weakly regularizing priors when estimating CRN models, to reduce the risk of inferential bias while 

promoting efficient model convergence (Lemoine, 2019; McElreath, 2020). Despite it still being 

common to see thinning of MCMC chains reported in the literature, note that this is generally 

unnecessary (Link & Eaton, 2011). 

Computational efficiency 

This subsection covers formal details on efficient implementation of CRN models in Stan, which can 

be safely overlooked by empiricists without impeding interpretation or practical implementation. 

Prediction of large covariance matrices is computationally burdensome in a Bayesian framework, even 

with the use of appropriately regularizing priors and efficient MCMC algorithms, because the 

probability of observing a permissible (i.e. positive-definite) covariance or correlation matrix declines 

rapidly with increasing dimensionality of the matrix (Dean & Majumdar, 2008). Estimation of the CRN 

model with three or more traits can, therefore, be best achieved through use of a mathematically 

equivalent but more computationally efficient reparameterization of the 𝑮(𝑿) and 𝑷(𝑿) matrices than 

is described by the standard parameterization presented in Eq. 2-4.  

Firstly, the p x p correlation matrix 𝑹𝒂 containing all genetic (or phenotypic) correlations for p 

phenotypes can be decomposed using a Cholesky factorization such that 

𝑹𝒂 = 𝑳𝑹𝑳𝑹
⊤ (𝟓) 

where 𝑳𝑹 is a lower-triangular matrix with unit length rows and positive diagonal elements. These 
assumptions reduce the number of free parameters necessary for calculating 𝑹𝒂, as the diagonal 
elements of 𝑳𝑹 are determined by the off-diagonal elements of each row. Therefore, estimating 𝑳𝑹 
and subsequently deriving 𝑹𝒂 using Eq. 5 improves computational time of the model (Stan 
Development Team, 2023). Following previous work on the prediction of covariance matrices 
(Lewandowski et al., 2009; Bloome & Schrage, 2021), computational efficiency can then be further 

increased by decomposing 𝑳𝑹 into a vector 𝛚 of length 
𝑝(𝑝−1)

2
 containing the canonical partial 

correlations constitutive of all unique lower-triangular elements in this matrix. The canonical partial 
correlations in 𝛚 are of the same sign as their corresponding elements in 𝑳𝑹, but their magnitudes 
represent residual correlations between corresponding row and column variables after regressing 
both on all prior occurring row variables. In the general case, the canonical partial correlation 𝜔𝑢, 

where 𝑢 =
2𝑐𝑝−𝑐2+2𝑟−3𝑐−2

2
 is the vector element corresponding to unique lower-triangular Cholesky 

factor 𝐿𝑅[𝑟,𝑐] at row r and column c, is given by  
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𝜔𝑢 = {

𝐿𝑅[𝑟,𝑐]
 ,                                                 if 𝑐 = 1 < 𝑟

𝐿𝑅[𝑟,𝑐] / (1 − ∑𝐿𝑅[𝑟,1:𝑐−1]
2 )

1
2, if 1 < 𝑐 ≤ 𝑟

(𝟔. 𝟏) 

such that the Cholesky factor can in turn be derived from 𝜔𝑢 by 

𝐿𝑅[𝑟,𝑐]
 = {

𝜔𝑢,                                                  if 𝑐 = 1 < 𝑟

𝜔𝑢 ∗  (1 − ∑𝐿𝑅[𝑟,1:𝑐−1]
2 )

1
2, if 1 < 𝑐 ≤ 𝑟

(𝟔. 𝟐) 

This general decomposition strategy can be adapted for the CRN model by extending each element in 

the vector 𝛚 to its own vector of context-specific canonical partial correlations. Using the same 

approach developed above (Eq. 2-4), continuous environmental effects can then be specified and 

estimated more efficiently as predictors of the transformed canonical partial correlations 

[
 
 
 
 atanh (𝛚(𝐗)𝟏

)

⋮

atanh(𝛚(𝐗)𝑝(𝑝−1)
2

)
]
 
 
 
 

= [

𝑿𝜷𝝎𝟏

⋮
𝑿𝜷𝝎𝑝(𝑝−1)

2

] (𝟕) 

Applying the inverse link function tanh() and using Eq. 6.2 to calculate Cholesky factorized matrices 

𝑳𝑹(𝑿), the original context-specific correlation matrices can then be derived 𝑹𝒂(𝑿) and subsequently 

applied to generate model predictions for estimating environmental effects on a more familiar scale. 

