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Abstract 

Estimating quantitative genetic and phenotypic (co)variances plays a crucial role in investigating key 

evolutionary ecological phenomena, such as developmental integration, life history tradeoffs, and 

niche specialization, as well as in describing selection and predicting multivariate evolution in the wild. 

While most studies assume (co)variances are fixed over short timescales, environmental 

heterogeneity can rapidly modify the variation of and associations among functional traits. Here I 

introduce a covariance reaction norm (CRN) model designed to address the challenge of detecting 

how trait (co)variances respond to continuous environmental change, building on the animal model 

used for quantitative genetic analysis in the wild. CRNs predict (co)variances as a function of 

continuous and/or discrete environmental factors, using the same multilevel modeling approach 

taken to prediction of trait means in standard analyses. After formally introducing the CRN model, I 

validate its implementation in Stan, demonstrating unbiased Bayesian inference. I then illustrate its 

application using long-term data on cooperation in meerkats (Suricata suricatta), finding that genetic 

(co)variances between social behaviors change as a function of group size, as well as in response to 

age, sex, and dominance status. Accompanying R code and a tutorial are provided to aid empiricists in 

applying CRN models to their own datasets. 

 

Keywords: GxE, plasticity, flexibility, multivariate, mixed effects, animal model 

  



2 

Introduction 

Accurately estimating phenotypic and quantitative genetic (co)variances is essential for understanding 

multivariate evolution in the wild. For instance, quantifying the (co)variances of thermoregulatory 

traits and growth rates is crucial for explaining differential patterns of population adaptation and 

divergence in response to climate change (de la Mata et al., 2022; Oomen & Hutchings, 2022; Schaum 

et al., 2022). Empirical estimates of covariance between life history traits are also critical for testing 

theoretical models of putative tradeoffs (negative covariances) between growth, maintenance, 

survival, or reproduction (Haave-Audet et al., 2022; Chang et al., 2023), which are hypothesized to 

constrain the direction and rate of adaptive evolution (Stearns, 1989; Roff, 1996). Positive genetic 

covariances may instead accelerate adaptation across environments, such as in red flour beetles 

(Tribolium castaneum), where selection for drought resistance has been found to indirectly select for 

greater heat resistance via a correlated genetic response (Koch et al., 2020). Estimating phenotypic 

(co)variances is similarly important for addressing various challenges in evolutionary ecology, such as 

distinguishing between repeatable and stochastic patterns of trait selection in the wild (Dingemanse 

et al., 2021; Martin, 2021), testing theoretical models of developmental integration and niche 

specialization (Damián et al., 2020; Rolian, 2020; Martin et al., 2023), as well as for making 

evolutionary predictions in systems undergoing rapid environmental change or exhibiting processes 

of non-genetic inheritance, such as cultural learning and niche construction (Danchin & Wagner, 2010; 

Fogarty & Wade, 2022).  

For polygenic and environmentally responsive traits, the quantitative genetic G matrix and phenotypic 

P matrix can be used to describe these multivariate (co)variances and predict their evolutionary 

consequences (Lande, 1979; Lande & Arnold, 1983). Various quantities derived from G and P matrices 

have also long been of interest in evolutionary genetics and ecology, such as covariance tensors and 

principal components (Schluter, 1996; Aguirre et al., 2014) for comparing divergence across 

populations (McGlothlin et al., 2018; Royauté et al., 2020), or canonical axes (Phillips & Arnold, 1989; 

Blows & Brooks, 2003) for describing (non)linear selection on correlated phenotypes (Brooks et al., 

2005; Oh & Shaw, 2013). Multivariate, multilevel regression models (also known as mixed effects, 

hierarchical, or random regression models) are well-established in the literature and widely applied 

for empirically estimating G and P matrices (e.g. Nussey et al., 2007; Dingemanse & Dochtermann, 

2013; Brommer et al., 2019). Multivariate animal models—a specific form of generalized multilevel 

regression model—are particularly useful for quantitative genetic analysis, as they can take full 

advantage of naturally occurring, continuous variation in genetic relatedness and environmental 

conditions across subjects (Kruuk, 2004; Wilson et al., 2010). This allows the animal model to provide 

greater flexibility and robustness for describing heritable (co)variation in wild populations, in 

comparison to classical methods that rely on the assumptions of balanced breeding experiments or 

specific kin-class comparisons (Kruuk & Hadfield, 2007). Building on the well-established animal 

model, the present paper develops flexible extensions for predicting variation in G and P matrices 

attributable to continuous environmental effects. 

Motivation for a novel method 

Despite longstanding theoretical interest and empirical evidence of both micro- and 

macroevolutionary stability in G and P matrices (Björklund, 1996; Estes & Arnold, 2007; Henry & 

Stinchcombe, 2023; McGlothlin et al., 2018), genetic and phenotypic (co)variances are also expected 

to change rapidly within many taxa across space and time, as individuals face continuously varying 

environmental conditions that predictably shape the expression and selection of their functional traits 

(Fig. 1). For example, previous research across a wide range of taxa (e.g. lizards, Yewers et al., 2017; 

Wittman et al., 2021; flies, Carvalho & Mirth, 2015; frogs, Lofeu et al., 2017; mice, vom Saal, 1979; 
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Huber et al., 2017; and primates, Montoya et al., 2013; Grebe et al., 2019) has shown that endocrine 

activity and the resulting hormonal milieu experienced during both prenatal and postnatal 

development exhibit dose-dependent effects on the integration (positive genetic covariance) of 

various morphological and behavioral phenotypes in adult organisms (Fig. 1a). As another example, 

consider that classic theoretical models (van Noordwijk & de Jong, 1986) predict associations among 

life history traits to be contingent on the relative importance of among-individual differences in 

resource acquisition versus allocation. As a consequence, spatial or temporal heterogeneity in factors 

such as resource availability are expected to cause continuous variation in the genetic effects acting 

to constrain (negative genetic covariance, i.e. tradeoffs) or facilitate (positive genetic covariance) 

ongoing adaptation (Mats Björklund, 2004; Mats Björklund & Gustafsson, 2015; Haave-Audet et al., 

2022); Fig. 1b). Similarly, continuous fluctuations in selection are expected to occur when the fitness 

effects of quantitative traits vary across functional contexts, as described by changes in the covariance 

between relative fitness and phenotype (Lande, 1976). In many fish, for instance, large body size 

reduces predation risk and promotes greater mating and reproductive success (Barneche et al., 2018; 

Uusi-Heikkilä, 2020); however, commercial harvesting of fish also tends to target larger individuals 

(Sharpe & Hendry, 2009; Heino et al., 2015), facilitating continuous shifts in the strength and direction 

of selection on size as a function of the intensity of local harvesting (Fig. 1c), likely in interaction with 

other factors such as local predator densities and sex ratios (Uusi-Heikkilä, 2020; Jusufovski & 

Kuparinen, 2020). Finally, both theory (Bonner, 2004; Jeanson et al., 2007) and extensive empirical 

study (e.g. Karsai & Wenzel, 1998;  Thomas & Elgar, 2003; Ferguson-Gow et al., 2014; Ulrich et al., 

2018) have demonstrated that division of labor can emerge spontaneously during colony growth in 

eusocial species, with workers exhibiting generalist phenotypes at small group sizes (average positive 

phenotypic covariance among tasks) but shifting toward specialist phenotypes as group size increases 

(negative phenotypic covariance; Fig. 1d). 

These dynamic patterns of genotype-, phenotype-, and fitness-by-environment interaction can be 

formally quantified by changes in P and G matrices across contexts. Current multivariate animal 

models are well suited for characterizing discrete changes in trait (co)variances due to categorical 

environmental effects, such as experimental conditions (e.g. solitary versus group housing) and 

developmental stages (e.g. juvenile versus adult) or subjectively binned environmental covariates 

from the field (e.g. high versus low quality habitats). This is typically achieved through a so-called 

character state approach, where separate models are fit for trait expression in each discrete 

environmental state and individuals’ additive genetic (breeding) values are allowed to correlate across 

models (Via & Lande, 1985; Lynch & Walsh, 1998). However, as argued above, environmental effects 

on P and G matrices will often reflect continuous and potentially nonlinear processes that are 

challenging to describe with character-state models (Fig. 1). These complex dynamics can be 

interpolated post-hoc from estimates of discrete states (Mitchell & Houslay, 2021), but this strategy 

will often require prohibitively large sample sizes for accurate inference due to discretizing the 

problem into 𝑠
𝑝(𝑝−1)

2
 distinct and independently estimated covariance terms, where p is the number 

of phenotypes and s is the number of states necessary to effectively approximate the underlying 

function (which may be very large for complex responses to multivariate environments). As a 

consequence, reliance on interpolation through character-state models will tend to reduce statistical 

power for detecting complex functional relationships in heterogeneous environments. Fortunately, 

mathematically complementary reaction norm models (de Jong, 1995; Lynch & Walsh, 1998; Nussey 

et al., 2007) can be used to more directly and parsimoniously describe these processes, taking full 

advantage of available environmental information with much fewer parameters. The following section 

introduces such a ‘covariance reaction norm’ (CRN) approach to estimating continuous and potentially 

nonlinear environmental effects on trait (co)variances. I subsequently validate this model for empirical 
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application using simulation-based calibration (Talts et al., 2018) and explore its application through 

a worked empirical example on cooperative task specialization in meerkats (Suricata suricatta). 

