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Abstract: In macroecology, a classic empirical observation has been positive relationships 1 

between local abundance and species' range, known as the abundance-occupancy relationships 2 

(AORs). The existence of this empirical relationship has informed both theory development and 3 

applied questions. Notably, the spatial neutral model of biodiversity predicts AORs. Yet, based 4 

on the largest known meta-analysis of 16,562,995 correlations from ~3 billion bird observations, 5 

this relationship was indistinguishable from zero. Further, in a phylogenetic comparative 6 

analysis, species range had no predictive power over the global mean abundance of 7,464 bird 7 

species. We suggest that publication and confirmation biases may have created AORs, an 8 

illusion of a ‘universal’ pattern. This nullification highlights the need for ecologists to instigate a 9 

credibility revolution like psychology, where many classic phenomena have been nullified.  10 

 11 
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Main 1 

A positive interspecific relationship between abundance and distribution —abundance-2 

occupancy relationships (AORs) — is considered one of the most general and robust patterns in 3 

ecology (1-4). Sometimes referred to as a macroecological law (5, 6), the AOR asserts that 4 

empirically locally abundant species tend to be widely distributed, and conversely, locally rare 5 

species tend to be geographically restricted in their range. The mechanism driving this 6 

relationship was never proven, and it remains unresolved why species distribution should affect 7 

per-unit-area abundance (or vice versa). Nonetheless, the existence of a pervasive AOR has 8 

underpinned many practical applications in ecology and conservation (7), for example, setting 9 

harvest rates for fisheries (8), managing invasive species by restricting expansion rather than 10 

local elimination and identifying species at high risk of extinction in biodiversity inventories 11 

such as the IUCN Red List Criteria (9). Given the increasing human-induced land-use changes in 12 

the Anthropocene (10), concomitantly with increasing debate about global biodiversity change 13 

[cf. (11)], fully understanding the relationship between abundance and range size is increasingly 14 

important. 15 

 16 

Many plausible biological mechanisms have been proposed for AORs, yet none of them has 17 

unequivocal support (3, 4, 12, 13). Among all mechanisms, it is noteworthy that a spatially 18 

explicit neutral model of biodiversity and biogeography can generate AORs (14, 15). 19 

Specifically, this macroecological ‘null’ model can produce a positive correlation between 20 

species range (or occupancy) and their per-unit-area local as well as total global abundance. This 21 

observation, in turn, supports the utility of neutral theory as a null model of community and 22 

macroecology (14). Although neutral theory may provide a biological null model, an additional 23 
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null hypothesis is that AOR does not exist. Indeed, sampling bias can create AORs because 1 

locally rare species are more likely to be missed, resulting in an underestimation of range size or 2 

occupancy, thereby generating a positive relationship (13, 16). Yet, this sampling explanation 3 

has long been discarded as a plausible mechanism leading to observed patterns (2, 3, 17). This is 4 

because of substantial empirical evidence for positive interspecific relationships, including a 5 

meta-analysis of 279 effect sizes with an overall effect of r = 0.58 (or its Fisher’s transformation: 6 

Zr = 0.66) in 2006 (1). It does not seem that sampling bias alone could explain this remarkably 7 

strong relationship.  8 

 9 

Nonetheless, a large amount of variation does exist in empirical patterns of AORs, including 10 

strikingly negative relationships (12, 18-20). Some of the observed heterogeneity is likely to be 11 

due to different aspects of sampling, such as the number of species and spatial and temporal 12 

coverage (3, 4, 12). Also, other types of bias could generate artefactual AORs: namely 13 

‘confirmation bias’, where sampling is prejudiced to support one’s hypothesis and ‘publication 14 

bias’, where statistically significant relationships are preferentially reported and published. 15 

Although both biases are widespread, including in ecological studies (21-23), no studies so far 16 

systematically considered or quantified both biases in the context of AORs [cf. (1)]. 17 

Furthermore, there has, until recently, been a lack of large and methodologically consistent data 18 

resources, therefore leaving a traditional meta-analytic approach as the best available option for 19 

testing the validity and generality of the AOR. 20 

 21 

A citizen science dataset to test AORs  22 
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Here, we use data from eBird — a global citizen science dataset aimed at counting birds — to 1 

quantify the relationship between local-scale (and global-scale) abundance and global-scale 2 

range size as a proxy for occupancy (AOR). This approach is similar to previous works [e.g, 3 

(16)]; they pointed out that the use of arbitrary cut-offs in many AOR studies can lead to 4 

artifactual positive AOR relationships). By examining this relationship across a global dataset, 5 

we aim to test whether the classic AOR pattern holds at a broader scale using citizen science 6 

data, which provides a more comprehensive spatial coverage than traditional studies. Previous 7 

AOR studies often focused on local or regional scales, defining occupancy within specific 8 

patches or habitats. In contrast, our approach uses global range size to explore how generalizable 9 

AOR patterns are when scaled up to global datasets, providing insights into whether the same 10 

positive relationship persists across diverse environments and species distributions. 11 

Large citizen science datasets collected for non-hypothesis-driven purposes are not random 12 

samples [see (24)], but they have the advantage of avoiding biases such as confirmation and 13 

publication bias. Also, using the eBird dataset allows us to estimate heterogeneity due to 14 

sampling intensity (e.g., the duration of a sampling event directly influences the number of 15 

species recorded). Specifically, we can quantify how AOR will change in relation to increases in 16 

species richness and sampling duration, both of which are predicted to reduce the magnitude of 17 

AORs (3, 4, 19).  18 

For occupancy, we use global range size not only because global range size should be relatively 19 

stable — ‘local’ range sizes for one species could vary dramatically — but also because different 20 

types of occupancy measures were deemed to contribute less to the observation heterogeneity 21 

