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Abstract:

1. Parental care may be an important source of phenotypic variation for ecological and 

evolutionary processes. However, it can be difficult to collect and interpret data on 

parental care behaviors. To address these challenges, we developed a new hardware 

and software platform for automated behavioral tracking called ABISSMAL (Automated 

Behavioral Tracking by Integrating Sensors that Survey Movements Around a target 

Location).

2. ABISSMAL automatically collects data across low-cost sensors with built-in system 

monitoring and error logging. ABISSMAL also generates behavioral inferences with 

internal validation by integrating data across multiple movement sensors.

3. We successfully used ABISSMAL to track nest attendance activities performed by 

captive zebra finches (Taeniopygia guttata) that raised chicks through fledging. We 

highlight the behavioral inferences that ABISSMAL can derive from integrated datasets 

that represent discrete movement events, including types of behaviors, and the 

direction and magnitude of movements.

4. ABISSMAL streamlines the process of automated data collection, curation, and 

interpretation for researchers studying parental care across many experimental 

replicates and over long developmental timescales. ABISSMAL is a modular system 

that can be deployed with different combinations of sensors to suit different research 

questions and experimental setups. We made ABISSMAL open-access on GitHub with 

detailed documentation to facilitate widespread use and modification.
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Data/Code for peer review statement: Software and documentation for ABISSMAL are 

publicly available on GitHub: https://github.com/lastralab/ABISSMAL. We uploaded the code 

that we used to pre-process data, integrate data, and make figures to GitHub. We published 

data associated with this manuscript on figshare.

Keywords: Automated behavioral tracking, Avian parental care behavior, Infrared beam 

breakers, Integration across sensors, Motion-detection video recording, Movement detection, 

Radio-frequency identification technology, Raspberry Pi
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Introduction

Parental care can change offsprings’ adult phenotypes. For instance, the diets that adult bees

feed larvae can influence caste determination (Kamakura, 2011). In crocodilians, sex 

determination is impacted by incubation temperature (Lang & Andrews, 1994). Adults can also

transmit behaviors to offspring through social learning that are important to survive, including 

foraging preferences (Slagsvold & Wiebe, 2011), and sequences of fine-scale motor 

movements to access specific foods (Zohar & Terkel, 1991). Parental care behaviors may 

therefore cause phenotypic variation in offspring that is critical for ecological and evolutionary 

processes (Klug & Bonsall, 2014; Laland et al., 2015; Uller, 2012). 

However, in order to link variation in parental care behavior to ecologically and 

evolutionarily relevant variation in offspring phenotypes, we need to be able to quantify fine-

grained variation in parental care behaviors throughout the course of offspring development. 

Collecting data on these behaviors is difficult because parental care can be infrequent, 

cryptic, and performed by one or up to several individuals. The types of behaviors that adults 

exhibit, and how often adults perform these behaviors, can also change as offspring develop. 

To accurately capture variation in parental care behavior, we require non-invasive continuous 

monitoring tools that can capture rare behavioral events (Iserbyt et al., 2018; Kalafut & Kinley,

2020). 

There are few tools available for scientists interested in quantifying variation in parental

care behaviors. The most commonly used tools often require costly resource investment and 

are largely limited to data collection, with little support for cleaning, checking, and interpreting 

data. Continuous video recordings are used to capture parental care behaviors (Bendesky et 

al., 2017; Gilby et al., 2011; Iserbyt et al., 2018; Ogino et al., 2021; Smiley & Adkins-Regan, 

2016), but manually scoring videos over developmental trajectories and across many 
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experimental replicates can become prohibitively time-consuming. Deep learning tools for 

automated video scoring also require building large manually scored training datasets 

(Ferreira et al., 2020; Mathis & Mathis, 2020). 

Movement sensors are promising solutions for quantifying infrequent behaviors 

(Kalafut & Kinley, 2020; Smith & Pinter-Wollman, 2021), including parental care behavior. 

