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Abstract9

The density and frequencies of interacting phenotypes create a type of environment which affects10

both phenotypic selection and population growth. Fluctuations in population density create tempo-11

ral variation in population mean fitness, driving population dynamics, while fluctuations in pheno-12

typic frequencies create variation in the relative fitness of phenotypes through frequency-dependent13

selection. Different modelling frameworks have been used to study these (social) environment ef-14

fects and the eco-evolutionary dynamics produced by their interaction. However, the diversity15

and mathematical complexity of these models can represent an obstacle for empiricists aiming to16

study the social factors shaping the eco-evolutionary dynamics of natural populations. Here, we17

reformulate components of these models using generalized linear regression equations to provide18

a statistical decomposition of how different frequency- and density-dependent processes influence19

phenotypic selection, population growth, and the expected equilibrium density and mean phenotype20

of a population. We complement these results with individual-based simulations to illustrate how21

quantifying the different ways the social environment affects an individual’s fitness can improve22

our understanding of the feedback that links the evolutionary dynamics of phenotypes with the23

carrying capacity of natural populations.24
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Introduction27

The interaction between ecological and evolutionary processes plays a fundamental role in shaping28

phenotypic diversity and the functioning of ecosystems (reviewed by Govaert et al., 2019; Hendry29

et al., 2018; Pelletier et al., 2009). At the heart of such eco-evolutionary dynamics lies the feedback30

between population dynamics and phenotypic evolution. The social environment is a key mediator31

of this feedback because it evolves in response to selective pressures changing the demographic and32

phenotypic characteristics of populations. This will result in eco-evolutionary feedback because33

evolution alters the ecological context for selection, further affecting phenotypic evolution. Differ-34

ent modelling traditions have been used to study the consequences of these environmental feedbacks35

on the demographic characteristics of populations and the evolutionary dynamics of phenotypes36

(Abrams et al., 1993; Boyce, 1984; Charlesworth, 1994; Engen et al., 2020; Heino et al., 1998; Lion,37

2018; MacArthur, 1962; Mylius & Diekmann, 1995). These studies highlight that understanding the38

eco-evolutionary dynamics of populations requires quantifying the interactive effects of population39

density and phenotypic frequencies on population mean fitness and the relative fitness of pheno-40

types. These effects are rarely studied together in wild populations, leading to a potential mismatch41

between our theoretical understanding and the processes operating in nature. To address this gap,42

we use generalized linear regression models and individual-based simulations to illustrate the dif-43

ferent ways the social environment can affect eco-evolutionary dynamics and encourage empiricists44

to quantify these social environment effects in natural populations.45

We refer to the social environment as the density and frequency of conspecific phenotypes affect-46

ing an individual’s survival and reproduction. Competitive and cooperative interactions shape the47

strength of density regulation and phenotypic selection (Frank, 1998; Haldane, 1956; Lack, 1954;48

West-Eberhard, 1979), making the social environment a key mediator of the eco-evolutionary dy-49

namics of populations. Phenotypes mediating social interactions can influence population dynamics50

and/or phenotypic evolution whenever an individual’s fitness is affected by its social environment51

(Travis et al., 2013; Wolf et al., 1999). We can think of traditional studies of density regulation and52

frequency-dependent selection as focusing on two ways the social environment affects the ecological53
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and evolutionary dynamics of populations. On the one hand, classic population ecology focuses54

upon the effects of population density on population growth, generally assuming that density-55

dependent effects on mean fitness are independent of individual phenotypes (Bellows, 1981; Gilpin56

& Ayala, 1973). On the other hand, studies of frequency-dependent selection in behavioural ecology57

(Krebs & Davies, 1993) focus on how the frequency of a phenotype affects its relative fitness, gener-58

ally assuming that these effects are density-independent. The effects of most social interactions in59

natural populations lie somewhere in the middle, whenever the effect of population density on an60

individual’s fitness depends on the individual’s own phenotype and/or an individual’s phenotype61

affects the fitness of others.62

A historical, perhaps arbitrary, distinction can be made between evolutionary approaches ini-63

tially designed to study the role of density-dependent selection on the evolution of life-history64

strategies versus those focusing on how the phenotypic and genetic characteristics of the social65

environment influence evolution. In the former, density-dependent theories of life-history evolu-66

tion provided one of the first attempts to unite the fields of population ecology and population67

genetics, implying that the fitness of a genotype is not constant but depends upon population size68

(Anderson, 1971; Charlesworth, 1971; MacArthur, 1962). Considerable theoretical and empirical69

work has shown that density-dependent selection is a key determinant of the relationship between70

phenotypic variation and the carrying capacity of populations (Boyce, 1984; Charlesworth, 1994;71

Engen et al., 2013, 2020; Joshi et al., 2001; MacArthur & Wilson, 1967; Mueller et al., 1991; Travis72

et al., 2013; Wright et al., 2019). In the latter, the theory of social evolution has a long tradition of73

exploring how the genetic and phenotypic characteristics of the social environment can affect short-74

term evolutionary change (Frank, 1998; Hamilton, 1964; Queller, 1985, 2017; Wolf et al., 1999) and75

long-term evolutionary equilibria (Maynard Smith, 1982; McGill & Brown, 2007). In particular,76

game theory has focused on the evolution of the social environment and how it feeds back into77

patterns of phenotypic selection when the fitness of a strategy is frequency dependent (Araya-Ajoy78

et al., 2020; Lion, 2018; McGill & Brown, 2007; Queller, 1984; Westneat, 2012).79

Frequency-dependent selection has been used to refer to many different processes (see Discus-80

sion) and has been identified as a critical factor that will influence evolutionary dynamics (Fisher,81
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1958; Lande, 1976, 2007; Svensson & Connallon, 2018; Wright, 1948). The evolutionary importance82

of frequency-dependent selection in density-regulated populations was first acknowledged in the83

early mathematical formulations of evolutionary population genetics (Fisher, 1958; Wright, 1948),84

and quantitative genetic models have further elaborated on its effects on phenotypic evolution and85

population dynamics (Lande, 1976, 2007; Svensson & Connallon, 2018). For instance, recent quan-86

titative genetics models in stochastic environments have shown that if the mean phenotype in the87

population modulates the strength of density regulation, then frequency- and density-dependent88

selection are intrinsically linked and jointly determine the expected equilibrium size and mean phe-89

notype of a population (Engen et al., 2020). Furthermore, the interaction between frequency- and90

density-dependent processes has been widely acknowledged in the theoretical population genetics91

(Heino et al., 1998; Smouse, 1976) and is a key component of the adaptive dynamics framework92

(Brown, 2016; Lion, 2018). Despite their demonstrated importance in eco-evolutionary dynamics,93

empirical investigations rarely study frequency- and density-dependent processes together in a way94

that properly quantifies their dual effects on phenotypic evolution and population dynamics.95

This paper uses statistical models commonly used by empiricists to decompose the effects of96

different frequency- and density-dependent processes on the eco-evolutionary dynamics of popula-97

tions. We use generalized linear regression models to describe a set of scenarios where 1) population98

density, 2) the mean phenotype in the social environment and 3) their interaction affect the mean99

fitness of the population and the relative fitness of phenotypes. To demonstrate the importance100

of estimating these different social environment effects, we derive the relationship between the pa-101

rameters of these models and the strength of selection on a phenotype, as well as the theoretical102

expectations for the population’s equilibrium density and mean phenotype. We complement these103

results with individual-based simulations to reveal the underlying assumptions of these models,104

explore the robustness of their statistical implementation, and highlight how they can further our105

understanding concerning the role of the social environment in mediating the feedbacks linking106

phenotypic evolution with the carrying capacity of populations.107
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Methods108

A basic model of selection in a density-regulated population109

We can model selection in a density-regulated population by studying how population size and

the phenotypes of individuals affect fitness (Fig. 1). We assume that a Gaussian fitness function

approximates the effects of an individual’s phenotype on its fitness (Fig. 1B). This model can be

empirically parameterized as a Poisson (or negative binomial) regression:

v = β0 + βzz + βqz2 + βnn , (1a)

