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Abstract 46 

Spatial patterns in population trends, particularly those at fine geographic scales, can help better 47 

understand the factors driving population change in North American birds. The standard trend models for 48 

the North American Breeding Bird Survey (BBS) were designed to estimate changes in relative 49 

abundance through time (trend) within broad geographic strata, such as countries, Bird Conservation 50 

Regions, U.S. states, and Canadian territories or provinces. Calculating trend estimates at the level of the 51 

BBS’s individual survey transects (“routes”) allows exploration of finer spatial patterns and estimation of 52 

the effects of covariates, such as habitat loss or annual weather, on both relative abundance and trend. 53 

Here, we describe four related hierarchical Bayesian models that estimate trends for individual BBS 54 

https://github.com/AdamCSmithCWS/Route-level_BBS_trends


routes. All four models estimate route-level trends and relative abundances using a hierarchical structure 55 

that shares information among routes, and three of the models share information in a spatially explicit 56 

way. The spatial models use either an intrinsic Conditional Autoregressive (iCAR) structure or a distance-57 

based Gaussian Process (GP) to estimate the spatial components. We fit all four models to data for 71 58 

species and then, because of the intensive computations required, fit two of the models (one spatial and 59 

one non-spatial) for an additional 216 species. In a leave-future-out cross-validation, the spatial models 60 

outperformed the non-spatial models for 284 out of 287 species. The best approach to modeling the 61 

spatial components depends on the species being modeled; the Gaussian Process had the highest 62 

predictive accuracy for 69% of the species tested here and the iCAR was better for the remaining 31%. 63 

We also present two examples of route-level covariate analyses focused on spatial and temporal variation 64 

in habitat for Rufous Hummingbird (Selasphorus rufus) and Horned Grebe (Podiceps auritus). In both 65 

examples, the inclusion of covariates improved our understanding of the patterns in the rate of population 66 

change for both species. Route-level models for BBS data are useful for visualizing spatial patterns of 67 

population change, generating hypotheses on the causes of change, comparing patterns of change among 68 

regions and species, and testing hypotheses on causes of change with relevant covariates.   69 



Introduction 70 

The North American Breeding Bird Survey (BBS) is a major source of information on the changes in 71 

North American bird populations at broad spatial scales. Since 1966, the BBS has provided trend 72 

information at broad geographic scales (range-wide, national, and regional) across much of Canada and 73 

the United States for up to 500 species of birds (Hudson et al. 2017, Sauer et al. 2017). BBS data are 74 

collected annually by expert volunteers conducting 50, 3-minute point-counts along a roughly 40-km long 75 

roadside route, and approximately 5000 routes are surveyed each year (Hudson et al. 2017). The field 76 

methods are designed to estimate changes in relative abundance through time by controlling for the 77 

effects of survey location, weather, time of day, and season, as well as variations among observers (Sauer 78 

et al. 2003).While the BBS is an excellent source of information on trends, its road-side  surveys may not 79 

capture all species. Similarly, although the roadside locations are generally representative of the 80 

surrounding landscape in most regions (Veech et al. 2017), in some regions it may not represent changes 81 

in the landscape far from roads (Van Wilgenburg et al. 2015). It also does not include the information 82 

needed to directly model variations in detectability, instead relying on the strictly controlled field methods 83 

and statistical adjustments for the most likely sources of variation. These potential sources of bias in BBS 84 

trends have been studied and reviewed (e.g., Sauer et al. 2017), and with some care in interpreting the 85 

results, BBS trend estimates provide important conservation information (Rosenberg et al. 2017). The 86 

BBS was designed to monitor changes in species' populations over time across broad regions such as the 87 

intersection of states/provinces with Bird Conservation Regions (Sauer et al. 2003, Link et al. 2020, 88 

Smith and Edwards 2021). BCRs are regions of North America, similar to ecoregions (CEC 1997) that 89 

share similar ecological characteristics as well as similar bird communities (Bird Studies Canada and 90 

North American Bird Conservation Initiative 2014). These regional-scale summaries are critical for 91 

identifying and prioritizing species in peril (Government of Canada 2010, IUCN 2012, Rosenberg et al. 92 

2017) and understanding broad-scale patterns of change in North American birds (North American Bird 93 

Conservation Initiative Canada 2019, Rosenberg et al. 2019, North American Bird Conservation Initiative 94 

2022).  95 



The BBS dataset can also be analyzed at a finer spatial resolution to complement the regional estimates, 96 

and to inform different ecological questions and conservation efforts. Fine-scale estimates of trends 97 

should benefit from including the spatial relationships among individual survey locations (e.g., Smith et 98 

al. 2024), and allow for visualizing spatial patterns in trends to better understand the local context of 99 

range-wide trends and to generate hypotheses on the drivers of population trends. Compared to regional 100 

estimates, fine-scale estimates of population trends may provide more useful information for local 101 

conservation efforts, as covariates with local effects such as local land cover change, and agricultural 102 

practices can be modeled (Thogmartin et al. 2004, Paton et al. 2019, Mirochnitchenko et al. 2021). Many 103 

factors influence the relative abundance and trends in bird populations, and they act and interact to induce 104 

spatial patterns across a range of spatial scales (Morrison et al. 2010). Factors such as habitat change 105 

(Stanton et al. 2018, Betts et al. 2022), biotic factors like prey availability (Drever et al. 2018), or broad-106 

scale patterns in abiotic factors like precipitation, temperature, and phenology (Renfrew et al. 2013, 107 

