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Abstract: In macroecology, a classic empirical observation has been positive relationships 

between local abundance and species' range, known as the abundance-occupancy relationships 

(AORs). The existence of this empirical relationship has informed both theory development and 

applied questions. Notably, the spatial neutral model of biodiversity predicts AORs. Yet, based 

on the largest known meta-analysis of 16,562,995 correlations from ~3 billion bird observations, 5 

this relationship was indistinguishable from zero. Further, in a phylogenetic comparative 

analysis, species range had no predictive power over the global mean abundance of 7,464 bird 

species. We suggest that publication and confirmation biases may have created AORs, an 

illusion of a ‘universal’ pattern. This nullification highlights the need for ecologists to instigate a 

credibility revolution like psychology, where many classic phenomena have been nullified.  10 
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Main 

A positive interspecific relationship between abundance and distribution —abundance-

occupancy relationships (AORs) — is considered one of the most general and robust patterns in 

ecology 1-4. Sometimes referred to as a macroecological law 5,6, the AOR asserts that empirically 

locally abundant species tend to be widely distributed, and conversely, locally rare species tend 5 

to be geographically restricted in their range. The mechanism driving this relationship was never 

proven, and it remains unresolved why species distribution should affect per-unit-area abundance 

(or vice versa). Nonetheless, the existence of a pervasive AOR has underpinned many practical 

applications in ecology and conservation 7, for example, setting harvest rates for fisheries 8, 

managing invasive species by restricting expansion rather than local elimination, and identifying 10 

species at high risk of extinction in biodiversity inventories such as the IUCN Red List Criteria 9. 

Given the increasing human-induced land-use changes in the Anthropocene 10, concomitantly 

with increasing debate about global biodiversity change [cf. 11], fully understanding the 

relationship between abundance and range size is of increasing importance. 

 15 

Many plausible biological mechanisms have been proposed for AORs, yet none of them has 

unequivocal support 3,4,12,13. Among all mechanisms, it is noteworthy that a spatially explicit 

neutral model of biodiversity and biogeography can generate AORs 14,15. Specifically, this 

macroecological ‘null’ model can produce a positive correlation between species range (or 

occupancy) and their per-unit-area local as well as total global abundance. This observation, in 20 

turn, supports the utility of neutral theory as a null model of community and macroecology 14. 

Although neutral theory may provide a biological null model, an additional null hypothesis is 

that AOR does not exist. Indeed, sampling bias can create AORs because locally rare species are 
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more likely to be missed, resulting in an underestimation of range size or occupancy, thereby 

generating a positive relationship 13,16. Yet, this sampling explanation has long been discarded as 

a plausible mechanism leading to observed patterns 2,3,17. This is because of substantial empirical 

evidence for positive interspecific relationships, including a meta-analysis of 279 effect sizes 

with an overall effect of r = 0.58 (or its Fisher’s transformation: Zr = 0.66) in 2006 1. It does not 5 

seem that sampling bias alone could explain this remarkably strong relationship.  

 

Nonetheless, a large amount of variation does exist in empirical patterns of AORs, including 

strikingly negative relationships 12,18-20. Some of the observed heterogeneity is likely to be due to 

different aspects of sampling, such as the number of species and spatial and temporal coverage 10 

3,4,12. Also, other types of bias could generate artefactual AORs: namely ‘confirmation bias’, 

where sampling is prejudiced to support one’s hypothesis and ‘publication bias’, where 

statistically significant relationships are preferentially reported and published. Although both 

biases are widespread, including in ecological studies 21-23, no studies so far systematically 

considered or quantified both biases in the context of AORs [cf. 1]. Furthermore, there has, until 15 

recently, been a lack of large and methodologically consistent data resources, therefore leaving a 

traditional meta-analytic approach as the best available option for testing the validity and 

generality of the AOR. 