It is important to reiterate that the proposed implementation in Stan (Eq. 5-7) ensures the positive 

definiteness of the resulting correlation matrices 𝑹𝒂(𝑿) predicted by the CRN. Given that 

environmental effects are specified separately for trait correlations and variances in the CRN model 

(Eq. 1.3), the context-specific (co)variance matrices 𝑮(𝑿) derived from context-specific correlation 

matrices 𝑹𝒂(𝑿) will necessarily be positive definite. 

Covarying environmental predictors can reduce the efficiency and accuracy of CRN parameter 

estimation. To reduce the effects of collinearity, the CRN fixed effects 𝜷𝝈𝟐 and 𝜷𝝎 (or 𝜷𝒓) can also be 

more efficiently estimated using a so-called thin QR factorization of the X matrix (Harville, 1997). This 

involves decomposing the predictor matrix 𝑿 = 𝑸∗𝑹∗ into an orthogonal matrix 𝑄∗ = 𝑄√𝑛 − 1 and 

upper-triangle matrix 𝑅∗ =
𝑅

√𝑛−1
, estimating trait-specific regression coefficients using the orthogonal 

vectors 𝑸∗𝜷∗, and then returning regression coefficients appropriately scaled to the original data scale 

of 𝑿 using 𝜷 = 𝑹∗−𝟏𝜷∗. The QR decomposition increases efficiency by reducing posterior correlations 

during model sampling that would otherwise result from covariation among predictors. 

Finally, the Cholesky matrices 𝑳𝑹(𝑿) can also be used to more efficiently predict individuals’ context-

specific additive genetic values from the CRN model. Following previous work by (Martin & Jaeggi, 

2022), this can be accomplished using a matrix normal sampling distribution (Dutilleul, 1999), which 

extends the vectorized multivariate normal distribution to the sampling of multivariate normally 

distributed matrices. Using a 𝑛 x p matrix 𝒁𝑮 of standardized individual-level additive genetic 

deviations (i.e. z-scores of breeding values), a lower-triangular Cholesky decomposition 𝑳𝑨 of the 

relatedness matrix, and a diagonal matrix 𝑺𝒂(𝑿𝒏) = diag ([𝜎𝑎(𝑋𝑛)1
 , … , 𝜎𝑎(𝑋𝑛)𝑝

 ]) of context-specific 

genetic standard deviations, an n x p matrix of context-specific genetic values for each phenotype can 

be predicted by 
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[𝒂(𝑿𝒏)𝟏 , … , 𝒂(𝑿𝒏)𝒑] = 𝐋𝐀𝒁𝑮(𝐒𝐚(𝐗𝐧)𝑳𝑹(𝑿𝒏))
⊤
~ Matrix Normal(𝟎nxp, 𝑨, 𝑮(𝑿𝒏)) (𝟖) 

→ vec ([𝒂(𝑿𝒏)𝟏 , … , 𝒂(𝑿𝒏)𝒑])~ 𝑵(𝟎,𝑮(𝑿𝒏) ⊗ 𝑨) 

Easy-to-use R functions are provided (see data availability) to straightforwardly facilitate 

computational gains from Eq. 5-8 while also generating more intuitive model estimates and 

predictions with respect to the standard parameterization of the CRN model (Eq. 2-4). 