Wilson et al. 2018) can induce spatial patterns in trends or relative abundance and can act across different 108 

periods in the species’ annual cycles (Morrison et al. 2010, Wilson et al. 2011). Likewise, conservation 109 

actions occur at many scales, from the broad scales of international conventions to the fine scales of an 110 

individual wetland (Prairie Habitat Joint Venture 2020).  111 

Including both relative abundance and trend as parameters can improve our understanding of population 112 

change, by separately modeling the pattern and covariates that affect the variation in relative abundance in 113 

space (e.g., distribution, range dynamics, habitat availability) from those that affect changes in abundance 114 

through time (e.g., habitat change, weather and climate). Earlier fine-scale models for the BBS data did 115 

not include the rate of population change (trend) as a parameter in the model (Bled et al. 2013). However, 116 

including both relative abundance and trends as separate parameters allows the model to include 117 

covariates on each, such as a recent analysis of the effects of forest change on species’ trends on BBS 118 

routes (Betts et al. 2022).  A spatially-explicit hierarchical regression can model both spatial patterns in 119 

relative abundance and trend (Ver Hoef et al. 2018, Wright et al. 2021). Here we use the term 120 



“hierarchical” model in a general sense to describe models with layered structures where parameters at 121 

one level are drawn from distributions and the parameters of those distributions are modeled at higher 122 

levels (Cressie et al. 2009, Gelman et al. 2013, Kruschke 2015). Separating these parameters in the model 123 

allows for the inclusion of a broader range of covariates (Meehan et al. 2019) to better understand the 124 

processes affecting relative abundance (e.g., mean habitat amount or distance to core of a species’ range) 125 

and trends (habitat change through time, or differences in climate change effects at Northern or Southern 126 

range limits).   127 

One goal of our work here is to compare two conceptually different approaches to modeling spatial 128 

relationships because the spatial locations of BBS observations are not perfectly represented by either of 129 

the most common approaches. Spatially explicit models treat sample locations as either discrete areas 130 

with neighborhood relationships (Ver Hoef et al. 2018), or points within continuous space (Golding and 131 

Purse 2016). It is not obvious whether an area-based or point-based approach better reflects reality for 132 

BBS data (Pebesma and Bivand 2023), because the observations from a given BBS route are collected 133 

along a transect that is approximately 40 km long. Intrinsic Conditional Autoregressive (iCAR) structures 134 

are area-based and model space as a network of polygons with binary neighborhood relationships, e.g., 135 

only polygons sharing a border are considered neighbours  (Besag and Kooperberg 1995). This area-136 

based approach has been used to model the relatively fine-scale population trends in Christmas Bird 137 

Count data (Meehan et al. 2019) and the annual relative abundance of birds using BBS data (Bled et al. 138 

2013). Gaussian Process (GP) models use a continuous measure of distance between points to estimate 139 

the correlation of parameters (e.g., trends) between pairs of points and the rate of decrease in the 140 

correlation with increasing distance (Golding and Purse 2016). Both approaches are necessary 141 

simplifications of the true spatial processes underlying variation in relative abundance and trends among 142 

BBS routes. The iCAR approach simplifies the spatial structure by assuming each route represents a 143 

discrete area of space (i.e. a polygon surrounding the route; Figure 1), but the neighboring routes may be 144 

separated by a wide range of distances depending on the spatial distribution and spatial density of those 145 



routes. The GP approach simplifies spatial relationships by assuming each route represents a point in 146 

space, but the measure of intervening distance among routes only applies to the distance between the start 147 

points, not to the full transect.  148 

Here we describe and compare four fine-scale BBS models that expand on the published broad-scale BBS 149 

models in three ways: 1) they estimate bird population trends and relative abundance at a fine-scale 150 

(individual BBS routes); 2) they allow for route-level covariates on the trends and relative abundances; 151 

and 3) their output visualizes spatial patterns in both trend and relative abundance. Most of the models 152 

share information on relative abundance and trend in a spatially explicit way, and we have included a 153 

non-spatial model for comparison. We describe two spatial models that rely on an iCAR structure for the 154 

spatial relationships: the first is the iCAR model; and the second is a version of the BYM model, named 155 

for Besag, York, and Mollié (Besag et al. 1991), which is identical to the iCAR model but includes an 156 

additional random effect to allow extra non-spatial variation in trends. The third spatial model is an 157 

isotropic Gaussian Process (GP) model that models spatial relationships using the Euclidean distances 158 

among routes. Finally, the fourth model is a non-spatial version that estimates route-level variation in 159 

trends and relative abundances as a log-normally distributed random effect. We fit all four models to 71 160 

species and fit one of the spatial models (iCAR) and the non-spatial model to an additional 216 species 161 

(details below). We compare the predictive accuracy of models in a leave-future-out cross-validation to 162 

assess the benefits of including spatial information and to compare the various approaches to modeling 163 

space for the BBS data. Finally, we provide two examples of route-level covariate analyses, to 164 

demonstrate the application of these models to conservation and research into understanding the drivers of 165 

population change and how those drivers may vary in space and time. 166 

  167 



Methods 168 

Data  169 

We limited most of our analyses to a 15-year period, which we considered short enough that the log-linear 170 

slope that represents population trends in these models can be a meaningful summary of the population 171 

change (Buckland et al. 2004, Thompson and La Sorte 2008). In effect, 15 years is likely long enough to 172 

estimate a rate of change on each route, but also short enough to reduce the likelihood of complex non-173 

linear population patterns. The only exception is the Horned Grebe covariate example, where we used a 174 