Accompanying code and a guided tutorial for implementation of CRN models in the R statistical 

environment (R Core Team, 2023) using the Stan statistical programming language (Carpenter et al., 

2017) can be found on Github (see data availability). 

Figure 1. Potential empirical applications for covariance reaction norm models. 

 

Footnote. Four examples (a-d) are shown of phenotypic domains (middle column) where continuous 

environmental variation (left column) is likely to cause continuous changes in quantitative genetic (G; 

top rows) and phenotypic (P; bottom rows) trait covariances, as formally described by hypothetical 

covariance reaction norms (CRNs; right column) quantifying patterns of continuous GxE and PxE across 

environmental states. See the main text for a detailed description of each scenario and Eq. 2-3 for a 

formal description of how such CRNs can be empirically estimated. 
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Covariance reaction norms 

Quantitative genetic analysis 

The animal model allows for partitioning random quantitative genetic effects G and environmental 

effects on phenotypes. Extensive prior work has provided detailed overview of the animal model and 

its various extensions (e.g. Nussey et al., 2007; Wilson et al., 2010; Thomson et al., 2018; Martin & 

Jaeggi, 2022). Therefore, I focus herein on a highly simplified presentation of the animal model to 

highlight novel extensions, as well as to avoid detailed discussion of general issues in regression 

analysis such as the inclusion of various kinds of fixed and random effects. A multivariate animal model 

can be specified for each of p Gaussian phenotypes [𝒛𝟏
⊤ , … , 𝒛𝒑

⊤ ]
⊤
 measured for n individuals by 

[

𝒛𝟏

⋮
𝒛𝒑

] = [

𝑿𝜷1 + 𝜶𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝜶𝒑 + 𝝐𝒑

] (𝟏. 𝟏) 

where X is an n x b matrix of b continuous and/or discrete covariates (e.g. local density, age, sex, 

resource abundance, seasonal precipitation and temperature, etc.), and [𝜷𝟏
⊤ , … , 𝜷𝒑

⊤ ]
⊤
 are b x 1 vectors 

of trait-specific fixed effect sizes including global intercepts. After adjusting for these effects, the 

model estimates trait-specific additive genetic (i.e. breeding) values [𝜶𝟏
⊤ , … , 𝜶𝒑

⊤ ]
⊤
 and residual 

environmental values [𝝐𝟏
⊤ , … , 𝝐𝒑

⊤ ]
⊤
. Further genetic effects due to dominance or epistasis can also be 

parameterized when relevant for the goals of the analysis, along with any other random intercepts or 

slopes of interest. If repeated individual-level measurements are available, residuals can also be 

further partitioned into permanent and stochastic environmental components. Trait (co)variances due 

to additive genetic and residual effects are assumed to be approximated by multivariate normal 

distributions 

[

𝒂𝟏

⋮
𝒂𝒑

]~𝑵(𝟎,𝑮⨂𝑨); [

𝝐𝟏

⋮
𝝐𝒑

]~𝑵(𝟎, 𝚺) (𝟏. 𝟐)  

With the G matrix being scaled using the Kronecker product ⊗ by a relatedness matrix A that 

quantifies pairwise relatedness among subjects, calculated using standard pedigree methods or 

molecular approaches. This basic animal model structure assumes that phenotypic (co)variances 

described by the G matrix are constant across subjects, adjusted for any other fixed and random 

effects predicting phenotypic means. The goal is now to relax this assumption by also allowing for 

fixed effects due to continuous or discrete environmental factors to also predict variation in trait 

(co)variances. 

Predicting genetic (co)variances 

The G matrix can be parameterized using genetic variances 𝜎𝑎
2 and correlations 𝑟𝑎 such that 

𝑮: [

𝜎𝑎1
2 ⋯ 𝑟𝑎1,𝑝

𝜎𝑎1
𝜎𝑎𝑝

 

 ⋱ ⋮ 
  𝜎𝑎𝑝

2
] (𝟏. 𝟑) 

where genetic covariances 𝜎𝑎1,𝑝
= 𝑟𝑎1,𝑝

𝜎𝑎1
𝜎𝑎𝑝

 are given by the product of genetic correlations and 

standard deviations (square roots of the genetic variances). Note that bold symbols are used to 

distinguish vectors and matrices from scalars. Separating out the scale of variation 𝜎𝑎
2 for each variable 

from their standardized associations 𝑟𝑎 
 is useful for further expanding the model, as environmental 
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factors may exhibit independent effects on these distinct components, which would otherwise be 

confounded together through direct prediction of the covariance. Using Eq. 1.3, the basic animal 

model can now be expanded to a covariance reaction norm (CRN) model by using link functions to 

predict how genetic variances and correlations change in response to the same matrix X of 

environmental covariates used to predict phenotypic means (or a relevant subset of these predictors). 

In particular, using the subscript (𝑋𝑛) to denote the G matrix predicted from a CRN in the 

environmental context measured for subject n  

[

𝒛𝟏

⋮
𝒛𝒑

] = [

𝑿𝜷1 + 𝜶(𝑿)𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝜶(𝑿)𝒑 + 𝝐𝒑

] (𝟐) 

[

𝒂(𝑿)𝟏

⋮
𝒂(𝑿)𝒑

]~𝑵(𝟎,𝑮(𝑿) ⊗ 𝑨); 𝑮(𝑿𝒏) : [

𝜎𝑎(𝑋𝑛)1
2 ⋯ 𝑟𝑎(𝑋𝑛)1,𝑝

𝜎𝑎(𝑋𝑛)1𝜎𝑎(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎𝑎(𝑋𝑛)𝑝

2
]  

[

log(𝝈𝒂(𝑿)𝟏
𝟐 )

⋮

log (𝝈𝒂(𝑿)𝒑
𝟐 )

] = [

𝑿𝜷𝝈𝟏
𝟐

⋮
𝑿𝜷𝝈𝒑

𝟐  

] ;     [

atanh(𝒓𝒂(𝑿)𝟏,𝟐
)

⋮

atanh (𝒓𝒂(𝑿)𝒑−𝟏,𝒑
)

] = [

𝑿𝜷𝒓𝟏

⋮
𝑿𝜷𝒓𝒑−𝟏,𝒑

] 

Rather than defining a single genetic variance and set of correlations for each response variable, as in 

the standard animal model (Eq. 1), the CRN animal model predicts n G matrices 𝑮(𝑿) =

(𝑮(𝑿𝟏), … , 𝑮(𝑿𝒏)) each composed of context-specific genetic variances 𝝈𝒂(𝑿)𝒑
𝟐 =

[𝜎𝑎(𝑋1)𝑝
2 , … , 𝜎𝑎(𝑋𝑛)𝑝

2 ]′, and correlations 𝒓𝒂(𝑿)𝟏,𝒑
= [𝑟𝑎(𝑋1)1,𝑝

, … , 𝑟𝑎(𝑋𝑛)1,𝑝
]′. There are as many unique 

G matrices as the number of unique multivariate contexts defined by the environmental covariates in 

X, yet the prediction of these matrices only requires estimating a much smaller set of CRN parameters. 

The log and inverse hyperbolic tangent link functions are respectively used to infer these trait-specific 

parameters (additive fixed effects, including global intercepts) defined on the transformed linear scale 

of genetic variances [𝜷
𝝈𝟏

𝟐
⊤ , … , 𝜷

𝝈𝒑
𝟐

⊤ ]
⊤

 and genetic correlations [𝜷𝒓𝟏
⊤ , … , 𝜷𝒓𝒑−𝟏,𝒑

⊤ ]
⊤

. In the general case, 

there will be ncol(𝑿) ∗ 𝑝 CRN parameters for genetic variances and ncol(𝑿) ∗
𝑝(𝑝−1)

2
 parameters for 

the genetic correlations. Note that atanh(𝑟) = logit (
𝑟+1

2
) /2 extends the logit transformation 

defined for probability scale values to the scale of correlation coefficients.  