 

A citizen-science dataset to test AORs  20 

Here, we use data from eBird — a global citizen science dataset aimed at counting birds — to 

quantify the relationship between abundance and occupancy (AOR). Large citizen science 
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datasets collected for non-hypothesis-driven purposes are not random samples [see 24], but they 

have the advantage of avoiding biases such as confirmation and publication bias. Also, using the 

eBird dataset allows us to estimate heterogeneity due to sampling intensity (e.g., the duration of a 

sampling event directly influences the number of species recorded). Specifically, we can quantify 

how AOR will change in relation to increases in species richness and sampling duration, both of 5 

which are predicted to reduce the magnitude of AORs 3,4,19.  

For occupancy, we use global range size not only because global range size should be relatively 

stable — ‘local’ range sizes for one species could vary dramatically — but also because different 

types of occupancy measures were deemed to contribute less to the observation heterogeneity 

25,26. Fortunately, for birds, a large database of global range sizes has already been compiled 27. 10 

For abundance, we use two different measurements: local species counts and local mean density, 

as follows. First, we carry out the largest known meta-analysis by synthesizing correlations 

between global range sizes of 7,635 species and local species counts collected across 16,562,995 

eBird checklists (resulting in 16,562,995 Zr values and corresponding sampling variances; Fig. 

1). These checklists all included counts of each species present and the duration of observation 15 

(hereafter, effort time).  

Second, we conduct a phylogenetically controlled comparative analysis, regressing species range 

sizes on 7,464 estimates of globally derived species’ mean density, equivalent to mean local 

density (per 5-degree grid cell), estimated in earlier work 28 (see Methods for more details). 

Given the different potential biases mentioned before, we expected a more modest relationship in 20 

relation to that of the previous meta-analysis (r = 0.58; note that this relationship included many 

different taxa; if restricted to bird species, it was even stronger r = 0.74 or Zr = 0.95) 17. Also, 

although no such empirical evidence appears to exist, it seems feasible that in filling in an eBird 
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checklist, some people may undercount common and widespread species while they may 

overcount rare and geographically restricted species. If this is the case, the relationship (AORs) 

could be further weakened. Yet, if such overcounting and undercounting were present, we expect 

it would introduce large heterogeneity into our dataset because that type of behaviour would not 

be consistent across all contributors, and they would sometimes result in negative AORs, 5 

increasing variability among the 16,562,995 Zr values.  

 

Overwhelming support against AOR  

Surprisingly, the overall (aggregated) relationship between local abundance and global 

occupancy was near-zero (r = 0.015), although this relationship was statistically significant due 10 

to our extremely large sample size (p = 0.0005, z = 2.805, Zr = b[overall mean] = 0.015, 95% 

confidence interval, CI = [0.004, 0.025]; Fig. 2, Table S1). However, this significant relationship 

disappeared (r = 0.0009) once we controlled for species number and effort time (p = 0.863, z = 

0.173, Zr = b[overall mean] = 0.0009, 95% CI = [-0.0092, 0.0111]); both variables were statistically 

significant predictors of the effect. As expected, the increase in species number (modelled as the 15 

inverse of species number - 3, which is equivalent to sampling error for Zr) and effort time on 

the natural log scale, decreased the strength of the relationship (sampling variance: p < 0.0001, z 

= 140.29; b[sampling variance] = 0.0147, 95% CI = [-0.0149, -0.0145]); ln(effort time): p < 0.0001, z = 

-183.45, b[ln(effort time)] = 0.230, 95% CI = [0.226, 0.233]; marginal R2 = 5.1% for the model with 

these two predictors; 29; Table S2-4). These observations are consistent with the explanation that 20 

sampling protocols can create positive artifactual relationships between range and abundance.  
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Even more remarkably, our meta-analysis suggested that the AOR is likely indistinguishable 

from zero even with a larger dataset because the observed heterogeneity among effect sizes was 

very small (i.e., most effect sizes were effectively zero after accounting for sample size). A 

measure of relative heterogeneity I2[total] was 13.5%, meaning that 86.5% of all the observed 

variation (in Fig. 2) is due to sampling error, therefore, is neither biological nor ecological 5 

(country level; I2 = 5.5%, σ2 = 0.005; state level: I2 = 6.3%, σ2 = 0.005; effect-size level; I2 = 