43-year period because the covariate was designed to adjust for annual fluctuations and non-linear 175 

patterns in regional moisture/drought cycles (details below). This 15-year period is somewhat arbitrary 176 

and for many species or ecological questions, it may be very informative to fit these models (or 177 

modifications of these models) to longer or shorter periods of time.  178 

We used 71 species (Table S1) to compare the model predictions and predictive accuracy for all four 179 

models and used the Baird’s Sparrow (Centronyx bairdii) to demonstrate model fit and convergence. We 180 

chose these 71 species because they have small ranges with relatively few BBS routes, which improves 181 

computational efficiency, and yet are also commonly observed during surveys and so provide high-quality 182 

data on any given route. We chose the Baird’s Sparrow to demonstrate model fit and convergence, as it 183 

has some interesting spatial variation in abundance and trends and a very restricted distribution confined 184 

to the northern Great Plains region (Figure 1), which reduces model run-time. Species with large ranges 185 

that appear on many routes will increase the computational power required to run the models, increasing 186 

the model run-time. Specifically, from 2006 to 2021, these small-range species were observed on 125-400 187 

BBS routes, with at least 600 total observations of the species and an average of at least four observations 188 

per route. These thresholds on numbers of routes and observations are effectively arbitrary, but balanced 189 

the need to have sufficient count-data to estimate parameters well and few enough routes that models 190 

would fit relatively quickly. We only compared the fit and predictive accuracy of all four models for these 191 



species with fewer than 400 routes, because fitting the GP model requires days or even weeks for species 192 

with many routes.  193 

To better understand the benefits of including space in a model for more species, we compared the non-194 

spatial model and one of the spatial models for an additional 216 species that have larger ranges. For 195 

these species, we only compared the predictions and predictive accuracy of the non-spatial model to the 196 

iCAR model, to reduce our computations. These 216 species were observed on 400 or more BBS routes 197 

during 2006-2021 (i.e., species with more routes than the small-range species). We fit these two models to 198 

these additional species to assess the more general benefits of including spatial information for more 199 

species and  for species with populations spread across large ranges that may include many different 200 

factors influencing trends and relative abundance (Doser et al. 2024).  201 

Model structure 202 

The four models are hierarchical log-link negative binomial regressions broadly similar to other models 203 

commonly applied to BBS data (Sauer and Link 2011, Smith et al. 2014), but modeling trend and relative 204 

abundance as route-specific, spatially varying coefficients (Barnett et al. 2021, Thorson et al. 2023, Doser 205 

et al. 2024). In all four models, each route has a separate slope (trend) and intercept (relative abundance), 206 

but there are no parameters to model yearly fluctuations or non-linear temporal patterns. Therefore, the 207 

interpretation of “trend” in these models is limited to this log-linear slope parameter (i.e., a single mean 208 

rate of change over the entire modeled time-series).  209 

All of the models have the same basic structure (Figure 2), varying only in the way the intercept and slope 210 

terms were estimated (Figure 3). In all models, we treated BBS counts as being drawn from a negative 211 

binomial distribution (equation 1 and 2, Figure 2). We included the same observer effects commonly 212 

included in BBS trend models (Smith et al. 2024), keeping the observer effects (equation 5, Figure 2), the 213 

inverse dispersion parameter (equation 3, Figure 2) and the first-year observer effects (equation 4, Figure 214 

2) in all models. We included the first-year BBS observer parameter, as first-year observers have distinct 215 

variations in their counts of some species when compared to more experienced observers (Kendall 1996).  216 



Route-level intercepts (alpha terms highlighted in lighter yellow, Figure 3) and route-level slope 217 

parameters (beta terms highlighted in darker green, Figure 3) were estimated as hierarchical effects, 218 

sharing information among routes. Specifically, both the intercepts and the slopes were estimated as an 219 

additive combination of a species-mean and a random route-level term (equations 4 and 5, Figure 3).  220 

Three of the models used spatial information to estimate the route-level variation in the intercepts and 221 

slopes (i.e., effectively shrinking towards a local mean of neighboring routes), while the fourth non-222 

spatial model estimated them as exchangeable random effects (i.e., shrinking towards a global mean of all 223 

routes). To encourage convergence, we constrained many of the random effects in the model, including 224 

the spatial route-level parameters, to sum to zero. These constraints often improved model sampling 225 

efficiency, but because they are centered on a mean across all routes, they do not affect the interpretation 226 

of the final route-level slopes or intercepts (Morris et al. 2019).  227 

To estimate route-level relative abundance, while accounting for variation among observers, we modeled 228 

separate intercepts for routes and observers. Using separate observer and route effects has not been 229 

commonly included in hierarchical Bayesian models for the BBS (Sauer and Link 2011, Smith et al. 230 

2014, Link et al. 2020, Edwards and Smith 2021), until recently (Betts et al., 2022, Smith et al., 2024). In 231 

general, observers and routes are partly associated in the BBS dataset by design as an experimental 232 

control for variation among observers (Kendall et al. 1996). However, observers and routes vary in the 233 

number of surveys conducted, from 2006-2021 more than 69% of surveys were conducted on routes with 234 

more than one observer during those 15 years, and 55% of surveys were conducted by observers who 235 

have surveyed more than one route.  236 

Finally, we also used an informative prior on the standard deviation of the observer effects (equation 6, 237 

