
1 

1 

Forecasting insect dynamics in a changing world 1 

 2 

 3 

Christie A. Bahlai1* 4 

1 Department of Biological Sciences and Environmental Science and Design Research Institute 5 

 Kent State University, Kent, OH, USA, 44242 6 

*Corresponding author cbahlai@kent.edu  7 

 8 

 9 

  10 

mailto:cbahlai@kent.edu


2 

2 

Abstract 11 

Predicting how insects will respond to stressors through time is difficult because of the diversity 12 

of insects, environments, and approaches used to monitor and model. Forecasting models take 13 

correlative/statistical, mechanistic models, and integrated forms; in some cases, temporal 14 

processes can be inferred from spatial models. Because of heterogeneity associated with broad 15 

community measurements, models are often unable to identify mechanistic explanations. Many 16 

present efforts to forecast insect dynamics are restricted to single-species models, which can 17 

offer precise predictions but limited generalizability. Trait-based approaches may offer a good 18 

compromise which limits the masking of the ranges of responses while still offering insight. 19 

Regardless of modeling approach, the data used to parameterize a forecasting model should be 20 

carefully evaluated for temporal autocorrelation, minimum data needs, and sampling biases in 21 

the data. Forecasting models can be tested using near-term predictions and revised to improve 22 

future forecasts. 23 

Highlights 24 

● Many models used to understand insect dynamics are never extended to prediction 25 

● Density-dependence and sampling biases are often present in long term data  26 

● Biodiversity metrics have tradeoffs in predictability, generalizability and scale 27 

● Simple statistics and more advanced integrated modeling can address biases directly 28 

● Forecasting models can be tested using near-term predictions and revised iteratively 29 

  30 
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Introduction 31 

Insect ecologists have generally approached forecasting insect dynamics in a piecemeal way, 32 

with individual solutions developed as needed to predict vital metrics for a few key species.  Yet 33 

in an era of profound biodiversity loss, understanding and predicting long-term trends is key to 34 

mitigating functional losses [1].The critical importance of insects to most ecosystems has led to 35 

dire projections, but also considerable scientific debate on the nature of these predictions has 36 

occurred [2]. At present, most attempts at modeling the insect decline phenomenon fall more 37 

accurately into explanatory modeling with implied extrapolation rather than predictive modeling. 38 

Indeed, most true forecasts of insect dynamics have focused on individual species of economic 39 

or cultural significance, that is, primarily pests and a few well-studied species of conservation 40 

concern [3,4]. Given controversies, modeling disagreements, data needs, and natural variability 41 

in insect population sizes, a fundamental question emerges: how forecastable are insect 42 

populations? (Figure 1) 43 

Forecasting biodiversity dynamics 44 

In forecasting responses of biodiversity to environmental change, a wide variety of modeling 45 

techniques are commonly used, including combining correlative approaches (i.e. species 46 

distribution models), mechanistic approaches (i.e. demography and temperature dependence), 47 

and theory [5]. Predicting the behavior of ecological systems is a means to test scientific 48 

understanding, yet much of the field of ecology has often focused on explanatory models [6]. 49 

Although some authors define ecological forecasting as a strictly quantitative endeavor [e.g. 7], 50 

more colloquially in biodiversity science, predictions yielded by modeling and synthesis may be 51 

qualitative, directional, or quantitative. Quantitative outputs are desirable from a hypothesis-52 

testing standpoint because these predictions can be explicitly tested [6]. 53 

Because biodiversity processes are driven, in part, by environmental variables, the accuracy of 54 

the projection will depend on the accuracy and uncertainty of the projection of these covariates 55 

[8,9]. The uncertainty surrounding forecasts of biodiversity parameters inherently depends on 56 

the uncertainties associated with the information used in the models, including future 57 

uncertainties in driving variables, which variables are included, and the underlying model 58 

structure, and the interaction of these factors all ultimately drive how far a model may be used to 59 

predict into the future [10]. While understating uncertainty is not desirable, models which 60 

incorporate all possible uncertainties may produce unrealistic and unreliable predictions [11].  61 