These sensors provide continuous monitoring that is important to collect data on rare events 

and can be programmed for automated data collection, which reduces the need for time-

intensive manual scoring. Movement sensors are also financially accessible and can be 

deployed in a high-throughput manner across many experimental replicates. While movement

sensors hold great potential, it can be difficult for biologists to apply these sensors to collect 

empirical data from live animals. First, these sensors do not often come with “out-of-the-box” 

software that can be easily deployed or modified to suit different practical applications. 

Second, using movement data collected by any one sensor to make inferences about 

behavioral variation poses great challenges.

For example, radio frequency identification (RFID) systems are increasingly used to 

streamline data collection of animals’ movements associated with parental care behaviors 

(Iserbyt et al., 2018; Maldonado-Chaparro et al., 2021; Prinz et al., 2016; Santema & 

Kempenaers, 2023). However, RFID systems alone do not contain built-in validation and can 

fail to detect passive integrated transponder (PIT) tags (Hughes et al., 2021; Iserbyt et al., 

2018). RFID systems are also limited to collecting the timestamps when PIT tags were 

detected by an RFID antenna, and it can be very challenging to interpret patterns of 

behavioral variation from the timing of location-specific movement events.

In order to address these challenges associated with collecting and interpreting data 

on parental care behavior, we developed ABISSMAL, a unified hardware and software 
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platform for automated behavioral tracking. We named our tool “abysmal” as in “endless” to 

highlight the many possibilities made available by this modular, open-access tracking system. 

ABISSMAL automates data collection across multiple types of sensors with internal system 

monitoring and error logging, and also derives behavioral inferences with built-in validation by 

integrating data across sensors. 

Below we describe the three main components of ABISSMAL: 1) a suite of sensors 

mounted around a nest container to track avian parental care behaviors, 2) software for 

automated data collection, system monitoring, and error logging, and 3) a set of 

computational analyses to derive behavioral inferences by integrating data across multiple 

movement sensors. We tested ABISSMAL with captive zebra finches to highlight how this 

tracking system helped us streamline the process of automated behavioral data collection, 

curation, and interpretation of movements associated with parental care behaviors. 

ABISSMAL is an accessible tool with estimated hardware costs around several hundred 

dollars (USD, Supplementary Table 1), and this tracking system is open-access through a 

public GitHub repository (https://github.com/lastralab/ABISSMAL).

Materials and Methods: The core components of ABISSMAL

Ethics statement: Data collection and animal care for captive zebra finches was conducted 

under an IACUC protocol approved by Rockefeller University (protocol no. 21063-H).

1. Custom hardware to track avian parental care

ABISSMAL can collect data across four different types of sensors: 1) infrared beam breakers, 

2) a radio frequency identification (RFID) system, 3) an infrared camera triggered by motion 

detection, and 4) a temperature probe. These sensors are mounted on a custom-built PVC 
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nest container in order to track activities associated with avian parental care behavior (Figure 

1). The first three sensor types track movement around the entrance and inside of the nest 

container (Figure 1A-B). ABISSMAL later integrates data across these movement sensors in 

order to provide behavioral inferences. The infrared beam breakers sit on 3D-printed mounts 

to capture activity in front of the RFID antenna (the “outer” pair, which detects movement 

outside of the container) and behind the RFID antenna (the “inner” pair, which detects 

movement inside the container). The RFID antenna sits inside of the circular entrance of the 

nest container (Figure 1A). An infared camera and LEDs are mounted on a 3D-printed cap 

(Figure 1B). The camera captures activities that occur inside of the nest container. The fourth 

sensor, the temperature probe, can be mounted inside of the nest container to record ambient

temperature, which can be a critical feature of the physical environment during development 

(Figure 1C).