Model validation 

To provide a general validation of the proposed model, I conducted a simulation-based calibration 

(SBC) procedure to assess whether the quantitative genetic CRN (Eq. 2) is an unbiased Bayesian 

estimator. Note that the phenotypic CRN (Eq. 4) is simply a variant of the quantitative genetic model 

with independent random effects and thus does not require additional validation. SBC is a procedure 

for assessing the performance of a Bayesian algorithm across a broad range of possible parameter 

values generated from the prior distributions of a generative model (see Talts et al., 2018 for further 

details). This approach removes the need for arbitrarily picking a limited range of effect sizes for 

assessing performance and reduces the risk of missing unexpected sources of bias in uninvestigated 

regions of parameter space. Visual inspection of the correspondence between the generative prior 

distributions (expected values) and subsequent posterior distributions (inferred values) estimated 

during SBC is used to detect sources of bias, such as overdispersion in the estimator or inconsistent 

performance for extreme values. 

100 datasets were simulated for SBC under very minimal sampling conditions of 200 individuals with 

a single measurement of 3 traits. Measurements were taken across environments characterized the 

interaction between 10 measured values of two continuous covariates (e.g. monthly temperatures, 

ages, plot densities). Parameter values were generated using standard weakly regularizing priors 

(Lemoine, 2019; McElreath, 2020), such that 𝜷~𝑁(0,1) for RN fixed effects determining phenotypic 

means and genetic (co)variances, and 𝑹𝝐~LKJ(10) for residual correlation matrices with fixed σ𝜖 = 1 

residual standard deviations. Relatedness matrices were simply positive-definite correlation matrices 

simulated from 𝑨~LKJ(1). Posteriors for each dataset were estimated using 2000 MCMC samples 

across 4 chains with 500 samples each for warmup. Results from the SBC analysis showed that the 

distributions of inferred parameter values were congruent with the distributions of expected 

parameter values across the CRN fixed effects predicting genetic (co)variances (Fig. 2), with a 0.95+ 

probability that posterior inferences were not systematically upwardly or downwardly biased from 

the true values used to generate the data. This provides strong evidence that the proposed Bayesian 

estimator provides unbiased inference of CRNs even under conditions of very minimal sampling effort 

and a reasonably broad range of effect sizes. It is important to emphasize that these results concern 

bias per se in estimates of expected values and do not quantify the statistical uncertainty or power of 

hypothesis tests for detecting these effects. Achieving high levels of power and low levels of 

uncertainty will generally require much larger sample sizes, as it is the case for any quantitative genetic 

analysis. Simulations functions are provided (see data availability) to aid researchers in carrying out a 

priori power analyses for effect and sample size ranges of interest. 
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Figure 3. Simulation-based calibration of the CRN model. 

 

Footnote. Results are shown for SBC analysis of 100 simulated datasets of 3 traits under minimal 

sampling conditions (N = 200 / 10 environmental contexts) generated from prior distributions defined 

over the parameters of the quantitative genetic CRN model (Eq. 2). The CRN contained four 

parameters for each genetic variance (𝜎𝛼
2) and correlation (𝑟𝛼): 𝛽0  for the trait-specific intercepts, 𝛽𝑥1

 

and 𝛽𝑥2
 for the main effects of two continuous and independently distributed environments, and 

𝛽𝑥1𝑥2
 for the interaction effect of these continuous environments.  Plots show the difference (y-axis) 

between the empirical cumulative density functions (ECDFs) for CRN parameters from the generative 

prior distributions used to simulate datasets and the ECDFs of the estimated posterior distributions 

across datasets. This difference is shown by the black line and plotted as a function of the relative 

fractional rank (x-axis) of the simulated values in comparison to inferred values. Blue ellipses show 

regions providing 0.95+ probability of uniformity between the ECDFs of the simulated and estimated 

parameter distributions, providing support for a well-calibrated model without systematic bias (Talts 

et al., 2018). Therefore, while stochastic fluctuations are expected at computationally efficient sample 

sizes, black lines should remain within the blue ellipses across fractional ranks if the model generates 

unbiased posterior estimates of parameter values, with respect to the prior simulated values. 