W ∼ Poisson(ev) , (1b)

where W is the absolute fitness of individuals, and v represents the expected log fitness of an110

individual at a given time. In a multiple regression context, β0 is a constant estimated as the111

intercept in the model and thus represents the mean fitness of the population when the population112

size is very small. Coefficients βz and βq describe the linear and quadratic components of the113

relationship between the phenotypic value (z) and log fitness (v) (Lande & Arnold, 1983). The114

effect of proportional increases in population size on the expected log fitness of individuals is115

described by the density regulation coefficient βn, where n represents the (log) population size116

at different time points. This assumes a theta-logistic model with a θ less than one (Gilpin &117

Ayala, 1973). It is also possible to model a linear effect of absolute (i.e. not log) population size118

on log fitness, which is equal to the classic logistic model of density regulation (Bellows, 1981).119

Accounting for other forms of density regulation may require including additional non-linear terms.120

Formal modelling of density regulation using individual fitness data also requires the inclusion of121

random effects for year and individual. These have been left out here to allow for a more concise122

presentation of the equations. Table 1 describes all the symbols used in the paper.123

To connect phenotypic evolution and population dynamics, we need a measure of fitness that124

varies at the level of each time step. Here, we focus on a fitness measure that reflects an individual’s125
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demographic contribution to the population. This measure directly connects the average fitness of126

a population at each time step to changes in population size in the next time step. If we focus only127

on females, this will be the number of new females produced by a mother in a given time-step, plus128

its own survival into the next time-step (Sæther & Engen, 2015). In a closed population, summing129

the demographic contribution across all females to the next time-step will be equal to the expected130

female population size in the next time-step (year or breeding episode):131

Nt+1 = ∑(st + rt) = ∑ Wt = W̄Nt , (1c)

where s are the values describing whether a given female survived or not to time-step t + 1, and r132

represents the number of new females produced by each female in time step t that recruit to time133

step t + 1. Hence, the mean fitness of the population (W̄) in a given time-step multiplied by the134

female population size in that time-step (Nt) equals the expected female population size at time135

t + 1. When the mean of this fitness measure is more than one, populations are expected to grow;136

if it is less than one, they are expected to decline.137

One advantage of using a measure of individual demographic contributions as a fitness measure is138

that we can describe the characteristics of the density regulation function based upon the parameters139

in equation 1a. See the Discussion for details regarding the limitations of using this measure of140

fitness. The density regulation function describes the growth rate of a population as a function of141

the density-independent reproductive rate (r0) and the strength of density regulation (γ). We can142

formulate the log growth rate of the population based on the mean log fitness of the population and143

the density regulation function. In the absence of immigration and in a deterministic environment,144

the growth rate of a population can be described as:145

ln(W̄) = ln(
Nt+1

Nt
) = nt+1 − nt = v̄ = r0 − γnt , (1d)

where nt is the log population size at time t, and the log mean individual contribution v̄ gives146

the expected change in log population size from time t to t+1 (nt+1 − nt). From a statistical147

perspective, the density-independent growth rate and the strength of density regulation define the148
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intercept and the slope of the density regulation function. In the results section, we will show149

how the density regulation function can be described by the parameters of a multiple regression150

equation and how evolution can shape the equilibrium population size through its effects on the151

intercept and slope of the density regulation function.152

Individual-based simulation153

We created an individual-based simulation (IBS) that uses the model described above as a founda-154

tion (see Appendix 1 for more details). The IBS focuses on females whose fitness can be affected by155

their phenotypes as a function of two social environment characteristics: population density and the156

average phenotype in the population. Interactions between females and their social environment157

are structured in discrete time steps describing sequential reproductive episodes within a popula-158

tion (e.g. years). The basic features of the IBS are that density regulation causes the population’s159

average fitness to decrease with proportional increases in population density and that the fitness160

of each female can be affected by her phenotype as well as her social environment. Individuals can161

be present in more than one time step (i.e. overlapping generations), and population size and the162

mean phenotype are updated simultaneously for all individuals in each time step.163

For simplicity, we assume female demographic dominance under a balanced sex ratio (Rankin164

& Kokko, 2007), as is common when studying population dynamics. The simulation starts with165

a population size N1, which we set to 40 females for all simulations. The population at time step166

t + 1 is a function of the number of adult individuals that survive time step t plus the individuals167

born in time step t recruiting to time step t + 1. The mean phenotype in the next time step is168

then determined by the phenotypes of the surviving individuals and the new recruits. This reflects169

the dynamics of a closed population. We assume adult survival is not affected by an individual’s170

phenotype or social environment and is modelled simply as a Bernoulli process. The average adult171

survival propensity thus defines the survival probability for all adults. The effects of a female’s172

phenotype and social environment on the number of zygotes she produces is simulated as a Poisson173

process following equation 1a. For simplicity, we assume that the probability of a zygote produced174

7



at time-step t to recruit to time step t + 1 is not affected by its own phenotype, and the probability175

of zygote survival to recruitment is set to one. Therefore, the simulation’s stochasticity is solely176

determined by the average zygote production in a given time step through the variance in the177

Poisson process and the average adult survival probability via the Bernoulli process.178

The phenotypes of the females of the founder population are assumed to conform to a normal179

distribution with a mean of two and a variance of one. The phenotypes of new individuals are sim-180

ulated as the average of the phenotype of the parents plus a random deviation reflecting Mendelian181

variance (half the genetic variance). A random male sires each zygote produced, assuming a bal-182

anced sex ratio, and the sire phenotypes conform to a normal distribution with the same mean183

and variance as the phenotypes of the reproducing females. The standing genetic variance at the184

beginning of the simulation was set to 1, and for simplicity, there is no phenotypic plasticity in185

the model. We simulated mutational variance, increasing the variance by half the standing genetic186

variance at each time step. This means that phenotypic variance at equilibrium is maintained only187

by mutation-selection balance.188

In the following sections, we extend this basic IBS model to explore the different ways in which189

the social environment affects individual fitness (see Appendix 1 for the full equation). The specific190

forms in which an individual’s phenotype and the characteristics of its social environment affect191

individual fitness are described by the multiple regression equations 1a, 3a, 4a, 5a, 6a, and 7a. For192

each simulated scenario using the IBS, we vary the strength of the effect of the social environment193

on fitness, and we analyze the output data of the IBS as we would an empirical data set. The194

fixed effect structure for the different scenarios followed the linear regression equation presented195

for each scenario. All models used to analyze the data included year and individual as random196

effects. A critical distinction between the simulation and the analyses is that in the individual-197

based simulation, the social environment only affects reproduction. However, we used statistical198

models to analyze the effects of the social environment on the total demographic contribution of199

individuals. This simplifies the presentation of the equations, but in empirical studies, these fitness200

components could be analyzed separately (see Discussion).201
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We then proceeded to compare the statistical estimates for the expected population size and202

mean phenotype derived from the multiple regression estimates against the corresponding observed203

mean phenotype and equilibrium size of the population for each IBS. We ran the IBS for 200 time204

steps, ensuring that populations arrived at the equilibrium values for the population density (Fig.205

1C) and mean phenotype (Fig. 1D). We then explored how the length of the time series affected206

the accuracy of equilibrium estimates based on the parameters of the generalized linear mixed207

models assuming Poisson error distributions. We analyzed the last 10, 20, 30, 40 or 50 time steps208

of the different individual-based simulations (100 data sets per scenario). Code for simulation and209

statistical analysis can be found at https://github.com/YimenAraya-Ajoy/Social-environment-eco-210

evo-dynamics.211

Results212

Effects of the number of individuals213

Density regulation(βn)214

Our first scenario describes a density-regulated population where the impact of density on an215

individual’s fitness is independent of its phenotype, but there is selection on the phenotype that is216

independent of its social environment, v = β0 + βzz + βqz2 + βnn (eq. 1a). We model the effect217

of phenotypes on fitness, assuming a Gaussian fitness function. Therefore, the phenotypic value218

conferring the highest fitness (θ) is solely defined by the linear and non-linear (quadratic) effects219

of the phenotype on fitness:220

θ =
−βz

2βq
. (2a)

In this scenario, the optimal phenotype is independent of the social environment. The selection221

differential per time step is also unaffected by the social environment and is given by the covariance222

between the trait and relative fitness, which is a function of the strength of stabilizing selection and223

the difference between the population mean phenotype and the optimal phenotype (Lande, 1976).224
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We can estimate the selection differential for a given time step based upon the parameters of the225

regression Equation 1a (see Appendix 2 for more details):226

1
W̄

Cov(z, W) = 2βq(z̄ − θ)σ2
z = (βz + 2βq z̄)σ2

z . (2b)