It is theoretically important to recognize that any non-zero fixed effects predicting 𝑮(𝑿) provide 

evidence for gene-by-environment (GxE) interaction. In general, however, direct interpretation of 

these CRN fixed effect sizes will be challenging due to the distinct scales of link functions used for 

genetic variances and correlations. Therefore, once the model is estimated, I encourage researchers 

to use model predictions from Eq. 2 for more directly visualizing and quantifying total environmental 

effects on the more intuitive scales of genetic variances, correlations, and covariances, where 

𝜎𝑎(𝑋𝑛)1,𝑝
= 𝑟𝑎(𝑋𝑛)1,𝑝

𝜎𝑎(𝑋𝑛)1𝜎𝑎(𝑋𝑛)𝑝. A worked example is provided below. When relevant, the same 

approach outlined above can also be taken to predict continuous and/or discrete effects on residual 

or permanent environmental (co)variances. 

Extensions 

It is important to emphasize that the basic CRN model presented here has been simplified to aid 

comprehension but can be flexibly extended using all of the standard tools available in a multilevel 

regression model. For example, further link functions can be used to generalize the linear models 
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presented above and predict the phenotypic means of non-Gaussian responses (using e.g. binomial, 

Poisson, gamma, beta, etc. distributions). Random individual-level slopes can also be introduced to 

the model for investigating the relationship between CRNs and RNs of phenotypic means, such as to 

understand how the genetic integration between phenotypic intercepts and slopes changes across 

developmental or social environments (Kraft et al., 2006; Stamps et al., 2018; Dingemanse et al., 2020; 

Bucklaew & Dochtermann, 2021; Martin et al., 2023). Nonlinear effects on the link transformed scales 

of genetic (co)variances can be predicted using standard polynomial approaches or using more flexible 

non-parametric methods and generalized additive functions such as splines or Gaussian processes 

(Pedersen et al., 2019; Riutort-Mayol et al., 2022), such as to incorporate spatiotemporal 

autocorrelation. It also possible to predict CRNs using random rather than fixed effects when 

environmental states are not directly measured (e.g. to capture random among-year variation). Such 

extensions are within the scope of any regression analysis and thus do not require specific attention 

with respect to the CRN model. 

Phenotypic analysis 

Many studies may lack the genetic information necessary to estimate Eq. 2 or otherwise be principally 

interested in estimating phenotypic (co)variances. Without genetic data or repeated measurements, 

among- and within-individual patterns of phenotypic (co)variance will be confounded together, 

potentially biasing evolutionary predictions with measurement error and ephemeral environmental 

effects (Dingemanse et al., 2021; Martin, 2021). However, if multiple measurements are made on the 

same subjects across time, then repeatable among-individual differences in phenotype, due to both 

genetic variation and permanent environmental effects, can be effectively partitioned from stochastic 

variation using individual-level random effects. Following the same notation used above, but now 

introducing an n x i matrix Y to index repeated individual-level measurements, the phenotypic CRN is 

given by 

[

𝒛𝟏

⋮
𝒛𝒑

] = [

𝑿𝜷1 + 𝒀𝝁(𝑿)𝟏 + 𝝐𝟏

⋮
𝑿𝜷𝑝 + 𝒀𝝁(𝑿)𝒑 + 𝝐𝒑

] (𝟑) 

[

𝝁(𝑿)𝟏

⋮
𝝁(𝑿)𝒑

]~𝑵(𝟎,𝑷(𝑿)); 𝑷(𝑿𝒏) : [

𝜎(𝑋𝑛)1
2 ⋯ 𝑟(𝑋𝑛)1,𝑝

𝜎(𝑋𝑛)1𝜎(𝑋𝑛)𝑝  

 ⋱ ⋮ 
  𝜎(𝑋𝑛)𝑝

2
]  

[

log(𝝈(𝑿)𝟏
𝟐 )

⋮

log (𝝈(𝑿)𝒑
𝟐 )

] = [

𝑿𝜷𝝈𝟏
𝟐

⋮
𝑿𝜷𝝈𝒑

𝟐

] ;     [

atanh(𝒓(𝑿)𝟏,𝟐
)

⋮

atanh (𝒓(𝑿)𝒑−𝟏,𝒑
)

] = [

𝑿𝜷𝒓𝟏

⋮
𝑿𝜷𝒓𝒑−𝟏,𝒑

] 

where [𝝁(𝑿)𝟏
⊤ , … , 𝝁(𝑿)𝑷

⊤ ]
⊤
 are random effects that are assumed to be independently distributed among 

individuals. As above, 𝑷(𝑿𝒏) is the matrix of among-individual phenotypic (co)variances predicted in 

response to the environmental context of measurement n for subject i, as determined by the CRN 

fixed effect parameters for phenotypic variances [𝜷
𝝈𝟏

𝟐
⊤ , … , 𝜷

𝝈𝒑
𝟐

⊤ ]
⊤

 and correlations  [𝜷𝒓𝟏
⊤ , … , 𝜷𝒓𝒑

⊤ ]
⊤

. As 

with the quantitative genetic model, it is important to recognize that any non-zero fixed effects 

predicting 𝑷(𝑿) provide evidence for phenotype-by-environment (PxE) interactions. This same 

approach can also be used to extend the quantitative genetic model to repeated measurements, as is 

demonstrated in the worked example below (see data availability for accompanying code). 
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Statistical implementation 

Bayesian inference in Stan 

The CRN model (Eq. 2-3) cannot currently be estimated using standard statistical software packages 

for multivariate animal models and multilevel models more generally, due to a lack of in-built 

functionality for expressing elements of covariance matrices as generalized linear predictors. 

Fortunately, however, the extremely flexible Stan statistical programming language can be used to 

construct bespoke animal models of desired complexity within a Bayesian inferential framework, 

facilitating general estimation of CRNs models using cutting-edge Markov Chain Monte Carlo (MCMC) 

methods (Hoffman & Gelman, 2011; Nishio & Arakawa, 2019; Martin & Jaeggi, 2022). Detailed 

discussion of contemporary Bayesian statistics is beyond the scope of this paper. However, I 

encourage readers to consult up-to-date primers on Bayesian data analysis (Gelman et al., 2013, 2020; 

McElreath, 2020) for thorough introductions, including extensive tips and suggestions for key 

decisions such as the choice of priors, model validation and comparison, variable selection, and the 

interpretation of posterior estimates. As a general rule of thumb, I suggest using weakly regularizing 

priors when estimating CRN models, to reduce the risk of inferential bias while promoting more 

efficient model convergence (Lemoine, 2019; McElreath, 2020). Finally, note that despite it still being 

common to see thinning of MCMC chains reported in the literature, this practice is unnecessary and 

computationally inefficient (Link & Eaton, 2011). 

Computational efficiency 

This section covers formal details on efficient implementation of CRN models in Stan, which can be 

safely overlooked by empiricists without impeding interpretation or practical implementation. 

Prediction of large covariance matrices is computationally burdensome in a Bayesian framework, even 

with the use of appropriately regularizing priors and efficient MCMC algorithms. This reflects the fact 

that the probability of observing a permissible (i.e. positive-definite) covariance or correlation matrix 

declines rapidly with increasing dimensionality of the matrix (Dean & Majumdar, 2008). Estimation of 

the CRN model with three or more traits can, therefore, be best achieved through use of a 

mathematically equivalent but more computationally efficient reparameterization of the 𝑮(𝑿) and 

𝑷(𝑿) matrices than is described by the standard parameterization presented in Eq. 2-3.  

