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Abstract

The composition of microbial communities underlies many ecosystem functions. Co-occurrence

networks offer insights into the complexity of microbial interactions, particularly in highly di-

verse environments where direct observation is challenging. However, identifying the scale at

which local and non-local processes structure co-occurrence networks remains challenging be-

cause it requires simultaneously analyzing network structure within and between local networks.

Using the rumen microbiome of 1,012 cows in seven European farms, we built a multilayer net-

work in which microbes (nodes) are linked within and between farms (layers), effectively creating

a meta-co-occurrence network. At the local scale, we tested for a non-random transitive signa-

ture (the tendency of a microbe to close triangles) because transitivity indicates environmental

similarities or interaction dependence. At the non-local scale, we tested for partner fidelity

because if microbes tend to conserve their interaction partners more than expected by chance,

co-occurrence is not determined locally. We further tested at which scale (farm vs. regional)

the partition of microbes to modules of densely co-occurring microbes was prominent. Via

comparison to shuffled networks, we discovered that, although core microbes appeared across

the entire system, there were non-random signatures of local and non-local co-occurrence pat-

terns. Microbes had transitive interactions and tended to conserved partners across farms.

Microbes in four farms were clustered separately (each farm in a module), providing a signa-

ture for a strong but not complete influence of local processes. The genetic structure of cow

populations partly explains modularity, indicating that environmental filtering is an important

force shaping co-occurrence. Our results provide evidence for the scale at which interconnected

co-occurrence networks are structured using a clear set of hypotheses. Our developed approach

can also be used to explore local and non-local signatures in species interaction metanetworks

or metacommunities.
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1 Introduction

The composition and interaction structure (who interacts with whom) of microbial communities de-

termine their stability and function [1,2]. For example, different gut microbiome compositions are

associated with animals’ digestion [3,4]. Therefore, a central goal of microbial ecology is to understand

the mechanisms underlying microbiome composition and structure. However, it is highly challenging

in microbial systems to observe interactions (e.g., competition, cross-feeding) when diversity is high

under natural conditions. Hence, researchers use co-occurrence networks to describe the structure of

microbial communities. While co-occurrence is not direct evidence for interactions, it is a prerequisite

[5–8]. In a co-occurrence network, a link represents a statistically significant association across space

(or time). Such associations emanate from three primary process: dispersal limitation, environmental

filtering, and biotic interactions [9–11]. Therefore, the structure of microbial co-occurrence networks

is governed by a mixture of processes operating at different scales, as is also true for other network

types such as food webs [12]. Identifying the signatures of local vs. non-local processes that determine

the structure of co-occurrence networks remains a challenge and is the primary goal of this work.

At local scales, co-occurrence depends on direct and indirect interactions with other microbes. For in-

stance, competition is a selective force that occurs at a local scale because it typically requires physical

proximity [13]. Cross-feeding networks in which microbes depend on each other directly or indirectly

via the production and consumption of metabolites is another key example [14]. At the non-local

scale, processes such as environmental filtering affect local microbe composition [15,16]. For instance,

physical-chemical conditions [17,18] and temperature [16]. Therefore, co-occurrence patterns can vary

in space, for example, due to variability in environmental conditions or host characteristics [17,18].

Moreover, local communities exchange species with a ‘regional’ species pool and are interconnected

via colonization-extinction dynamics due to microbe dispersal, generating meta-communities [19,20].

Ecological networks, including co-occurrence networks, contain signatures—that is, observable pat-

terns indicative of the processes and factors that generated the network [1,21]. For example, in a

modular structure, modules represent clusters of microbes that co-occur strongly with each other but

weakly with microbes from other modules. A modular structure may be formed because microbes

from different modules occupy different ecological niches [22,23], or because they strongly interact.

One approach to detect scale signatures in structure is to analyze local co-occurrence networks sep-

arately and compare them [18,24]. However, this approach effectively treats these networks as sepa-

rate, disconnected communities. Alternatively, one can generate a single network by pooling all local

occurrence information [17]. Nevertheless, pooling microbe occurrences across zones ignores local in-

formation. Because microbe co-occurrence is governed by a mixture of processes operating at different

scales, it is necessary to analyze network structure within and between local networks simultaneously.

That is, we need a mathematical object that separates local networks on the one hand, and connects

them on the other. Multilayer networks [25] are a very powerful tool that can be applied to represent

multiple local co-occurrence networks that are interlinked, effectively creating a meta-co-occurrence

network. This framework allowed us to investigate, for the first time, local and non-local network

signatures of co-occurrence simultaneously.

We tested our questions on the ecologically relevant and highly complex microbial ecosystem of the

rumen microbiome [26]. The rumen ecosystem is a confined microbial environment in terms of abiotic

conditions. This is particularly advantageous because it allows for focused examination of interactions
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within this ecosystem, reducing biases that result from a mismatch between spatial scales of analysis

and interactions [8]. Moreover, the rumen ecosystem’s considerable importance to food security drives

a comprehensive monitoring of on-farm parameters, including diet composition and occasionally even

host genetics which enables us to establish connections between ecological patterns and their potential

determinants. We chose a rumen microbiome data set of 1,012 cows from seven European farms of

different localities that were monitored for diet and host genetics [27]. We focused our analysis on the

‘common core’ microbiome—a subset of microbes that occur in a minimum proportion of hosts [28].

Using core microbes allowed us to focus on microbes that are more likely to influence other microbes

and drive co-occurrence patterns [29]. Core microbes were also associated with cow phenotypes (e.g.,

methane emissions and dairy production) [27].