Phenotypic evolution is expected to ”push” the population mean phenotypic value towards the227

optimum. For example, we might imagine the phenotypic trait to be body size, and that selection228

favours larger individuals because they can more easily capture some recently available larger prey229

items, causing an increase in the average size of the individuals in the population (Fig. 1D).230

When populations are perfectly adapted to their non-social environment, the optimum phenotype231

equals the mean equilibrium phenotype in the population (θ = ẑ), and the population arrives at232

an equilibrium. In the early formulations of Wright’s adaptive topography (Wright, 1931), this233

kind of evolution by natural selection was assumed to increase the population mean fitness, and234

implicit in this argument is that population size will increase. In a density-regulated population,235

positive evolutionary change in body size will result in an increase in population size (Fig. 1C),236

because evolution shapes the elevation of the relationship between log population size and log mean237

individual fitness (i.e. the population density-independent growth rate; Fig. 1A).238

In this scenario, the population mean fitness is given by:239

v̄ = β0 + βz z̄ + βq(z̄2 + σ2
z ) + βnn . (2c)

The effect of the social environment on population mean fitness through density regulation is240

captured by βn. Since this scenario assumes a Gaussian fitness function which is independent of241

the social environment, both the mean phenotype z̄ and its variance σ2
z affect population mean242

fitness through the non-linear effect of an individual’s phenotype on its own fitness.243

The equilibrium population size is given by the density-independent growth rate and the244

strength of density regulation r0
γ . Rearranging equation 2c, we can infer the expected equilibrium245
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population size (n̂) based upon the estimates of a linear regression:246

n̂ =
r0

γ
=

β0 + βz ẑ + βq(ẑ2 + σ2
z )

−βn
. (2d)

Equation 2d thus describes the way in which the equilibrium population size depends upon the247

phenotypic distribution through effects on the density-independent growth, but also through the248

effects of the social environment captured by the strength of density regulation. As implied by249

equation 2d, the IBS shows that as the strength of density regulation increases the number of250

individuals a population can sustain decreases (Fig. 2). For example, the strength of density251

regulation could reflect the degree of scramble competition affecting the number of recruits produced252

by a population breeding in a limited area (e.g. an island). As population size increases, females253

have fewer recruits because there are fewer resources for everyone. Variation among populations254

in the strength of the coefficient βn in equation 1a could represent different ecological conditions255

affecting how proportional increases in the number of individuals (i.e. population density) affect256

the strength of competition.257

Density-dependent selection (βzn)258

The scenario described above assumes that the relative fitness of phenotypes is independent of259

population density. Therefore, variation in the number of individuals in the social environment260

only causes changes in mean fitness in the population. However, when there is density-dependent261

selection, the optimal phenotype also depends upon density, and variation in population density will262

generate differences in the relative fitness of phenotypes. We can model density-dependent selection263

by extending eq. 1a to include an interaction (βzn) between population size and an individual’s264

phenotype:265

v = β0 + βzz + βqz2 + βnn + βznzn . (3a)
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The selection differential per time step is thus a function of density- and frequency-independent266

selection and population size through density-dependent selection:267

1
W̄

Cov(z, W) = (βz + 2βq z̄ + βznn)σ2
z . (3b)

See Appendix 2 for more details on the derivation. The equilibrium phenotype in the population268

thus depends on adaptation to the abiotic environment and to the equilibrium population density:269

270

ẑ = − (βz + βznn̂)
2βq

. (3c)

With the equilibrium population size also depending upon the equilibrium phenotype through its271

effects on the density-independent growth rate and the strength of density regulation through βzn:272

273

n̂ =
r0

γ
= −

β0 + βz ẑ + βq(ẑ2 + σ2
z )

βn + βzn ẑ
. (3d)

For expanded versions of equations 3c and 3d, see Appendix 3.274

Density-dependent selection will affect the equilibrium mean phenotype and shape population275

density by changing the slope of the relationship between population size and log mean fitness276

(Fig. 3, right-hand panels). Elaborating on the body mass example above, we can imagine that277

intermediate-sized individuals are favoured by density-independent selection. However, the fitness278

consequences of a phenotype can also depend upon density. This effect is captured by the strength279

of the coefficient βzn, which may reflect different ecological conditions affecting the rate at which280

the optimal phenotype changes with population density. For instance, larger individuals may be281

favoured at higher densities due to their ability to capture greater numbers of prey more efficiently282

(i.e. scramble competition). This will result in a population of larger individuals being affected283

less by density than a population of smaller individuals. As population density increases, selection284

favours larger individuals, resulting in a larger equilibrium mean phenotype (Fig. 3, orange lines),285

leading to a larger population size due to the weaker effect of density regulation. The mean pheno-286

type arrives at equilibrium when the costs of density-independent selection equal the benefits gained287
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through density-dependent selection. Our IBS shows that when selection is density-dependent then288

selection maximizes the function describing the equilibrium population size (Fig. 3, left-hand pan-289

els) in agreement with classic theoretical results (Engen et al., 2013; MacArthur, 1962). However,290

as we will demonstrate in the following scenario, this is not necessarily the case when the absolute291

fitness of a phenotype is frequency-dependent.292

Effects of the phenotypes in the social environment293

Frequency dependence (βz̄)294

The next scenario represents situations where individual fitness depends not only upon an individ-295

ual’s own phenotype, but also upon the phenotype of other individuals in the social environment.296

For example, as the mean body size of individuals in the population increases, the amount of re-297

sources available to each individual decreases due to contest competition, because individual fitness298

is more negatively affected by the presence of larger competitors. If we assume that individuals299

interact at random (i.e. “playing the field”; Maynard Smith, 1982), the effects of this particular300

aspect of the social environment on individual fitness can be captured by including the effect of the301

population mean phenotype z̄ on the fitness. This effect can thus be included as another coefficient302

(βz̄) in the multiple regression equation as:303

v = β0 + βzz + βqz2 + βnn + βz̄ z̄ . (4a)

In this formulation, the effects of the social environment and of the phenotype of an individual on304

its fitness are additive (Fig. 4), and therefore, changes in the mean phenotype in the population305

will not alter the relative fitness of phenotypes.306

Equation 4a can be parameterized using the average phenotype with which a given individual307

interacts, and then the term βz̄ is related to what has been referred to as a ‘social selection gradient’.308

Social selection gradients quantify the effect of an individual’s social partner on its relative fitness309

within a given breeding episode (Wolf et al., 1999). It has been shown that social selection gradi-310
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ents affect the expected response to selection when there is non-random assortment of individuals311

and/or social plasticity (McGlothlin et al., 2010). When interactions between individuals are at312

random, as in the scenario we describe here, then the effect of the phenotype of individuals in the313

social environment on an individual’s fitness does not create differences in the relative fitness of314

phenotypes. However, the effect of the phenotype of the average individual in the population on315

the reproductive success of others is expected to affect the mean fitness in the population and thus316

influence population growth (Fig. 2).317

This frequency-dependent effect on fitness will partly define the relationship between the mean318

phenotype in the population and its mean fitness (Lande, 1976), further linking the evolutionary319

trajectory of the phenotype with the dynamics of population size through frequency dependence320

(βz̄). Rearranging equation 4a we get:321

n̂ = −
β0 + (βz + βz̄)ẑ + βq(ẑ2 + σ2

z )

βn
, (4b)

where we can see that the equilibrium population size n̂ depends upon both the direct effect of the322

phenotype on fitness through the density-independent growth rate plus the indirect effects that the323

phenotype of an individual has on the fitness of others (βz̄). This follows previous work showing324

that two distinct processes define the effect of the mean phenotype of the population on average325

fitness (Engen et al., 2020; Lande, 1976, 2007). On the one hand, it is determined by the direct326

effect of an individual’s phenotype on its own fitness (βz), and on the other by the impact that an327

individual’s phenotype has on the fitness of others (βz̄). These effects both result in ways in which328

the intercept of the density regulation function depends upon the population mean phenotype (Fig.329

2).330

A key realization of early population genetics models was that under many types of frequency331

dependence, evolution will not always maximize the mean fitness in the population (Fisher, 1958;332