These four types of sensors provide different types of information. The three types of 

movement sensors provide continuous monitoring of movements. Each sensor independently 

records the timing and location of movement. The outer and inner pairs of infrared beam 

breakers with 3mm LEDs and ranges of 25 cm (Adafruit Industries LLC, New York, NY, USA) 

detect the time at which their respective beams of infrared light are broken. The RFID 

antenna is connected to a CognIoT 125 kHz RFID reader (Bostin Technology Services Ltd, 

Lichfield, Staffordshire, UK) that detects when unique passive integrated transponder (PIT) 

tags attached to each individual are in close proximity (a few millimeters). The Waveshare H 

wide-angle infrared camera (Waveshare, Futian District, Shenzhen, China) is programmed to 

record short videos by motion detection in all three color channels, and we use the onset of 

video recording events as the timing of movement. Recording videos by motion detection also

reduces the number of videos that need to be stored and scored to obtain finer-scale 
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behavioral information (Prinz et al., 2016). The waterproof temperature probe (Low Voltage 

Labs LLC, Vancouver, WA, USA) can be programmed to return temperature readings with 

coarse or fine-grained temporal resolution. All sensors, including the temperature probe, are 

connected to a Raspberry Pi computer (Raspberry Pi Ltd, Milton, Cambridge, UK 

(Supplementary Figure 1). Raspberry Pi computers are increasingly used for behavioral 

tracking (Alarcón-Nieto et al., 2018; Jolles, 2021; Maldonado-Chaparro et al., 2021; Prinz et 

al., 2016; Youngblood, 2020) and facilitate long-term data collection as well as directly 

comparing timestamps across multiple sensors. Supplementary sections 1-3 provide more 

information about ABISSMAL hardware. Supplementary sections 4-5 contain more 

information on parameters used for data collection and data formats.
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Figure 1: The first component of ABISSMAL is a a suite of four sensor types mounted on a 
custom-built nest container. Panels A and B show three types of sensors that capture 
movement at the entrance and inside of the nest container. Panel C shows a temperature 
probe mounted inside of the container. 
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2. Software for automated data collection, system monitoring, and error logging

The second component of ABISSMAL is software that provides automated data collection, 

system monitoring, and error logging through Python version 3 (Van Rossum & Drake, 2009) 

and the bash shell (GNU, 2007) (Figure 2). ABISSMAL’s software facilitates data collection 

across the four different sensor types, while the automated monitoring and logging can help 

streamline long-term data collection and troubleshooting across parallel experimental 

replicates. Movement events and temperature data recorded across the different sensors are 

saved inside spreadsheets each day, and are also stored in log files to provide back-up data 

and troubleshoot errors. Our system monitoring module automates the daily transfer of 

spreadsheets (.csv format), videos (.mp4 format), and log files from the Raspberry Pi to an 

external hard drive using cron (a utility for task scheduling). The data collection and system 

monitoring modules are set up to automatically run in the background on different screens 

once the tracking system initiates. We also include optional software for sending automated 

text message alerts through Twilio when errors are encountered (users will need their own 

Twilio account). Our software can be automatically set up using a script that installs software 

dependencies and configures the Raspberry Pi for compatibility with ABISSMAL.
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Figure 2: Here we highlight ABISSMAL’s software for automated data collection across 
different sensors (an RFID system, infrared beam breakers, a camera, and a temperature 
probe), as well as automated system monitoring and error logging. The types of errors logged
by the system are described in documentation on GitHub.
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3. Computational analyses to integrate data and make behavioral inferences

The use of multiple movement sensors in ABISSMAL increases the likelihood of detecting 

movements associated with parental care behaviors and also provides redundant datasets 

when a sensor fails (Figure 3). However, it can be challenging to link movements to 

behavioral activities when using data from a single sensor alone. The third component of 

ABISSMAL is a set of computational analyses to detect discrete movements and to make 

behavioral inferences about different movement events. We detect movement events and link 

these events with behavioral activities by using custom functions that pre-process and 

integrate data collected across movement sensors (Figure 4). This integration across multiple 

sensors provides higher confidence when linking movement events to behaviors, as well as 

information about the direction of movement and the type of behavior that occurred (Figure 4).