Figure 2), and we ensured that all parameters had converged when fitting the models (details below). We 238 

used a half-normal prior on the standard deviation among observers, scaled so that variation among 239 

observers is unlikely to result in a six-fold increase, or reduction, in a given species count (equation 6, 240 

Figure 2), and that variation among observers is less than variation among routes. We suggest this prior is 241 



reasonable given that BBS observers are highly skilled and familiar with the local bird community (Link 242 

and Sauer 1997). 243 

Spatial structures 244 

We fit models with two different approaches to account for spatially explicit relationships among routes: 245 

1) an intrinsic Conditional Autoregressive (iCAR) structure that treats spatial relationships as a series of 246 

discrete neighbors, producing a sparse matrix of adjacencies between pairs of routes; and 2) an isotropic 247 

Gaussian process (GP) model that treats space as the continuous distance between routes, creating a 248 

matrix of Euclidean distances between the start locations of each BBS route.  To illustrate one difference 249 

between the approaches, the GP may consider the relative abundance or trends of two distant routes as 250 

effectively independent if the distance is large enough. In contrast, the iCAR structure considers any 251 

routes whose polygons share a border as having a very close connection, regardless of polygon size or 252 

distance. In some cases, treating two relatively distant routes as close neighbors may be useful if their 253 

relative proximity could inform the parameter estimates, but may also introduce error into the estimate of 254 

spatial variance (Pebesma and Bivand 2023).   255 

We used a Voronoi tessellation to generate the discrete neighborhood relationships required to support the 256 

iCAR model (Ver Hoef et al. 2018, Pebesma and Bivand 2023). iCAR models are often applied to 257 

contiguous area-based stratifications, such as regular grids, census regions, or political jurisdictions, 258 

which have natural neighborhood relationships defined by their adjacencies (Ver Hoef et al. 2018, 259 

Meehan et al. 2019). To generate contiguous discrete spatial units without imposing a regular grid 260 

structure, we used a Voronoi tessellation to create contiguous polygons, centered on the start point of each 261 

BBS route (Pebesma 2018). We further limited the adjacency matrix to the approximate boundaries of the 262 

species’ range by clipping the tessellated surface using the BBS strata where the species occurs (Sauer 263 

and Link 2011) and a concave polygon surrounding start locations of all routes with data for that species 264 

(Gombin 2023). This clipping ensured that adjacency relationships did not extend beyond the borders of 265 



the species’ range and allowed the adjacency matrix to respect large-scale, complex range boundaries 266 

(e.g., gaps in forest bird ranges created by the great plains).  267 

We adapted functions and code in the Stan probabilistic programming language from the “rethinking” R-268 

package for inclusion in our GP model (McElreath 2023). Like the iCAR approach, we used independent 269 

GPs to model the covariance of the intercept parameters and the slope parameters. We estimated the full 270 

matrix for between-route distances using functions in the “sf” package for R (Pebesma 2018).    271 

Intrinsic Conditional Autoregressive model - iCAR 272 

We estimated the route-level intercepts and slopes using an iCAR structure, where the parameter for 273 

route-r is drawn from a normal distribution, centered on the mean of that parameter’s values in all 274 

neighboring routes, with an estimated standard deviation that is proportional to the inverse of the number 275 

of neighbors for that route (Morris et al. 2019). Specifically, the route-level variation in the intercept term 276 

a random route-level term drawn from a normal distribution centered on the mean of the intercepts for all 277 

neighboring routes (equation 6, Figure 3). The route-level variation in the slope was estimated similarly 278 

as a random draw from a normal distribution centered on the mean of the slopes for all neighbouring 279 

routes (equation 7, Figure 3).  280 

Besag York Mollié iCAR model - BYM 281 

We also used an implementation of the Besag, York, Mollié (BYM) spatial iCAR model (Besag et al. 282 

1991) to estimate route-level slopes. The route intercepts were estimated in the same way as for the iCAR 283 

model (equation 6, Figure 3). The route-level variation in slopes used the same structure as for the iCAR 284 

model (equations 8 and 9, Figure 3), but we added a non-spatial component, estimated as a random effect 285 

drawn from a normal distribution with an estimated standard deviation (equation 10, Figure 3).The 286 

additional random effect in the BYM model allows the route-level trend estimates to vary more among 287 

neighboring routes, if supported by the data (Besag et al. 1991). 288 



Gaussian Process model - GP 289 

In the Gaussian Process (GP) model, the route-level variation in slope and intercept random terms were estimated as 290 

multivariate normal distributions (equations 11 and 12, Figure 3), with covariance matrices estimated using a 291 

squared exponential kernel function (Gelman et al. 2013, pg 501). The covariance terms for the intercept and slope 292 

parameters were separately estimated and are each an exponentially decreasing function of the distance between the 293 

routes (equations 13 and 14, Figure 3). 294 

Non-spatial model 295 

To assess the benefits of the spatially-explicit models, we compared the predictions and predictive 296 

accuracy of the spatial models to an otherwise identical model that lacked spatial information. This non-297 

spatial model had all the same parameters as the spatial models, except that the route-level variation in the 298 

intercepts and slopes were estimated as random effects (equations 15 and 16, Figure 3).  299 

Convergence 300 

We fit all models using 1000-2000 warmup iterations and an equal number of sampling iterations for each 301 

of the four independent chains (or three independent chains for each iteration of cross-validation). We 302 

assessed convergence by monitoring for divergent transitions and estimating split-Rhat values and bulk 303 

effective sample sizes for all parameters. We considered convergence to have failed if any Rhat was > 304 