Explanatory predictions tend to be based in mechanistic hypotheses: they can be used to 62 

describe the behavior of individual systems under testable conditions which can then be 63 

corroborated by data. Anticipatory predictions are forecasts (also referred to as projections and 64 

scenarios): they represent the extension of a hypothesis into the future, assuming a theory 65 

holds [5]. Forecasts may be conditional rather than explicitly temporal, that is, their results 66 

depend on certain driver conditions occurring, rather than explicitly predicting a given metric at a 67 

point in time. For example, models can be used to forecast the likelihood that animals 68 

experience mortality during extreme heat events [12], or the locations where invasive insects 69 

are most likely to be detected [3]. However, these predictions have an inherent temporal aspect: 70 
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the implication being that should the modeled conditions be realized at some time in the future, 71 

the projected outcomes would (or could) occur at that point in time. In fact, many forecasts are 72 

not necessarily intended to predict the next state of the system under study, but may be used in 73 

an anticipatory way, to extrapolate explanatory models to possible scenarios, given uncertainty 74 

in driving parameters [5]. 75 

Quantifying the change in biodiversity metrics (whether for a single species population or a 76 

broader taxon) is difficult because the data needs to adequately characterize temporal 77 

processes [9]. Simply detecting temporal trajectories of population processes (much less 78 

extrapolating from them) may require more than a decade of annual data when no underlying 79 

structure of the data is assumed, especially in environments with high inherent thermal 80 

variability [13]. Given the challenges of simply measuring trends in many biodiversity systems 81 

and the peculiarities of insect biology, explicit efforts to forecast the dynamics of a system are 82 

relatively rare in insect ecology. 83 

Explaining insect dynamics is challenging 84 

Prediction of insect population responses, even to a single stressor, is not necessarily 85 

straightforward [14]. It is likely that, as a general rule, anthropogenic change will negatively 86 

affect insect abundance and biodiversity [15]. However, insect herbivore populations may be 87 

negatively, neutrally or positively affected by a stressor, depending on the nature of the 88 

disturbance [16]. Responses to stressors may have immediate population effects or more 89 

idiosyncratic physiological effects [17], and may be mediated by behavioral adaptations [18,19]. 90 

Insect biology can present a particular challenge because responses can be non-uniform, even 91 

within a single species, at different life stages [20,21]. Specific taxa may be sensitive to lesser-92 

documented stressors [22]. Furthermore, given their rapid generation time, eco-evolutionary 93 

dynamics will inevitably affect range and population sizes of insects over time [23]. Ultimately, 94 

forecasting insect dynamics relies on an understanding of these complex biologies: they 95 

increase the complexity of the task of predicting future dynamics in insect taxa, and undermine 96 

researchers in their quest for generality. Due to the complexity of these interactions, some 97 

authors have argued that knowledge gaps remain too great and that understanding and 98 

predicting insect decline cannot be achieved without directed experimentation [24], while others 99 

have argued that extremely large scale observational approaches are key to understanding and 100 

ultimately testing forecasts of insect dynamics [25]. 101 

Impediments to forecasting insect dynamics 102 

A major impediment to forecasting biodiversity dynamics in insects is the sheer difficulty in 103 

collecting insect species data:  taxonomic expertise needed to process biodiversity samples to 104 

species is rare [26]. Even in situations where standardized sampling approaches are employed 105 

[e.g. 27], significant lags may hinder the timely production of data, and thus, the viability of 106 

forecasts [28]. Another major hindrance to forecasting is that insect biodiversity data may not be 107 

collected at the scale of the process being modeled, leading to biased inferences or inflation of 108 

observed precision [29]. However, recent advances in automated identification show promise in 109 
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increasing capacity and speed for insect monitoring data, which may soon increase our ability to 110 

meaningful quantify insect variability across space and time [30]. 111 

Trends observed in insect dynamics also depend highly on how they are monitored. Estimates 112 

of extent and area of occupancy may differ dramatically when predicted using different data 113 

sources [31]. Data may be taken from locations biased by their attributes to be more inviting to 114 