At the local scale, we hypothesized that there would be repeatable signatures of co-occurrence across

farms because the function of the rumen microbiome was consistent regardless of location. Specifically,

we tested for a non-random transitive signature such that if microbe A co-occurred with B, and

B with C, then microbe A would also co-occur with C. Transitivity is a local measure of network

clustering. Non-random transitivity would indicate that local co-occurrence structure was driven by

either similar environmental conditions (A, B, and C occupy the same niche) or that there was a

signature of interaction dependence [13]. For example, rock-paper-scissors competition dynamics can

lead to the coexistence of three species [30].

At the non-local scale, we performed two analyses. At the microbe (node) level, we hypothesized

that the extent to which a focal microbe will interact with the same partners across farms would be

determined by a mix of non-local and local factors. We tested this hypothesis using partner fidelity

[31]. If microbes tend to conserve their interaction partners more than expected by chance, then co-

occurrence is not a local feature but rather repeatable at higher scales. At the mesoscale network level,

we tested at which scale—farm, country, or regional (across countries)—the partition of microbes to

modules was prominent. We hypothesized that the overlap between modules and farms would contain

signatures of scale and the genetic background of the cow hosts.

Via comparison to shuffled networks, we discovered that, although core microbes appeared across

the entire system, there were non-random signatures of local and non-local co-occurrence patterns.

Microbes had transitive interactions, and they tended to conserved partners across farms. Notably,

the modular structure of the meta-co-occurrence network could be partly explained by the genetic

structure of cow populations.

2 Methods

2.1 Data

We used data from Wallace et al. [27]. Rumen microbiome samples were collected from 1012 cows.

The cows were divided into two cow breeds located in four different countries in Europe: 816 Holstein

dairy cows in the United Kingdom (farms UK1 and UK2) and Italy (farms IT1, IT2, and IT3), and

196 Nordic Red dairy cows in Finland (farm FI1) and Sweden (farm SE1). Cows were fed highly

controlled diets. The Holsteins received a maize silage–based diet, while the Nordic Reds received

a nutritionally equivalent diet based on grass silage as forage (Table S1). In the original study [27],

the farmers did not reveal the farm identity or location. Hence, the regions the farms are located in

are available, but not their exact coordinates. This does not affect our study because the signatures
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we obtained are not related to distance. Unlike wildlife, cows and the microbes within them do not

disperse freely across space.

Each rumen sample was analyzed for paired amplicon reads [27]. The paired reads were then run

through DADA2 using default parameters as pre-merged reads. The taxonomic assignments for the

reads were performed using the SILVA database (silva nr v138). Because the data was for sequences

of the V4 region, only Prokaryotes and Archaea are included. The complete data set included 12,109

microbe ASVs, clustered at 100% similarity. The microbiome samples were composed primarily of

bacteria (99%), and the rest were archaea, or unknown.

We used the ‘common core’ microbes in each farm [27,28] to focus on the signal produced by the key

microbes. Wallace et al. [27] defined the common core microbes as those occurring at ≥ 50% of cows

within a farm, remaining with 454 microbes. Even at this strict threshold, the core microbes strongly

predicted the cow phenotype (e.g., methane emission, lactation). Therefore, this can be considered as

the ‘functional core’ [28]. Nevertheless, a 50% threshold is stringent as it includes only 3.7% of ASVs,

which omits variation in occurrence that can influence signatures in the meta-co-occurrence network.

We opted not to deviate drastically from the functional core because it is biologically meaningful.

Hence, we focused our analysis on microbes occurring in at least 30% of the cows. We also analyzed

other thresholds: 5%, 10%, and 20%. These results, sensitivity analysis, and further discussion on the

core microbiome selection are in the Supplementary Information.

2.2 Construction of farm-level co-occurrence networks

Within each farm, we constructed a co-occurrence network using a combinatorial model that provides

the probability that two ASVs significantly positively or negatively co-occur [32] (implemented with

R package co-occur v1.3 [33]) (Fig. 1A-B). Statistical significance of co-occurrence is determined per

ASV-pair by calculating the combinatorial probability that the two ASVs will randomly co-occur with

a probability equal to, or more than, observed in the data. The calculation considers their prevalence

in cows and the number of cows. If this probability is smaller than 5%, we considered an intralayer

co-occurrence link (Fig. 1B). We note that there are several methods to detect co-occurrence in

microbial communities, each with its advantages and disadvantages [6]. In reality, no method will

detect the ‘true’ co-occurrence. We used Veech’s method [32] for three reasons. First, it has a ‘built-

in’ null hypothesis whereby p values are calculated using a distribution-free probabilistic model [32].

It, therefore, avoids potential biases due to randomization-based null models [34]. Second, our data

were binary (presence/absence of a microbe in cows). Third, it has been widely used and found to be

a robust method, including in studies of microbial communities [35,36].

We drew a link for microbe pairs with statistically significant positive co-occurrences. Calculation

of co-occurrence uses the cows, so these are not included in the resulting network. Hence, in the

farm-level co-occurrence networks (layers in the multilayer network), nodes were ASVs (Fig. 1B). The

combinatorial model was solely used to determine the existence of co-occurrence links (wα
ij ∈ {0, 1}).