(25, 26). Fortunately, for birds, a large database of global range sizes has already been compiled 22 

(27). For abundance, we use two different measurements: local species counts and local mean 23 



 

6 
 

density, as follows. First, we carry out the largest known meta-analysis by synthesizing 1 

correlations between global range sizes of 7,635 species and local species counts collected across 2 

16,562,995 eBird checklists (resulting in 16,562,995 Zr values and corresponding sampling 3 

variances; Fig. 1). These checklists all included counts of each species present and the duration 4 

of observation (hereafter, effort time).  5 

Second, we conduct a phylogenetically controlled comparative analysis, regressing species range 6 

sizes on 7,464 estimates of globally derived species’ mean density, equivalent to mean local 7 

density (per 5-degree grid cell), estimated in earlier work (28) (see Methods for more details). 8 

Given the different potential biases mentioned before, we expected a more modest relationship in 9 

relation to that of the previous meta-analysis (r = 0.58; note that this relationship included many 10 

different taxa; if restricted to bird species, it was even stronger r = 0.74 or Zr = 0.95) (17). Also, 11 

although no such empirical evidence appears to exist, it seems feasible that in filling in an eBird 12 

checklist, some people may undercount common and widespread species while they may 13 

overcount rare and geographically restricted species. If this is the case, the relationship (AORs) 14 

could be further weakened. Yet, if such overcounting and undercounting were present, we expect 15 

it would introduce large heterogeneity into our dataset because that type of behaviour would not 16 

be consistent across all contributors, and they would sometimes result in negative AORs, 17 

increasing variability among the 16,562,995 Zr values.  18 

 19 

Overwhelming support against AOR  20 

Surprisingly, the overall (aggregated) relationship between local abundance and global 21 

occupancy was near-zero (r = 0.015), although this relationship was statistically significant due 22 
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to our extremely large sample size (p = 0.0005, z = 2.805, Zr = b[overall mean] = 0.015, 95% 1 

confidence interval, CI = [0.004, 0.025]; Fig. 2, Table S1). However, this significant relationship 2 

disappeared (r = 0.0009) once we controlled for species number and effort time (p = 0.863, z = 3 

0.173, Zr = b[overall mean] = 0.0009, 95% CI = [-0.0092, 0.0111]); both variables were statistically 4 

significant predictors of the effect. As expected, the increase in species number (modelled as the 5 

inverse of species number - 3, which is equivalent to sampling error for Zr) and effort time on 6 

the natural log scale, decreased the strength of the relationship (sampling variance: p < 0.0001, z 7 

= 140.29; b[sampling variance] = 0.0147, 95% CI = [-0.0149, -0.0145]); ln(effort time): p < 0.0001, z = 8 

-183.45, b[ln(effort time)] = 0.230, 95% CI = [0.226, 0.233]; marginal R2 = 5.1% for the model with 9 

these two predictors; (29); Table S2-4). These observations are consistent with the explanation 10 

that sampling protocols can create positive artifactual relationships between range and 11 

abundance.  12 

 13 

Even more remarkably, our meta-analysis suggested that the AOR is likely indistinguishable 14 

from zero even with a larger dataset because the observed heterogeneity among effect sizes was 15 

very small (i.e., most effect sizes were effectively zero after accounting for sample size). A 16 

measure of relative heterogeneity I2[total] was 13.5%, meaning that 86.5% of all the observed 17 

variation (in Fig. 2) is due to sampling error, therefore, is neither biological nor ecological 18 

(country level; I2 = 5.5%, σ2 = 0.005; state level: I2 = 6.3%, σ2 = 0.005; effect-size level; I2 = 19 

1.5%, σ2 = 0.001); in contrast, the average I2[total] across 86 ecological meta-analyses was 20 

approximately 92% (30), making our observed heterogeneity unusually low. Low relative 21 

heterogeneity, however, does not necessarily mean absolute heterogeneity is also low (31). We 22 

found the absolute heterogeneity, σ2[total] = 0.011, approximately one-thirtieth of the 23 

heterogeneity (σ2[total] = 0.323) found in the previous meta-analysis (1). Also, this is around one-24 
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tenth of the average heterogeneity (σ2[total] = 0.125; median = 0.105), found in 31 meta-analyses 1 

in ecology and evolution (23). Overall, low relative and absolute heterogeneities indicate that our 2 

dataset of 16,562,995 effect sizes does not have much variability left to be explained despite our 3 

observations coming from many different locations across the globe and contributed by tens of 4 

thousands of individual birdwatchers. Importantly, we emphasize that this combination of zero 5 

effect and very small heterogeneity is only expected when a particular phenomenon is not real. 6 

 7 

Moreover, our phylogenetic comparative analysis, which accounted for phylogenetic uncertainty 8 

(32), corroborated our meta-analytic results [cf. (33)]. The global range sizes had little predictive 9 

power on mean species density (both on log10; p = 0.808, t99.6 = 0.0227, b[slope] = 0.0928, 95% CI 10 

= [-0.1615, 0.2068]; Fig. 3, Table S5). Taken together, our results provide overwhelming 11 

evidence against the fundamental relationship between species range and local abundance, while 12 

the results are consistent with this relationship as a sampling artifact. Nevertheless, our results 13 

are also consistent with previously published empirical evidence. This is because we have shown 14 

that relationships between global species ranges and local counts can be null, strongly negative, 15 

or strongly positive, which can be generated primarily by sampling (error) variance (shown in 16 