Firstly, the p x p correlation matrix 𝑹𝒂 containing all genetic (or phenotypic) correlations for p 

phenotypes can be decomposed using a Cholesky factorization such that 

𝑹𝒂 = 𝑳𝑹𝑳𝑹
⊤ (𝟒) 

where 𝑳𝑹 is a lower-triangular matrix with unit length rows and positive diagonal elements. These 
assumptions reduce the number of free parameters necessary for calculating 𝑹𝒂, as the diagonal 
elements of 𝑳𝑹 are determined by the off-diagonal elements of each row. Therefore, estimating 𝑳𝑹 
and subsequently deriving 𝑹𝒂 using Eq. 4 improves computational time of the model (Stan 
Development Team, 2023). Following previous work on the prediction of covariance matrices 
(Lewandowski et al., 2009; Bloome & Schrage, 2021), computational efficiency can then be further 

increased by decomposing 𝑳𝑹 into a vector 𝛚 of length 
𝑝(𝑝−1)

2
 containing the canonical partial 

correlations constitutive of all unique lower-triangular elements in this matrix. The canonical partial 
correlations in 𝛚 are of the same sign as their corresponding elements in 𝑳𝑹, but their magnitudes 
represent residual correlations between corresponding row and column variables after regressing 
both on all prior occurring row variables. In the general case, the canonical partial correlation 𝜔𝑢, 

where 𝑢 =
2𝑐𝑝−𝑐2+2𝑟−3𝑐−2

2
 is the vector element corresponding to unique lower-triangular Cholesky 

factor 𝐿𝑅[𝑟,𝑐] at row r and column c, is given by  
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𝜔𝑢 = {

𝐿𝑅[𝑟,𝑐]
 ,                                                 if 𝑐 = 1 < 𝑟

𝐿𝑅[𝑟,𝑐] / (1 − ∑𝐿𝑅[𝑟,1:𝑐−1]
2 )

1
2, if 1 < 𝑐 ≤ 𝑟

(𝟓. 𝟏) 

such that the Cholesky factor can in turn be derived from 𝜔𝑢 by 

𝐿𝑅[𝑟,𝑐]
 = {

𝜔𝑢,                                                  if 𝑐 = 1 < 𝑟

𝜔𝑢 ∗  (1 − ∑𝐿𝑅[𝑟,1:𝑐−1]
2 )

1
2, if 1 < 𝑐 ≤ 𝑟

(𝟓. 𝟐) 

This general decomposition strategy can be adapted for the CRN model by extending each element in 

the vector 𝛚 to its own vector of context-specific canonical partial correlations. Using the same 

strategy developed above (Eq. 2-3), continuous environmental effects can then be specified and 

estimated more efficiently as predictors of the transformed canonical partial correlations 

[
 
 
 
 atanh (𝛚(𝐗)𝟏

)

⋮

atanh(𝛚(𝐗)𝑝(𝑝−1)
2

)
]
 
 
 
 

= [

𝑿𝜷𝝎𝟏

⋮
𝑿𝜷𝝎𝑝(𝑝−1)

2

] (𝟔) 

Applying the inverse link function tanh() and using Eq. 5.2 to calculate Cholesky factorized matrices 

𝑳𝑹(𝑿), the original context-specific correlation matrices can then be derived 𝑹𝒂(𝑿) and subsequently 

applied to generate model predictions for estimating environmental effects on a more familiar scale. 

In the presence of covarying environmental predictors, the CRN fixed effects 𝜷𝝈𝟐  and 𝜷𝝎 (or 𝜷𝒓) can 

also be more efficiently estimated using a so-called thin QR factorization of the X matrix (Harville, 

1997). This involves decomposing the predictor matrix 𝑿 = 𝑸∗𝑹∗ into an orthogonal matrix 𝑄∗ =

𝑄√𝑛 − 1 and upper-triangle matrix 𝑅∗ =
𝑅

√𝑛−1
, estimating trait-specific regression coefficients using 

the orthogonal vectors 𝑸∗𝜷∗, and then returning regression coefficients appropriately scaled to the 

original data scale of 𝑿 using 𝜷 = 𝑹∗−𝟏𝜷∗. The QR decomposition increases efficiency by reducing 

posterior correlations during model sampling caused by covariation among measured predictors. 

Finally, the Cholesky matrices 𝑳𝑹(𝑿) can also be used to more efficiently predict individual’s context-

specific additive genetic values from the CRN model. Following previous work by Martin and Jaeggi 

(2022), this can be accomplished using a matrix normal sampling distribution (Dutilleul, 1999), which 

extends the vectorized multivariate normal distribution to the sampling of multivariate normally 

distributed matrices. Using a 𝑛 x p matrix 𝒁𝑮 of standardized individual-level additive genetic 

deviations (i.e. z-scores of breeding values), a lower-triangular Cholesky decomposition 𝑳𝑨 of the 

relatedness matrix, and a diagonal matrix 𝑺𝒂(𝑿𝒏) = diag ([𝜎𝑎(𝑋𝑛)1
 , … , 𝜎𝑎(𝑋𝑛)𝑝

 ]) of context-specific 

genetic standard deviations, an n x p matrix of context-specific genetic values for each phenotype can 

be predicted by 

[𝒂(𝑿𝒏)𝟏 , … , 𝒂(𝑿𝒏)𝒑] = 𝐋𝐀𝒁𝑮(𝐒𝐚(𝐗𝐧)𝑳𝑹(𝑿𝒏))
⊤
~ Matrix Normal(𝟎nxp, 𝑨, 𝑮(𝑿𝒏)) (𝟕) 

→ vec ([𝒂(𝑿𝒏)𝟏 , … , 𝒂(𝑿𝒏)𝒑])~ 𝑵(𝟎,𝑮(𝑿𝒏) ⊗ 𝑨) 

Easy-to-use R functions are provided (see data availability) to straightforwardly facilitate 

computational gains from Eq. 5-7 while also generating more intuitive model estimates and 

predictions with respect to the standard parameterization of the CRN model (Eq. 2-3). 
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Model validation 

To provide a general validation of the proposed model, I conducted a simulation-based calibration 

(SBC) procedure to assess whether the quantitative genetic CRN (Eq. 2) is an unbiased Bayesian 

estimator. Note that the phenotypic CRN (Eq. 3) is simply a variant of the quantitative genetic model 

with independent random effects and thus does not require additional validation. SBC is a procedure 

for assessing the performance of a Bayesian algorithm across a broad range of possible parameter 

values generated from the prior distributions of a generative model (see Talts et al., 2018 for further 

details). This approach removes the need for arbitrarily picking a limited range of effect sizes for 

assessing performance and reduces the risk of missing unexpected sources of bias in uninvestigated 

regions of parameter space. Visual inspection of the correspondence between the generative prior 

distributions (expected values) and subsequent posterior distributions (inferred values) estimated 

during SBC is used to detect sources of bias, such as overdispersion in the estimator or inconsistent 

performance for extreme values. 

100 datasets were simulated for SBC under very minimal sampling conditions of 100 individuals with 

a single measurement of 3 traits. Measurements were taken across environments characterized the 

interaction between 10 measured values of a continuous covariate (e.g. monthly temperatures, ages, 

plot densities) and a discrete factor with 2 levels (e.g. sex, dominance, breeding season yes/no). The 

interaction of these factors created 20 distinct environmental contexts; assuming balanced sampling, 

this resulted in 5 individuals being observed per context. Parameter values were generated using 

standard weakly regularizing priors (Lemoine, 2019; McElreath, 2020), such that 𝜷~𝑁(0,1) for RN 

fixed effects determining phenotypic means and genetic (co)variances, 𝛔𝝐~exponential(2) for 

residual standard deviations, and 𝑹𝝐~LKJ(2) for residual correlation matrices, which implied a zero-

centered 
𝑟𝛼+1

2
∼ Beta(2,2) marginal distribution for each of the 3 correlations. Relatedness matrices 

were simply positive-definite correlation matrices simulated from 𝑨~LKJ(1). Posteriors for each 

dataset were estimated using 2000 MCMC samples across 4 chains using 500 samples each for 

warmup. Results from the SBC analysis showed that the distributions of inferred parameter values 

were congruent with the distributions of expected parameter values across the CRN fixed effects 

predicting genetic (co)variances (Fig. 2). In other words, posterior inferences were not systematically 

upwardly or downwardly biased from the true values used to generated the data. This provides strong 

evidence that the proposed Bayesian estimator provides unbiased inference of CRNs even under 

conditions of very minimal sampling effort and a reasonably broad range of effect sizes. It is important 

to emphasize that these results concern bias per se in estimates of expected values and do not 

quantify the statistical uncertainty or power of hypothesis tests for detecting these effects. Achieving 

high levels of power and low levels of uncertainty will generally require much larger sample sizes, as 

it is the case for any quantitative genetic analysis. Simulations functions are provided (see data 

availability) to aid researchers in carrying out a priori power analyses for effect and sample size ranges 

of interest. 
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Figure 2. Simulation-based calibration of the CRN model. 