We used these binary networks to calculate transitivity and partner fidelity, indices that use binary

networks (see below).
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Fig. 1: Network construction. (A) Occurrence data consisted of microbes in cows. The four cows in this
toy example belong to the same farm. (B) For each farm, we calculated the probability that two microbes
will co-occur across the cows. Co-occurrence calculation creates a microbial co-occurrence network without
cows. Microbes are connected whenever the co-occurrence is statistically significant. (C)We connected the
farm co-occurrence networks to form a multilayer co-occurrence network. In this network, layers (depicted
as polygons) are farm-level networks (panel B). Intralayer link weight, wα

ij (depicted as link width), is the

Jaccard similarity in the cow identities where the microbe pair occurs (Methods). Interlayer links (wαβ
i ;

purple) connect a microbe to itself between farms. The weight of interlayer links is the UniFrac similarity
between the co-occurring partners of each focal microbe. (D) Density plots of intralayer (orange) and
interlayer (purple) link weights. (E) Example for transitivity (see Methods for details on calculations). (F)
Example for partner fidelity. The blue bacteria has low fidelity as it changes partners across farms, while
the green bacteria has high fidelity as it maintains partners (see Methods for details on calculations).

2.3 Clustering coefficient

We tested transitivity (Fig. 1E) in co-occurrence by calculating the clustering coefficient. The clus-

tering coefficient of a microbe i, CCi, is defined as the number of closed triangles (three connected

nodes, including i) out of all possible triangles: CCi = 2Ni/(ki(ki − 1)), where Ni is the total number

of links between i’s neighbors and ki is the degree (number of links) of i. If none of the co-occurring

partners of a focal microbe co-occur with one another, CCi will be 0. In contrast, if all the neighbors

of a microbe co-occur among themselves, CCi will be 1. Because CCi can be biased when the degree

is low (it is easier to close triangles), we only calculated CC for ASVs with ten or more partners [37].

2.4 Partner fidelity

Partner fidelity captures the tendency of an ASV to co-occur with the same ASVs in different layers

(farms) (Fig. 1F). Mathematically, this translates to how similar the partners of a focal ASV are

across layers [31]. For each focal ASV i, we created a table in which columns are the farms in which
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the ASV occurs, and rows are the focal ASV’s co-occurring partners within each farm (see diagram

in Fig. S7). Table entries were 1 if a partner occurred in a farm or 0 otherwise. We used the table to

calculate the Jaccard similarity in partners between farms (performed with R package vegan v2.5-7

[38]). We used the mean of the resulting similarity matrix as a measure of partner fidelity that we

termed P J
i . This index ranges from 0 to 1 when the identities of co-occurring partners of a microbe i

are completely discordant or exactly the same, respectively.

However, some microbes are highly similar in their sequence and can effectively be phylogenetically

close strains. Therefore, microbe identity (the ASV label in the data set) may not reveal the complete

picture. To account for phylogeny, we calculated partner fidelity as we did for PU
j , using UniFrac [39]

instead of Jaccard. We used the R package GUniFrac version 1.4 [40]. We termed this index PU
i .

UniFrac is a similarity index that considers the degree of divergence between ASV sequences instead

of ASV identity. If the lineages of a microbe’s partners in different farms are distinct (no branches

shared), PU
i approximates 0; in contrast, if they share the maximum possible branch length, PU

i is 1.

For UniFrac, we first constructed a phylogenetic tree. We used the genetic sequences to reconstruct

an initial phylogenetic tree using a neighbor-joining method (using the R package ape v5.6-2 [41]).

Specifically, the conversion from sequence to distance is calculated according to the Tamura and Nei

model [42]. The likelihood of this initial tree was computed given the original data, and its parameters

were optimized (using the R package phangorn v2.8-1 [43]). The significance of the fitting was tested

using ANOVA and AIC (R package stats v4.1.2 [44]).

2.5 Network shuffling for statistical tests

We tested for non-random co-occurrence patterns by creating 500 shuffled networks for each farm. We

randomly distributed the microbes between cows within each farm, conserving the number of microbes

a cow hosts. This is a conservative algorithm because allowing the number of microbes per cow to

vary would make it easier to detect statistically significant results (increasing false positive rates) [45].

This strengthens our results, ensuring that the non-random patterns revealed are statistically strong

and biologically meaningful. After redistributing microbes, we recalculated the farm’s co-occurrence

network. This process was repeated 500 times per farm, resulting in 3,500 shuffled networks.

2.6 Calculating significance using z-scores

We tested for non-random patterns in transitivity by comparing CCi of each ASV i to that obtained

for the same ASV in the layer across 500 shuffled networks using a z-score, following [31]. Z-scores are

calculated as

zi =
CCempirical

i − CC
shuffled
i

σshuffled
, (1)

where CC
shuffled
i and σshuffled are the mean and standard deviation of the transitivity obtained from

the 500 shuffled networks. Hence, a positive (negative) z-score suggests that transitivity is higher

(lower) than expected if microbes were randomly distributed across cows. The significance of each

empirical value was determined at the 0.05 level: a z-score > 1.96 or < −1.96 indicates that CCi is

greater or lower than the random expectation, respectively.

Network shuffling also alters the partners of each microbe in a farm and, therefore, serves as an

adequate null model for testing partner fidelity. The calculation of z-scores and significance for P J
i
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and PU
i was done exactly the same as for CCi.

2.7 Construction of a meta-co-occurrence multilayer network

For the modularity analysis, we connected the farm-level co-occurrence networks to form a multilayer

network (Fig. 1C). Intralayer link weights (wα
ij) encode the similarity in the cow identities of each pair

of microbes i and j within layer α. The weight of any intralayer link wα
ij connecting an ASV i to j

within a farm α was calculated as

wα
ij =

nij

ni + nj − nij
, (2)

where ni and nj are the number of cows in which microbes i and j occur, respectively, and nij are

the number of cows in which both occur. Therefore, when the two microbes co-occur in the same

individual cows wα
ij = 1. Intralayer links were undirected such that wα

ij = wα
ji (Fig. 1B,C).