Wright, 1948). When the direct effect of phenotypes on fitness is positive, and there is also a positive333

social fitness effect (e.g. βz > 0 and βz̄ > 0), the equilibrium population size is larger, as compared334

with a case where the phenotypes of others have a negative effect on individual fitness (e.g. βz > 0335
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and βz̄ < 0). This first case may represent a (cooperative) social phenotype that allows each336

individual to utilize resources more efficiently (e.g. cooperative foraging in social spiders; Majer337

et al., 2018). A population composed of more efficient individuals will free up more resources for338

use by other individuals in the population, thus increasing average fitness in the population and339

the population carrying capacity. The other case could represent a competitive phenotype, which340

allows each individual to monopolize more resources while reducing the resources available for other341

individuals in the population, thus decreasing its carrying capacity (Fig. 2, blue lines). Therefore,342

under frequency dependence, the phenotype that maximizes adaptation to the abiotic environment343

will not necessarily maximize the equilibrium population size. In the IBS scenario with negative344

frequency dependence lower phenotypic values increased the equilibrium population size, while in345

the IBS scenario with positive frequency dependence, it was larger phenotypes that maximized the346

equilibrium population size (Fig. 2).347

Frequency-dependent selection (βzz̄)348

We now focus on a scenario where the optimal phenotype depends upon the mean phenotype in349

the population. Therefore, changes in the mean phenotype change the relative fitness of different350

phenotypes. Following our body mass example, this might represent a situation where smaller351

body sizes are favoured when most individuals are large due to the ability of smaller individuals to352

keep breeding and better withstand the adverse effects of high competition due to reduced somatic353

maintenance. However, when the population is composed of mostly smaller individuals, selection354

favours larger bodies that can out-compete all the smaller individuals. This scenario characterizes355

(negative) frequency-dependent selection models, such as the hawk-dove game (Maynard Smith,356

1982), where the fitness benefits of playing dove depend upon the frequency of hawks in the popula-357

tion, and vice versa. In a continuous trait, this leads to a type of balancing selection that results in358

an intermediate equilibrium mean phenotype. This is captured by the coefficient βzz̄, representing359

the interaction between an individual’s phenotype and the mean phenotype in the population:360

v = β0 + βzz + βqz2 + βnn + βz̄ z̄ + βzz̄zz̄ . (5a)
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Fluctuations in the mean phenotype in the population cause changes in the selection differential at361

each time step due to frequency-dependent selection (Araya-Ajoy et al., 2020; Queller, 1984):362

1
W̄

Cov(z, W) = (βz + 2βq z̄ + βzz̄ z̄)σ2
z . (5b)

See Appendix 3 for more details on the derivations, and Araya-Ajoy et al. (2020) for the effects363

of frequency-dependent selection on the selection differential when individual interactions are not364

random within a population. In the scenario we present here, the equilibrium phenotype is, therefore365

not only a function of adaptation to the abiotic environment but is also affected by the frequency-366

dependent selection coefficient:367

ẑ =
−βz

2βq + βzz̄
. (5c)

In contrast to density-dependent selection (above), frequency-dependent selection can result in an368

equilibrium phenotypic value that does not necessarily maximize the expected population size (Fig.369

3 middle panels). Under frequency-dependent selection, the effect of the frequency of a phenotype370

on its relative fitness will preclude adaptation to the non-social environment (eq. 5c).371

Frequency-dependent selection is a core component of evolutionary game theory (Maynard372

Smith, 1982), and within this framework, it is often assumed that the population size is fixed.373

However, the frequency-dependent selection coefficient can also affect the size of the population:374

n̂ = −
β0 + (βz + βz̄)ẑ + (βq + βzz̄)ẑ2 + βqσ2

z

βn
. (5d)

Using the IBS, we show that this type of frequency-dependent selection is expected to affect both375

the equilibrium population size and equilibrium phenotype (Fig. 3 middle panels). Under this type376

of frequency-dependent selection (see Discussion for other types), the equilibrium mean phenotype377

will have a non-linear effect on the equilibrium population size (eq. 5d). It will affect the equilibrium378

population size because it will affect the elevation of the relationship between population size and379

mean fitness, but not the slope (Fig. 3 middle panels).380
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Interactions between density and phenotypic frequencies381

Frequency-dependent density regulation (βnz̄)382

When the density of the population affects the total amount of resources available, it is likely that383

this effect depends on the mean phenotype in the population. In other words, the strength of384

density regulation is frequency-dependent. In the case of the evolution of body mass, we can think385

about this as the biomass (nz̄) of the population affecting individual fitness via competition for a386

given supply of food resources (Engen et al., 2020; Owen-Smith, 2002). An increase in the number387

of heavier individuals of greater body mass will reduce the amount of resources disproportionately388

more per capita, as compared to an increase in the number of lighter individuals. This process can389

be captured by the coefficient βnz̄ in a linear regression equation, describing frequency-dependent390

density regulation as the effect on fitness of the interaction between population size (n) and the391

mean phenotype (z̄) in the population:392

v = β0 + βzz + βqz2 + βnn + βz̄ z̄ + βnz̄nz̄ . (6a)

The inclusion of the interaction term (βnz̄) thus redefines the coefficient βn as the relationship393

between population size and log fitness when the mean phenotype of the population is zero, and the394

coefficient βz̄ as the effect of the average phenotype in the social environment on individual fitness395

when the population size is very small. Rearranging equation 6a, we can see that the expected396

equilibrium population size (n̂) now depends upon the (equilibrium) population mean phenotype397

(ẑ) and how it modulates the strength of density regulation:398

n̂ = −
β0 + (βz + βz̄)ẑ + βq(ẑ2 + σ2

z )

βn + βnz̄ ẑ
. (6b)

Here, the population’s mean phenotype now moderates the strength of density regulation as a399

function of the coefficient βnz̄. In contrast to the scenario of density-dependent selection, frequency-400

dependent density regulation does not affect the relative fitness of different phenotypes across401
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breeding episodes. Nevertheless, it does affect the mean fitness of the population across breeding402

episodes. Frequency-dependent density regulation reflects how the impact of population density on403

an individual’s fitness depends upon the phenotype of other individuals in the social environment,404

while density-dependent selection captures how the effects of population density on an individual’s405

reproductive success depend upon its own phenotype.406

Early theoretical models focusing on frequency-dependent interactions in density-regulated pop-407

ulations explored the consequences for evolutionary stability of different genotypes having a different408

impact on density regulation (Anderson & Arnold, 1983; Clarke, 1972). This idea has been recently409

extended to study the eco-evolutionary dynamics of phenotype-dependent contributions to density410

regulation in a quantitative genetic framework by Engen et al. (2020). We show how frequency-411

dependent density regulation can be estimated as a regression parameter, and how it affects the412

equilibrium size of the population through its effects on the slope of the effect of population size413

on mean fitness (Fig. 2).414

Frequency-density-dependent selection (βzz̄n)415

The natural extension of the frequency-dependent density regulation scenario is that the optimal416

phenotype depends on both the density and frequency of phenotypes in the social environment.417

In this scenario, density-dependent and frequency-dependent selection are inextricably intertwined418

because the relative fitness of a phenotype depends upon the number and phenotypes of other419

individuals in the social environment (Heino et al., 1998; Smouse, 1976). An example could be a420

situation where the fitness benefits of larger, more competitive body sizes depend upon the biomass421

of the rest of the population. In the multiple regression equation, we therefore need to include a422

three-way interaction (βzz̄n) capturing the interplay between frequency- and density-dependent423

selection:424

v = β0 + βzz + βqz2 + βnn + βz̄ z̄ + βnz̄nz̄ + βznzn + βzz̄zz̄ + βzz̄nzz̄n . (7a)
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Here, the coefficient βzz̄n captures how the effect of population density on an individual’s fitness425

depends upon the mean phenotype of individuals in the social environment and how this effect, in426

turn, depends upon the individual’s own phenotype. The selection differential per time step is then427

also a function of population size and the mean phenotype of the population and their interaction428

(see Appendix 2):429

1
W̄

Cov(z, W) = (βz + [2βq + βzz̄ + βzz̄nn]z̄ + βznn)σ2
z . (7b)

In this equation, we can see the different ways in which the frequencies and density of the phenotypes430

in the social environment are expected to affect the selection differential. The equilibrium phenotype431

of the population thus depends upon the equilibrium population size,432

ẑ = − (βz + βznn̂)
2βq + βzz̄ + βzz̄nn̂

, (7c)

and the equilibrium size of the population, in turn, also depends upon the equilibrium phenotype,433

n̂ =
β0 + (βz + βz̄)ẑ + (βq + βzz̄)ẑ2 + βqσ2

z

βn + (βzn + βnz̄)ẑ + βzz̄n ẑ2 . (7d)