 

Footnote. Results are shown for analyses of 100 simulated datasets of 3 traits generated from prior 

distributions defined over the parameters of the quantitative genetic CRN model (Eq. 2). Plots show 

the difference between the expected cumulative density functions for CRN parameters of the genetic 

variances 𝜎𝑎
2 and correlations 𝑟𝑎, based on their generative prior distributions, and the estimated 

cumulative density functions based on inferred posterior distributions of parameter values. The CRNs 

contained four parameters for genetic variances and correlations: 𝛽0 (trait-specific intercepts), 𝛽𝑥1
 

(main effect of continuous environment), 𝛽𝑥2
 (main effect of discrete environment), and 𝛽𝑥1𝑥2

 

(interaction effect of continuous and discrete environments). Blue circles show 90% Bayesian credible 

intervals (0.95 probability) for regions of concordance between the estimated and expected 

parameter distributions, and the black line reflects the observed difference between the expected and 

inferred distribution (a perfectly horizontal line would thus indicate perfect concordance with the 

simulated parameters in every dataset). Consistent deviations of the black line beyond the blue region 

would provide evidence of systematic inferential bias during model estimation. Note that due to 

stochasticity, fluctuations of the black line within the blue circle are expected at computationally 

efficient sample sizes. 
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Worked example: cooperative behavior in meerkats 

To demonstrate the utility of the proposed framework, I applied a CRN model to analyze an openly 

available dataset from a long-term study on the heritability of three cooperative behaviors 

(babysitting, pup feeding, and guarding/sentinel activity) in wild meerkats (Houslay et al., 2021). The 

goal of the analysis was to investigate how group size affects the genetic (co)variance of these 

cooperative behaviors, testing the hypothesis that task generalization decreases / specialization 

increases in larger groups (e.g. Bonner, 2004; Jeanson et al., 2007; Ulrich et al., 2018; Martin et al., 

2023; Figure 1d). Using only data of individuals with measures available for all three behaviors, the 

total sample size for the analysis was 1560 pedigreed individuals with 6751 (babysitting), 6461 (pup 

feeding), and 11532 (guarding/sentinel activity) total observations. I simplified certain components of 

the animal models employed by these authors to focus attention on the CRN, using only the covariates 

(age, sex, dominance status, group size) that were available for all traits and were identified as 

important for understanding mean phenotypic differences in the meerkats’ behavior. Additional 

random effects were included for each trait to capture individual-level permanent environmental 

effects, group identity during observation, breeding season, and individual x season interactions. The 

three phenotypes were modeled using binomial (half-days observed babysitting/total days) and 

Poisson (count of pup feeding and minutes in sentinel activity) distributions. Following Eq. 2 and using 

the computational strategy explained in Eq. 4-7, the same environmental covariates used to predict 

phenotypic means were also used to predict potential changes in quantitative genetic (co)variances 

among these cooperative behaviors. Note that from the perspective of a gene, organismal attributes 

such as sex, age, and dominance (serving as proxies for various attendant changes in hormonal 

activity, social experiences, etc.) are just as much aspects of ‘the environment’ potentially modulating 

its expression as more exogenous factors like group size (e.g. Wittman et al., 2021). These covariates 

also allowed for appropriately testing the independent (age, sex, and dominance adjusted) effect of 

group size on genetic (co)variances among cooperative behaviors. A coding tutorial accompanying this 

worked example is provided on Github (see data availability). 

The CRN analysis uncovered continuous changes in the genetic (co)variances of the meerkats’ 

cooperative behaviors in response to group size, age, dominance, and sex, providing clear evidence 

for GxE interactions. These effects are visualized in Fig. 3a and summarized here using posterior 

medians and posterior probabilities of a directional effect 𝑝+ / 𝑝− (i.e. the probability of an effect 

being observed in the direction of the median effect size). As shown in Fig. 3a, the genetic variance of 

babysitting behavior (BS) was found to increase modestly with age (median 𝛽𝜎2 = 0.17, 𝑝+ = 0.90), 

while age had only weak and highly uncertain effects on pup feeding (FD: 𝛽𝜎2 = 0.09, 𝑝+ = 0.81) and 

vigilant guarding behavior (GD: 𝛽𝜎2 = 0.01, 𝑝+ = 0.54). Clearer evidence was provided for age 

reducing genetic correlations across behaviors (FD∼BS: 𝛽𝑟 = −0.27, 𝑝− = 0.99; FD∼GD: 𝛽𝑟 =

−0.15, 𝑝− = 0.99; BS∼GD: 𝛽𝑟 = −0.11, 𝑝− = 0.94). Males exhibited higher genetic variance in FD 

(𝛽𝜎2 = 0.11, 𝑝+ = 0.93) but did not meaningfully differ from females for genetic variance in BS (𝛽𝜎2 =

0.04, 𝑝+ = 0.66) or GD (𝛽𝜎2 = 0.02, 𝑝+ = 0.68). Males also exhibited higher genetic correlations for 

FD∼BS (𝛽𝑟 = 0.07, 𝑝+ = 0.96) and FD∼GD (𝛽𝑟 = 0.06, 𝑝+ = 0.95) but did not differ in BS∼GD (𝛽𝑟 =

0.02, 𝑝+ = 0.55). Strong evidence was found for greater genetic variance among dominant individuals 

across behaviors (FD: 𝛽𝜎2 = 1.10, 𝑝+ = 1.00; BS: 𝛽𝜎2 = 1.54, 𝑝+ = 1.00; GD: 𝛽𝜎2 = 0.52, 𝑝+ = 1.00) 

in comparison to subordinates. However, dominance status had little to no effect on genetic 

correlations (FD∼BS: 𝛽𝑟 = −0.03, 𝑝− = 0.73; FD∼GD: 𝛽𝑟 = 0.01, 𝑝+ = 0.55; BS∼GD: 𝛽𝑟 =

0.02, 𝑝+ = 0.62). Independently of these effects, group size was found to increase genetic variance in 

FD (𝛽𝜎2 = 0.16, 𝑝+ = 0.99) and GD (𝛽𝜎2 = 0.08, 𝑝+ = 0.99) while reducing genetic variance in BS 

(𝛽𝜎2 = −0.12, 𝑝− = 0.96). Consistent with theoretical predictions, group size also acted to reduce 

genetic correlations among FD and BS (𝛽𝑟 = −0.17, 𝑝− = 0.99) as well as FD and GD (𝛽𝑟 =
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−0.06, 𝑝− = 0.92), while increasing the genetic correlation among BS and GD (𝛽𝑟 = 0.06, 𝑝+ = 0.90). 

These results are combined together in Fig. 3b to show the genetic CRN of group size across behaviors. 

As can be seen, small group sizes tend to promote more generalized cooperative strategies, with 

positive genetic covariance across behaviors; larger group sizes in turn promote more specialized 

strategies, with negative covariance among genetic effects on FD and BS and GD, such that individuals 

who exhibit high levels of FD tended to exhibit lower levels of BS and GD (and vice versa). 

Figure 3. Covariance reaction norms for meerkat social behavior. 

 

Footnote. Posterior estimates are shown for the effect of environmental covariates on the among-individual 

genetic variances 𝜎𝑎
2 of correlations 𝑟𝑎  and (co)variances 𝜎𝑎 between meerkats’ pup feeding (FD), babysitting 

(BS), and guarding/sentinel behavior (GD). (a) Scaled posterior densities are shown for the effects of age (units 

of months, standardized), sex, dominance status, and group size (units of 5, standardized) on genetic variances 

(log scale effects, top row) and correlations (atanh scale effects, bottom row). The vertical dotted line indicates 

zero effect, with values greater or less than zero indicating GxE interactions.  (b) CRNs for the continuous, 

standardized effect of group size on genetic covariances, adjusted for the effects of sex, age, and dominance 

status. Posterior median effect sizes are shown by darker lines, with the surrounding shaded bands indicating 

10 to 90% posterior credible intervals (CIs) from the darkest to lightest bands, respectively. Dotted vertical lines 

indicate the expected covariance at the average group size (0), while dotted horizontal lines indicate 0 genetic 

covariance, such that values above this line provide evidence for positive genetic covariance (generalization) and 

values below provide evidence for negative genetic covariance (specialization). 
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Conclusion 

A longstanding goal unifying diverse fields of evolutionary science is to understand the role of 

developmental and contextual plasticity in the adaptation of complex phenotypes (Via et al., 1995; 