To create a multilayer co-occurrence network, we connected between instances of the same ASV across

layers (farms) using interlayer links (Fig. 1C). Interlayer links have been applied multiple times in

ecological multilayer networks and are the major advantage of using multilayer networks [25,46–49].

We calculated the value of an interlayer link wαβ
i connecting an ASV i to itself between layers α and

β as the UniFrac similarity between the partners of i. We preferred UniFrac to Jaccard because it

better represents microbe biology. Note that the value of an interlayer link is not the value of PU
i

because PU
i is averaged across all the layers in which i occurs, whereas the interlayer link is calculated

per two layers. Interlayer links were undirected (wαβ
i = wβα

i )

The interlayer link definition encodes the extent to which local vs global processes affect local co-

occurrence and maps local co-occurrence patterns to the meta-community level. If the node has

identical co-occurrence partners, the interlayer link is 1, giving high weight to global processes. Al-

ternatively, if a microbe tends not to conserve its co-occurring partners, the interlayer link value

approximates 0, reflecting that mainly local processes determine co-occurrence (if all interlayer links

are 0, then farms are completely disconnected). Using a similarity measure for both the intra- and

interlayer links places them on the same scale (bounded 0 to 1; Fig. 1D), ensuring that the modularity

algorithm is not a-priori biased towards intralayer or interlayer processes [46,50].

2.8 Modularity analysis

We used Infomap via the R package ‘infomapecology’ [50] to capture the modular structure of the

meta-co-occurrence multilayer network. Infomap is a flow-based algorithm designed explicitly for

multilayer networks. The advantage of using an algorithm dedicated to multilayer networks is that

it allows detecting modules that cross layers [25,50] and, therefore, contain microbes from different

farms. Hence, a module is a group of ASVs that co-occur more with each other than with other ASVs

within and across farms.

Briefly, Infomap detects the optimal network partition based on the movement of a random walker on

the network (see [50–52] for details). For any given network partition, the random walker moves across

nodes in proportion to the weight of the edges. The amount of information it costs to describe the walk

is quantified using the objective function L called the map equation. The optimal network partition is

the one that minimizes L [51]. In multilayer networks, nodes representing observable entities such as

ASVs are called physical nodes, and nodes describing the occurrence of ASVs in the layers are called

state nodes. The random walker moves from state node to state node within and across the layers on
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intra- and inter-links, respectively. Therefore, the multilayer network representation is not merely an

extended network with unique nodes in all layers, and a module can encompass multiple farms. In

addition, a physical node (ASV) can be assigned to different modules in different layers.

We tested for statistical significance in modularity by comparing the value of the observed network to

those obtained from 500 shuffled multilayer networks. We recalculated the interlayer links for each set

of seven network layers from the 500 shuffled iterations to create a shuffled multilayer co-occurrence

network.

2.9 Analysis of cow population genetics

We analyzed population genetic structure for cows for which we had genetic and microbiome data

(935 out of 1012 cows: 741 Holsteins and 194 Nordic Reds). The data set had 67785 shared SNPs.

First, we computed a genetic similarity matrix. We used a frequency-weighted allele-sharing similarity

(FWASS) approach, in which a greater weight is assigned to shared rare alleles than to shared com-

mon alleles when computing genetic similarity between a given pair of individuals [53,54]. We then

used the genetic similarity matrix to compute hierarchical population genetic structure by computing

hierarchical clustering using the Ward method.

2.10 Code and data

All data and code will be available upon acceptance.

3 Results

3.1 Microbe diversity

Our threshold criteria resulted in 946 microbes (931 bacteria and 15 archaea) across the 1012 cows.

The vast majority belonged to the Bacteroidetes (52.7%) and Firmicutes (27.8%) phyla. At the family

level, microbes belonged mostly to Prevotellaceae (37.6%), followed by Lachnospiraceae (12.9%) (Fig.

S1). The number of microbes ranged from 42 to 505 per cow across farms (mean±sd: 269.7±104;

Figs. S2,S3). Farms varied in the number of microbes and cows they contained (Table 1). In addition,

the occurrence of microbes in farms and cows was skewed with most microbes occurring in few farms

and cows and a tail of microbes that occur across all the meta-community (Fig 2).

Table 1: Summary statistics of farms. a: number of cows; b: number of microbial ASVs (richness);
c: mean number [range] of ASVs per cow; d: number of co-occurrence links. Density is calculated as the
number of links divided by the number of possible links: 2L/(S(S − 1)).

Farm Cowsa ASVs(S)b ASVs per cowc Linksd(L) Density

FI1 100 329 185.8 [88-300] 23298 0.49
SE1 96 461 259.4 [42-389] 36783 0.35

IT1 185 307 179.8 [89-292] 20465 0.45
IT2 176 566 349.6 [129-505] 63310 0.42
IT3 48 217 125.8 [73-188] 2776 0.13
UK1 243 490 280.3 [100-442] 71101 0.61
UK2 164 630 369.1 [145-498] 51551 0.27
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Fig. 2: Microbe distribution across cows and farms is skewed. The histograms depict the number of
cows (A) and farms (B) in which microbes occur. Most microbes occur in a few cows while a few (the tail
of the distribution in (A)) occur in almost all cows. Over 70% occur in at least two farms.