The data pre-processing and integration functions are written using R and the tidyverse (R 

Core Team, 2023; Wickham et al., 2019). Each function is unit-tested through a battery of 

automated tests with simulated data and the package testthat to ensure that the functions 

produce their expected outcomes (Wickham, 2011). Supplementary section 6 contains more 

information about each function.
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Figure 3: This plot shows raw data collected over 4 days (Days 4 through 7 out of 50 total) 
across three types of movement sensors for one pair of captive zebra finches (see Results). 
Nocturnal periods are shaded in grey. 
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Figure 4: We provide a description of four ABISSMAL functions for data processing and 
integration across movement sensors, as well as a graphical representation of the input and 
output data per function. An additional function for combining raw data across dates per 
sensor type (including the temperature probe) is not shown.
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Results: Testing ABISSMAL with captive zebra finches

1. Setting up the tracking system for data collection

We used ABISSMAL to collect data from captive zebra finch pairs at the Rockefeller 

University Field Research Center. Zebra finches are small Australian songbirds that readily 

breed inside artificial containers in captivity. When bred in opposite-sex pairs, both parents 

will contribute to parental care activities (Smiley & Adkins-Regan, 2016). In naturalistic aviary 

settings, adults will allofeed unrelated fledglings (Ogino et al., 2021). We chose opposite-sex 

pairs that had already raised chicks together, and fitted each adult with an EM4102 passive 

integrated transponder (PIT) tag leg band (2.3mm inner diameter, Eccel Technology, Groby, 

Leicester, UK) to facilitate tracking individual identity through the RFID system. We placed 

each pair of birds in cages that were fitted with a custom-built nest container and placed 

inside of sound attenuation chambers (Figure 1; supplementary section 2). We used 

ABISSMAL to monitor the birds’ movements around each nest container, as well as ambient 

temperature inside of the containers. All birds were kept on a 12:12 hour light:dark cycle with 

ad libitum access to food and water in temperature-controlled rooms. We collected data from 

5 different pairs over 7 rounds of breeding in all. Some of these rounds of data collection were

shorter (e.g. captured egg-laying only) and represented testing rounds with earlier versions of 

our hardware and software. Two pairs that were each bred twice raised 1 – 4 chicks through 

fledging in each breeding round, which allowed us to ensure that our custom hardware in this 

version of ABISSMAL did not compromise chick survival. Throughout our figures, we use data

from one pair that laid 5 eggs and raised 4 chicks in their second round of breeding. 

ABISSMAL captured movements associated with the nest container throughout the diurnal 

and nocturnal periods over 50 days of data collection (Figures 3, 5, 6). These birds laid 5 

eggs over days 7 – 11 (Figures 5 and 6). Four of these eggs hatched over days 22 – 25, and 
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all four chicks fledged from days 40 – 41  (Figures 5 and 6). The adults started laying another 

clutch of eggs shortly after their chicks fledged. 
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2. Deriving behavioral inferences

We used ABISSMAL’s computational analyses to detect discrete movement events from the 

raw data collected across sensors, and to generate behavioral inferences by integrating data 

across sensors. We detected perching events in the raw data and pre-processed the raw data

collected by each movement sensor (Figure 4, Figure 5A). We integrated the pre-processed 

datasets across sensors by finding clusters of detections that occurred close together in time 

(Figure 4). This integration was performed for 4 different combinations of sensors, in order to 

highlight the built-in redundancy provided by using multiple sensors to track movements. The 

general pattern of how the number of daily activities changed over time was consistent across

sensor combinations, with the exception of the RFID and beam breaker dataset that did not 

have video data (Figure 5B). We then focused on detection clusters from the integrated 

dataset across all sensors to make behavioral inferences. For each of these clusters we used 

the order in which sensors triggered to score the direction of movements that occurred at the 

container entrance (entrances and exits, Figure 4, Figure 5C). We integrated perching events 

detected from the raw RFID data (another type of behavior at the container entrance), and 

scored movements that were captured by video recordings only as movements that occurred 

inside of the container (Figure 5C). We used information about perching events and 

movement inside of the container to determine when these behaviors occurred together 