1.5%, σ2 = 0.001); in contrast, the average I2[total] across 86 ecological meta-analyses was 

approximately 92% 30, making our observed heterogeneity unusually low. Low relative 

heterogeneity, however, does not necessarily mean absolute heterogeneity is also low 31. We 

found the absolute heterogeneity, σ2[total] = 0.011, approximately one-thirtieth of the 10 

heterogeneity (σ2[total] = 0.323) found in the previous meta-analysis 1. Also, this is around one-

tenth of the average heterogeneity (σ2[total] = 0.125; median = 0.105), found in 31 meta-analyses 

in ecology and evolution 23. Overall, low relative and absolute heterogeneities indicate that our 

dataset of 16,562,995 effect sizes does not have much variability left to be explained despite our 

observations coming from many different locations across the globe and contributed by tens of 15 

thousands of individual birdwatchers. Importantly, we emphasize that this combination of zero 

effect and very small heterogeneity is only expected when a particular phenomenon is not real. 

 

Moreover, our phylogenetic comparative analysis, which accounted for phylogenetic uncertainty 

32, corroborated our meta-analytic results [cf. 33]. The global range sizes had little predictive 20 

power on mean species density (both on log10; p = 0.808, t99.6 = 0.0227, b[slope] = 0.0928, 95% CI 

= [-0.1615, 0.2068]; Fig. 3, Table S5). Taken together, our results provide overwhelming 

evidence against the fundamental relationship between species range and local abundance, while 

the results are consistent with this relationship as a sampling artifact. Nevertheless, our results 
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are also consistent with previously published empirical evidence. This is because we have shown 

that relationships between global species ranges and local counts can be null, strongly negative, 

or strongly positive, which can be generated primarily by sampling (error) variance (shown in 

Fig. 2).  

 5 

Lawless macroecology and non-neutral theory: implications 

Our results demonstrate clearly that the AOR is not observed in a very large global dataset, with 

both applied and theoretical ramifications. First, we must reconsider fishing quotas, conservation 

priorities, and invasive species control strategies based on AORs [cf. 7]. Second, it is probably 

futile to pursue all ecological or biological mechanisms proposed for AORs [see 3,13]. We cannot 10 

exclude, however, the possibility of AORs occasionally emerging in some restricted areas 

because there was a small unexplained variance in the meta-analytic dataset. Most notably, our 

near-zero results with small heterogeneity suggest that contrary to earlier suggestions 14,15, the 

spatial neutral model is not a suitable null model of macroecology. Within the neutral theoretical 

framework, AORs can be broken by local adaptation (an alternative hypothesis) 14. If local 15 

adaptation were to disrupt a predicted positive relationship (AOR), we would have observed 

substantial heterogeneity and a reduced relationship, not a near-zero relationship. This is because 

it is extremely unlikely that local adaptation and neutral processes are in a perfect balance, 

resulting in an exact-zero relationship with little heterogeneity. In other words, local adaptions 

are expected to create local specificities and global variability/heterogeneity; our meta-analysis 20 

did not find such variability.  
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We point out that any model of a positive AOR posits a mechanism that connects species range 

and local abundance, whereas Rabinowitz effectively decoupled these two variables 34. Our 

results are consistent with this decoupling. By adding habit specificity to species range and 

abundance, she suggests seven forms of rarity, which could reflect different underlying 

macroecological mechanisms; for example, two forms of rarity are geographically restricted but 5 

locally abundant with narrow or broad habitat types. Unlike the world created by the spatial 

neutral model, our results support many such ‘rare’ species 35. In this regard, it is no longer 

surprising that AORs do not exist. Therefore, we believe Rabinowitz’s framework, rather than 

the AOR, has more empirical support from global-scale patterns of species abundance and 

provides a useful conceptual structure for future theoretical and applied work, although this line 10 

of work is still limited. 