3.2 Microbe co-occurrence is transitive and repeatable across farms

We first investigated co-occurrence at a local scale (within farms). The mean CCi ranged from 0.497-

0.8 in the seven farms (Fig. 3A). Transitivity was significantly larger than random for the vast majority

of microbes in all farms (Fig. 3A). Transitivity is a local signature of co-occurrence but 674 out of

946 microbes (≈ 70%) occur in more than one farm (Fig 2B). We therefore asked if the occurrence of

microbes in different farms leads to repeatable patterns of co-occurrence, which we quantified using

partner fidelity. We first used Jaccard similarity as a partner fidelity score (P J
i ). The mean P J

i across

the microbes that occurred in two or more farms was 0.19±0.08 (mean±sd) with a maximum of ≈ 0.4

(Fig. 3B). In 86.4% of microbes P J
i was higher than expected from a random distribution of microbes

across cows. Considering phylogeny (using PU
i ) increased partner fidelity, as expected. The mean PU

i

score was 0.477 ± 0.08. Comparison to shuffled networks showed that almost 50% of microbes (284

out of 649) tended to have smaller genetic distances between their co-occurring partners across farms

than expected at random (Fig. 3B). The higher values and lower proportion of significant partner

fidelity in PU
i are expected because the probability of conserving the same ASV labels (used in P J

i )

is low due to the high number of ASVs.

3.3 The meta-co-occurrence network contains a mix of local and non-local signatures

Partner fidelity indicates that patterns of co-occurrence can be determined and detected at a non-

local scale. To determine the scale at which signatures of co-occurrence are most prominent, we

used modularity analysis to detect clusters (modules) of highly connected microbes. Our alternative

hypotheses are as follows. If local processes dominate, then modules will correspond to local farms
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Fig. 3: Microbe transitivity and partner fidelity are higher than expected by random. (A) Box plots
depict the values of the clustering coefficient CCi across all microbes within a farm. (B) Distributions
of 649 microbes’ partner fidelity calculated with Jaccard (P J

i ) and UniFrac (PU
i ). The pie charts in both

panels depict the proportion of microbes whose CCi, P
J
i and PU

i is significantly greater (green), lower
(orange) or non-significant (blue). Significance was calculated with a z-score test comparing the observed
index of each microbe to that obtained from 500 shuffled networks of each farm (see Methods for the
description of the null model). Microbes are predominantly involved in transitive co-occurrence within each
farm (A) and maintain their co-occurrence partners between farms (B) more than expected at random.

(Fig. 4A). At the other extreme, if global factors dominate, then the network will have a single module

that encompasses all microbes in all farms (Fig. 4C). This scenario is likely because some microbes

occur in all farms, linking them (Fig. 2B). Between these two extremes, other partitions are possible.

Specifically, if host genetic background is a strong determinant of co-occurrence then we should expect

two modules (Fig. 4B), corresponding to the northern (SE, FI) and southern (UK, IT) farms because

they differ in cow breed (Table S1). Testing these alternative hypotheses requires a mathematical

object that separates network farms on the one hand, and connects them on the other. We solved this

problem using a multilayer network, which represents a meta-co-occurrence [25,46] (Fig. 1C).
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to a module of its own. (B) Host genetic background determines modularity. The two modules correspond
to two cow breeds (Methods, Table S1). (C) Global processes determine co-occurrence. In this scenario,
all the farms are assigned to a single module that encompasses all the network. (D) The results of the
analysis show a mix of these hypotheses. Colored circles are modules. While the Swedish and Finish farms
are separated from the Italian and Uk farms, they are also each in a module of its own. Moreover, UK2
is in its own module. However, two Italian farms and one UK farm are connected. (E) The layer-level
network. Each node is a farm and its size is proportional to the number of microbes occurring in the farm
(Table 1). Links indicate that at least one microbe connects the two farms via an interlayer link. Link
width is proportional to the number of interlayer links in the multilayer co-occurrence network. The nodes
are depicted as pie charts that detail the percentage of microbes in that farm in each module, while every
color is a different module. Module colors in E correspond to those in D.
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The meta-co-occurrence network contained 10 modules. Four of these modules contained only 0.48%-

2.86% of nodes within a farm and therefore presented an extremely weak signal. To focus on the

strongest signal, we removed modules that contained less than 3% of the microbes within a farm (Fig.

S4). With the exception of UK2, virtually all the microbes in a given farm belonged to the same module

(Fig. S4). Hence, in UK2 strong local processes may generate structure within the farm. Comparison

to shuffled networks showed that the modular structure was significantly non-random. More than

99% of the shuffled networks were consistently partitioned into a single large module that contains

all farms. Furthermore, partitioning of the empirical network provided a more optimal solution than

shuffled networks (P < 0.002, Fig. S6).

The partitioning of the observed network into modules represented a mix of our alternative hypotheses.

Farms SE1, FI1, IT2, and UK2 did not share modules with other farms, suggesting that local processes

dominate co-occurrence structure. However, IT1, IT3 and UK1 were clustered in a single module. The

assignment of two farms to the same module is likely when they share microbes. A follow-up beta-

diversity analysis indicated that this is not the case (Fig. S5). For example, although UK1 and

UK2 are in separate modules, they share many microbes (UniFrac similarity 0.73; see link weights in

Fig. 4E). Therefore, although farms do share many microbes, they still belong to different modules,

indicating that local processes generate structure.