Fig. 2).  17 

 18 

Lawless macroecology and non-neutral theory: implications 19 

Our results demonstrate clearly that the AOR is not observed in a very large global dataset, with 20 

both applied and theoretical ramifications. First, we must reconsider fishing quotas, conservation 21 

priorities, and invasive species control strategies based on AORs [cf. (7)]. Second, it may be 22 
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futile to pursue all ecological or biological mechanisms proposed for AORs [see (3, 13)]. We 1 

cannot exclude, however, the possibility of AORs occasionally emerging in some restricted areas 2 

because there was a small unexplained variance in the meta-analytic dataset. Most notably, our 3 

near-zero results with small heterogeneity suggest that contrary to earlier suggestions (14, 15), 4 

the spatial neutral model is not a suitable null model of macroecology. Within the neutral 5 

theoretical framework, AORs can be broken by local adaptation (an alternative hypothesis) (14). 6 

If local adaptation were to disrupt a predicted positive relationship (AOR), we would have 7 

observed substantial heterogeneity and a reduced relationship, not a near-zero relationship. This 8 

is because it is extremely unlikely that local adaptation and neutral processes are in a perfect 9 

balance, resulting in an exact-zero relationship with little heterogeneity. In other words, local 10 

adaptions are expected to create local specificities and global variability/heterogeneity; our meta-11 

analysis did not find such variability.  12 

 13 

We point out that any model of a positive AOR posits a mechanism that connects species range 14 

and local abundance on the one hand. Rabinowitz, on the other hand, effectively decoupled these 15 

two variables (34) although studies using her framework found positive correlations between 16 

species range and local abundance (35). Our results are consistent with this decoupling. By 17 

adding habit specificity to species range and abundance, she suggests seven forms of rarity, 18 

which could reflect different underlying macroecological mechanisms; for example, two forms 19 

of rarity are geographically restricted but locally abundant with narrow or broad habitat types. 20 

Unlike the world created by the spatial neutral model, our results support many such ‘rare’ 21 

species (35). In this regard, it is no longer surprising that AORs do not exist. Therefore, we 22 

believe Rabinowitz’s framework, rather than the AOR, has more empirical support from global-23 
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scale patterns of species abundance and provides a useful conceptual structure for future 1 

theoretical and applied work, although this line of work is still limited. 2 

Potential limitations of current work and future work 3 

The primary aim of our study was to demonstrate the potential of large-scale citizen science 4 

datasets, such as eBird, to revisit and refine longstanding macroecological relationships. These 5 

data, with their global coverage and unprecedented spatial resolution, offer unique opportunities 6 

to explore broad-scale patterns beyond the scope of traditional, localized studies [e.g., (4)], 7 

Although our findings challenge some long-held assumptions about the consistency of the 8 

abundance-occupancy relationship, our work only deals with interspecific AORs among birds, 9 

synthesizing observations from potentially heterogeneous locations, ecological contexts, and data 10 

quality. Therefore, we hope this work serves as we view this study as a foundation for further 11 

investigations that utilize such comprehensive datasets. 12 

Future studies could delve deeper into specific ecological factors that may shape interspecific 13 

AORs if they do exist. For instance, investigating how islands might influence abundance-14 

density patterns could shed light on density release, where species on islands achieve higher 15 

densities due to reduced competition and predation. Additionally, exploring the impact of 16 

latitude and climate, such as how Rapoport’s rule may lead to more extensive ranges and 17 

population sizes in temperate regions (9) could provide valuable insights into the variability of 18 

AORs across geographic and climatic gradients. Similarly, examining species-specific traits, 19 

including body size or wing morphology, may uncover correlations with range size and 20 

abundance. We further acknowledge that we did not account for anthropogenic changes in 21 

populations or range sizes in our analyses and, therefore, we included alien species without 22 
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separating them from native ones. More precise range-size estimates would also improve the 1 

accuracy of AOR assessments since species range data are often overestimated due to the failure 2 

to capture gaps in actual distributions (36). 3 

Beyond these biological and ecological factors, methodological refinements using citizen science 4 

data are also needed (37). Our approach, which relies on relative abundance measures, provides a 5 

starting point. While our approach relies on relative abundance measures as a starting point, 6 

more sophisticated methods are needed to account for known biases (e.g., differences in species 7 

detectability, observer experience) in citizen science data so as to enhance the precision of future 8 

macroecological studies. We therefore encourage further work to explore novel analytical 9 

approaches and statistical frameworks designed to handle these inherent biases, including 10 

variation in both observer effort and detectability across species and habitats. Such 11 

improvements should help clarify the conditions under which AORs may emerge, remain weak, 12 

or are fully decoupled. 13 

A credibility revolution in ecology beyond biases and crises 14 

Whilst we provided an explanation for the non-existence of AOR with our work’s limitations in 15 

mind, it still feels hard to comprehend the extent of overestimation in the previous meta-analysis 16 

(r = 0.58 for all taxa; r = 0.74 for birds) (1, 17). We have shown that some bias may be due to 17 

sampling bias. However, we speculate that much of the overestimation originates from 18 

publication bias and confirmation bias, which is supported by mounting evidence from meta-19 

research studies (21-23). Although we do not have direct evidence, our eBird datasets are free 20 

from these two types of biases (i.e., birdwatchers generally do not think of the macroecological 21 

patterns that would later be tested with the data they submit), while the literature-based meta-22 
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analyses are not. Regarding publication bias, the original meta-analysis of AOR states, “the fail-1 

safe number indicates that more than half a million unpublished null results would be required to 2 

nullify an effect of this magnitude” (1). Indeed, we provided much more than a half million null 3 

effects to reach our null conclusion (Fig. 2). However, we should note that large datasets like 4 

eBird have other biases than publication or confirmation biases (24). For example, it is possible 5 

that by excluding checklists with a single ‘X’ (see Methods), we are preferentially removing 6 

abundant species as birdwatchers may report ‘X’ for more common species with high 7 