1.03 or if any parameter’s effective sample size is < 100 (although the vast majority of parameters had 305 

effective sample sizes > 1000 and Rhat < 1.01). For a few GP models that failed to converge, we re-fit the 306 

models with the alternative priors described in the supplemental methods.  307 

Model assessment 308 

To assess the benefits of adding spatial information into the model, we compared the 1-year-ahead, leave-309 

future-out (LFO) predictive success of the four models for the 71 species with relatively small ranges 310 

(Roberts et al. 2017, Bürkner et al. 2020). In this application of LFO, we fit the model to the first eight 311 

years of data (2006-2013; the minimum length of time we considered sufficient for prediction), and used 312 



the parameter estimates from this model to predict the counts in the following year (2014). Then we 313 

iterated this approach making predictions for the remaining years (2015-2019, and 2021), predicting the 314 

held-out data in year using data for all years prior to fit the model. We could not assess predictive 315 

accuracy for the year 2020 because the BBS survey season was canceled due to the public health travel 316 

restrictions of spring 2020. We also compared the iCAR spatial model with the non-spatial version of the 317 

model using a LFO assessment for an additional 216 species (Table 1). We used the LFO approach to 318 

directly test the accuracy of predictions for the next year’s observations.  319 

The cross-validation process generated predictions for every count in the dataset after 2013 and an 320 

estimate of the log pointwise predictive density (lppd) of the observed count, given the model and the data 321 

in all previous years (Gelman et al. 2014). The lppd is a metric of predictive accuracy that measures how 322 

likely it would be to observe the held-out data point (i.e., the observed count in the next year) given the 323 

parameter estimates and the model. More specifically, it is the log of the posterior probability (or 324 

probability density) of each held-out data point (pointwise), given the model and parameter estimates. 325 

Values of lppd are negative (log of probability values, which are < 1.0), and values closer to 0 indicate 326 

predictions that are similar to the observed data. For interpretation and visualization, we calculated 327 

pairwise differences in lppd between pairs of models for each count and transformed summaries of these 328 

lppd differences across all counts into approximate z-scores (mean divided by the standard error of the 329 

point-wise differences in lppd). These z-scores summarise the support in the data for each model, 330 

accounting for the variation across all observations and providing a consistent scale to summarize pair-331 

wise model comparisons across datasets with different numbers of observations (Link and Sauer 2016). 332 

They are an approximation of the test statistic in a paired t-test; e.g., absolute values greater than 333 

approximately 2 could be interpreted as a “significant difference” in predictive success, although we have 334 

avoided emphasizing arbitrary thresholds.   335 



Route-level covariate examples 336 

Modeling covariates of fine-scale trends and relative abundances is a major benefit of modeling BBS data 337 

at the route level. Including covariates, we can investigate conservation and management concerns such 338 

as estimating the effects of local habitat change on population trends, or the effects of moisture and 339 

climate on local abundance. Further, a fine-scale allows for the use of finer-scale, more localized 340 

covariates. To demonstrate this, we present two examples, each including route-level predictors to inform 341 

estimates of relative abundance and trend. The first example uses data on habitat suitability from an 342 

independent study (Jefferys et al. 2024) on the Rufous Hummingbird (Selasphorus rufus) and models the 343 

effect of habitat suitability on relative abundance and change in habitat suitability on trends in BBS data 344 

(see Jefferys et al. 2024 and supplemental methods). The second example looks at the effects of annual 345 

variation in available habitat—the number of ponds surrounding a BBS route each year in the Prairie 346 

Pothole Region (PPR)—on the expected counts of a water bird, the Horned Grebe (Podiceps auratus).   347 

Rufous Hummingbird covariate example 348 

This example model estimates the effect of the amount of suitable habitat around a BBS route on the 349 

mean number of birds observed, and the effect of the change in suitable habitat on the change in the 350 

number of birds observed through time. This example application is an elaboration of the iCAR route-351 

level trend model, where the route-level intercepts and slopes are additive combinations of two 352 

components: 1) one that is a function of a route-level predictor, and 2) one that is a residual component, 353 

estimated as a spatially varying component using the iCAR structure (Ver Hoef et al. 2018). As with our 354 

previous models, this model used data from the BBS to estimate relative abundance and trend. The route-355 

level predictors are derived from an independent study on Rufous Hummingbirds (Jefferys et al. 2024). In 356 

that study, habitat suitability was estimated with a species distribution model using an independent dataset 357 

of Rufous Hummingbird observations and data on weather, climate and landcover and changes in 358 

suitability were driven by the loss of early successional forest and warming temperatures in the 359 

northeastern regions of the breeding range (Jefferys et al. 2024). In our model, we used the mean habitat 360 



suitability from that study across a 15-year period (2006-2021) in a 200m buffer surrounding each BBS 361 

route as a predictor on the intercept (i.e., mean habitat suitability as a predictor on the mean relative 362 

abundance on a given route). We used the rate of change in habitat suitability over the same 15-year 363 

period within the same buffer as a predictor on the slope (i.e., change in habitat suitability as a predictor 364 

on the trend).  365 

We estimated the route-level variation in intercepts and slopes by extending equations 4 and 5 (Figure 3), 366 

to include a component that was a function of the mean habitat suitability for the intercept and the rate of 367 

change in habitat suitability for the slope (equations 17 and 18, Figure 4). The intercepts and slopes for 368 

each route were an additive combination of a mean species-level intercept or slope spatially varying  369 

residual component (equations 6 and 7, Figure 4), and  a component that was a function of the mean 370 

habitat suitability on the route (equations 19 and 20, Figure 4) or rate of change in habitat suitability on 371 

the slope (equations 21 and 22, Figure 4). 372 

This partitioning of the intercept and slope parameters allows the model to generate two alternative 373 

estimates of the mean relative abundance and trend on each route. The full trend (equation 18, Figure 4) 374 

represents the estimated trend on a given route, including the effects of habitat change. The residual trend 375 