To test the hypothesis that the modular structure is determined by the breed of the cow (Fig. 4B) we

analyzed the population genetic structure of the cows. The hierarchical population genetic structure

corresponded well, though not perfectly, with our hypothesis (Fig. 5). At level 1, the two breeds were

clearly sorted into two clusters, with all the Nordic Reds from Finland and Sweden forming one cluster,

and all Holsteins from both the UK and Italy forming a second cluster. This level corresponds to the

module partitioning between the northern (SE, FI) and southern (UK, IT) farms. At level 2, we found

an additional structure by country of origin within the Nordic Reds: 95/100 of the individuals from

Finland and 46/94 individuals from Sweden formed one cluster, and 48/94 Swedish cows together with

the remaining five Finnish cows formed a second cluster. However, the structure at this second level

was less prominent and can only partially explain the separate modules of SE1 and FI1. In addition,

there was no clear signature for separation between UK and IT at this level. The lower levels of the

hierarchy (levels 3-11) show increasingly fine-scale population genetic structure within each breed, but

without correspondence between the genetic structure and farm. Therefore, cow genetic population

structure does not explain why microbes from UK2 and IT2 belong to a single module and why

microbes in IT2 and UK2 did not share modules with the other farms in UK and IT.
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Country
FI
SE
UK
IT

Breed
Nordic
Holstein

Farm
FI1
SE1
UK1
UK2
IT1
IT2
IT3

Fig. 5: Cow genetic population structure. The genetic similarity was calculated using SNPs data
(see Methods), followed by clustering using Ward hierarchical clustering according to the genetic distance.
Clustering was performed on 935 cows for which both SNP and microbiome data was available. Each leaf
in the tree is a cow and colors indicate the cows’ breed, country and farm.

4 Discussion

Highly diverse microbial communities are often studied using co-occurrence networks because direct

physical interactions are impossible to observe. Nevertheless, the relative contributions of local and

non-local processes to the structure of co-occurrence networks still need to be studied. We addressed

this challenge using a meta-cooccurrence network analyzed as a multilayer network. We showed that

co-occurrence patterns were repeatable across farms, with a strong phylogenetic component. We

further found a non-random modular signature determined by a mix of local and non-local processes.

At a local scale, co-occurrence was nonrandomly transitive in virtually all microbes regardless of the

farm. Although several studies have quantified transitivity, its interpretation has been vague [6,16,55].

From a statistical perspective, a transitivity value is only informative with proper comparisons with

a null model. We solved the latter issue by comparing the transitivity of each microbe to random

expectations. The high and non-random transitivity we found results partly from a high core microbe

threshold because a high threshold includes few microbes that occur in many cows (Fig. S9). However,
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this is not the only explanation. From a biological perspective, transitivity can result from multiple

mechanisms that are difficult to disentangle but could serve as a hypothesis for further studies. The

coexistence of three microbes (transitivity is triangle closure) can result from shared habitat preferences

(environmental filtering). This is likely because, within a farm, cow hosts were genetically similar (same

breed) and fed the same diet. However, theory predicts that when two microbes depend on metabolites

produced by a third one, they will compete with each other [6,56]. Therefore, faster-growing bacteria

should prevail without stabilizing mechanisms that maintain coexistence. Our results suggest that

stabilizing mechanisms, such as fluctuating resources, niche separation, and host-pathogen dynamics,

allow microbe coexistence. Identifying these mechanisms and their interplay with environmental

filtering is currently an open question.

At the non-local scale, a focal microbe tends to maintain phylogenetically similar partners across

farms. About half of the microbes conserved phylogenetically similar partners, more than expected

from a random occurrence of microbes in cows. There are two non-mutually exclusive explanations for

this pattern. First, if biotic interactions determine co-occurrence, a phylogenetic signal would appear

among a microbe’s partners across farms because it maintains partners that fulfill similar functions

(assuming that phylogeny is a proxy for function). Second, although the farms are located in different

countries, there are similar environmental conditions across all farms that filter similar microbial

functions that are cohesive with phylogenies and, therefore, enforce the occurrence of phylogenetically

similar microbes.

The structure of co-occurrence networks was shown to depend on environmental conditions [57–60].

However, previous studies compared disconnected networks assembled from samples originating in

different environments. In contrast, we leveraged a multilayer approach to test for multiple alternative

hypotheses. Unraveling signatures of scale-dependent processes in a meta-co-occurrence network can

only be done using a multilayer network with interlayer edges because unless nodes are linked between

layers, any modularity algorithm will analyze each layer independently, not being able to detect

modules that span layers [50,52]. Although farms were similar in their microbial composition, they

were still partitioned into different modules. Therefore, local processes have a substantial effect on

modularity. This result is in line with a previous study that showed mixed effects of climate and

local interactions on microbial communities of the pitcher plant Sarracenia purpurea [60]. Here, host

genetics can serve as an environmental filter for microbes, determining occurrence [19]. We showed

that the modular structure of the meta-co-occurrence network can be partially explained by cow

population genetic structure. Specifically, module separation between the northern (SE1 and FI1) and

the southern farms and between the northern farms corresponded to cow population genetic structure.

One confounding factor is that the farms in the UK and Italy received maize silage, while the farms

in Sweden and Finland received grass silage. Nevertheless, while diet type could affect microbiome

composition, this is highly unlikely because the diet was nutritionally equivalent in all farms. Finally,

the module separation between FI1 and SE1 could be explained by different cow housing conditions in

these two farms. Other factors, such as climate, can also influence microbial composition via effects on

the host environment. For instance, in a controlled experiment, the structure of a microbial network

was affected by environmental temperature [16].

Our study has several limitations. First, we used presence-absence data. We opted not to use reads as

abundance estimates due to known limitations [61]. Nevertheless, microbes with low prevalence but
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high occurrence could influence co-occurrence structure. Second, we used a threshold to define the

‘common core’ [28]. While such a threshold is necessary and common practice in co-occurrence studies

[28], it may influence the observed patterns. We performed a sensitivity analysis and detected a quan-

titative effect of threshold choice. However, the effect of the threshold was qualitatively predictable

(see discussion in SI). It is also worth noting that this study was conducted on endo-symbiotic mi-

crobes by using data sampled from a mammalian gut. Studying samples of free-living microbes could

reveal a different structure and is a relevant direction for further research.