The mutual dependency of the equilibrium mean phenotype and the equilibrium population size434

depends linearly on density-dependent selection (βzn) and non-linearly on its interaction with435

frequency-dependent selection (βzz̄n). In this scenario, frequency-dependent selection and its inter-436

action with density-dependent selection may also hinder adaptation to the abiotic environment (eq.437

7c). Therefore, the equilibrium phenotype is not necessarily the one that maximizes the expected438

population size (Fig. 3, lower panels)439

Interestingly, this type of complicated three-way dynamics was actually described in early pop-440

ulation genetics models based upon the Lotka-Volterra formulations for multi-species interactions441

characterized by a matrix of competition coefficients describing how the abundances of each species442

or genotype affect the fitness of the other genotypes or species (Anderson & Arnold, 1983; Clarke,443

1972). The three-way interaction βnz̄z thus captures the differential contributions to density regula-444
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tion of different phenotypes, and the differential sensitivity to population density of those different445

phenotypes.446

Discussion447

Phenotypic evolution can cause changes in the social environment in terms of the number and the448

phenotypes of interacting individuals. These changes will alter the ecological context of selection,449

altering the strength of selection on the mean phenotype, with cascading effects on population450

dynamics and phenotypic change. We show how the characteristics of this feedback can be stud-451

ied using generalized linear models quantifying the selective pressures creating variation in fitness452

among and within time steps. By combining individual-based simulations with mathematical de-453

scriptions, we highlight how parameters of a simple multiple regression relate to fluctuations of454

the selection differential and the feedback that determines the equilibrium phenotypic distribution455

in natural populations and how many individuals they can sustain. The exact links between the456

parameters in our models versus those describing the observed mean phenotype and average den-457

sity of natural populations are obviously contingent on the various assumptions we highlight when458

describing the individual-based simulation. However, our goal here was to illustrate the importance459

of decomposing the different social environment effects on population mean fitness and the relative460

fitness of phenotypes in order to understand the relative contribution of frequency- and density-461

dependent processes on the eco-evolutionary dynamics of populations. We did so using generalized462

linear regression models in the hope that this will resonate with empiricists interested in a topic463

that is very well studied theoretically but less so empirically.464

0.1 Evolution of population size465

Evolution by natural selection can influence the equilibrium size of natural populations, shaping466

phenotypic traits affecting density-independent fitness and traits directly involved in how density467

affects the fitness of individuals. From a statistical perspective, evolution can be viewed as shaping468

population size by altering the intercept and/or the slope of the function describing the relationship469
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between population size and mean fitness. A greater carrying capacity will thus evolve when470

selection leads to a larger intercept value and/or a shallower slope in the effect of population density471

on population growth rate. This dichotomy can be seen in equation 7d, where density-independent472

effects on fitness are grouped in the numerator, whereas these density-dependent effects on fitness473

are grouped in the denominator.474

The relationship between the phenotypic characteristics of a population and its density was the475

focus of early life-history studies framed in terms of r- versus K-selection (MacArthur & Wilson,476

1967). r-selection occurs when populations are at low densities, and selection favours higher repro-477

duction rates, as competition does not constrain individual fitness (Southwood, 1977). In contrast,478

as populations approach carrying capacity (K), selection favours traits that enhance an individual’s479

ability to monopolize resources in crowded environments or increase their efficiency of resource480

utilization (Boyce, 1984). If selection favours traits enhancing cooperation and resource efficiency,481

it will incidentally increase the carrying capacity of populations, fitting the definition of K-selection482

as initially stated by MacArthur & Wilson (1967). One of the earlier criticisms of the r- versus483

K-selection dichotomy was that selection under crowded conditions does not necessarily result in484

higher carrying capacities (Boyce, 1984). This criticism partly stemmed from the observation that485

selection under crowded environments sometimes favours traits that result in costly investment in486

‘contest’ competition, decreasing the expected equilibrium size of populations (Engen et al., 2020;487

Joshi et al., 2001). We show that the effect of phenotypic evolution on equilibrium population sizes488

can be inferred by the sign and magnitude of the regression coefficients βz̄ and βzz̄, which describe489

how the phenotypes in the social environment affect an individual’s fitness, for instance, through490

the access to resources.491

Selection under crowded conditions shaping the competitive ability of individuals has been stud-492

ied under the concept of α-selection (Joshi et al., 2001). An explicit distinction can, therefore, be493

made between the evolution of density-dependent selection strategies that increase tolerance to494

crowding through higher efficiency in resource use (K -selection) versus the evolution of strategies495

that competitively inhibit the fitness of others when population density is high (α-selection). Early496

population genetics models of frequency-density-dependent selection focused upon the evolutionary497
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consequences of interacting genotypes with different competition coefficients (α) and carrying ca-498

pacities (Anderson & Arnold, 1983; Clarke, 1972). Models studying similar dynamics have recently499

been developed using a quantitative genetics framework to study eco-evolutionary dynamics in500

stochastic environments (Engen et al., 2020). In line with these recent quantitative genetic models,501

we show how social traits can modulate the strength of density regulation when the effect of pop-502

ulation density on individual fitness depends upon the phenotypes of the other individuals in the503

population (βnz̄) and/or when the effects of population density on an individual’s fitness depend504

upon its own phenotype (βzn). The relative magnitude of these two processes will reflect the con-505

tribution of α- versus K - selection to the equilibrium population size. Importantly, whenever these506

two processes occur together, density- and frequency-dependent selection are intrinsically linked507

because the effect of the density of conspecifics and their phenotypes on an individual’s fitness508

depends upon its own phenotype (βzz̄n). In this case, it is difficult to derive the equilibrium values509

solely with the parameters from the multiple regression (but see Fig. A1 for a graphical approach).510

The many types of frequency-dependent selection511

The term ‘frequency-dependent selection’ is used to describe many different processes, and its def-512

inition has been extensively discussed, especially in the context of population genetics and the513

maintenance of polymorphisms (Ayala & Campbell, 1974; Gromko, 1977; Heino et al., 1998). All514

uses of the term have in common that the fitness of a phenotype varies with its frequency in the515

population. However, it is important to distinguish between the different types of frequency depen-516

dence, as they have different consequences for phenotypic evolution and population dynamics. We517

can easily make these distinctions here using our statistical perspective because they are based upon518

whether the effects on individual fitness of the individual’s phenotype versus its social environment519

are additive, multiplicative or relative.520

There are instances where the effect of the average phenotype in the social environment and521

the effect of an individual’s phenotype on its own fitness have additive effects (βzz + βz̄ z̄). This522

situation has been shown to result in maladaptation and can thus affect population dynamics523
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(Lande, 1976) as we show with our IBS (Fig. 2). This type of fitness surface can be depicted as524

a plane (Fig. 4A & B), and so we do not refer to it as frequency-dependent selection but only as525

‘frequency dependence’ because the relative fitness of individual phenotypes does not change as a526

function of their frequency in the population.527

A much clearer type of actual frequency-dependent selection is when an individual’s phenotype528

and the average phenotype in the social environment have multiplicative effects on fitness (Fig. 4C529

& D). This is the type of frequency-dependent selection we describe in the results section, where530

an individual’s phenotype interacts with the average phenotype of its social environment to affect531

its fitness (βzz̄ z̄z). This can be represented as a warped fitness surface where the direct effect of a532

phenotype on fitness changes with the average phenotype in the social environment (Araya-Ajoy533

et al., 2020).534

There are, however, additional scenarios that we did not explore here in which the effect of535

a phenotype on fitness is relative to the average phenotype in the social environment (βz[z − z̄]).536

This type of frequency-dependent selection includes ‘soft’ selection (Bell et al., 2021; Wallace, 1975).537

This can be thought of as a zero-sum game, where a fitness gain by one individual or phenotype538

results directly in a fitness loss by another. This type of frequency-dependent selection may have539

no net effect on the mean fitness in the population (Fig. 4E). This type of dynamic relates to a540

narrow definition that focuses upon types of negative frequency-dependent selection that result in541

the stable coexistence of polymorphisms (i.e. where the fitness of a phenotype decreases with its542

relative frequency in the population; (Fig. 4F). This process was at the centre of early developments543

of the concept of frequency-dependent selection in population genetics (Ayala & Campbell, 1974;544