(i.e., removing the final term from equation 18, Figure 4) represents an alternate trend if habitat suitability 376 

stayed constant on a given route. A similar partitioning of the residual and full estimates of the intercepts 377 

is possible, although we did not explore that here.  378 

Horned Grebe covariate example 379 

This example application was an elaboration of the iCAR route-level trend model, where trends and 380 

relative abundances are estimated while accounting for the annual variation in climatically dependent 381 

habitat. The route-level predictors are derived from a study of the effects of moisture/drought patterns on 382 

Horned Grebe (more detail in the supplemental methods), a waterbird species that breeds in small to 383 

moderately sized shallow, freshwater ponds (Stedman 2020). To represent annual variation in available 384 



habitat for the Horned Grebe in the Canadian Prairie Pothole Region (PPR), we used a dataset collected 385 

collaboratively by the U.S. Fish and Wildlife Service (USFWS) and the Canadian Wildlife Service 386 

(CWS) across the entire PPR. From this dataset, we used only the Canadian data on the number of ponds 387 

(natural or artificial ponds that are flooded seasonally, semi-permanently, and permanently) during the 388 

Waterfowl Breeding Population and Habitat Survey (Smith 1995). Annual fluctuations in moisture affect 389 

the number of wetlands available, which in turn has a strong influence on waterbird populations that 390 

depend on wetlands (Sorenson et al. 1998, Johnson et al. 2005, Roy 2015, Steen et al. 2016). The model 391 

was based on the iCAR model and added an additional iCAR component to create a varying-coefficient 392 

model on the effects of available habitat on the expected counts during a given survey on a given route. 393 

We also fit the same species data to a simpler iCAR model with no covariates to compare the difference 394 

in estimated trends with and without accounting for the annual variations in available habitat. 395 

Results 396 

In general, there are clear spatial patterns in the estimated trends and relative abundances from the spatial 397 

models, with similar patterns among the three types of spatial models. Those patterns are obscured or 398 

completely lacking from the non-spatial version of the model (e.g., the results for Baird’s Sparrow in 399 

Figures 5 and 6). The GP model tended to smooth the spatial pattern in trends more than the iCAR model, 400 

which in turn smoothed more than the BYM model (Figure 5). The spatial smoothing in relative 401 

abundance was stronger in both the iCAR and BYM models than the GP model for Baird’s Sparrow 402 

(Figure 5). The covariance in relative abundance of Baird’s Sparrow among routes was effectively 0 at 403 

distances of only 100 km, whereas the covariance in trend was relatively strong even at distances > 1000 404 

km (Figure S1). Predictions of route-level trends had smaller standard errors when including spatial 405 

information, and trend precision generally increased with the degree of spatial smoothing (Figures 6, S2 406 

and S3). For Baird’s Sparrow, all three spatial models had better predictive accuracy than the non-spatial 407 

model, with z-scores of pairwise differences between one of the spatial models and the non-spatial model 408 

ranging from 2.7 – 3.3 (Figure S4). The iCAR model had better predictive accuracy than the BYM model 409 



(z-score of the difference = 3.8; Figure 7), and there was little difference in predictive accuracy between 410 

the iCAR and GP models (z-score difference = -0.51; Figure 7).   411 

The leave future out (LFO) cross-validation shows that the iCAR and GP models out-perform the non-412 

spatial model (i.e. more accurately predicted the next year’s data) for almost all the 71 small-range 413 

species (Figure 7 and Figure S4). Out of the spatial models, the GP model had the highest predictive 414 

accuracy for the greatest number of species, followed by the iCAR model and the BYM model had the 415 

lowest predictive accuracy. The BYM model was the only spatial model that had clearly lower predictive 416 

accuracy than the non-spatial model for any species (i.e., four species for which the z-score difference is 417 

< -2, Figure 7 and Figure S4). The iCAR model and the GP model had comparable predictive accuracy 418 

for many species (most values between -2 and +2 in the iCAR-GP comparison of Figure 7); 69% (49 of 419 

71 species) of the species were better predicted by the GP model (negative values Figure 7) and the 420 

remaining species were better predicted by the iCAR model (positive values in Figure 7). When including 421 

the additional 216 species for which fitting the GP model was prohibitively time-consuming (days or even 422 

weeks are required for convergence for a given species), the iCAR spatial model had higher predictive 423 

accuracy than the non-spatial model for 283 of 287 species, and predictive accuracy was very similar for 424 

the remaining four (Figure 8).  425 

The iCAR model generated trend prediction maps with clear spatial patterns that likely relate to spatially 426 

dependent variation in processes affecting populations (Figure 9). These patterns are not evident in 427 

predictions from an identical model without spatial information (Figure 9). The spatial patterns in route-428 

level trends vary widely among these species and among the others we tested (Figures S2 and S3), 429 

suggesting varied drivers of population change across the continent and among species.  430 