Consistent deviations of the black line beyond the blue ellipse provide statistical evidence of bias in 

the region of parameter space indicated by the fractional ranks. For instance, if a model systematically 

underestimates parameter values, we expect the black lines to peak outside the blue ellipses at high 

fractional ranks, indicating that prior values were systematically larger than inferred estimates. 
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Worked example: social niche specialization in meerkats 

To demonstrate the utility of the proposed framework, I applied a CRN model to analyze an 

openly available dataset from a long-term study (Houslay et al., 2021) on the heritability of three 

cooperative behaviors (babysitting, pup feeding and foraging, and vigilant guarding/sentinel activity) 

in wild meerkats (Fig. 4a). The goal of the analysis was to estimate the interactive effects of age, sex, 

and dominance status on the genetic (co)variance of these cooperative behaviors, as well as to 

investigate whether group size has a negative effect on genetic correlations. Prior work suggests that 

cooperative task generalization decreases while specialization subsequently increases in larger social 

groups, due to synergistic fitness benefits among individuals who benefit from investing more time 

performing distinct and complementary behaviors in larger groups (e.g. Bonner, 2004; Jeanson et al., 

2007; Ulrich et al., 2018; Martin et al., 2023). If so, we would expect to observe positive genetic 

correlations among cooperative behaviors in small groups, but negative genetic correlations in large 

groups (Fig. 1d). Accordingly, fluctuations in group size within organisms’ lifetimes may select for 

social plasticity in cooperative behavior to track these shifting fitness optima across social groups (de 

Jong, 1995; Martin et al., 2023), leading to the evolution of a group size dependent CRN and GxE in 

the expression of different tasks. Meerkats engage in extensive cooperative breeding, defense, and 

foraging in groups of variable size and composition (Clutton-Brock et al., 2001), providing a valuable 

system to further investigate these predictions. 

Using only data of individuals with measures available for all three behaviors in the study of 

Houslay et al. (2021), the total sample size for the analysis was 1560 pedigreed individuals with 6751 

(babysitting), 6461 (pup feeding), and 11532 (guarding/sentinel activity) total observations. I 

simplified certain components of the animal models employed by these authors to focus attention on 

the CRN, using only the covariates (age, sex, dominance status, group size) that were available for all 

traits and were identified as important for understanding mean phenotypic differences in the 

meerkats’ behavior. Additional random effects were included for each trait to capture individual-level 

permanent environmental effects, group identity during observation, breeding season, and individual-

by-season interactions. The three phenotypes were modeled using binomial (half-days observed 

babysitting/total days) and Poisson (count of pup feeding and minutes in sentinel activity) 

distributions. Following Eq. 2 and using the computational strategy explained in Eq. 5-8, the same 

environmental covariates used to predict phenotypic means were also used to predict potential 

changes in quantitative genetic (co)variances among cooperative behaviors. Consider that from the 

perspective of a gene, organismal attributes such as sex, age, and dominance (serving as proxies for 

various attendant changes in hormonal activity, social experiences, etc.) are just as much aspects of 

‘the environment’ potentially modulating its expression as more exogenous factors like group size 

(Service & Rose, 1985; Via & Lande, 1985; Pigliucci, 1996; Elgart et al., 2022; Martin et al., 2023). These 

covariates also allowed for appropriately testing the independent (age, sex, and dominance adjusted) 

effect of group size on genetic correlations among cooperative behaviors. A coding tutorial 

accompanying this worked example is provided on Github (see data availability). 

Results 

The CRN analysis uncovered continuous changes in the genetic variances and correlations of 

meerkats’ cooperative behaviors in response to the interactive effects of age, dominance status, and 

sex, as well as the nonlinear effects of group size, providing clear evidence for GxE shaping the G matrix 

across environments. These effects are visualized as CRNs in Fig. 4b-c and summarized quantitatively 

in Table 1. Firstly, considering genetic variances, increasing age was strongly associated with greater 

genetic variance in babysitting behavior (BS), while age had weaker and more uncertain effects on the 

genetic variance of foraging and pup feeding (FD) and vigilant guarding behavior (GD). This indicates 
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that heritable individual differences in BS are expected to increase across the lifespan, independently 

of sex and dominance status. Sex did not have a main effect on the genetic variance of any traits, while 

dominance status had moderate to strong positive effects on the genetic variance of FD and GD. 