Paenke et al., 2007; Hutchings, 2011; Kuzawa & Bragg, 2012; Hendry, 2016; Pfennig, 2021). While 

strong theoretical emphasis has been placed on understanding the role of trait (co)variances in 

constraining multivariate evolution (Phillips & Arnold, 1989; Walsh & Blows, 2009; Chebib & 

Guillaume, 2017), it is often underappreciated that genetic and phenotypic (co)variances are 

themselves the product of underlying genotype- and phenotype-by-environment interactions (Service 

& Rose, 1985; Via & Lande, 1985; Pigliucci, 1996; Peiman & Robinson, 2017; Elgart et al., 2022; Martin 

et al., 2023). Modeling these dynamic environmental interactions is, therefore, a crucial but easily 

overlooked step in effectively explaining ongoing adaptation in a rapidly changing world (Westneat et 

al., 2019; Hudak & Dybdahl, 2023). Analytic tools for efficiently inferring these complex patterns have 

been limited, however, particularly outside of the laboratory, where organisms are exposed to 

continuous spatial and temporal variation in their local microhabitats. To the degree that such 

environmental variation is relevant for fitness and the benefits of responding to it outweigh the costs 

of producing a response, we expect for adaptive plasticity to evolve in trait expression (Gavrilets & 

Scheiner, 1993; de Jong, 1995; Haaland et al., 2021). In many cases, this plasticity will be reflected in 

average trait values; however, when fitness-relevant variation also occurs with respect to trait 

(co)variances within individuals’ lifetimes (e.g. through fluctuating correlational selection, Revell, 

2007; Roff & Fairbairn, 2012), adaptive plasticity may also evolve in trait variances and correlations 

(Fig. 1).  

Important empirical efforts have been made to investigate the fluctuations in G and P matrices that 

result from such plasticity, as well as potentially rapid microevolution, in response to environmental 

heterogeneity and ongoing change in natural populations (e.g. Nespolo et al., 2009; Björklund et al., 

2013; Bolund et al., 2015; Wood & Brodie, 2015). However, current character state approaches for 

analyzing changes in trait (co)variances rely on discretizing the environment. Outside of controlled 

experiments, this tends to encourage artificial binning of naturally occurring variation, which can 

reduce statistical power for true effects while also increasing the rate of false positives and 

downwardly biasing effect sizes (e.g. Cohen, 1983; MacCallum et al., 2002). Ultimately, this limits 

empiricists’ ability to robustly infer continuous and potentially nonlinear environmental processes 

underlying such changes in the wild. The CRN model proposed here provides a novel and unbiased 

solution (Fig. 2) to this challenge, extending the standard animal model (Kruuk, 2004) to increase its 

flexibility in describing multivariate environmental effects on all aspects of genetic expression. As 

demonstrated by the worked example in meerkats, building on prior research by Houslay et al. (2021), 

CRNs can harness the rich information in long-term field datasets to generate fresh insights into 

longstanding theoretical questions, such as the role of group size in facilitating the emergence of niche 

specialization in animal societies (Fig. 1, 3). Further application of this novel approach is, therefore, 

likely to enhance our understanding of the evolution and ecology of multivariate plasticity across a 

variety of complex phenotypes in the wild. 

Data availability 

Guided tutorials for implementing CRNs, as well as R code for replicating the worked empirical 

example, are publicly available on Github at https://github.com/Jordan-Scott-Martin/covariance-

reaction-norms . 

https://github.com/Jordan-Scott-Martin/covariance-reaction-norms
https://github.com/Jordan-Scott-Martin/covariance-reaction-norms


15 

References 

Aguirre, J. D., Hine, E., McGuigan, K., & Blows, M. W. (2014). Comparing G: multivariate analysis of 

genetic variation in multiple populations. Heredity, 112(1), 21–29. 

Barneche, D. R., Robertson, D. R., White, C. R., & Marshall, D. J. (2018). Fish reproductive-energy 

output increases disproportionately with body size. Science, 360(6389), 642–645. 

Björklund, M., Husby, A., & Gustafsson, L. (2013). Rapid and unpredictable changes of the G-matrix 

in a natural bird population over 25 years. Journal of Evolutionary Biology, 26(1), 1–13. 

Björklund, Mats. (1996). The importance of evolutionary constraints in ecological time scales. 

Evolutionary Ecology, 10(4), 423–431. 

Björklund, Mats. (2004). Constancy of the G matrix in ecological time. Evolution; International 

Journal of Organic Evolution, 58(6), 1157–1164. 

Björklund, Mats, & Gustafsson, L. (2015). The stability of the G-matrix: The role of spatial 

heterogeneity. Evolution; International Journal of Organic Evolution, 69(7), 1953–1958. 

Bloome, D., & Schrage, D. (2021). Covariance Regression Models for Studying Treatment Effect 

Heterogeneity Across One or More Outcomes: Understanding How Treatments Shape 

Inequality. Sociological Methods & Research, 50(3), 1034–1072. 

Bolund, E., Hayward, A., Pettay, J. E., & Lummaa, V. (2015). Effects of the demographic transition on 

the genetic variances and covariances of human life-history traits. Evolution; International 

Journal of Organic Evolution, 69(3), 747–755. 

Bonner, J. T. (2004). Perspective: the size-complexity rule. Evolution; International Journal of Organic 

Evolution, 58(9), 1883–1890. 

Brommer, J., Class, B., & Covarrubias-Pazaran, G. (2019). Multivariate Mixed Models in Ecology and 

Evolutionary biology: Inferences and implementation in R. In EcoEvoRxiv. 

https://doi.org/10.32942/osf.io/hs38a 



16 

Brooks, R., Hunt, J., Blows, M. W., Smith, M. J., Bussière, L. F., & Jennions, M. D. (2005). Experimental 

evidence for multivariate stabilizing sexual selection. Evolution; International Journal of 

Organic Evolution, 59(4), 871–880. 

Bucklaew, A., & Dochtermann, N. A. (2021). The effects of exposure to predators on personality and 

plasticity. Ethology: Formerly Zeitschrift Fur Tierpsychologie, 127(2), 158–165. 

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., 

Guo, J., Li, P., & Riddell, A. (2017). Stan: A Probabilistic Programming Language. Journal of 

Statistical Software, 76. https://doi.org/10.18637/jss.v076.i01 

Carvalho, M. J. A., & Mirth, C. K. (2015). Coordinating morphology with behavior during 

development: an integrative approach from a fly perspective. Frontiers in Ecology and 

Evolution, 3. https://doi.org/10.3389/fevo.2015.00005 

Chang, C.-C., Moiron, M., Sánchez-Tójar, A., Niemela, P., & Laskowski, K. (2023). What’s the meta-

analytic evidence for life-history trade-offs at the genetic level? In Authorea. 

https://doi.org/10.22541/au.168795190.00787983/v1 

Chebib, J., & Guillaume, F. (2017). What affects the predictability of evolutionary constraints using a 

G-matrix? The relative effects of modular pleiotropy and mutational correlation. Evolution; 

International Journal of Organic Evolution, 71(10), 2298–2312. 

Cohen, J. (1983). The Cost of Dichotomization. Applied Psychological Measurement, 7(3), 249–253. 

Damián, X., Ochoa-López, S., Gaxiola, A., Fornoni, J., Domínguez, C. A., & Boege, K. (2020). Natural 

selection acting on integrated phenotypes: covariance among functional leaf traits increases 

plant fitness. The New Phytologist, 225(1), 546–557. 

Danchin, É., & Wagner, R. H. (2010). Inclusive heritability: combining genetic and non-genetic 

information to study animal behavior and culture. Oikos , 119(2), 210–218. 

de Jong, G. (1995). Phenotypic Plasticity as a Product of Selection in a Variable Environment. The 

American Naturalist, 145(4), 493–512. 



17 

de la Mata, R., Zas, R., Bustingorri, G., Sampedro, L., Rust, M., Hernandez-Serrano, A., & Sala, A. 

(2022). Drivers of population differentiation in phenotypic plasticity in a temperate conifer: 

A 27-year study. Evolutionary Applications, 15(11), 1945–1962. 

Dean, D. S., & Majumdar, S. N. (2008). Extreme value statistics of eigenvalues of Gaussian random 

matrices. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 77(4 Pt 1), 

041108. 

Dingemanse, Niels J., Barber, I., & Dochtermann, N. A. (2020). Non-consumptive effects of predation: 

does perceived risk strengthen the genetic integration of behaviour and morphology in 

stickleback? Ecology Letters, 23(1), 107–118. 