In general, the iCAR and GP models were comparable in predictive accuracy for the 71 small-range 431 

species we analyzed (Figure 7). In addition, the spatial patterns in predicted trends were very similar 432 

between these two models, even for species where the predictive accuracy differed between the models 433 

(Figure 10). For example, the GP model had higher predictive accuracy than the iCAR model (z-score 434 



difference = -4.3, Figure S4) for Canyon Towhee (Melozone fusca), but the opposite was true for Western 435 

Bluebird (Sialia mexicana; z-score difference = 2.3, Figure S4). Regardless, the spatial pattern in 436 

predicted trends between the two models is quite similar for both species (Figure 10). For both species, 437 

and in general, the GP model trend estimates had narrower credible intervals (higher estimated precision) 438 

than the iCAR model (Figure S5 and S6). Precision of the iCAR trend estimates also showed a clear 439 

relationship to the number of neighbors for any given route, in that routes with few neighbors (on the 440 

edges of the species’ range) were much less precise than estimates in the core of the species’ range 441 

(Figure S6).  442 

Including habitat suitability in the Rufous Hummingbird population model affected estimates of route-443 

level relative abundance and improved estimates of the spatial pattern in  trends (Figure 11). However, 444 

much of the overall decline was not related to covariates describing route-level habitat change, as the 445 

negative population trends across the species’ range remained after removing the effects of local habitat 446 

change covariates (right panel, Figure 11). The effect of habitat suitability on mean relative abundance 447 

was strong and positive (𝜌𝛼 = 3 [95% CI 2.2:3.8]), such that routes with higher overall habitat suitability 448 

had higher mean counts. From 2006-2021, the Rufous Hummingbird’s overall population declined 449 

steeply, decreasing by approximately -43% (95% CI -52:-33). There was a positive effect of change in 450 

habitat suitability on trends, such that routes with habitat loss had more negative population trends 𝜌𝛽 = 451 

0.025 (95% CI 0.003:0.047). Trends were negative across the species’ range, but most negative in the 452 

coastal regions where the habitat has changed the most and where the species is also most abundant (left 453 

panel, Figure 11, and Figure S7). The change in habitat suitability affected the spatial patterns in trend 454 

(Figure 11), with the greater loss of habitat in the coastal regions (Figure S7) accounting for most of the 455 

increased rates of decline in the core of the species’ range. The residual trend component alone does not 456 

show the same coastal-decline pattern (right panel, Figure 11).  457 

Annual variation in the number of ponds around BBS routes affected the overall rate of population change 458 

in Horned Grebes and showed a spatial relationship (Figure 12). In a model including the annual pond 459 



variation, the Horned Grebe population declined overall at a rate of -1.9 %/year from 1975-2017. After 460 

removing the effect of annual pond variation, the long-term rate of decline was -2.2 %/year. The effect of 461 

annual fluctuations in the number of ponds was positive across the region: the mean value of 𝜌′ = 0.42 462 

(95% CI 0.29:0.55), but there was also a spatial gradient in intensity. The effect of the number of ponds 463 

per year was strongest in the northwest part of the Prairies (Figure 12).  464 

  465 



Discussion 466 

Spatially explicit, route-level models are useful for visualizing fine spatial patterns at scales more relevant 467 

to local conservation, understanding the drivers of population change, and estimating the effects of 468 

covariates on relative abundance and trends (e.g., Betts et al. 2022). At this fine spatial scale, 469 

incorporating spatial information improves the models’ predictions of future data. This improvement is 470 

particularly clear for both the iCAR and the GP models, where the spatial models had higher accuracy for 471 

out-of-sample predictions than the non-spatial model for almost every species we compared.  Fine spatial 472 

patterns in trend estimates across a species’ range are useful for generating hypotheses on the ecological 473 

drivers of population change. Route-level models also allow for the incorporation of local habitat 474 

covariates on relative abundance and trend at fine scales, which is important as some covariates affect 475 

bird populations at scales much smaller than the strata often used for broad-scale analyses, such as Bird 476 

Conservation Regions (BCRs) or states/provinces/territories (Thogmartin et al. 2004, Paton et al. 2019, 477 

Monroe et al. 2022). Route-level patterns are also useful in guiding conservation and/or further 478 

monitoring efforts, such as identifying small areas for conservation purposes or diverging population 479 

trends within management areas (i.e., strata or BCR). 480 

These route-level, spatial models generate smoothed patterns of variation in population trends across a 481 

species’ range, which will greatly facilitate hypothesis generation and direct investigation to better 482 

understand the drivers of population change similar to (Fink et al. 2023b). For example, the spatial 483 

models show relatively smooth patterns in Baird’s Sparrow trends across the species’ range (Figure 4), 484 

which are not evident in the simpler, non-spatial model. In the spatial models, Baird’s Sparrow has 485 

increased in the west and decreased in the eastern portion of its range. This longitudinal pattern may 486 

suggest hypotheses related to spatial variation in factors such as climate, or habitat amount, which could 487 

then be directly tested by incorporating covariates representing these factors into a subsequent model. 488 

Similarly, the complex spatial patterns in the trends of Hairy Woodpecker (Dryobates villosus, Figure 8) 489 

show some latitudinal variation in trends in the west that is not as clear in the east, suggesting that there 490 



may be distinct processes related to latitude driving trends in these two regions. Comparisons of these 491 

patterns among species may be particularly informative. For example, the similar southeast to northwest 492 

gradients in trends for Canyon Towhee and Western Bluebird may suggest some similarity in the 493 

underlying drivers of population change (Figure 9). These observations illustrate the types of hypothesis-494 

generating that these fine-scale, spatially explicit models can help generate.  495 