insects, like gardens or preserves [32]. Similar biases are likely present in the data that the 115 

community considers the highest quality: much of the long-term, systematic data taken for 116 

insects comes from areas under protection [e.g. 33], with less monitoring undertaken from areas 117 

under increasing disturbance [34]. Biases may also be present in unstructured and untargeted 118 

records (like those produced by community scientists), with less experienced users contributing 119 

more observations of larger species with more striking visual traits [35] (Box 1).The increasing 120 

reliance on unstructured community science to estimate biodiversity trends may increase the 121 

likelihood of misleading results [36,37] (Box 2). 122 

The selection of drivers used in models also plays a profound role in how predictions of insect 123 

populations manifest. For instance, using temperature extremes rather than average 124 

temperatures in extinction risk models to account for thermal stress results in substantial 125 

changes in predictions [38]. An additional element of complexity occurs due to the non-126 

uniformity of drivers of insect biodiversity trends through both time and space (Box 3). Finally, it 127 

is well-established that species are affected unequally by change: many species are negatively 128 

impacted by human activities, but a few thrive under the conditions of continuous disturbance of 129 

human altered environments [39]. This ‘winners and losers’ dynamic presents a barrier to 130 

generalizability when it comes to selecting metrics that both authentically capture the broad 131 

scale of the insect decline problem without masking the details through unwarranted statistical 132 

lumping of very different groups of organisms. 133 

Predictability of different metrics 134 

The question of whether forecasting insect dynamics is possible depends greatly on the 135 

specifics of both the question being asked, but also on the information available to support this 136 

question, and, indeed, the inherent predictability of the biodiversity metric or property to be 137 

modeled [40].  In most cases, the reliability of forecasting predictions decreases with time, while 138 

it increases with the amount of historical data informing the predictions [41,42]. However, the 139 

inherent predictability, and the scale at which prediction can occur, will ultimately dictate the 140 

limitations on the accuracy of a forecast. 141 

Aggregate and derivative measures may be more accurately predicted compared to more 142 

simple metrics, however, this comes at a cost to characterization of drivers and precision of 143 

estimates [28]. Whereas forecasting models for single species abundance or distribution are 144 

common and offer detailed mechanistic explanations [e.g. 3], whole-community metrics like 145 

diversity, evenness and richness may provide a more holistic picture of insect well-being.  But 146 

these metrics may also mask unequal responses across a community, particularly in groups of 147 

insects with traits that cause widely divergent responses to environmental conditions [43]. The 148 

temporal grain of the underlying data and the desired predictions inevitably interact with the 149 
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selection of the metric, with longer time spans (i.e. inter-annual variation vs intra-annual 150 

variation) representing both different processes and the integration of more short-term 151 

underlying processes, but metrics that can be used for nearer-term forecasts are more 152 

inherently testable [44]. Because most studies have a particular focus, most attempts to forecast 153 

insect well-being as a whole suffers from phylogenetic, functional, spatial and temporal biases; it 154 

has been argued that to optimize these broad scale predictions, standardized monitoring 155 

schemes focusing on net abundance and biomass were needed to capture authentic estimates 156 

of these processes. [45].  157 

These more aggregated measures for biodiversity are often used to imply more general future 158 

predictions, or provide qualitative predictions associated with a management scenario [40]: for 159 

example, a recent study found that habitats with more rare plant species supported more rare 160 

insects, regardless of habitat size [46],  implying that restoration efforts that focus on improving 161 

plant richness rather than protecting more habitat would result in better outcomes for insect 162 

richness. However, other authors caution against using richness as a measure for biodiversity 163 

change because this metric is highly sensitive to plot size, making it unreliable to measure, 164 

much less predict biodiversity change [47].  165 

Functional and trait-based approaches to measuring biodiversity processes may yield some 166 

more generalizable, if often qualitative, predictions that offer a workable compromise from the 167 

highly stochastic species-focused metrics and limited mechanistic explanation of all-insect-level 168 

metrics [48]. For instance, functional trait approaches to measuring biodiversity may provide 169 

generalities beyond taxonomic classification: climatic niche breadth was associated with degree 170 