Gromko, 1977; Heino et al., 1998; McGill & Brown, 2007). In a quantitative genetic framework, it545

can be formulated as a type of disruptive selection (Araya-Ajoy et al., 2023; Bürger & Gimelfarb,546

2004; Rueffler et al., 2006), where the effects of a phenotype depend on the absolute deviation from547

the average phenotype in the population ([z − z̄]2). The models presented here can be expanded to548

study the eco-evolutionary dynamics of this type of ”relative” frequency-dependent selection and549

its interaction with population density.550
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Selection gradients and short-term responses to selection551

Multiple regression is widely used to estimate the direct and indirect effects of phenotypes on552

reproductive success (Kingsolver & Diamond, 2011). These analyses directly relate to quantitative553

genetic theory for predicting evolutionary responses to selection (Lande & Arnold, 1983). In a social554

evolution context, this framework has been extended to study the impact of the social environment555

on relative fitness. The magnitude of these effects is generally measured as a social selection556

gradient (Wolf et al., 1999), parameterized in either a neighbour-modulated approach (Okasha,557

2006) or contextual analyses of fitness (Goodnight et al., 1992; Heisler & Damuth, 1987). The558

multiple regression approach used here thus constitutes a critical conceptual and empirical tool559

to link processes relating phenotypic evolution and the social environment. However, studies on560

wild populations have been primarily focused on parameterizing their analyses in order to estimate561

gradients that can then be used to predict expected responses to selection (Lande & Arnold, 1983),562

in general across generations. It is much less common to parametrize selection models in order to563

study the responses to selection across time steps, or their consequences on population dynamics564

and the long-term equilibrium phenotype (but see Sæther et al., 2021, 2016).565

An important methodological step when performing selection analyses, that may preclude study-566

ing the dual role of the social environment on phenotypic selection and population growth, concerns567

the standardization of individual measures of fitness by the mean fitness in the population (i.e. cal-568

culating relative fitness), and also the scaling of the phenotypic trait by (subtracting) its mean and569

(dividing by) its standard deviation (De Lisle & Svensson, 2017). These standardizations should570

be avoided in the context we describe here because they do not allow the simultaneous quantifi-571

cation of the drivers of selection and population dynamics. Re-scaling population mean fitness to572

one within each selection event will obscure any changes in mean fitness across selection episodes.573

Standardizing the phenotype by its mean (mean-centring per selective episode) will likewise conceal574

the changes in selective pressures due to changes in the mean phenotype of the social environment575

(Araya-Ajoy et al., 2020). Estimating the selection gradients expected to result in short-term576

responses to selection without standardizing phenotype or fitness is possible. After fitting the sta-577
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tistical models, the regression coefficients can be standardised to facilitate comparative analyses578

between traits within or across studies (Dingemanse et al., 2021). In Appendix 1 & 3, we show579

how the log-linear model presented here relates to selection analyses on relative fitness.580

In our presentation of the different frequency and density processes, we use a fitness measure581

that links individual demographic contributions to the next time-step with the expected changes582

in population size. We combine annual survival and annual reproduction in a single metric to583

make the links between phenotypic selection and population dynamics easier to discuss. However,584

empirical analyses may focus on the separate vital rates. Furthermore, this fitness measure (eq.585

1c) needs to be modified when studying the dynamics of males and females in a population. For586

the log mean individual fitness to add up to the population growth rate, the number of male and587

female recruits produced by each individual must be divided by 2 (i.e. w = r/2 + s) because588

each recruit has a mother and a father (Sæther & Engen, 2015). However, empirical investigations589

involving both sexes would instead need to transform the fitness data by multiplying the survival590

of each individual by two instead of dividing the number of recruits by 2 (i.e. w = r + 2s). This591

ensures that the measure of fitness used in the regression analysis is an integer and can thus be592

parameterised as a Poisson or negative binomial model. It is then necessary to subtract ln(2) from593

the estimated β0 in the multiple regression to obtain the correct value for the growth rate of the594

population when its size is small.595

It is also very important to note that using ‘mixed’ measures of fitness in selection analyses can596

lead to biased estimates of selection and inaccurate inferences about the strength of selection on597

adult phenotypes. This is because such fitness measures combine different fitness components (e.g.598

juvenile survival and adult fecundity), making it challenging to distinguish selection on offspring599

traits from selection on adult traits and obscuring the distinction between selection and inheritance.600

Again, researchers should analyze each fitness component separately to obtain a more accurate601

understanding of how selection operates on each trait and how this affects the short-term responses602

to selection (Hadfield & Thomson, 2017).603

Detailed individual long-term studies are necessary to parameterize the models we present here.604
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We used our IBS models to explore how the length of the time series affects the accuracy and605

precision of different parameters. These analyses show that estimates are unbiased within the606

kinds of time spans we explored. However, as expected, the precision increases with the length607

of the time series (Fig. A2). There are an increasing number of study populations where these608

types of data are now available (Sheldon et al., 2022). Furthermore, under certain assumptions,609

similar inferences can be made using fitness proxies to study the types of models we present here.610

Most importantly, this manuscript highlights the importance of long-term studies collecting detailed611

individual-based data.612

Conclusions613

Empirical quantification of the impact of the social environment on phenotypic selection and popu-614

lation growth is critical for our understanding of the interplay between ecological and evolutionary615

processes in wild populations. By examining the statistical interactions between processes that616

generate temporal variation in mean fitness versus processes that cause variation in the relative617

fitness of phenotypes, we can gain valuable insights into the mechanisms underlying the complex618

eco-evolutionary dynamics driving phenotypic evolution and population dynamics. Regression anal-619

ysis, commonly used in selection studies, can be used to quantify the ways that variation in the620

social environment can cause changes in the mean fitness of a population and the relative fitness621

of phenotypes. Empirical estimates of the parameters quantifying these processes will provide key622

insights into how the social dynamics of species affect the relationship between the equilibrium623

mean phenotype of a population and the number of individuals it can sustain. This will improve624

predictions concerning population-level responses to environmental change in order to make better-625

informed conservation and management decisions based on the social dynamics of species.626
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1 Main text tables780

Parameter Description
z Individual phenotypes
z̄ Average yearly phenotype of the population
ẑ Equilibrium mean phenotype in the population
σ2

z Phenotypic variance
v Individual latent (log) fitness
W Individual fitness
W̄ Average yearly fitness in the population
n Population sizes
n̂ Equilibrium population size
βn, bn Density regulation coefficient
βz, bz Linear selection coefficient, relating phenotypes to absolute fitness
βq, bq Quadratic selection coefficient, relating phenotypes to absolute fitness
βzn, bzn Coefficient describing density-dependent selection
βz̄, bz̄ Coefficient describing the effects of the average phenotype in the population

on individual fitness
βzz̄, bzz̄ Coefficient describing frequency-dependent selection
βnz̄, bnz̄ Coefficient describing frequency-dependent density regulation
βzz̄n, bzz̄n Coefficient describing the link between density- and frequency-dependent se-

lection
θ Optimal phenotype independent of the social environment; βz

−2βq
.

r0 Density-independent growth rate.
γ Strength of density regulation.