Despite these limitations, our study significantly contributes to community and microbial ecology.

First, we demonstrate an approach to creating and analyzing the structure of a meta-co-occurrence net-

work with an informative set of alternative hypotheses. This approach is not limited to co-occurrence

networks. Future studies can use it to explore local and non-local signatures in species interaction

(meta)networks or metacommunities. Identifying suc signatures remains little studied [12]. Second,

understanding the mechanisms underlying microbe distribution and interactions is an open question

in microbial ecology. We discovered local and non-local signatures in co-occurrence structure, which

were linked to the population genetic structure of the animal host. Finally, the methodology and

results presented here are relevant to community ecology, where community assembly theory is mainly

developed for macroscopic organisms.
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Supplementary Information

Table S1: Details of Wallace et al.’s [27] study design.

Farm Breed Diet Housing

UK1

Holstein dairy cows
Maize silage, grass silage or
grass hay, and concentrates

Group-housed
UK2
IT1
IT2
IT3

SE1
Nordic Red dairy cows Grass silage and concentrates

Group-housed
FI1 Individual standings

SE1

IT2 IT3 FI1

UK1 UK2 IT1

Phylum

Actinobacteriota

Bacteroidota

Campilobacterota

Desulfobacterota

Elusimicrobiota

Euryarchaeota

Fibrobacterota

Firmicutes

Patescibacteria

Planctomycetota

Proteobacteria

Spirochaetota

Thermoplasmatota

Verrucomicrobiota

NA

Fig. S1: ASV taxonomy dominated by Bacteroidetes and Firmicutes. The relative richness—number
of ASVs that belong to a certain Phylum out of all ASVs—in each farm. The two largest phyla are
Bacteroidetes and Firmicutes.
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Fig. S2: ASV distribution. (A) A histogram showing the number of ASVs per cow (across farms). (B)
Bar plots of the number of ASVs per farm (across cows).
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Fig. S3: ASV richness. Box plots of the distribution of number of ASVs in cows, within each farm.
Colors depict countries.
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Module ID

No threshold(A)

UK1
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IT1
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IT3

FI1

SE1
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Module ID

0.00
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0.50

0.75

1.00

With threshold (0.03)(B)

Fig. S4: Partition of the multilayer network to modules. Each matrix shows the module IDs (x-axis)
to which nodes from a given farm (y-axis) belong. Color scale corresponds to the proportion of ASVs from
each farm that were assigned to a module (rows sums to 1). (A) All the modules. For example, IT3 was
partitioned to five modules (1,2,7,8,9), 3 of which contain very few nodes (the purple ones). (B) The same
modules, after removing modules that contained less than 3% of the microbes within the farm. Removing
this noise clarifies that almost all the nodes in SE1 and in FI1 were included in separate modules (one per
farm).
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Fig. S5: ASV similarity across farms. The similarity between farms in ASV composition, calculated with
Jaccard (A) and Unifrac (B).
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Fig. S6: Modularity results are significantly different then random. (A) The value of the objective
function L was consistently lower in the observed network compared to 500 shuffled ones, indicating that
it was more modular than expected from a random distribution of microbes in cows. (B) The shuffled
networks produced predominantly a single module. Dashed line indicates the values in the observed network.
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Fig. S7: Partner fidelity calculation process. Partner fidelity calculation is done for each microbe
separately by comparing the set of co-occurring partners it has in one layer (farm) to the set of partners it
has in another layer using a beta-diversity index. (A) In this diagram partner fidelity (P J

i ) was calculated
for the pink microbe by first (B) identifying the partners is has in each layer, then (C) calculating for each
pair of layers how similar are the partners in one layer compared to the other, using Jaccard and UniFrac.
These UniFrac Values were used as interlayer edges to connect (in this case) the pink microbe in one
layer to itself in the other layer for each pair of layers (farms). (D) Lastly, the mean value of all pairwise
similarities across layers was calculated and defined as the partner fidelity of the pink microbe.
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S1 Sensitivity to thresholds of core microbes

To focus on the signal produced by the key microbes in the community, we used the common core

microbes in each farm [27,28]. We did not work with abundance or relative abundance due to known

issues with using reads as abundance estimates [61]. Therefore, core microbes were defined as ASVs

occurring in a certain proportion of cows within each farm (the ‘common core’ definition of [28]). A

general problem in deciding on a relevant threshold for setting core microbes is the trade off between

environmental adaptability to biological variation [28]. On the one hand, including too many ASVs can

skew the signal because typically most microbes are rare or occur in too few samples (here, cows). In

that case, network structure may not be representative of the relevant gut biota because low-prevalence

microbes may have little effect on community function. Moreover, computing co-occurrence networks

is extremely extensive, even when run on High Performance Computing systems. Including too many

ASVs may restrict the amount of analyses we can practically perform. On the other hand, including

too few ASVs will cause loss of ecologically meaningful variation. There is obviously no one true

answer to this problem. Our approach was therefore to start with prior knowledge of this data set.

In the original paper, Wallace et al. [27] defined core microbes as those occurring at ≥ 50% of cows

within a farm, remaining with 454 ASVs out of ≈ 12, 000 (3.7%). They showed that even at this strict

threshold, the remaining microbes can strongly predict the cow phenotype (e.g., methane emission,

lactation). Therefore, this can be considered as the ‘functional core’ [28].