Changes in dominance status were, therefore, a primary driver of changes in the magnitude of 

heritable individual differences (personality) in cooperative behavior. Dominant individuals showed 

greater genetic variation than subordinates in their magnitude of FD and GD. Multivariate interactions 

also occurred between age, sex, and dominance. Genetic variance in BS reduced in response to the 

interaction of age and sex with dominance, while genetic variance in GD increased as a function of the 

interaction between age and dominance as well as the three-way interaction among age, sex, and 

dominance.   

Environmental variation was also associated with changes in the genetic correlations among 

cooperative behaviors (Table 1). Among subordinates, males exhibited relatively stronger genetic 

correlations for BS ~ GD than females, which increased with age (Fig. 4b). Some evidence was found 

for reversed sex effects among dominant individuals, but dominance effects exhibited moderate to 

high statistical uncertainty overall. A clear main effect of age was observed for FD ~ BS, indicating that 

this genetic correlation tended to decrease across the lifespan, with older individuals being more likely 

to specialize in FD or BS than younger individuals. Negative age effects were also estimated for FD~BS 

and BS~GD but with greater statistical uncertainty. Group size decreased both FD~BS and FD~GD, 

independently of age, sex, and dominance effects, with more uncertainty in the positive effect of 

group size on BS~GD. Evidence was also found for a positive quadratic effect of group size on FD ~ GD, 

such that the negative effect was diminished for larger group sizes. 

Combined effects of the multivariate environment on genetic variances and correlations 

generate nonlinear CRNs that are visualized in Fig. 4b-c. Subordinate males typically show more 

positive genetic (co)variances across ages than subordinate females, indicating more generalized 

genetic effects on and heritable individual differences in cooperative behavior. Subordinate females 

are in turn expected to show more negative genetic covariances among behaviors as they age (Fig. 

4b). However, these patterns were complicated among dominant breeders. The direct effects of 

dominance status on genetic correlations were highly uncertain (Table 1) and should be interpreted 

cautiously, as is reflected by the much larger credible intervals for the predicted age CRNs of dominant 

individuals (bottom row plots in Fig. 4b). Independently of these effects, negative genetic covariance 

is expected between FD and BS in larger social groups, while a positive genetic covariance is expected 

between BS and GD in larger social groups (Fig. 4c). The genetic covariance between FD and GD is 

positive in small groups but declines nonlinearly and remains near to zero in average and larger than 

average group sizes. These results provide support for the prediction that fluctuations in group size 

select for plasticity in the expression of generalized versus specialized cooperative behavior across 

social groups. Consistent with prior research (Clutton-Brock et al., 2003), social niche specialization is 

not observed on average across social groups. However, the CRN model reveals that this is because 

small group sizes promote more positively integrated (𝜎𝑎
 > 0) genetic effects across cooperative 

behaviors, while larger group sizes promote negative genetic correlations (𝜎𝑎
 < 0) indicative of 

specialized performance of FD versus BS and GD tasks.  
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Table 1. Summary of CRN parameter posterior distributions. 