Table 1: Description of the parameters. Those denoted with a ’β’ refer to the estimates from the data in the
regression model of fitness, and coefficients denoted with an ‘b’ refer to the equivalent parameter values determining
recruit production in the individual-based simulation model that generated those data.
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Scenario bn bz bq bzn bz̄ bzz̄ bnz̄ bzz̄n

Base scenario -0.35 0.20 -0.01 0.000 0.00 0.000 0.000 0.0000
Selection -0.50 0.00 -0.01 0.000 0.00 0.000 0.000 0.0000
Selection -0.35 0.20 -0.01 0.000 0.00 0.000 0.000 0.0000
Density regulation -0.32 0.20 -0.01 0.000 0.00 0.000 0.000 0.0000
Density regulation -0.40 0.20 -0.01 0.000 0.00 0.000 0.000 0.0000
Density-dep. selection -0.35 0.20 -0.01 -0.005 0.00 0.000 0.000 0.0000
Density-dep. selection -0.35 0.20 -0.01 0.003 0.00 0.000 0.000 0.0000
Frequency dependence -0.35 0.20 -0.01 0.000 -0.02 0.000 0.000 0.0000
Frequency dependence -0.35 0.20 -0.01 0.000 0.02 0.000 0.000 0.0000
Frequency-dep. selection -0.35 0.20 -0.01 0.000 0.00 -0.005 0.000 0.0000
Frequency-dep. selection -0.35 0.20 -0.01 0.000 0.00 0.002 0.000 0.0000
Frequency-density-dep. -0.35 0.20 -0.01 0.000 0.00 0.000 -0.005 0.0000
Frequency-density-dep. -0.35 0.20 -0.01 0.000 0.00 0.000 0.003 0.0000
Freq.-dens.-dep. selec. -0.35 0.20 -0.01 0.000 0.00 0.000 0.000 -0.0005
Freq.-dens.-dep. selec. -0.35 0.20 -0.01 0.000 0.00 0.000 0.000 0.0003

Table 2: Values in the individual based simulations. The b values are the coefficients used in the IBS, determining
the effects on recruit production of the social environment and an individual’s phenotype. These are analogous to the
β parameters that describe the effects on individual fitness, which are presented in the main text. Individual recruit
production when population sizes were very small was set to 1.1, and the average survival probability was set to 0.475
for all simulations.
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2 Main text figures781
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Figure 1: Selection in a density regulated population. (A) The relationship between log population size and the log
mean fitness of the population. Population size is expected to arrive at an equilibrium value when log mean fitness
equals zero (dashed line). (B) The non-linear function relating individual phenotypes to their mean fitness. (C) The
trajectory of population size, and (D) the trajectory of the mean phenotype (z̄), from individual-based simulations
across 200 time steps for three scenarios given by the colour-coded functions in A and B. In each scenario, we
varied the linear effect of individual phenotype on the log fitness parameter (βz) while keeping all others constant:
yellow=0.12; black=0.11; green=0.10. Each simulation is shown in C and D, with the solid lines representing the
means for 200 simulations.
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Figure 2: Results of the individual-based simulations for the scenarios of density-regulation (upper panels), frequency-
dependence (middle panels) and their interaction (lower panels). See Table 2 for all parameter values. The colours
in the different top, middle and lower panels represent the strength of the coefficients βn, βz̄ and βz̄n, respectively.
In the left-hand panels, the coloured lines show the predicted values for the expected equilibrium population size (n̂)
as a function of the mean phenotype in the population (z̄), based upon the equations presented in the main text.
The many smaller dots represent the equilibrium mean phenotype and population size from each individual-based
simulation, whereas the larger dots represent the averages across all the simulations for a given scenario. The black
lines represent the predicted values based on the (average) estimates from analyzing the individual-based simulation.
The white dots represent the reference scenario, where the only effect of the social environment on fitness is mediated
by density regulation. The right-hand panels represent the expected relationship between the log population size and
mean log fitness. Black lines represent the predicted values derived from analyzing the individual-based simulations,
and white lines are again from the reference scenario. 37
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Figure 3: Results of the individual-based simulation for the scenarios of density-dependent selection (upper panels),
frequency-dependent selection (middle panels) and their interaction (lower panels). See Table 2 for all parameter
values. The colours in the different top, middle and lower panels represent the strength of the coefficients βzn,
βzz̄ and βzz̄n, respectively. In the left-hand panels, the coloured lines show the predicted values for the expected
equilibrium population size (n̂) as a function of the mean phenotype in the population (z̄), based upon the equations
presented in the main text. The many smaller dots represent the equilibrium mean phenotype and population size
from each individual-based simulation, whereas the larger dots represent the averages across all the simulations for
a given scenario. The black lines represent the predicted values based on the (average) estimates from analyzing
the individual-based simulation. The white dots represent the reference scenario, where the only effect of the social
environment on fitness is mediated by density regulation. The right-hand panels represent the expected relationship
between the log population size and mean log fitness. Black lines represent the predicted values derived from analyzing
the individual-based simulations, and white lines are again from the reference scenario.38
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Figure 4: Fitness surfaces for different types of frequency-dependent selection. The left-hand panels represent scenarios
of (A) positive and (B) negative frequency dependence in which the effects on fitness of an individual’s phenotype
and that of its social environment have additive effects (βzz + βz̄ z̄). The middle panels represent scenarios of (C)
positive and (D) negative frequency-dependent selection in which an individual’s phenotype interacts with its social
environment to affect its fitness (βzz̄ z̄z), such that the fitness function depends upon a product of the mean phenotype
in the social environment. The right-hand panels (E) and (F) represent scenarios of frequency-dependent selection
in which the effects of an individual’s phenotype on its fitness are relative to the average phenotype in its social
environment, with (E) showing a scenario of positive selection for having a higher phenotypic value than that of the
average individual in the social environment (z − z̄), and (F) a scenario of negative frequency-dependent selection
(and the evolution of polymorphisms) in which the effects of the phenotype depend upon its absolute deviation from
the mean phenotype in the social environment ((z − z̄)2).
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Supplementary material782

Appendix 1: Equations and approximations for the individual-based simulation783

In the individual-based simulation (IBS), deterministic variation in fitness within and among time784

steps is underpinned by variation in recruit production, assuming that individuals have the same785

underlying survival probability φ. The equation underpinning the IBS and the statistical model786

that can be used to estimate the effects on recruit production (r) of an individual’s phenotype (z),787

population size (n) and the mean phenotype in the population (z̄) can be written as:788

ρ = b0 + bnn + bzz + bqz2 + bz̄ z̄ + bnz̄nz̄ + bzz̄zz̄ + bznzn + bzz̄nzz̄n + e , (A1.1a)

r ∼ Poisson(eρ) . (A1.1b)

Here b0 is the average log recruit production in the population when it is very small. Population789

size effects on the log number of recruits is described by the density regulation coefficient bn. An790

individual’s recruit production can be affected by its own phenotype as a function of the linear791

(bz) and quadratic (bq) effects of the phenotype on fitness. The number of recruits produced by an792

individual can also depend upon the (average) phenotype (z̄) of the individuals in the population793

modulated by the coefficient bz̄. Furthermore, the average phenotype in the population can also794

modulate the strength of density regulation as a function of the interaction coefficient bnz̄. The795

optimal phenotype depends upon the number of individuals in the population (bzn) and also upon796

the mean phenotype in the population (bzz̄). Ultimately, the relationship between phenotype and797

fitness may also depend upon an interaction between the number of individuals and the phenotype798

of the average individual in the population (bzz̄n).799

Based upon the equations presented here, we can approximate the strength of selection per800

generation due to reproduction using the log-linear effects of an individual’s phenotype (z), popu-801

lation size (n) and the mean phenotype in the population (z̄) on recruit production. This can be802
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expressed as:803

W(z; n, z̄) = φ + r(z; n, z̄) , (A1.2)

where φ is the average survival probability and r is the expected number of recruits produced by804

a phenotype. Assuming a linear model on log recruit production (ρ = ln r), as we assume in the805

IBS, at a given value of z̄ and n the mean log number of recruits fluctuates around the expected806

value ¯ln r, which is the expected value of ρ with respect to variation in z in the population. The807

deviation of each phenotype’s expected log recruit production (ρ) can thus be expressed as:808

∆ρ = ρ − ρ̄ . (A1.3)

The first-order approximation of r is thus:809

r = eρ̄+∆ρ ≈ r̄ + r̄∆ρ . (A1.4)

The corresponding approximation to the fitness function at z̄ and n is now:810

W(z, n, z̄) = φ + r̄ + r̄∆ρ(z, n, z̄) , (A1.5)

and since the mean fitness at z̄ and n is w̄ = φ + r̄, the relative fitness is:811

W
W̄

= 1 +
r̄

φ + r̄
∆ρ(z, n, z̄) . (A1.6)

The strength of selection is now given by the gradient of mean relative fitness taken only with812

respect to z̄, obtained by averaging across the distribution of z in the population at a given time813

step. The strength of directional selection will vary as a function of how far the mean phenotype814

of the populations is from the optimum phenotype. While under density- and frequency-dependent815

selection, it will depend upon n and z, or both. The gradient of ∆ρ can be considered as the816

covariance between the trait and relative fitness at a time step (episode) where the population size817

is n and the mean phenotype z̄. Since the gradient of ∆ρ is the same as that of ρ, under certain818
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assumptions of inheritance (see Discussion in the main text), we can write the expected response819

to selection as:820

∆z̄ = h2σ2
z

r̄
φ + r̄

∇ρ̄(z̄, n, z̄∗) , (A1.7)

where h2 is the heritability, and the selection gradient is taken with respect to z̄. Note that we821

insert z̄∗ = z̄ to clarify that the selection gradient is with respect to the direct effect of the mean822

phenotype on fitness. Notice that at equilibrium, defined by W̄ = 1, we have r̄ = 1 − φ giving:823