abundances. 8 

 9 

A recent study reexamining 86 ecological and evolutionary meta-analyses demonstrated a 23% 10 

reduction in overall effects due to publication bias, turning 33 of 50 statistically significant meta-11 

analytic conclusions (66%) into non-significant (23). Similarly, a study examining 83 topics in 12 

life sciences showed that the effect size of non-blind studies, which are at risk of confirmation 13 

bias, was twice as large as blinded counterparts protected against confirmation bias (21).  Meta-14 

research on behavioral ecology identified 79 studies on nestmate recognition, 23 of which were 15 

conducted blind (22). Non-blind studies confirmed a hypothesis of no aggression towards 16 

nestmates nearly three times more often. It is possible that confirmation bias was at play in 17 

earlier AOR studies.  18 

 19 

We finish with an intriguing parallel topic to AORs in psychology, where the current replication 20 

crisis started (38, 39). There have been over 100 studies, and many theoretical models support 21 

the hypothesis of ‘ego depletion’ where self-control is a finite resource, so self-control will 22 

decrease once it is exerted (40). The first meta-analysis of ego depletion, like AOR, suggested a 23 
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very strong support for it (standardized mean difference, or d = 0.62). Yet a subsequent multi-lab 1 

replication found that ego-depletion does not exist and is so weak as to be negligible (d = 0.04) 2 

(41). Indeed, a series of multi-lab replications has indicated that several psychological 3 

phenomena, which were once believed to be real beyond a reasonable doubt, are too weak to be 4 

useful or are nonexistent (42). In ecology, recently collated large datasets collected for non-5 

hypothesis-driven purposes offer a unique opportunity to revisit and retest longstanding ideas.  6 

 7 

Taken together, we call for reexamining all ecological laws, rules, and patterns, as very few 8 

topics are free from sampling, confirmation, and publication biases [cf. (43)]. To counter such 9 

biases, we urgently require a ‘credibility revolution’, a more optimistic name for a replication 10 

crisis, turning this crisis into an opportunity to improve science. A credibility revolution in 11 

ecology, like in psychology, needs to embrace non-traditional to avoid confirmation and 12 

publication bias, such as pre-registration (44), registered reports (45), prospective and living 13 

meta-analyses, open synthesis communities (46), and big-team-science collaborations (47) 14 

involving community (citizen) scientists (37).   15 
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Methods 1 

Quantifying abundance-occupancy relationship at the local-scale 2 

We used the eBird dataset (48, 49) to assess the relationship between local-scale abundance and 3 

occupancy (i.e., global range size). eBird, launched in 2002 by the Cornell Lab of Ornithology, is 4 

a global citizen science project that enlists volunteer birdwatchers to submit ‘checklists’ of birds 5 

seen and/or heard while birdwatching. Data undergo a semi-automated filtering process before 6 

being entered into the dataset, and expert reviewers additionally review species (or counts of 7 

species) that surpass pre-set filters before being accepted into the dataset (50). Importantly, 8 

birdwatchers must indicate whether they are submitting a ‘complete’ checklist representing all 9 

birds that an individual birdwatcher was able to identify during their birdwatching outing. 10 

Further, birdwatchers can either submit the count of a species during their birding, or they can 11 

submit an ‘X’ to signify that a species was present but not estimate the number of individuals 12 

present during their birdwatching outing. 13 

 14 

We downloaded the eBird basic dataset (version ebd_rel-May2020) and considered all eBird 15 

checklists between January 1st, 2005 and May 31st 2020. We then performed some quality 16 

assurance, applying an additional set of filters to the data, potentially removing any ‘outliers’ that 17 

could produce undue leverage on our results. The following filtering was completed [sensu (24, 18 

51)]. We only included: (1) complete checklists; (2) checklists that were <240 minutes and >5 19 

minutes; (3) checklists that travelled < 5km; and (4) checklists that travelled < 500 ha. Because 20 

birdwatchers will sometimes use an ‘X’ to signify presence, and this is most likely to happen for 21 

more abundant species, we excluded any checklist that had at least an “X” on it, as this could 22 

potentially influence the correlation between the abundance of a species and range size by 23 
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disproportionately removing the most abundant species from the correlation. This exclusion 1 

aimed to ensure that correlations between local abundance and range size were not distorted by 2 

the lack of abundance data for highly observable, widespread species, and providing all species 3 

on a checklist with an abundance estimate maximizes the interpretability of the relative 4 

abundance measure in our work. We further only considered checklists that had at least ten 5 

species recorded on them, and a correlation test was performed only if we had range size data 6 

(see below) for a minimum of 4 species on the checklist. 7 

 8 

We used range size maps from BirdLife International (27), using their global range, ignoring the 9 

differences between resident and breeding ranges. We chose to use the global range because of 10 

the difficulty of defining species occupancies using grid cells (i.e., almost infinite ways of 11 

defining occupancy) and the importance of using the entire species distribution range pointed out 12 

by earlier studies (e.g., (16)) due to sampling artifacts. When an eBird checklist met the 13 

aforementioned criteria, we performed a correlation test using Pearson’s correlation coefficient 14 

from the cor.test function in R (52). Both the counts of every species and the range size were log-15 

transformed before estimating a correlation (for a workflow, see Fig. 1). We obtained 16,562,995 16 

correlations based on 3,005,668,285 individual bird observations, including 7,635 species. We 17 

note that we conducted all computational and statistical work using R and we created plots using 18 

the R package, ggplot2 (53), patchwork (54) and their dependencies.  19 

 20 

Meta-analysis of Big Data 21 

We transformed correlations between species abundance and range into Fisher’s Z o Zr to 22 