(Supplementary Figure 2). For detected clusters with video data, we also used the number of 

pixels that changed across color channels to calculate the magnitude of movement. We 

assessed how movements of different sizes changed over time (Supplementary Figure 3), 

and how these movement categories mapped back onto behavioral inferences 

(Supplementary Figure 4). Supplementary section 7 contains more information about 

behavioral inferences.
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Figure 5: We show data collected by ABISSMAL for 1 pair of birds over different stages of 
data processing. Panel A contains the pre-processed data from movement sensors prior to 
data integration. Panel B shows 4 datasets of inferred activities that were obtained by 
integrating pre-processed data across different sensor combinations. In panel C we show the 
fully integrated dataset (across all sensors) split by four different behavioral inferences. Early-
life events are shaded in grey across panels.
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3. Assigning movements to individuals

We used the fully integrated dataset to assess how ABISSMAL captured movements 

performed by each individual. When RFID data was present (e.g. movements that occurred at

the container entrance), we used the PIT tag(s) detected to assign the movement event to 

one or both individuals (Figure 6), including which individual initiated or ended the movement 

event. We found that more movement events through the nest container entrance were 

assigned to the male than the female for this pair of birds, and this pattern was consistent 

over time (Figure 6). This difference in the number of inferred activities assigned to each adult

does not mean that the female was performing fewer parental care activities, but rather that 

this individual moved less often through the nest container entrance. Using multiple sensor 

types through ABISSMAL also allowed us to capture movement events in the fully integrated 

dataset that were not assigned to either adult (Figure 6). The greatest number of unassigned 

movements occurred for inferred movements inside of the container that were captured by 

video recording events, which cannot resolve individual identity in the current version of 

ABISSMAL.
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Figure 6: Here we show how two types of inferred movements from the fully integrated 
dataset were assigned back to individuals (the same dataset as Figure 5C). We show early-
life events in grey shading.
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Discussion

How parents care for their offspring may be critically important for ecological and evolutionary 

processes (Klug & Bonsall, 2014; Laland et al., 2015; Uller, 2012), but parental care 

behaviors can be difficult to capture. We developed a new platform of unified hardware and 

software called ABISSMAL, which provides automated behavioral tracking with built-in system

monitoring and error logging. ABISSMAL also provides the capacity to make behavioral 

inferences in order to streamline data collection, curation, and interpretation for researchers 

studying parental care. We successfully used ABISSMAL to highlight the process of data 

collection, integration, and making behavioral inferences for one pair of captive zebra finches 

that laid eggs and raised chicks over 50 days.

ABISSMAL provides a comprehensive overview of movements associated with 

parental care behavior by collecting and integrating data across multiple sensors. Collecting 

data across multiple sensors provides redundancy when any one sensor fails, and therefore 

higher confidence that the majority of movements around the entrance and inside of the nest 

container are recorded. Integrating data across multiple sensors also provides internal 

validation while drawing behavioral inferences from series of detections across sensors that 

represent movement events. The datasets of inferred behavioral activities returned by 

ABISSMAL can be used to assess general patterns of activities by adult birds around a nest 

container before and throughout offspring development.