Dingemanse, Niels J., & Dochtermann, N. A. (2013). Quantifying individual variation in behaviour: 

mixed-effect modelling approaches. The Journal of Animal Ecology, 82(1), 39–54. 

Dingemanse, Niels Jeroen, Araya-Ajoy, Y. G., & Westneat, D. F. (2021). Most published selection 

gradients are underestimated: Why this is and how to fix it. Evolution; International Journal 

of Organic Evolution, 75(4), 806–818. 

Dutilleul, P. (1999). The mle algorithm for the matrix normal distribution. Journal of Statistical 

Computation and Simulation, 64(2), 105–123. 

Elgart, M., Goodman, M. O., Isasi, C., Chen, H., Morrison, A. C., de Vries, P. S., Xu, H., Manichaikul, A. 

W., Guo, X., Franceschini, N., Psaty, B. M., Rich, S. S., Rotter, J. I., Lloyd-Jones, D. M., 

Fornage, M., Correa, A., Heard-Costa, N. L., Vasan, R. S., Hernandez, R., … Sofer, T. (2022). 

Correlations between complex human phenotypes vary by genetic background, gender, and 

environment. Cell Reports. Medicine, 3(12), 100844. 

Estes, S., & Arnold, S. J. (2007). Resolving the paradox of stasis: models with stabilizing selection 

explain evolutionary divergence on all timescales. The American Naturalist, 169(2), 227–244. 

Ferguson-Gow, H., Sumner, S., Bourke, A. F. G., & Jones, K. E. (2014). Colony size predicts division of 

labour in attine ants. Proceedings. Biological Sciences / The Royal Society, 281(1793). 

https://doi.org/10.1098/rspb.2014.1411 



18 

Fogarty, L., & Wade, M. J. (2022). Niche construction in quantitative traits: heritability and response 

to selection. Proceedings. Biological Sciences / The Royal Society, 289(1976), 20220401. 

Gavrilets, S., & Scheiner, S. M. (1993). The genetics of phenotypic plasticity. V. Evolution of reaction 

norm shape. Journal of Evolutionary Biology, 6(1), 31–48. 

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data 

Analysis Third edition. CRC Press. 

Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., Kennedy, L., Gabry, J., 

Bürkner, P.-C., & Modrák, M. (2020). Bayesian Workflow. In arXiv [stat.ME]. arXiv. 

http://arxiv.org/abs/2011.01808 

Grebe, N. M., Fitzpatrick, C., Sharrock, K., Starling, A., & Drea, C. M. (2019). Organizational and 

activational androgens, lemur social play, and the ontogeny of female dominance. Hormones 

and Behavior, 115, 104554. 

Haaland, T. R., Wright, J., & Ratikainen, I. I. (2021). Individual reversible plasticity as a genotype-level 

bet-hedging strategy. Journal of Evolutionary Biology, 34(7), 1022–1033. 

Haave-Audet, E., Besson, A. A., Nakagawa, S., & Mathot, K. J. (2022). Differences in resource 

acquisition, not allocation, mediate the relationship between behaviour and fitness: a 

systematic review and meta-analysis. Biological Reviews of the Cambridge Philosophical 

Society, 97(2), 708–731. 

Harville, D. A. (1997). Matrix algebra from a statistician’s perspective. Springer-Verlag. 

Heino, M., Díaz Pauli, B., & Dieckmann, U. (2015). Fisheries-Induced Evolution. Annual Review of 

Ecology, Evolution, and Systematics, 46(1), 461–480. 

Hendry, A. P. (2016). Key Questions on the Role of Phenotypic Plasticity in Eco-Evolutionary 

Dynamics. The Journal of Heredity, 107(1), 25–41. 

Henry, G. A., & Stinchcombe, J. R. (2023). G-matrix stability in clinally diverging populations of an 

annual weed. Evolution; International Journal of Organic Evolution, 77(1), 49–62. 



19 

Hoffman, M. D., & Gelman, A. (2011). The no-U-Turn Sampler: Adaptively setting path lengths in 

Hamiltonian Monte Carlo. arXiv. 

https://jmlr.org/papers/volume15/hoffman14a/hoffman14a.pdf 

Houslay, T. M., Nielsen, J. F., & Clutton-Brock, T. H. (2021). Contributions of genetic and nongenetic 

sources to variation in cooperative behavior in a cooperative mammal. Evolution; 

International Journal of Organic Evolution, 75(12), 3071–3086. 

Huber, S. E., Lenz, B., Kornhuber, J., & Müller, C. P. (2017). Prenatal androgen-receptor activity has 

organizational morphological effects in mice. PloS One, 12(11), e0188752. 

Hudak, A., & Dybdahl, M. (2023). Phenotypic plasticity under the effects of multiple environmental 

variables. Evolution; International Journal of Organic Evolution, 77(6), 1370–1381. 

Hutchings, J. A. (2011). Old wine in new bottles: reaction norms in salmonid fishes. Heredity, 106(3), 

421–437. 

Jeanson, R., Fewell, J. H., Gorelick, R., & Bertram, S. M. (2007). Emergence of Increased Division of 

Labor as a Function of Group Size. Behavioral Ecology and Sociobiology, 62(2), 289–298. 

Jusufovski, D., & Kuparinen, A. (2020). Exploring individual and population eco-evolutionary 

feedbacks under the coupled effects of fishing and predation. Fisheries Research, 231, 

105713. 

Karsai, I., & Wenzel, J. W. (1998). Productivity, individual-level and colony-level flexibility, and 

organization of work as consequences of colony size. Proceedings of the National Academy 

of Sciences of the United States of America, 95(15), 8665–8669. 

Koch, E. L., Sbilordo, S. H., & Guillaume, F. (2020). Genetic variance in fitness and its cross-sex 

covariance predict adaptation during experimental evolution. Evolution; International 

Journal of Organic Evolution, 74(12), 2725–2740. 

Kraft, P. G., Wilson, R. S., Franklin, C. E., & Blows, M. W. (2006). Substantial changes in the genetic 

basis of tadpole morphology of Rana lessonae in the presence of predators. Journal of 

Evolutionary Biology, 19(6), 1813–1818. 



20 

Kruuk, L. E. B., & Hadfield, J. D. (2007). How to separate genetic and environmental causes of 

similarity between relatives. Journal of Evolutionary Biology, 20(5), 1890–1903. 

Kruuk, Loeske E. B. (2004). Estimating genetic parameters in natural populations using the ‘animal 

model.’ Philosophical Transactions of the Royal Society of London. Series B, Biological 

Sciences, 359(1446), 873–890. 

Kuzawa, C. W., & Bragg, J. M. (2012). Plasticity in Human Life History Strategy: Implications for 

Contemporary Human Variation and the Evolution of Genus Homo. Current Anthropology, 

53(S6), S369–S382. 

Lande, R. (1976). NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION. 

Evolution; International Journal of Organic Evolution, 30(2), 314–334. 

Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain body size 

allometry. Evolution; International Journal of Organic Evolution, 33(1Part2), 402–416. 

Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution; 

International Journal of Organic Evolution, 37(6), 1210–1226. 

Lemoine, N. P. (2019). Moving beyond noninformative priors: why and how to choose weakly 

informative priors in Bayesian analyses. Oikos , 128(7), 912–928. 

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices based on 

vines and extended onion method. Journal of Multivariate Analysis, 100(9), 1989–2001. 

Link, W. A., & Eaton, M. J. (2011). On thinning of chains in MCMC. Methods in Ecology and Evolution, 

3(1). https://doi.org/10.1111/j.2041-210X.2011.00131.x 

Lofeu, L., Brandt, R., & Kohlsdorf, T. (2017). Phenotypic integration mediated by hormones: 

associations among digit ratios, body size and testosterone during tadpole development. 

BMC Evolutionary Biology, 17(1), 175. 

Lynch, M., & Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sinauer Associates. 

MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of 

dichotomization of quantitative variables. Psychological Methods, 7(1), 19–40. 



21 

Martin, J. (2021). Estimating nonlinear selection on behavioral reaction norms. In EcoEvoRxiv. 

https://doi.org/10.32942/osf.io/u26tz 

Martin, J. S., & Jaeggi, A. V. (2022). Social animal models for quantifying plasticity, assortment, and 

selection on interacting phenotypes. Journal of Evolutionary Biology, 35(4), 520–538. 

Martin, J. S., Jaeggi, A. V., & Koski, S. E. (2023). The social evolution of individual differences: Future 

directions for a comparative science of personality in social behavior. Neuroscience and 

Biobehavioral Reviews, 144, 104980. 