unbound and calculated sampling variance for each Zr value; note that the inverse of the 23 
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sampling variance of Zr is N (the number of species in a checklist) – 3 (see Fig 1). We used the R 1 

package, asreml (55) to run a multilevel random-effects model (56); note the asreml is a 2 

commercial package, so it is not free. Our large meta-analyses with ~17 million effect sizes were 3 

only able to run with asreml given the computational time required for such a large dataset. We 4 

had ‘country’ (245 levels) and state code (2,871 levels) as random factors in the model to control 5 

for non-independence. In addition, to quantify the variance component for these two clustering 6 

factors and also at the level of effect sizes (16,562,995 levels), we modelled ‘units’ (the effect 7 

size level random effect or residuals) in the asreml function with ‘the number of species - 3’ as 8 

the ‘weights’ argument and asr_gaussian(dispersion = 1) as the ‘family’ argument. We also 9 

obtained the multilevel versions of I2 (30, 57) to obtain relative heterogeneity for our meta-10 

analytic model (Table S1; also, all models used in this study are summarized in Table S6). 11 

 12 

To gauge the impacts of potential biases, we fitted two moderators: 1) the z-transformed version 13 

of ln(checklist duration) as a surrogate for the amount of effort for observation and 2) sampling 14 

variance, which is usually used to detect publication bias, more specifically, small study bias 15 

where effect sizes from small studies can create ‘funnel asymmetry’, creating bias in meta-16 

analytic overall mean (58) (cf. Fig. 2). We ran two uni-moderator models and one multi-17 

moderator model with both moderators (three meta-regression models in total; Table S2-4). We 18 

estimated the multilevel model versions of R2 (29).  19 

 20 

Quantifying the abundance-occupancy relationship at the macro-scale 21 

To corroborate our local-level analysis described above, we quantified an additional macro-scale 22 

analysis of the relationship between abundance (i.e., density) and occupancy (global range size). 23 
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For this, we used data from a recently published analysis of global abundances for birds within 1 

5-degree grid cells (28). This dataset was derived by integrating expert-derived abundance 2 

measures with a large, less structured global citizen science dataset using a multiple-imputation 3 

technique to estimate density within 5-degree grids for 9,700 bird species (575 girds). We used 4 

these predicted density estimates from each grid cell and, for each species, took the mean of all 5 

density estimates in the grid cells for which a species was found. This mean density was then our 6 

measure of macro-scale abundance. For our measure of occupancy, we used a summation of all 7 

range sizes for the grids a species was found in, calculated by using range maps from BirdLife 8 

International focusing on the entire extent of a species' extant range, ignoring the effect of 9 

transient species. Our analysis incorporated a total of 7,464 species of bird species, 10 

corresponding to the species for which we had both range maps and estimated density, along 11 

with phylogenetic information included in (59).  12 

 13 

Phylogenetic comparative analysis 14 

To statistically test whether there was an effect of abundance and occupancy at the macro-scale, 15 

we used phylogenetic comparative analysis.  This analysis also addresses the issue of positive 16 

interspecific AORs potentially arising from not accounting for phylogenetic relatedness among 17 

species examined (9). We used avian phylogeny from Jez et al. (59), and analysed 100 18 

phylogenetic trees using the R function phylolm (60). Resulting estimates from the 100 models 19 

were merged using Rubin’s rules, as described in (32), to obtain current estimates and errors that 20 

accounted for phylogenetic uncertainty (Table S5); we implemented this procedure using the R 21 

function miInference from the norm2 package (61).   22 



 

18 
 

References 1 

1. T. M. Blackburn, P. Cassey, K. J. Gaston, Variations on a theme: sources of heterogeneity in the form of 2 
the interspecific relationship between abundance and distribution. J Anim Ecol 75, 1426-1439 (2006). 3 

2. K. J. Gaston, The multiple forms of the interspecific abundance-distribution relationship. Oikos 76, 211-4 
220 (1996). 5 

3. K. J. Gaston, T. M. Blackburn, J. H. Lawton, Interspecific abundance range size relationships: An appraisal 6 
of mechanisms. J Anim Ecol 66, 579-601 (1997). 7 

4. C. Ten Caten, L. Holian, T. Dallas, Weak but consistent abundance-occupancy relationships across taxa, 8 
space and time. Global Ecol Biogeogr 31, 968-977 (2022). 9 

5. K. J. Gaston, T. M. Blackburn, A critique for macroecology. Oikos 84, 353-368 (1999). 10 
6. J. H. Lawton, Are there general laws in ecology? Oikos 84, 177-192 (1999). 11 
7. K. J. Gaston, Implications of interspecific and intraspecific abundance-occupancy relationships. Oikos 86, 12 

195-207 (1999). 13 
8. D. P. Swain, R. Morin, Relationships between geographic distribution and abundance of American plaice 14 

(Hippoglossoides platessoides) in the southern Gulf of St Lawrence. Can J Fish Aquat Sci 53, 106-119 15 
(1996). 16 

9. K. J. Gaston et al., Abundance-occupancy relationships. J Appl Ecol 37, 39-59 (2000). 17 
10. S. L. Lewis, M. A. Maslin, Defining the Anthropocene. Nature 519, 171-180 (2015). 18 
11. B. Leung et al., Clustered versus catastrophic global vertebrate declines. Nature 588,  (2020). 19 
12. P. D. Wilson, The pervasive influence of sampling and methodological artefacts on a macroecological 20 

pattern: the abundance-occupancy relationship. Global Ecol Biogeogr 17, 457-464 (2008). 21 
13. M. K. Borregaard, C. Rahbek, Causality of the Relationship between Geographic Distribution and Species 22 