ABISSMAL can be used to assign movement events to unique individuals in a breeding

pair, which facilitates behavioral tracking in species that exhibit biparental care. However, 

questions about parental care behavior that rely on tracking individual identity and fine-scale 

behaviors with high confidence may require additional computational processing in later 

versions of ABISSMAL. The current version of ABISSMAL uses an RFID system to assign 
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activities to individuals, but this individual identity assignment is subject to the RFID antenna 

failing to detect PIT tags, and is also currently limited to movements that occurred at the 

container entrance. Since we tracked birds’ movements with multiple sensors, we were able 

to capture how often birds moved through the entrance of the nest container without triggering

the RFID antenna (Figure 6), which could reflect the RFID antenna failing to detect PIT tags 

due to individual variation in movements (Hughes et al., 2021). ABISSMAL also captured 

movements that occurred inside of the nest container, which were captured by video 

recording events only and could not be assigned to individuals (Figure 6). These short videos 

recorded by ABISSMAL could be used in image processing pipelines to assign behaviors that 

occurred inside of the container back to individuals. In future work, validating datasets of 

inferred behavioral activities and individual identity assignments generated by ABISSMAL 

against behavioral datasets scored from videos by human observers will be important to 

account for biases that can arise from automated data collection and processing (Smith & 

Pinter-Wollman, 2021), as well as to assess our confidence while using ABISSMAL for finer-

grained behavioral inferences, such as calculating the duration of nest visits or incubation 

events.

Quantifying variation in avian parental care behavior has traditionally relied on video 

scoring that can become prohibitively time-consuming when collecting data across many 

individuals and over long developmental timelines. ABISSMAL streamlines the process of 

automated data collection, curation, and interpretation for parental care behaviors. ABISSMAL

makes it possible to deploy movement sensors for automated data collection in a high-

throughput way, and also provides the capability to integrate movement data collected across 

these sensors in order to generate behavioral inferences. The built-in system monitoring and 

error logging, as well as the capacity for deriving behavioral inferences from large datasets, 
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are features of ABISSMAL that will be particularly useful for capturing parental care and other 

social behaviors across many experimental replicates and over long developmental 

timescales. ABISSMAL is a unified platform but is also modular, and can be used with any 

combination of the two pairs of infrared beam breakers, RFID system, infrared camera, and 

temperature probe sensors. Our software for automated data collection, system monitoring, 

and error logging will require the least amount of modification for different questions, study 

species, and research settings. All core components of ABISSMAL will require modification 

when adapting the tracking system to use more sensors across any of the four types listed 

above, or when adding a new type of sensor for data collection. ABISSMAL is an open-access

tool that we made freely available through the GitHub repository lastralab/Abissmal with 

extensive documentation to support widespread use and modification 

(https://github.com/lastralab/A  BISSMAL  ).

344

345

346

347

348

349

350

351

352

353

354

355

356

https://github.com/lastralab/ABISSMAL
https://github.com/lastralab/ABISSMAL


24

Acknowledgments and funding: We thank M. Youngblood, A. Maldonado Chaparro, G. 

Alarcon Nieto, and K. Kalafut for advice on using Raspberry Pi and RFID systems for 

behavioral tracking. We are grateful to M. Youngblood for lending us equipment for initial 

testing. We thank B. Maloney, S. Marcus, A. van der Marel, A. Keyte, and Hobson lab 

members for feedback that improved earlier versions of this manuscript. We thank C. Vargas 

for additional Raspberry Pi equipment, O. Tchernichovski for access to sound attenuation 

chambers, G. Permuy, L. Tchernichovski, and M. Maresca for their support with animal care at

the field center, and J. Catalfamo and G. Holmes for their support with infrastructure at the 

field center. The project was supported by an NSF Postdoctoral Research Fellowship in 

Biology to G.S.V. (grant no. 2010982) and Howard Hughes Medical Institute funds to E.D.J.