of range shifts under climate conditions, and this association held in both vertebrates (birds) and 171 

invertebrates (moths and butterflies) across a latitudinal gradient in Europe [49]. Thus, these 172 

approaches offer a viable compromise that may offer broad generalizability in prediction without 173 

the cost to mechanistic explanation, and some traits may be more conducive to building viable 174 

predictions than others [e.g. 50] 175 

What tools can we use and where are they appropriate? 176 

Several classes of tools hold promise for forecasting insect populations, depending on the 177 

desired scales and precision of predictions desired. A subset of the most commonly used 178 

current approaches are presented here. 179 

Correlative/statistical approaches 180 

Often, projections in ecological systems are based on linear trends applied to time series data 181 

[9,13,51].  This is often statistically inappropriate based on the underlying autocorrelation 182 

structure of biodiversity metrics (i.e. the current state of the metric in question is dependent on 183 

both the environmental drivers and the previous state of that same metric), however, these 184 

linear trends are often essential for communicating change over time and provide more intuitive 185 

outputs to the model, such as expected change in population size. Thus, we can evaluate the 186 

length of time needed to establish a linear trend in the system under study, given the actual 187 

structure of historical data [52,53], but more importantly, it is essential that entomologists use 188 
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models which statistically manage for this underlying structure in their estimates of rates-of-189 

change. Weiss et al. 2023 provide an accessible approach for correcting annual data using 190 

random year intercepts in generalized linear models (GLMs). Their approach was able to 191 

produce more conservative, less biased estimates of rates of change for ground beetle 192 

abundance over a 24 year study, and also demonstrated how sensitivity analysis could be 193 

applied to identify influential observations [54]. 194 

In data-rich systems where there is limited functional understanding (e.g. data produced by 195 

large distributed monitoring networks) other tools can be employed. Generalized additive 196 

modeling (GAM) approaches can be use where the shape of the relationship between variables 197 

is unknown: this suite of tools allows the estimation of smoothing functions between variables of 198 

interest, allowing predictions to be ‘data-led’ and not necessarily relying on a fore-knowledge of 199 

the mechanistic explanation of their relationships [55]. For example, GAMs were used to explain 200 

patterns in carabid beetle richness relative to climatic variables, forecast the distribution of 201 

biodiversity hotspots, and used this information to develop conservation recommendations for a 202 

protected temperate steppe area in northwestern China [56].Machine learning models such as 203 

artificial neural networks may be used to take this data-driven approach further in cases where 204 

system knowledge is limited, making it possible to forecast systems with very limited knowledge 205 

of their ecology. For example, an early warning system for rice gall midge was developed using 206 

an autoregressive neural network approach on time series data documenting abundance of the 207 

midge, and the model outperformed more typical statistical approaches because the method 208 

does not assume linear relationships in the data [57].  209 

Mechanistic and physiological population models 210 

Mechanistic and physiological population models come in a wide variety of scales. In applied 211 

entomology, short-term forecasts of insects are commonly constructed, usually from 212 

mechanistic models describing the phenology, population growth and immediate environmental 213 

responses of a particular species or complex [58]. These models often include spatially-explicit 214 

elements to indicate risk, and may include management information (i.e. economic injury levels, 215 

action thresholds) often providing these forecasts at a weekly interval, aligned with how farmers 216 

and foresters make pest management decisions [59].  Near-term forecasting models may be 217 

extended (i.e. to the length of a growing season, for example) for a specific population of well-218 

studied insects using models that account for many of the major parameters, however these 219 

models may have very limited transferability if the models incorporate site-specific information 220 

and highly specific dynamics [e.g. 60]. Yet, mechanistic models can be used to gain more 221 

general insights when applied to broader groups using trait- based approaches. Mechanistic 222 

modeling essentially leverages very specific understanding of insect ecophysiological responses 223 

to predict higher level phenomena in insect populations, and can be used under longer term 224 

scenarios where statistical extrapolations are likely to break down [61] or explicitly link 225 

physiological traits to ecological theory [62]. For instance, thermal sensitivity traits were used to 226 