Regression coefficient 
variance reaction norm 𝜷𝝈𝜶

𝟐  correlation reaction norm 𝜷𝒓𝜶
 

median 𝑝+/− median 𝑝+/− 

foraging and feeding pups (FD) FD ~ BS 

age 0.19 0.81 -0.34 0.98 

sex 0.10 0.62 0.31 0.90 

dominance status 1.10 1.00 0.17 0.77 

age * sex -0.07 0.61 0.11 0.70 

age * dominance -0.10 0.64 0.25 0.79 

sex * dominance -0.36 0.84 -0.28 0.80 

age * sex * dominance -0.17 0.65 -0.65 0.93 

group size 0.20 1.00 -0.12 0.98 

group size2 0.21 1.00 -0.04 0.73 

babysitting (BS) FD ~ GD 

age 0.96 1.00 -0.21 0.90 

sex -0.21 0.75 0.15 0.77 

dominance status -0.02 0.52 0.19 0.80 

age * sex -0.13 0.66 -0.01 0.52 

age * dominance -0.85 0.99 0.34 0.92 

sex * dominance 0.76 0.96 -0.20 0.77 

age * sex * dominance -0.01 0.56 -0.10 0.60 

group size -0.12 0.97 -0.10 0.98 

group size2 0.08 0.87 0.11 0.99 

vigilant guarding (GD) BS ~ GD 

age -0.19 0.94 -0.16 0.77 

sex 0.12 0.77 0.32 0.96 

dominance status 0.49 0.99 0.23 0.85 

age * sex -0.12 0.81 0.30 0.96 

age * dominance 0.47 0.99 0.15 0.71 

sex * dominance -0.01 0.52 -0.37 0.84 

age * sex * dominance 0.65 0.98 -0.13 0.60 

group size 0.02 0.72 0.07 0.88 

group size2 0.05 0.94 0.05 0.79 

 

Footnote. Posterior distributions of CRN parameters (regression coefficients) for the genetic variances (𝜷𝝈𝜶
𝟐 ) and genetic 

correlations (𝜷𝒓𝜶
) among three meerkat social behaviors: foraging and pup feeding (FD), babysitting (BS), and vigilant 

guarding (GD). Posteriors are summarized by their median and the probability of a directional effect (𝑝+/−). Note that 

𝑝+/−closer to 1 provide stronger support for a positive or negative effect, contingent on the sign of the median effect size. 

Reference categories for sex and dominance are female and subordinate. 
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Figure 4. Multivariate CRN of cooperative behavior among meerkats. 

 

 

Footnote. Posterior estimates are shown for multivariate and nonlinear environmental effects on the 

genetic covariances 𝜎𝑎
  among (a) meerkats’ foraging and pup feeding (FD), babysitting (BS), and 

vigilant guarding (GD) behavior. Creative commons picture credit: Bernard DUPONT and Jon Pinder 

(Flickr). (b) Posterior CRNs for the interactive effects of sex (orange = female, blue = male), dominance 

status (top row = subordinate, bottom = dominant), and age (units of months, SD standardized) on 𝜎𝑎
2 

(left row = FD~BS, center = FD~GD, right = BS~GD). Shaded bands indicate 10–90% posterior CI from 

the darkest to lightest bands, respectively, while the dark lines indicate posterior median values. CRN 

slopes greater or less than zero provide evidence for GxE interactions.  (x) CRNs for the effect of group 

size (units of 5, SD standardized) on 𝜎𝑎
 , adjusted for the interactive effects of sex, age, and dominance 

status. Dotted vertical lines indicate the expected covariance at the average group size (0), while 

dotted horizontal lines indicate 𝜎𝑎
 = 0, so that values above this line provide evidence for task 

generalization (𝜎𝑎
 > 0) and values below provide evidence for task specialization (𝜎𝑎

 < 0). 
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Conclusion 

A longstanding goal unifying diverse fields of ecological and evolutionary science is to 

understand the role of phenotypic plasticity in the adaptation of complex traits (Via et al., 1995; 

Paenke et al., 2007; Hutchings, 2011; Kuzawa & Bragg, 2012; Hendry, 2016; Pfennig, 2021). While 

strong theoretical emphasis has been placed on understanding the role of genetic (co)variances in 

constraining multivariate evolution (Phillips & Arnold, 1989; Walsh & Blows, 2009; Chebib & 

Guillaume, 2017), it is often underappreciated that genetic and phenotypic (co)variances are 

themselves the product of underlying genotype- and phenotype-by-environment interactions (Service 

& Rose, 1985; de Jong, 1989; Pigliucci, 1996; Elgart et al., 2022; Martin et al., 2023). Modeling these 

dynamic environmental interactions is, therefore, a crucial but easily overlooked step in effectively 

explaining ongoing adaptation in a rapidly changing world (Westneat et al., 2019; Hudak & Dybdahl, 

2023). Analytic tools for efficiently inferring these complex patterns have been limited, however, 

particularly outside of the laboratory or agricultural contexts, where organisms are exposed to 

continuous and multivariate patterns of spatial and temporal variation in their local microhabitats. 