Abundance. Q Rev Biol 85, 3-25 (2010). 23 
14. G. Bell, Ecology - Neutral macroecology. Science 293, 2413-2418 (2001). 24 
15. S. P. Hubbell, A unified theory of biogeography and relative species abundance and its application to 25 

tropical rain forests and coral reefs. Coral Reefs 16, S9-S21 (1997). 26 
16. C. E. Bock, R. E. Ricklefs, Range Size and Local Abundance of Some North-American Songbirds - a 27 

Positive Correlation. Am Nat 122, 295-299 (1983). 28 
17. T. M. Blackburn, K. J. Gaston, Sometimes the obvious answer is the right one: a response to 'Missing the 29 

rarest: is the positive interspecific abundance-distribution relationship a truly general macroecological 30 
pattern?'. Biol Letters 5, 777-778 (2009). 31 

18. J. Paivinen et al., Negative density-distribution relationship in butterflies. Bmc Biol 3,  (2005). 32 
19. A. Komonen, J. Paivinen, J. S. Kotiaho, Missing the rarest: is the positive interspecific abundance-33 

distribution relationship a truly general macroecological pattern? Biol Letters 5, 492-494 (2009). 34 
20. J. S. Kotiaho, A. Komonen, J. Paivinen, On the obvious positive interspecific relationship between 35 

abundance and distribution: a reply to Blackburn and Gaston. Biol Letters 5, 779-780 (2009). 36 
21. L. Holman, M. L. Head, R. Lanfear, M. D. Jennions, Evidence of Experimental Bias in the Life Sciences: 37 

Why We Need Blind Data Recording. Plos Biol 13,  (2015). 38 
22. E. van Wilgenburg, M. A. Elgar, Confirmation Bias in Studies of Nestmate Recognition: A Cautionary 39 

Note for Research into the Behaviour of Animals. Plos One 8,  (2013). 40 
23. Y. F. Yang et al., Publication bias impacts on effect size, statistical power, and magnitude (Type M) and 41 

sign (Type S) errors in ecology and evolutionary biology. Bmc Biol 21,  (2023). 42 
24. C. T. Callaghan, M. B. Lyons, J. M. Martin, R. E. Major, R. T. Kingsford, Assessing the reliability of avian 43 

biodiversity measures of urban greenspaces using eBird citizen science data. Avian Conserv Ecol 12,  44 
(2017). 45 

25. P. D. Wilson, The consequences of using different measures of mean abundance to characterize the 46 
abundance-occupancy relationship. Global Ecol Biogeogr 20, 193-202 (2011). 47 

26. R. Steenweg, M. Hebblewhite, J. Whittington, P. Lukacs, K. McKelvey, Sampling scales define occupancy 48 
and underlying occupancy-abundance relationships in animals. Ecology 99, 172-183 (2018). 49 

27. BirdLife International, Species distribution data request (http://datazone.birdlife.org/species/requestdis).  50 
(2023). 51 

28. C. T. Callaghan, S. Nakagawa, W. K. Cornwell, Global abundance estimates for 9,700 bird species. P Natl 52 
Acad Sci USA 118,  (2021). 53 



 

19 
 

29. S. Nakagawa, H. Schielzeth, A general and simple method for obtaining R2 from generalized linear mixed-1 
effects models. Methods Ecol Evol 4, 133-142 (2013). 2 

30. A. M. Senior et al., Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and 3 
implications. Ecology 97, 3293-3299 (2016). 4 

31. M. Borenstein, J. P. T. Higgins, L. V. Hedges, H. R. Rothstein, Basics of meta-analysis: I-2 is not an 5 
absolute measure of heterogeneity. Res Synth Methods 8, 5-18 (2017). 6 

32. S. Nakagawa, P. de Villemereuil, A General Method for Simultaneously Accounting for Phylogenetic and 7 
Species Sampling Uncertainty via Rubin's Rules in Comparative Analysis. Syst Biol 68, 632-641 (2019). 8 

33. K. J. Gaston, T. M. Blackburn, R. D. Gregory, Interspecific abundance-range size relationships: Range 9 
position and phylogeny. Ecography 20, 390-399 (1997). 10 

34. D. Rabinowitz, in The biological aspects of rare plant conservation, H. Synge, Ed. (Wiley, New York, NY, 11 
1981), pp. 205-217. 12 

35. J. P. Yu, F. S. Dobson, Seven forms of rarity in mammals. J Biogeogr 27, 131-139 (2000). 13 
36. N. Ocampo-Peñuela, C. N. Jenkins, V. Vijay, B. V. Li, S. L. Pimm, Incorporating explicit geospatial data 14 

shows more species at risk of extinction than the current Red List. Sci Adv 2,  (2016). 15 
37. C. T. Callaghan, J. J. L. Rowley, W. K. Cornwell, A. G. B. Poore, R. E. Major, Improving big citizen 16 

science data: Moving beyond haphazard sampling. Plos Biol 17,  (2019). 17 
38. A. A. Aarts et al., Estimating the reproducibility of psychological science. Science 349,  (2015). 18 
39. M. I. Eronen, L. F. Bringmann, The Theory Crisis in Psychology: How to Move Forward. Perspect Psychol 19 

Sci 16, 779-788 (2021). 20 
40. M. Inzlicht, B. J. Schmeichel, What Is Ego Depletion? Toward a Mechanistic Revision of the Resource 21 

Model of Self-Control. Perspect Psychol Sci 7, 450-463 (2012). 22 
41. M. S. Hagger et al., A Multilab Preregistered Replication of the Ego-Depletion Effect. Perspect Psychol 23 

Sci 11, 546-573 (2016). 24 
42. A. Kvarven, E. Stromland, M. Johannesson, Comparing meta-analyses and preregistered multiple-25 

laboratory replication projects (vol 19, pg 561, 2020). Nat Hum Behav 4, 659-663 (2020). 26 
43. A. C. Hughes et al., Sampling biases shape our view of the natural world. Ecography 44, 1259-1269 27 