forecast insect community responses under future climate scenarios: these analyses suggested 227 

greater extinction risk among insects in tropical environments without rapid adaptation or 228 

migration [63].Mechanistic approaches can be used to predict future selection patterns in plastic 229 
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or variable traits within their ranges: e.g. selection for lighter wing colors to avoid overheating in 230 

warming climates [64].  231 

Integrating heterogenous data into forecasting 232 

Integrated population modeling is an approach commonly used in wildlife conservation, where 233 

taxa under management, such as game species, are monitored using varied survey protocols, 234 

at different life stages, across different parts of their range, creating a highly heterogenous but 235 

very rich set of observational data [65]. Animals monitored across their ranges or lifecycles often 236 

yield discrepant patterns which can be difficult to resolve in isolation, often resulting from factors 237 

such as asynchronies between metapopulations and density-dependent demographic effects 238 

[66]. This approach allows researchers to identify which data and monitoring strategies provide 239 

the most informative estimates [67], and is generally applied to well-monitored species with 240 

complex life histories, but may be used to estimate and forecast a wide variety of metrics 241 

regarding that population at various points in its lifecycle [66]. This integrated modeling 242 

approach has recently been extended to integrated community occupancy modeling, which 243 

allows the integration of single species distribution models and hierarchical community 244 

occupancy models to forecast biodiversity dynamics of bird communities [68]. 245 

Inferring temporal processes from spatial approaches 246 

Spatial processes may serve as a proxy for temporal processes in developing forecasts for 247 

insect decline, or as part of direct experiments to identify drivers that might be managed through 248 

time [69]. Distribution models can be used to estimate range size and occupancy to prioritize 249 

protections and listings of species with contracting or vulnerable populations within their ranges, 250 

based on projected extinction risks [70]. Spatial approaches may provide a means for 251 

forecasting other vital parameters in cases where abundance data are unavailable. For instance 252 

an extinction risk index was developed based on range size and was used to examine how 253 

species traits like thermal limits and body size affect extirpation risk in 600 Odonata species, 254 

using occurrence data [43]. 255 

Future ranges forecast through distribution modeling can be refined by combining this approach 256 

with dynamic evolutionary models that account for the genetic potential of the species to 257 

respond to changes in their environment [71], and may provide anticipatory predictions that go 258 

beyond interactions with the abiotic environment. Range dynamics models can be further 259 

refined beyond the niche-implicit aspects typical to species distribution models  by the 260 

superimposition of process-explicit, mechanistic models (for organismal physiology, biotic 261 

interactions, and demography), helping to mitigate extrapolation issues created by distribution 262 

models based on correlative characteristics alone [72]. 263 

Iterative forecasting methods 264 

With all methods described above, iterative, near-term forecasting approaches can be applied. 265 

In this case, the forecasts are made repeatedly and updated as new data becomes available, 266 

effectively re-running the model for each new system state as it is realized [40]. This approach 267 
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allows explicit testing not just the performance of predictive models, but would allow multiple 268 

competing models to be evaluated in real time, and provide insights into situations where 269 

relationships between drivers may not hold. This approach is currently under use for the NEON 270 

Ecological Forecasting Challenge, a community-driven scientific networking activity designed to 271 

bring about scientific interest in advancing approaches to ecological forecasting [7].The project 272 

challenges users to develop forecasting models to predict the next state of data collected by the 273 

National Ecological Observatory Network [73]. Among the challenges, users have been tasked 274 

with developing models for the richness and abundance of Carabid beetles collected in pitfall 275 

traps at all the sites [7]. At time of writing, the challenge was still ongoing. 276 