∆z̄ =
h2P∇ρ̄(z̄, n, z̄∗)

T
, (A1.8)

where T = 1/(1− φ) is the generation time measured at equilibrium. For a fluctuating population,824

however, the factor r̄/(φ+ r̄) is a function of z̄ and N, and therefore fluctuates around T. In a finite825

population, with zero mean and variance in ∆z̄ during a generation, the genetic drift is h2P/(N),826

and during a time step h2P/(NT), giving:827

∆z̄ = h2P
r̄

φ + r̄
∇ρ̄(z̄, N, z̄∗) +

√
h2P/(NT)Udri f t , (A1.9)

where Udri f t is a standard normal variable.828

It is important to note that ∆z̄ will represent the strength of selection on the mean phenotype829

when survival (φ) is independent of the phenotype and when the population is at equilibrium. We830

present an analogous equation expressed in terms of the estimates of a regression on individual831

fitness in Appendix 3.832
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Scenario Gradient (∇v̄)
Direct selection W(z, n) bz + 2bq z̄
Density dep.-selection W(z, n) bz + 2bq z̄ + bznn
Frequency dep.-selection W(z, z̄) bz + 2bq z̄ + bzz̄ z̄
Dens.- freq.-dep. selection W(z, n, z̄) bz + 2bq z̄ + bzz̄ z̄ + (bzn + bzz̄n z̄)n

Table A1.1: Equations to predict the fluctuations in mean fitness and thus the effects on population size, as well
as the expected changes in mean phenotype in the population based on the equations presented in the text. For the
definitions of parameters see Table 1 in the main text.

Appendix 2: Expected selection diferentials833

We can approximate the selection gradients that contribute to the expected evolutionary change834

in the mean phenotype of the population from one time step to the next based on the log-linear835

effects of the phenotype on fitness (w). It is important to keep in mind here that we are focusing836

on several time steps together, where both the mean fitness of the population and the selection837

gradients fluctuate due to changes in the number of individuals in the population and its mean838

phenotype. The different scenarios presented in the main text assume that fitness (w) is dependent839

upon an individual’s phenotype (z), population size (n) and the mean phenotype of the population840

(z̄). The fitness function can thus be written as:841

W(z; n, z̄) . (A2.1)

The models presented in the main text describe the effects of phenotypes and population size on842

log fitness, ln w, which can thus be thought of as a population growth rate measure (v). Therefore,843

the underlying fitness model is: ln W = v(z; n, z). At a given value of z̄ and n, the population844

growth rate fluctuates around the expected value v̄ = ¯lnW, which is the expected value of v with845

respect to variation in z in the population within a time-step. The deviation ∆v of each phenotype’s846

expected growth rate v from the population mean growth rate (v̄) in a given time-step can thus be847

expressed as:848

∆v = v − v̄ . (A2.2)
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We can infer a phenotypes fitness (W) from its growth rate (v) using a first order approximation,849

where850

W = ev̄+∆v ≈ W̄ + W̄∆v . (A2.3)

The corresponding approximation to the fitness function at z̄ and n can thus be expressed as:851

W(z, z̄, n) = W̄ + W̄∆v(z, n, z̄) , (A2.4)

where the expected population size in the next time step is equal to nev̄, and the relationship852

between the phenotype and relative fitness can then be expressed as:853

W
W̄

=
W̄ + W̄∆v(z, n, z̄)

W̄
= 1 + ∆v(z, n, z̄) . (A2.5)

The selection gradient is now given by the gradient of relative fitness taken only with respect to the854

z̄ resulting from averaging over the distribution of z in the population. The gradient of ∆v can be855

thought of as the covariance between the trait and relative fitness for a given time step (episode)856

where the population size is n and the mean phenotype z̄. Note that log fitness is very similar to857

dividing fitness by its mean, and thus the model involving v is a very close approximation to a858

model of relative fitness ( w
w̄ ). The selection gradient for a given episode can thus be approximated859

based on the estimates (β) from the log-linear effects on fitness. The directional selection gradient860

will vary as a function of how far the mean phenotype of the population is from the optimum861

phenotype, while under density- and frequency-dependent selection it will also depend upon n and862

z, respectively, and in the most complex scenario we have sketched in the main text, it can depend863

upon both. Since the gradient of ∆v is the same as that of v̄, we can write the expected evolutionary864

change as:865

∆z̄ = h2P∇v̄(z̄, N, z̄∗) , (A2.6)

where h2 is the heritability, P is the phenotypic variance, and the gradient is taken with respect866

to z̄. Note that we insert z̄∗ = z̄ to specify that the gradient here is with respect to the direct867
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effect of the phenotype on fitness. It is very important to clarify that this equation can be used868

to predict the expected evolutionary change in our simulation because fitness variation is solely869

caused by effects on recruit production and we are assuming a very simplistic mode of inheritance870

(e.g. no permanent environmental effects). Utilizing the number of recruits as a measure of fitness871

has been shown to provide estimates of selection gradients that will produce biased estimates of872

the expected evolutionary change. If the aim is to estimate the expected evolutionary change from873

one episode to the next, it is important to disentangle the effects of the phenotype on fecundity874

(zygotes produced), juvenile survival and adult survival. Appendix 1 provides an alternative way875

to estimate these selection gradients, which can provide more precise statistical estimates when the876

effects of the phenotype on individual fitness are only mediated through fecundity.877

Appendix 3: Supplementary equations for the density-dependent selection sce-878

nario879

The equilibrium population size when there is density-dependent selection can be expressed as:880

n̂ = −
2βnβq − βznβz − 2

√
β2

znβ2
qσ2

z + β2
nβ2

q − βnβznβqβz + β2
znβqβ0

β2
zn

. (A3.1)

The equilibrium phenotype when there is density-dependent selection can be expressed as:881

ẑ = −
2βnβq +

√
β2

znβ2
qσ2

z + β2
nβ2

q − βnβznβqβz + β2
znβqβ0

βznβq
. (A3.2)
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Figure A1: Equilibrium mean phenotypes and population densities for density- and frequency-density-dependent
selection. In these scenarios, the optimal phenotype partly depends upon the population density, while population
density also depends upon the optimal phenotype. For (A) the density-dependent selection scenario, we can derive
the analytical expectation of the equilibrium population density and mean phenotype based upon the parameters of the
multiple regression equation (see Appendix 3). However, this is often not possible, and an alternative approach is
to use the parameters from the multiple regression equation to predict the expected mean phenotype for a given (log)
population size, depicted here as the more vertical lines, and the predicted (log) population size for a given mean
phenotype, represented here by the more horizontal lines. The point of intersection of these two lines, denoted by
the filled dots, corresponds to the equilibrium mean phenotype and population size in each case. Colours represent
the strength of the coefficients βzn and βzz̄n capturing how the optimal phenotype depends upon the characteristics of
the social environment. The non-filled dots represent the equilibrium mean phenotype and population densities from
different individual-based simulation scenarios (see Table 2). The white dots represent the reference scenario, where
the only effect of the social environment on fitness is mediated by density regulation.
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Figure A2: Distributions of the deviations (bias) of the estimated equilibrium population sizes and mean phenotypes
based upon the multiple regression parameters from the observed equilibrium mean phenotype and population size in
the individual-based simulation. The results are shown from analyzing a different number of time steps (e.g. years)
from the data generated by the individual-based simulations. We analyzed the last 10, 20, 30, 40 or 50 time steps
of the different individual-based simulations (100 data sets per scenario). We aimed to explore how the length of
the time series affected the accuracy (and bias) of these equilibrium estimates based upon the parameters of the
generalized linear mixed models. The median (points) and 95% confidence intervals of the differences are presented.
All models used to analyze the data included year and individual as random effects. The fixed effect structure and
error distributions were presented in the main text equations. Colours correspond to the different magnitudes of social
environment effects on fitness. Blue shows the scenarios with negative effects of the social environment, and yellow
shows the scenarios with positive social environment effects. The colour coding corresponds to the one in the main
text
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