 

A credibility revolution in ecology beyond biases and crises 

Whilst we provided an explanation for the non-existence of AOR, it still feels hard to 

comprehend the extent of overestimation in the previous meta-analysis (r = 0.58 for all taxa; r = 15 

0.74 for birds) 1,17. We have shown that some bias may be due to sampling bias. However, we 

speculate that much of the overestimation originates from publication bias and confirmation bias, 

which is supported by mounting evidence from meta-research studies 21-23. Although we do not 

have direct evidence, our eBird datasets are free from these two types of biases (i.e., 

birdwatchers generally do not think of the macroecological patterns that would later be tested 20 

with the data they submit), while the literature-based meta-analyses are not. Regarding 

publication bias, the original meta-analysis of AOR states, “the fail-safe number indicates that 

more than half a million unpublished null results would be required to nullify an effect of this 
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magnitude” 1. Indeed, we provided much more than a half million null effects to reach our null 

conclusion (Fig. 2), although we should note that large datasets like eBird have other biases than 

publication or confirmation biases 24. For example, it is possible that by excluding checklists 

with a single ‘X’ (see Methods), we are preferentially removing abundant species as 

birdwatchers may report ‘X’ for more common species with high abundances. 5 

 

A recent study reexamining 86 ecological and evolutionary meta-analyses demonstrated a 23% 

reduction in overall effects due to publication bias, turning 33 of 50 statistically significant meta-

analytic conclusions (66%) into non-significant 23. Similarly, a study examining 83 topics in life 

sciences showed that the effect size of non-blind studies, which are at risk of confirmation bias, 10 

was twice as large as blinded counterparts protected against confirmation bias 21 [see also 22].  

 

We finish with an intriguing parallel topic to AORs in psychology, where the current replication 

crisis started 36,37. There have been over 100 studies, and many theoretical models support the 

hypothesis of ‘ego depletion’ where self-control is a finite resource, so self-control will decrease 15 

once it is exerted 38. The first meta-analysis of ego depletion, like AOR, suggested a very strong 

support for it (standardized mean difference, or d = 0.62). Yet a subsequent multi-lab replication 

found that ego-depletion does not exist is so weak as to be negligible (d = 0.04) 39. Indeed, a 

series of multi-lab replications has indicated that several psychological phenomena, which were 

once believed to be real beyond a reasonable doubt, are too weak to be useful or are nonexistent 20 

40. In ecology, recently collated large datasets collected for non-hypothesis-driven purposes offer 

a unique opportunity to revisit and retest longstanding ideas.  
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Taken together, we call for reexamining all ecological laws, rules, and patterns, as very few 

topics are free from sampling, confirmation, and publication biases [cf. 41]. To counter such 

biases, we urgently require a ‘credibility revolution’, a more optimistic name for a replication 

crisis, turning this crisis into an opportunity to improve science. A credibility revolution in 

ecology, like in psychology, needs to embrace non-traditional to avoid confirmation and 5 

publication bias, such as pre-registration 42, registered reports 43, prospective and living meta-

analyses, open synthesis communities 44, and big-team-science collaborations 45 involving 

community (citizen) scientists 46.  

Methods 

Quantifying abundance-occupancy relationship at the local-scale 10 

We used the eBird dataset 47,48 to assess the relationship between local-scale abundance and 

occupancy (i.e., global range size). eBird, launched in 2002 by the Cornell Lab of Ornithology, is 

a global citizen science project which enlists volunteer birdwatchers to submit ‘checklists’ of 

birds seen and/or heard while birdwatching. Data undergo a semi-automated filtering process 

before being entered into the dataset, and expert reviewers additionally review species (or counts 15 

of species) that surpass pre-set filters before being accepted into the dataset 49. Importantly, 

birdwatchers must indicate whether they are submitting a ‘complete’ checklist representing all 

birds that an individual birdwatcher was able to identify during their birdwatching outing. 

Further, birdwatchers can either submit the count of a species during their birding, or they can 

submit an ‘X’ to signify that a species was present but not estimate the number of individuals 20 

present during their birdwatching outing. 
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We downloaded the eBird basic dataset (version ebd_rel-May2020) and considered all eBird 

checklists between January 1st, 2005 and May 31st 2020. We then performed some quality 

assurance, applying an additional set of filters to the data, potentially removing any ‘outliers’ that 

could produce undue leverage on our results. The following filtering was completed [sensu 24,50]. 