Author contributions: Conceptualization, G.S.V., T.M., E.A.H., and E.D.J.; Methodology, 

G.S.V., T.M., and E.A.H.; Software, G.S.V. and T.M.; Validation, G.S.V. and T.M.; Investigation,

G.S.V. and T.M.; Data Curation, G.S.V. and T.M.; Formal Analysis, G.S.V. and T.M.; 

Visualization, G.S.V. and T.M.; Project Administration, G.S.V. and T.M.; Writing – Original 

Draft, G.S.V.; Writing – Review & Editing, G.S.V., T.M., E.A.H., and E.D.J.; Funding 

Acquisition, G.S.V. and E.D.J.; Resources, E.D.J.; Supervision, E.A.H. and E.D.J. All authors 

contributed critically to the drafts and gave final approval for publication.

Data availability statement: We have made data publicly available on figshare 

(https://figshare.com/articles/dataset/Smith-Vidaurre_et_al_2023_ABISSMALMethodsPaper/

24555883) to facilitate reproducing our results. We published the raw data used in this 

manuscript that was collected for 1 pair of captive zebra finches over 50 days of data 

collection. We also published the pre-processed and integrated versions of this data.

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380



25

References

Alarcón-Nieto, G., Graving, J. M., Klarevas-Irby, J. A., Maldonado-Chaparro, A. A., Mueller, I., 
& Farine, D. R. (2018). An automated barcode tracking system for behavioural studies in 
birds. Methods in Ecology and Evolution, 9(6), 1536–1547. https://doi.org/10.1111/2041-
210X.13005

Bendesky, A., Kwon, Y. M., Lassance, J. M., Lewarch, C. L., Yao, S., Peterson, B. K., He, M. 
X., Dulac, C., & Hoekstra, H. E. (2017). The genetic basis of parental care evolution in 
monogamous mice. Nature, 544(7651), 434–439. https://doi.org/10.1038/nature22074

Ferreira, A. C., Silva, L. R., Renna, F., Brandl, H. B., Renoult, J. P., Farine, D. R., Covas, R., &
Doutrelant, C. (2020). Deep learning-based methods for individual recognition in small 
birds. Methods in Ecology and Evolution, 11(9), 1072–1085. https://doi.org/10.1111/2041-
210X.13436

Gilby, A. J., Mainwaring, M. C., Rollins, L. A., & Griffith, S. C. (2011). Parental care in wild and 
captive zebra finches: Measuring food delivery to quantify parental effort. Animal 
Behaviour, 81(1), 289–295. https://doi.org/10.1016/j.anbehav.2010.10.020

GNU, P. (2007). Free Software Foundation. Bash (3.2.48)[Unix shell program].

Hughes, E. J., Mady, R. P., & Bonter, D. N. (2021). Evaluating the accuracy and biological 
meaning of visits to RFID-enabled bird feeders using video. Ecology and Evolution, 11, 
17132–17141. https://doi.org/10.1002/ece3.8352

Iserbyt, A., Griffioen, M., Borremans, B., Eens, M., & Müller, W. (2018). How to quantify 
animal activity from radio-frequency identification (RFID) recordings. Ecology and 
Evolution, 8(20), 10166–10174. https://doi.org/10.1002/ece3.4491

Jolles, J. W. (2021). Broad-scale applications of the Raspberry Pi: A review and guide for 
biologists. Methods in Ecology and Evolution, 12(9), 1562–1579. 
https://doi.org/10.1111/2041-210X.13652

Kalafut, K. L., & Kinley, R. (2020). Using radio frequency identification for behavioral 
monitoring in little blue penguins. Journal of Applied Animal Welfare Science, 23(1), 62–
73. https://doi.org/10.1080/10888705.2019.1571922

Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees. Nature, 
473(7348), 478–483. https://doi.org/10.1038/nature10093

Klug, H., & Bonsall, M. B. (2014). What are the benefits of parental care? The importance of 
parental effects on developmental rate. Ecology and Evolution, 4(12), 2330–2351. https://
doi.org/10.1002/ece3.1083