Conclusions 277 

Forecasting insect populations, as a whole, with simultaneous great generalization and 278 

precision is unlikely due to the diversity of insects, ecologies, life histories, behaviors and 279 

environments in which they occur, but also in the diversity of metrics, data sources, inherent 280 

biases in monitoring strategies, and tools available. However, several approaches, including 281 

integrated population monitoring for single species predictions, and near-term iterative 282 

approaches to testing forecasts hold promise for developing novel insights into drivers, 283 

particularly when underlying data are classified using relevant species traits. Yet, broader 284 

generalities may not be needed when speaking of biodiversity trends as a whole: it is well 285 

established that rates of anthropogenic change in the environment generally have negative 286 

consequences for all but a handful of species that have traits that favor disturbed environments 287 

and tend to be associated with humans. Because of the non-uniqueness of models, it is likely 288 

that the quest for the ‘best’ (i.e. most precise) model to inform management is both ill-informed 289 

and potentially dangerous[74]. Although a nuanced approach to predicting insect responses to 290 

stressors is desirable from a scientific and management standpoint, core conservation and 291 

policy efforts do not require this level of detail in order to enact positive changes for insects 292 

more generally [75,76].  293 
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Figure 1. Core elements required to forecast insect dynamics. Researchers must consider 599 

the research question and context to select appropriate data, metrics models and validation 600 

approaches to be used for forecasting insect dynamics. Figure constructed using Canva. 601 

Box 1: Can natural history collection data be used to estimate and predict insect 602 

population trends? 603 

Using natural history collection data (and similarly, data produced by community science 604 

surveys like iNaturalist) in explanatory and forecasting models is a subject of ongoing concern in 605 

the quantitative ecology community because of the unstructured nature of these data [36,77]. 606 

Yet, one of the principal challenges in understanding and predicting insect decline is the lack of 607 

historical baseline data [2]. If used with caution, these data represent an unprecedented 608 

resource for understanding how insect communities have changed over time [78].  A technique 609 

that could capitalize on this data resource is to use a community of specimens instead of single 610 

species from within the collection data, where multiple species with a similar probability of being 611 

captured are examined together, using total captures across the community to control for 612 

sampling effort over time. This approach allows relative, if not absolute abundance and thus 613 

long-term responses to historical drivers to be evaluated [79]. Similarly, researchers might use 614 

detection data of similar species within a given species’ expected range, at a given date and 615 

time to infer non-detection for the construction of occupancy models [80]. Furthermore, these 616 

records can be brought into integrated modeling approaches which have the ability to couple 617 

these long term, but unstructured data with contemporary experimentally-produced data in a 618 

single analytical framework [77].  619 

 620 

Box 2: Tool Highlight: Evaluating bias in time series 621 

Because of the high degree of temporal and spatial autocorrelation present in occurrence and 622 

abundance surveys, Boyd et al. [81] developed ROBITT: Risk Of Bias In Studies of Temporal 623 

Trends. ROBITT is a tool which provides a structured approach for a researcher to essentially 624 

‘interview’ their data in the context of bias assessment, focusing on explicitly defining the 625 

questions, scales, data reliability and provenance, as well as any apparent geographical, 626 

environmental and taxonomic biases. This tool is especially useful for assessing limitations of 627 

data from unstructured surveys and how these biases might manifest in any projection models 628 

[81]. 629 

 630 

BOX 3: Case study: Forecasting the dynamics of complex insects 631 

In addition to different species being sensitive to different disturbances through their varied 632 

biologies, different stressors may act on populations at different times, and one stressor may 633 

predispose a species to sensitivity to another. In the iconic and well-studied Monarch butterfly, a 634 

number of conditions have been linked to the dynamics of this species, including pesticide use 635 

in breeding grounds, unfavorable conditions at migratory stopover points, or loss of integrity of 636 
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overwintering sites [82]. While time-series methods may be used to identify periods of change in 637 

internal rules of population regulation, providing insight into when the most changes have 638 

occurred historically [83], a hierarchical modeling approach used to integrate population data 639 

across the monarch lifecycle and isolate the effects of these potential drivers, disentangling 640 

those with historical effects from those currently driving the dynamics of this species [84]. This 641 

approach revealed that breeding season temperatures played a larger role in monarch 642 

dynamics than previously thought in recent years: when it was used in concert with climate 643 

projections to forecast future populations of the species, it highlighted particular vulnerability to 644 

monarch breeding in parts of the US Midwest experiencing higher rates of temperature increase 645 

[4]. 646 
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