High-occupancy typically suggests that microbes are well adapted to their environment and carry

functions that lead to high prevalence [28]. We therefore opted not to deviate drastically from the

functional core because it is biologically meaningful. Nevertheless, a 50% threshold is extremely strict

as it includes only 3.7% of ASVs. Additionally, the nature of the question we asked requires more

variation because the functional core, being so restricted, will be highly repetitive across cows and

farms. Therefore, we conducted a sensitivity analysis measuring the percentage of ASVs present in

cows in each farm as a function of different threshold levels (Fig. S8). While the sharpest decline was

at 5%, it was a large deviation from the functional core. In addition, this threshold had too many

bacteria for practical analysis that included shuffled networks. Given that after this drop, the curve

did not change drastically, we opted to work with a threshold of 30%, remaining with 946 ASVS.

This allowed us to relax Wallace et al.’s [27] definition while doubling the number of microbes in the

analysis. In addition, we repeated the analyses (without the shuffled networks) for the 5%, 10% and

20% threshold levels as described hereafter.

Sensitivity analysis showed that, qualitatively, the general pattern of CCi was maintained across farms.

Lower threshold include more microbes, lowering the probability that microbes will close triangles.

Therefore, within each farm, CCi increased with threshold (Fig. S9).

The qualitative differences between P J
i and PU

i was maintained as with the 30% threshold. That is,

UniFrac had generally higher similarity than Jaccard. (Fig. S10). Including more microbes (lower

thresholds) increases the number of intralayer edges compared to interlayer edges (Fig. S11A-C).

This is because decreasing the threshold increases the number of microbes that occur in a single or

few farms. These microbes have intralayer edges but not interlayer edges (which connect microbes

to themselves). Quantitatively, these intralayer edges become weak compared to the interlayer edges

because by definition these microbes occur in a few cows (that is the meaning of the threshold). The

combination of many weak intralayer edges with few stronger interlayer edges results in many small
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Fig. S8: Sensitivity analysis for core microbes. Within each farm we included ASVs that occured in
a given proportion of the cows (x-axis), and quantiofied the proportion of ASVs that were defined as core
microbes. The vertical dashed line marks the threshold with which we work in the main text.

modules within each farm and a single large module between farms (Fig. S11D-F). This module by

definition contains those microbes that occur in all farms, which are likely to be the more prevalent

microbes (those included in the analysis in the main text). This single module indicates global pro-

cesses. These are likely the processes that effectively determine the ‘functional core’. Note that in the

20% threshold, the farms are start to show tendency to be separated from the rest, resembling the

results in the main text.

Overall, the sensitivity analysis shows that the patterns we obtained in the 30% threshold, which is

close to the ‘functional core’ found in Wallace et al. [27] provides a good balance between a biologically

meaningful set of microbes and ability to discern the scale of the processes that define it.
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Fig. S11: Sensitivity analysis of modularity. (A)-(C) Distributions of the intralayer and interlayer edges
for the 5%, 10% and 20% thresholds, respectively. With higher thresholds, the number of intralayer edges
decreases (y-axis) and they become stronger (x-axis). Conversely, the number of interlayer edges increases
and there is a better balance between the two edge types. (D)-(F) The modules for the same order of
thresholds. There is a single large module encompassing all farms. Within each farm, there are many small
modules, resulting from an excessive number of nodes. This trend decreases with increasing thresholds.
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57. Araújo, M. B., Rozenfeld, A., Rahbek, C. & Marquet, P. A. Using species co-occurrence networks

to assess the impacts of climate change. Ecography 34, 897–908. doi:10.1111/j.1600-0587.

2011.06919.x (2011).

58. Tu, Q. et al. Biogeographic patterns of microbial co-occurrence ecological networks in six Amer-

ican forests. Soil Biol. Biochem. 148, 107897. doi:10.1016/j.soilbio.2020.107897 (2020).

59. Baldassano, S. N. & Bassett, D. S. Topological distortion and reorganized modular structure of

gut microbial co-occurrence networks in inflammatory bowel disease. Sci. Rep. 6, 26087. doi:10.

1038/srep26087 (2016).

60. Freedman, Z. B. et al. Environment-host-microbial interactions shape the Sarracenia purpurea

microbiome at the continental scale. Ecology 102, e03308. doi:10.1002/ecy.3308 (2021).

61. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome Datasets Are

Compositional: And This Is Not Optional. Front. Microbiol. 8, 2224. doi:10.3389/fmicb.2017.

02224 (2017).

28

https://doi.org/10.1111/2041-210x.13569
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1103/PhysRevX.5.011027
https://doi.org/10.1534/genetics.115.182626
https://doi.org/10.1534/genetics.115.182626
https://doi.org/10.1101/gr.250092.119
https://doi.org/10.1101/gr.250092.119
https://doi.org/10.3389/fmicb.2015.01200
https://doi.org/10.1111/j.1600-0587.2011.06919.x
https://doi.org/10.1111/j.1600-0587.2011.06919.x
https://doi.org/10.1016/j.soilbio.2020.107897
https://doi.org/10.1038/srep26087
https://doi.org/10.1038/srep26087
https://doi.org/10.1002/ecy.3308
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.3389/fmicb.2017.02224

	Introduction
	Methods
	Data
	Construction of farm-level co-occurrence networks
	Clustering coefficient
	Partner fidelity
	Network shuffling for statistical tests
	Calculating significance using z-scores
	Construction of a meta-co-occurrence multilayer network
	Modularity analysis
	Analysis of cow population genetics
	Code and data

	Results
	Microbe diversity
	Microbe co-occurrence is transitive and repeatable across farms
	The meta-co-occurrence network contains a mix of local and non-local signatures

	Discussion
	Sensitivity to thresholds of core microbes