McElreath, R. (2020). Statistical Rethinking; A Bayesian Course with Examples in R and Stan; Second 

Edition. CRC Press. 

McGlothlin, J. W., Kobiela, M. E., Wright, H. V., Mahler, D. L., Kolbe, J. J., Losos, J. B., & Brodie, E. D., 

3rd. (2018). Adaptive radiation along a deeply conserved genetic line of least resistance in 

Anolis lizards. Evolution Letters, 2(4), 310–322. 

Mitchell, D. J., & Houslay, T. M. (2021). Context-dependent trait covariances: how plasticity shapes 

behavioral syndromes. Behavioral Ecology: Official Journal of the International Society for 

Behavioral Ecology, 32(1), 25–29. 

Montoya, E. R., Terburg, D., Bos, P. A., Will, G.-J., Buskens, V., Raub, W., & van Honk, J. (2013). 

Testosterone administration modulates moral judgments depending on second-to-fourth 

digit ratio. Psychoneuroendocrinology, 38(8), 1362–1369. 

Nishio, M., & Arakawa, A. (2019). Performance of Hamiltonian Monte Carlo and No-U-Turn Sampler 

for estimating genetic parameters and breeding values. Genetics, Selection, Evolution: GSE, 

51(1), 73. 

Nussey, D. H., Wilson, A. J., & Brommer, J. E. (2007). The evolutionary ecology of individual 

phenotypic plasticity in wild populations. Journal of Evolutionary Biology, 20(3), 831–844. 

Oh, K. P., & Shaw, K. L. (2013). Multivariate sexual selection in a rapidly evolving speciation 

phenotype. Proceedings. Biological Sciences / The Royal Society, 280(1761), 20130482. 



22 

Oomen, R. A., & Hutchings, J. A. (2022). Genomic reaction norms inform predictions of plastic and 

adaptive responses to climate change. The Journal of Animal Ecology, 91(6), 1073–1087. 

Paenke, I., Sendhoff, B., & Kawecki, T. J. (2007). Influence of plasticity and learning on evolution 

under directional selection. The American Naturalist, 170(2), E47-58. 

Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2019). Hierarchical generalized additive 

models in ecology: an introduction with mgcv. PeerJ, 7, e6876. 

Pfennig, D. W. (2021). Phenotypic Plasticity & Evolution (1st Edition). CRC Press. 

Phillips, P. C., & Arnold, S. J. (1989). Visualizing Multivariate Selection. Evolution; International 

Journal of Organic Evolution, 43(6), 1209–1222. 

Pigliucci, M. (1996). Modelling phenotypic plasticity. II. Do genetic correlations matter? Heredity, 77 ( 

Pt 5), 453–460. 

R Core Team. (2023). R: A language and environment for statistical computing. 

Revell, L. J. (2007). The G matrix under fluctuating correlational mutation and selection. Evolution; 

International Journal of Organic Evolution, 61(8), 1857–1872. 

Riutort-Mayol, G., Bürkner, P.-C., Andersen, M. R., Solin, A., & Vehtari, A. (2022). Practical Hilbert 

space approximate Bayesian Gaussian processes for probabilistic programming. Statistics 

and Computing, 33(1), 17. 

Roff, D. A. (1996). The evolution of genetic correlations: An analysis of patterns. Evolution; 

International Journal of Organic Evolution, 50(4), 1392–1403. 

Roff, D. A., & Fairbairn, D. J. (2012). A test of the hypothesis that correlational selection generates 

genetic correlations. Evolution; International Journal of Organic Evolution, 66(9), 2953–2960. 

Rolian, C. (2020). Ecomorphological specialization leads to loss of evolvability in primate limbs. 

Evolution; International Journal of Organic Evolution, 74(4), 702–715. 

Royauté, R., Hedrick, A., & Dochtermann, N. A. (2020). Behavioural syndromes shape evolutionary 

trajectories via conserved genetic architecture. Proceedings. Biological Sciences / The Royal 

Society, 287(1927), 20200183. 



23 

Schaum, C.-E., Buckling, A., Smirnoff, N., & Yvon-Durocher, G. (2022). Evolution of thermal tolerance 

and phenotypic plasticity under rapid and slow temperature fluctuations. Proceedings. 

Biological Sciences / The Royal Society, 289(1980), 20220834. 

Schluter, D. (1996). Adaptive Radiation Along Genetic Lines of Least Resistance. Evolution; 

International Journal of Organic Evolution, 50(5), 1766–1774. 

Service, Philip M., & Rose, M. R. (1985). Genetic Covariation Among Life-History Components: The 

Effect of Novel Environments. Evolution; International Journal of Organic Evolution, 39(4), 

943–945. 

Sharpe, D. M. T., & Hendry, A. P. (2009). Life history change in commercially exploited fish stocks: an 

analysis of trends across studies. Evolutionary Applications, 2(3), 260–275. 

Stamps, J. A., Biro, P. A., Mitchell, D. J., & Saltz, J. B. (2018). Bayesian updating during development 

predicts genotypic differences in plasticity. Evolution; International Journal of Organic 

Evolution, 72(10), 2167–2180. 

Stan Development Team. (2023). Stan Modeling Language Users Guide and Reference Manual 2.33. 

Stearns, S. C. (1989). Trade-Offs in Life-History Evolution. Functional Ecology, 3(3), 259–268. 

Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2018). Validating Bayesian Inference 

Algorithms with Simulation-Based Calibration. In arXiv [stat.ME]. arXiv. 

http://arxiv.org/abs/1804.06788 

Thomas, M. L., & Elgar, M. A. (2003). Colony size affects division of labour in the ponerine ant 

Rhytidoponera metallica. Die Naturwissenschaften, 90(2), 88–92. 

Thomson, C. E., Winney, I. S., Salles, O. C., & Pujol, B. (2018). A guide to using a multiple-matrix 

animal model to disentangle genetic and nongenetic causes of phenotypic variance. PloS 

One, 13(10), e0197720. 

Ulrich, Y., Saragosti, J., Tokita, C. K., Tarnita, C. E., & Kronauer, D. J. C. (2018). Fitness benefits and 

emergent division of labour at the onset of group living. Nature, 560(7720), 635–638. 



24 

Uusi-Heikkilä, S. (2020). Implications of size-selective fisheries on sexual selection. Evolutionary 

Applications, 13(6), 1487–1500. 

van Noordwijk, A. J., & de Jong, G. (1986). Acquisition and Allocation of Resources: Their Influence 

on Variation in Life History Tactics. The American Naturalist, 128(1), 137–142. 

Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S. M., Schlichting, C. D., & Van Tienderen, P. H. 

(1995). Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & 

Evolution, 10(5), 212–217. 

Via, Sara, & Lande, R. (1985). Genotype-Environment Interactions and the Evolution of Phenotypic 

Plasticity. Evolution; International Journal of Organic Evolution, 39(3), 505–522. 

vom Saal, F. S. (1979). Prenatal exposure to androgen influences morphology and aggressive 

behavior of male and female mice. Hormones and Behavior, 12(1), 1–11. 

Walsh, B., & Blows, M. W. (2009). Abundant Genetic Variation + Strong Selection = Multivariate 

Genetic Constraints: A Geometric View of Adaptation. Annual Review of Ecology, Evolution, 

and Systematics, 40(1), 41–59. 

Westneat, D. F., Potts, L. J., Sasser, K. L., & Shaffer, J. D. (2019). Causes and Consequences of 

Phenotypic Plasticity in Complex Environments. Trends in Ecology & Evolution, 34(6), 555–

568. 

Wilson, A. J., Réale, D., Clements, M. N., Morrissey, M. M., Postma, E., Walling, C. A., Kruuk, L. E. B., 

& Nussey, D. H. (2010). An ecologist’s guide to the animal model. The Journal of Animal 

Ecology, 79(1), 13–26. 

Wittman, T. N., Robinson, C. D., McGlothlin, J. W., & Cox, R. M. (2021). Hormonal pleiotropy 

structures genetic covariance. Evolution Letters, 5(4), 397–407. 

Wood, C. W., & Brodie, E. D., 3rd. (2015). Environmental effects on the structure of the G-matrix. 

Evolution; International Journal of Organic Evolution, 69(11), 2927–2940. 

Yewers, M. S. C., Jessop, T. S., & Stuart-Fox, D. (2017). Endocrine differences among colour morphs 

in a lizard with alternative behavioural strategies. Hormones and Behavior, 93, 118–127. 