We only included: (1) complete checklists; (2) checklists that were <240 minutes and >5 5 

minutes; (3) checklists that travelled < 5km; and (4) checklists that travelled < 500 ha. Because 

birdwatchers will sometimes use an ‘X’ to signify presence, and this is most likely to happen for 

more abundant species, we excluded any checklist which had at least any “X” on it, as this could 

potentially influence the correlation between the abundance of a species and range size by 

disproportionately removing the most abundant species from the correlation. We further only 10 

considered checklists that had at least ten species recorded on them, and a correlation test was 

performed only if we had range size data (see below) for a minimum of 4 species on the 

checklist. 

 

We used range size maps from BirdLife International 27. When an eBird checklist met the 15 

aforementioned criteria, we performed a correlation test using Pearson’s correlation coefficient 

from the cor.test function in R 51. Both the counts of every species and the range size were log-

transformed before estimating a correlation (for a workflow, see Fig. 1). We obtained 16,562,995 

correlations based on 3,005,668,285 individual bird observations, including 7,635 species. We 

note that we conducted all computational and statistical work using R and we created plots using 20 

the R package, ggplot2 52, patchwork 53 and their dependencies.  

 

Meta-analysis of Big Data 
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We transformed correlations between species abundance and range into Fisher’s Z o Zr to 

unbound and calculated sampling variance for each Zr value; note that the inverse of the 

sampling variance of Zr is N (the number of species) – 3 (see Fig 1). We used the R package, 

asreml 54 to run a multilevel random-effects model 55; note the asreml is a commercial package, 

so it is not free. Our large meta-analyses with ~17 million effect sizes were only able to run with 5 

asreml given the computational time required for such a large dataset. We had ‘country’ (245 

levels) and state code (2,871 levels) as random factors in the model to control for non-

independence. In addition, to quantify the variance component for these two clustering factors 

and also at the level of effect sizes (16,562,995 levels), we modelled ‘units’ (the effect size level 

random effect or residuals) in the asreml function with ‘the number of species - 3’ as the 10 

‘weights’ argument and asr_gaussian(dispersion = 1) as the ‘family’ argument. We also 

obtained the multilevel versions of I2 30,56 to obtain relative heterogeneity for our meta-analytic 

model (Table S1). 

 

To gauge the impacts of potential biases, we fitted two moderators: 1) the z-transformed version 15 

of ln(checklist duration) as a surrogate for the amount of effort for observation and 2) sampling 

variance, which is usually used to detect publication bias, more specifically, small study bias 

where effect sizes from small studies can create ‘funnel asymmetry’, creating bias in meta-

analytic overall mean 57 (cf. Fig. 2). We ran two uni-moderator models and one multi-moderator 

model with both moderators (three meta-regression models in total; Table S2-4). We estimated 20 

the multilevel model versions of R2 29.  

 

Quantifying the abundance-occupancy relationship at the macro-scale 
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To corroborate our local-level analysis described above, we quantified an additional macro-scale 

analysis of the relationship between abundance (i.e., density) and occupancy (global range size). 

For this, we used data from a recently published analysis of global abundances for birds within 

5-degree grid cells 28. This dataset was derived by integrating expert-derived abundance 

measures with a large, less structured global citizen science dataset using a multiple-imputation 5 

technique to estimate density within 5-degree grids for 9,700 bird species (575 girds). We used 

these predicted density estimates from each grid cell and, for each species, took the mean of all 

density estimates in the grid cells for which a species was found. This mean density was then our 

measure of macro-scale abundance. For our measure of occupancy, we used a summation of all 

range sizes for the grids a species was found in, calculated by using range maps from BirdLife 10 

International focusing on the entire extent of a species' extant range, ignoring the effect of 

transient species. Our analysis incorporated a total of 7,464 species of bird species, 

corresponding to the species for which we had both range maps and estimated density, along 

with phylogenetic information included in 58.  