381
382
383
384
385
386

387
388
389

390
391
392
393

394
395
396

397

398
399
400

401
402
403

404
405
406

407
408
409

410
411

412
413
414



26

Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Muller, G. B., Moczek, A., Jablonka, E., 
& Odling-Smee, J. (2015). The extended evolutionary synthesis: Its structure, 
assumptions and predictions. Proceedings of the Royal Society B: Biological Sciences, 
282(1813), 20151019. https://doi.org/10.1098/rspb.2015.1019

Lang, J. W., & Andrews, H. V. (1994). Temperature-dependent sex determination in 
crocodilians. Journal of Experimental Zoology, 270(1), 28–44. 
https://doi.org/10.1002/jez.1402700105

Maldonado-Chaparro, A. A., Forstmeier, W., & Farine, D. R. (2021). Relationship quality 
underpins pair bond formation and subsequent reproductive performance. Animal 
Behaviour, 182, 43–58. https://doi.org/10.1016/j.anbehav.2021.09.009

Mathis, M. W., & Mathis, A. (2020). Deep learning tools for the measurement of animal 
behavior in neuroscience. Current Opinion in Neurobiology, 60, 1–11. 
https://doi.org/10.1016/j.conb.2019.10.008

Ogino, M., Maldonado-Chaparro, A. A., & Farine, D. R. (2021). Drivers of alloparental 
provisioning of fledglings in a colonially breeding bird. Behavioral Ecology, 32(2), 316–
326. https://doi.org/10.1093/beheco/araa137

Prinz, A. C. B., Taank, V. K., Voegeli, V., & Walters, E. L. (2016). A novel nest-monitoring 
camera system using a Raspberry Pi micro-computer. Journal of Field Ornithology, 87(4),
427–435. https://doi.org/10.1111/jofo.12182

R Core Team. (2023). R: A Language and Environment for Statistical Computing. 
https://www.r-project.org/

Santema, P., & Kempenaers, B. (2023). Patterns of extra-territorial nest-box visits in a 
songbird suggest a role in extrapair mating. Behavioral Ecology, 34(1), 150–159. 
https://doi.org/10.1093/beheco/arac111

Slagsvold, T., & Wiebe, K. L. (2011). Social learning in birds and its role in shaping a foraging 
niche. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567),
969–977. https://doi.org/10.1098/rstb.2010.0343

Smiley, K. O., & Adkins-Regan, E. (2016). Prolactin is related to individual differences in 
parental behavior and reproductive success in a biparental passerine, the zebra finch 
(Taeniopygia guttata). General and Comparative Endocrinology, 234, 88–94. 
https://doi.org/10.1016/j.ygcen.2016.03.006

Smith, J. E., & Pinter-Wollman, N. (2021). Observing the unwatchable: Integrating automated 
sensing, naturalistic observations and animal social network analysis in the age of big 
data. Journal of Animal Ecology, 90(1), 62–75. https://doi.org/10.1111/1365-2656.13362

415
416
417
418

419
420
421

422
423
424

425
426
427

428
429
430

431
432
433

434
435

436
437
438

439
440
441

442
443
444
445

446
447
448



27

Uller, T. (2012). Parental effects in development and evolution. In N. J. Royle, P. T. Smiseth, &
M. Kölliker (Eds.), The evolution of parental care (pp. 247–266). Oxford University Press.

Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.

Wickham, H. (2011). testthat: Get started with testing. The R Journal, 3(1), 5.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, 
G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., 
Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). 
Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/
10.21105/joss.01686

Youngblood, M. (2020). A Raspberry Pi-based, RFID-equipped birdfeeder for the remote 
monitoring of wild bird populations. Ringing and Migration, 34(1), 25–32. 
https://doi.org/10.1080/03078698.2019.1759908

Zohar, O., & Terkel, J. (1991). Acquistion of pine cone stripping behaviour in black rats 
(Rattus rattus). International Journal of Comparative Psychology, 5(1), 1–6. 
https://doi.org/10.46867/c4kw2h
 

449
450

451

452

453
454
455
456
457

458
459
460

461
462
463
464