(2021). 28 
44. B. A. Nosek, C. R. Ebersole, A. C. DeHaven, D. T. Mellor, The preregistration revolution. P Natl Acad Sci 29 

USA 115, 2600-2606 (2018). 30 
45. C. D. Chambers, L. Tzavella, The past, present and future of Registered Reports. Nat Hum Behav 6, 29-42 31 

(2022). 32 
46. S. Nakagawa et al., A new ecosystem for evidence synthesis. Nat Ecol Evol 4, 498-501 (2020). 33 
47. N. A. Coles, J. K. Hamlin, L. L. Sullivan, T. H. Parker, D. Altschul, Build up big-team science. Nature 601, 34 

505-507 (2022). 35 
48. B. L. Sullivan et al., The eBird enterprise: An integrated approach to development and application of 36 

citizen science. Biol Conserv 169, 31-40 (2014). 37 
49. B. L. Sullivan et al., eBird: A citizen-based bird observation network in the biological sciences. Biol 38 

Conserv 142, 2282-2292 (2009). 39 
50. M. Gilfedder et al., Brokering Trust in Citizen Science. Soc Natur Resour 32, 292-302 (2019). 40 
51. A. Johnston et al., Analytical guidelines to increase the value of community science data: An example 41 

using eBird data to estimate species distributions. Divers Distrib 27, 1265-1277 (2021). 42 
52. R Core Team, R: A language and environment for statistical computing.  (R Foundation for Statistical 43 

Computing, Vienna, Austria, 2023). 44 
53. H. Wickham, in Use R!,. (Springer International Publishing : Imprint: Springer,, Cham, 2016), pp. 1 online 45 

resource (XVI, 260 pages 232 illustrations, 140 illustrations in color. 46 
54. T. L. Pedersen, patchwork: The composer of plots.  (2022), vol. R package version 1.1.2 https://CRAN.R-47 

project.org/package=patchwork. 48 
55. D. Butler, asreml: Fits the linear mixed model. .  (2023), vol. R package version 4.1.0.186 www.vsni.co.uk. 49 
56. S. Nakagawa, E. S. A. Santos, Methodological issues and advances in biological meta-analysis. Evol Ecol 50 

26, 1253-1274 (2012). 51 
57. J. P. T. Higgins, S. G. Thompson, Quantifying heterogeneity in a meta-analysis. Stat Med 21, 1539-1558 52 

(2002). 53 
58. S. Nakagawa et al., Methods for testing publication bias in ecological and evolutionary meta-analyses. 54 

Methods Ecol Evol 13, 4-21 (2022). 55 
59. W. Jetz, G. H. Thomas, J. B. Joy, K. Hartmann, A. O. Mooers, The global diversity of birds in space and 56 

time. Nature 491, 444-448 (2012). 57 



 

20 
 

60. L. S. T. Ho, C. Ane, A Linear-Time Algorithm for Gaussian and Non-Gaussian Trait Evolution Models. 1 
Syst Biol 63, 397-408 (2014). 2 

61. J. L. Schafer, norm2: Analysis of Incomplete Multivariate Data under a Normal Model.  (2021), vol. R 3 
package version 2.0.4 https://CRAN.R-project.org/package=norm2. 4 

 5 

  6 



 

21 
 

Acknowledgments: We thank Szymek Drobniak for helping run large meta-analytic models on 1 

a cluster computer system. We are also grateful to Malgorzata Lagisz, Tim Parker, Daniel Noble, 2 

Tim Blackburn, and Diana Bowler, and Luís Borda de Agua for their comments on earlier 3 

versions of this manuscript.  4 

 5 

Funding:  6 

Australian Research Council Discovery Project Grant, DP210100812 (SN) 7 

 8 

Author contributions:  9 

Conceptualization: SN, WKC & CTC 10 

Methodology: SN, WKC & CTC 11 

Investigation: SN, WKC & CTC 12 

Visualization: SN & CTC 13 

Project administration: SN 14 

Writing – original draft: SN, WKC & CTC  15 

Writing – review & editing: SN, WKC & CTC 16 

 17 

Competing interests: Authors declare that they have no competing interests. 18 

Data and materials availability: All data, code, and materials are available online unless 19 

they are too large to be archived (https://github.com/itchyshin/AORs), and they are archived 20 

in a public repository, Zenodo (https://doi.org/10.5281/zenodo.14019900).   21 



 

22 
 

Figures 1 

 2 

 3 

 4 

Figure 1. A conceptual overview of our methods. We aggregated individual eBird checklists 5 

across the world (shown on the map), represented by the three colored insets which show the 6 

relationship between global range size (x-axis) and local abundance (y-axis) and the associated 7 

correlation value. We then aggregated these checklist level measures for 16,562,995 eBird 8 

checklists into the largest-ever meta-analysis to find the global level relationship between global 9 

range size and local abundance.   10 
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 1 

Figure 2. Funnel plots.  (A) the relationship between 16,562,995 effect sizes (Fisher’s; x-axis) 2 

and their precision (the square root of the inverse of the sampling variance; y-axis). (B) the 3 

relationship between 16,562,995 correlations based on 3,005,668,285 observations of 7,635 4 

species (Pearson’s correlation coefficients; x-axis) and the number of species – 3, which is the 5 

inverse of the sampling variances for Zr (y-axis). Both plots consist of data points with the red 6 

dashed line indicating zero effect.   7 



 

24 
 

 1 

 2 

 3 

Figure 3. The relationship between species average (mean) density and species range size. 4 