 15 

Phylogenetic comparative analysis 

To statistically test whether there was an effect of abundance and occupancy at the macro-scale, 

we used phylogenetic comparative analysis. We used avian phylogeny from 58 and analysed 100 

phylogenetic trees using the R function phylolm 59. Resulting estimates from the 100 models 

were merged using Rubin’s rules, as described in 32, to obtain current estimates and errors that 20 

accounted for phylogenetic uncertainty (Table S5); we implemented this procedure using the R 

function miInference from the norm2 package 60.  
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Figures 

 

 

 

Figure 1. A conceptual overview of our methods. We aggregated individual eBird checklists 5 

across the world (shown on the map), represented by the three colored insets which show the 

relationship between global range size (x-axis) and local abundance (y-axis) and the associated 

correlation value. We then aggregated these checklist level measures for 16,562,995 eBird 

checklists into the largest-ever meta-analysis to find the global level relationship between global 

range size and local abundance.   10 
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Figure 2. Funnel plots.  (A) the relationship between 16,562,995 effect sizes (Fisher’s; x-axis) 

and their precision (the square root of the inverse of the sampling variance; y-axis). (B) the 

relationship between 16,562,995 correlations based on 3,005,668,285 observations of 7,635 

species (Pearson’s correlation coefficients; x-axis) and the number of species – 3, which is the 5 

inverse of the sampling variances for Zr (y-axis). Both plots consist of data points with the red 

dashed line indicating zero effect.   
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Figure 3. The relationship between species average (mean) density and species range size. 

We calculated the mean density of a species in 5-degree grids where species occurred (y-axis) 5 

while the species range size (x-axis) was estimated by the sum of the percentage occurrence of 

the species multiplied by the grid size (km2) across all the 575 grids (7,464 species). The blue 

line indicates an average slope line from phylogenetic comparative models with 100 different 

posterior phylogenetic trees.    
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Table S1. Results of the intercept meta-analytic model using the asreml function 

Effect Name Effect SE z value 

     

Fixed  Intercept 0.0145081 5.17e-03 2.80459 

Random Country -0.528 5.76e-04 7.915738 

Random State code 0.005161983 1.96e-04 26.331084 

Random Effect size (units) 0.001597069 2.22e-05 71.864656 

     

 

Table S2. Results of the meta-regression model with ‘checklist duration’ as a moderator, 

using the asreml function 

Effect Name Effect SE z value 

     

Fixed  Intercept 0.02314897 5.16E-03 4.490484 

Fixed z(ln(checklist duration)) -0.019646 7.20E-05 -272.88526 

Random Country 0.00451859 5.72E-04 7.894702 

Random State code 0.00519698 1.97E-04 26.372854 

Random Effect size (units) 0.00127717 2.20E-05 57.961243 

     

 5 
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Table S3. Results of the meta-regression model with ‘sampling variance’ as a moderator, 

using the asreml function 

Effect Name Effect SE z value 

     

Fixed  Intercept -0.0171537 5.23E-03 -3.279982 

Fixed Sampling variance 0.36149029 1.47E-03 245.747022 

Random Country 0.00466502 5.89E-04 7.91356 

Random State code 0.00530528 2.01E-04 26.4252 

Random Effect size (units) 0.00143218 2.21E-05 64.76545 

     

 

Table S4. Results of the meta-regression model with ‘checklist duration’ and ‘sampling 

variance’ as moderators, using the asreml function 5 

Effect Name Effect SE z value 

     

Fixed  Intercept 0.00089738 5.19E-03 0.1728713 

Fixed  z(ln(checklist duration)) -0.0147034 8.01E-05 -183.44948 

Fixed  Sampling variance 0.22952897 1.64E-03 140.287413 

Random Country 0.004581054 5.80E-04 7.896078 

Random State code 0.005273559 2.00E-04 26.418513 

Random Effect size (units) 0.001272852 2.20E-05 57.801132 
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Table S5. Results of the phylogenetic regression using the phylolm and miInference 

functions 

Effect Name Effect SE t value (df) 

     

Fixed  Intercept -0.91553 1.6476 -0.556 (1776.3) 

Fixed log10(range size) 0.022645 0.092832 0.244 (99.6) 
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