When such environmental variation is relevant for fitness and the benefits of responding to it 

outweigh the costs of producing a response, adaptive plasticity is expected to evolve in trait 

expression (Gavrilets & Scheiner, 1993; de Jong, 1995; Haaland et al., 2021). In many cases, this 

plasticity will be reflected in average trait values; however, when fitness-relevant variation also occurs 

with respect to trait (co)variances within individuals’ lifetimes (e.g. through fluctuating correlational 

selection, Revell, 2007; Roff & Fairbairn, 2012), adaptive plasticity can evolve in trait variances and 

correlations (Fig. 1, 5). 

Important empirical efforts have been made to investigate the fluctuations in G and P matrices 

that result from such plasticity, as well as potentially rapid microevolution, in response to 

environmental heterogeneity and ongoing change in natural populations (Björklund et al., 2013; 

Bolund et al., 2015; Wood & Brodie, 2015). However, current character state approaches for analyzing 

changes in trait (co)variances rely on discretizing the environment, as well as often unrealistic sample 

size requirements, resulting in undesirable inferential risks. Random regression approaches suffer 

from similar considerations, particularly in the presence of complex, interactive environmental effects 

and/or systems where repeated individual measurements or experimental breeding designs across 

environments are not feasible. Ultimately, these constraints limit empiricists’ ability to robustly infer 

continuous, multivariate, and potentially nonlinear environmental processes underlying GxE and PxE 

in the wild. The CRN model proposed here provides a validated solution (Fig. 3) to this challenge, 

extending the standard animal model (Kruuk, 2004) to increase its flexibility for describing multivariate 

environmental effects on all aspects of quantitative genetic expression. As demonstrated by the 

worked example in meerkats, building on prior research by Houslay et al. (2021), CRNs can harness 

the rich information in long-term field datasets to generate fresh insights into longstanding empirical 

questions, such as the effects of group size on social niche specialization in animal societies (Fig. 4c). 

The CRN also uncovered multivariate GxE interactions among sex, age, and dominance status (Fig. 4b), 

which would require many more parameters and larger sample sizes to effectively estimate using 

alternative methods (Fig. 2). Further application of the CRN model (Eq. 2-4) is, therefore, likely to 

enhance our understanding of the evolution and ecology of multivariate plasticity across a variety of 

complex phenotypes in the wild. 
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Figure 5. Environmental effects on the expression of multivariate phenotypes. 

 

Footnote. A conceptual figure of GxE and PxE on multivariate traits, modified with permission from 

Milocco and Salazar-Ciudad (2022). The phenotype-to-genotype map, shown here by lines connecting 

populations of genotypes (lowest surface) to distributions of phenotypes (highest), is mediated 

through individuals’ RNs and the distribution of environments within and across generations. RNs not 

only structure the expression of trait means, but also the variances, correlations, and (co)variances 

among traits (i.e. CRNs). Therefore, G and P matrices describing the mapping between genetic and 

phenotypic variation are often highly sensitive to the environmental contexts in which individuals are 

measured (GxE and PxE, indicated by green arrows). CRNs may evolve in response to diverse 

environmental contexts such as the quality and consistency of early parental care, opportunities for 

and costs of learning, variability and harshness of the climate, habitat degradation, magnitude and 

predictability of local resources, the density of predators and parasites, the strengths of intra and 

intersexual competition, social network position and mating system, food web structure, etc. When 

such environments change (dotted lines) and developmental and/or contextual plasticity has evolved 

in a population, trait (co)variances may rapidly respond to spatiotemporal heterogeneity within and 

across generations (top layer planes). Mechanistically and ecologically informed CRN models can be 

used to better predict how GxE will shape the expression and evolution of multivariate traits in 

response to ongoing socio-eco-evolutionary dynamics. Creative commons picture credit: NickJack and 

Alexas_Fotos (Pixabay) and Luz Adriana Villa and Corvus moneduloides (Flickr).  

https://www.flickr.com/photos/corvus_moneduloides/
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