We calculated the mean density of a species in 5-degree grids where species occurred (y-axis) 5 

while the species range size (x-axis) was estimated by the sum of the percentage occurrence of 6 

the species multiplied by the grid size (km2) across all the 575 grids (7,464 species). The blue 7 

line indicates an average slope line from phylogenetic comparative models with 100 different 8 

posterior phylogenetic trees.    9 
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Supplementary Materials for 2 

An illusion of the macroecological law, abundance-occupancy relationship 3 
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Table S1. Results of the intercept meta-analytic model using the  asreml function 1 

Effect Name Effect SE z value 

     

Fixed  Intercept 0.0145081 5.17e-03 2.80459 

Random Country -0.528 5.76e-04 7.915738 

Random State code 0.005161983 1.96e-04 26.331084 

Random Effect size (units) 0.001597069 2.22e-05 71.864656 

     

 2 

Table S2. Results of the meta-regression model with ‘checklist duration’ as a moderator, 3 

using the asreml function 4 

Effect Name Effect SE z value 

     

Fixed  Intercept 0.02314897 5.16E-03 4.490484 

Fixed z(ln(checklist duration)) -0.019646 7.20E-05 -272.88526 

Random Country 0.00451859 5.72E-04 7.894702 

Random State code 0.00519698 1.97E-04 26.372854 

Random Effect size (units) 0.00127717 2.20E-05 57.961243 

     

 5 

  6 
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Table S3. Results of the meta-regression model with ‘sampling variance’ as a moderator, 1 

using the asreml function 2 

Effect Name Effect SE z value 

     

Fixed  Intercept -0.0171537 5.23E-03 -3.279982 

Fixed Sampling variance 0.36149029 1.47E-03 245.747022 

Random Country 0.00466502 5.89E-04 7.91356 

Random State code 0.00530528 2.01E-04 26.4252 

Random Effect size (units) 0.00143218 2.21E-05 64.76545 

     

 3 

Table S4. Results of the meta-regression model with ‘checklist duration’ and ‘sampling 4 

variance’ as moderators, using the  asreml function 5 

Effect Name Effect SE z value 

     

Fixed  Intercept 0.00089738 5.19E-03 0.1728713 

Fixed  z(ln(checklist duration)) -0.0147034 8.01E-05 -183.44948 

Fixed  Sampling variance 0.22952897 1.64E-03 140.287413 

Random Country 0.004581054 5.80E-04 7.896078 

Random State code 0.005273559 2.00E-04 26.418513 

Random Effect size (units) 0.001272852 2.20E-05 57.801132 

     

 6 

  7 
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Table S5. Results of the phylogenetic regression using the  phylolm and miInference 1 

functions 2 

Effect Name Effect SE t value (df) 

     

Fixed  Intercept -0.91553 1.6476 -0.556 (1776.3) 

Fixed log10(range size) 0.022645 0.092832 0.244 (99.6) 

     

 3 
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Table S6. Notations of statistical models used in this study (results of these models are in Table 1 

S1-5)  2 

Model 
(results) 

Fromula Variance components (normally distributed 
with the mean of 0 and given 𝜎!  values 

Table S1 
𝑍𝑟" = 𝛽# + County$["] + State-code'["]

+ Effect-size" 

 

County$ ∼ 𝒩)0, 𝜎()*+,-.! , 

State-code' ∼ 𝒩)0, 𝜎/,0,12()31! , 

Effect-size" ∼ 𝒩)0, 𝜎4551(,26"71! , 

Sampling-error" ∼ 𝒩)0, 𝜎/089:"+;21--)-!
! , 

 
Table S2 

𝑍𝑟" = 	𝛽# + 𝛽< ∗ z(ln(checklist duration))"
+ County$["]
+ State-code'["]
+ Effect-size" 

 

County$ ∼ 𝒩)0, 𝜎()*+,-.! , 

State-code' ∼ 𝒩)0, 𝜎/,0,12()31! , 

Effect-size" ∼ 𝒩)0, 𝜎4551(,26"71! , 

Sampling-error" ∼ 𝒩)0, 𝜎/089:"+;21--)-!
! , 

 
Table S3 

𝑍𝑟" = 𝛽# + 𝛽< ∗ Sampling-variance"
+ County$["]
+ State-code'["]
+ Effect-size" 

 

County$ ∼ 𝒩)0, 𝜎()*+,-.! , 

State-code' ∼ 𝒩)0, 𝜎/,0,12()31! , 

Effect-size" ∼ 𝒩)0, 𝜎4551(,26"71! , 

Sampling-error" ∼ 𝒩)0, 𝜎/089:"+;21--)-!
! , 

 
Table S4 

𝑍𝑟" = 𝛽# + 𝛽< ∗ z(ln(checklist duration))"
+ 𝛽! ∗ Sampling-variance"
+ County$["]
+ State-code'["]
+ Effect-size" 

 

County$ ∼ 𝒩)0, 𝜎()*+,-.! , 

State-code' ∼ 𝒩)0, 𝜎/,0,12()31! , 

Effect-size" ∼ 𝒩)0, 𝜎4551(,26"71! , 

Sampling-error" ∼ 𝒩)0, 𝜎/089:"+;21--)-!
! , 

 
Table S5 

Abundance" = 𝛽# + 𝛽< ∗ log10(range size)
+ Error" 

 

Error" ∼ 𝒩(0, 𝜎1--)-! 𝐀) 

 

   
 3 
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 1 

 2 
𝑍𝑟" denotes the ith effect size, 𝛽# is the intercept, 𝛽< and 𝛽! are regression coeffects, County$ is the kth 3 
country, State-code' is the jth state code and Effect-size" is the ith effect size, and z(ln(checklist 4 
duration)), Sampling-variance and log10(range size) are fixed effects (predictors; see Method). 5 
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