All three of the spatial models (iCAR, GP, and BYM) generated broadly similar spatial patterns in route-496 

level trends for the subset of species we compared (Figure 5 and Figure S2). For the species in this study, 497 

there is little support for the extra variation in route-level trends in the BYM model, given it had lower 498 

predictive accuracy than the simpler iCAR model in all cases. The iCAR structure outperformed the GP 499 

models for 31% of the species and is more computationally efficient. Overall, the GP model outperformed 500 

the iCAR model for most (69%) of the species we compared. The GP model also produces smoother 501 

spatial patterns in population trends than the other spatial models and for some, the difference is striking 502 

(e.g. Black-throated Gray Warbler Setophaga nigrescens, California Quail Callipepla californica, and the 503 

Golden-winged Warbler Vermivora chrysoptera in Figure S3). For the first two species, the GP 504 

outperformed the iCAR for accuracy, while for the third species, the iCAR was better (Figure S4).  505 

Though the GP model had better predictive accuracy for most species, the best spatial structure to use will 506 

depend on the species and the goals of a given study. Until GP models become more efficient to 507 

implement (Hoffmann and Onnela 2023), the iCAR structure may be preferable for larger datasets (e.g., 508 

broad-ranging species and or longer time-series). The iCAR structure may also provide more direct 509 

control to model discontinuities in the spatial relationships, such as complex range boundaries (Ver Hoef 510 

et al. 2018, Pebesma and Bivand 2023), since there are many ways to define neighborhood relationships 511 

(Freni-Sterrantino et al. 2018). A species with limited dispersal may be particularly sensitive to the 512 

Euclidean distance between points and therefore better modeled with the GP, but the simplification of 513 

space using the iCAR structure may be sufficient for most wide-ranging migratory birds. For example, for 514 

some species, there are routes that are separated from most other routes by relatively large distances. 515 



These “isolated” routes are treated very differently by the iCAR and GP models: they are considered close 516 

neighbors in the iCAR model regardless of the distance between them, whereas in the GP model, the large 517 

distance between routes reduces their correlation with their nearest neighbors. Interestingly, when we 518 

compared the predictive accuracy between the GP and iCAR models for routes where the nearest 519 

neighboring route where the species was detected > 200km away, the iCAR tended to outperform the GP 520 

(Figure S8). Therefore, a more accurate representation of the long distances separating these isolated 521 

routes in the GP model does not necessarily result in more accurate predictions, and when combined with 522 

the GP’s computational load, it may be more effective to treat space as a series of relative spatial 523 

relationships using the iCAR structure.  524 

These route-level BBS models provide many opportunities for further comparisons, applications, and 525 

elaborations. Fine-scale estimates could be summarized across species and within regions, such as 526 

summaries of the spatial patterns in grassland bird trends or summaries for a given species within BCRs 527 

or states/provinces/territories and compared to estimates from models fit at those broader spatial scales. 528 

The spatial patterns in trend estimates also allow for comparison of BBS data to other fine-grained maps 529 

of species trend and relative abundance, such as eBird (Sullivan et al. 2014, Fink et al. 2023a) or the 530 

Integrated Monitoring in Bird Conservation Regions (IMBCR) program (Pavlacky et al. 2017). 531 

Comparison of trend estimates between the two programs for the same species and periods of time could 532 

provide useful validation of and or help understand differences between the two sources of information. 533 

Similarly, there are many possible avenues to integrate information across programs for a given period 534 

(e.g., recent trends) or through time (e.g., long-term information from the BBS with more recent 535 

information from eBird and/or IMBCR). Through data integration, we can overcome some of the 536 

limitations of the BBS, such as the lack of detectability data (Edwards et al. 2023a) , and road-side 537 

survey, while retaining the program’s benefits of a long time-series with a structured spatial design and 538 

consistent sampling through time.  539 



 Separating the route-level intercepts from the observer-level intercepts allows us to better model patterns 540 

in relative abundance. It should also allow for improved modeling of the variation among observers. 541 

Although many previous BBS analyses have combined observer and route effects (Link et al. 2020, Smith 542 

and Edwards 2020), doing so contributes some of the variation in relative abundance among routes to 543 

observer variation, which is effectively sampling noise. The model will struggle to separately estimate 544 

intercepts for observers and routes in situations where there are few data to inform the estimates (e.g., 545 

cases where a route has only been surveyed by one observer). However, we suggest that if a model has 546 

sufficient data to estimate these parameters separately, however weakly, it is preferable to a model that 547 

does not separate the variation in relative abundance between routes from the sampling noise of observer 548 

variation. This separation of the observer from route effects is improved by the hierarchical structure of 549 

the models, inclusion of spatial information, weakly informative priors, and the improved efficiency of 550 

HMC algorithms over the earlier Gibbs sampling algorithms. Although we were motivated by our desire 551 

to directly model route-level relative abundance, this approach is equally applicable to other BBS 552 

analyses (Smith et al. 2023), at any scale, and is included in the models in the R-package bbsBayes2  553 

(Edwards et al. 2023b).       554 

In both covariate examples, incorporating spatial covariates into the trend analyses tested hypotheses 555 

related to the drivers of population change and helped identify specific areas for further research and 556 

conservation action. For the Rufous Hummingbird, the model shows higher mean relative abundance on 557 

routes with higher habitat suitability and positive effects of the change in habitat suitability on the 558 

species’ trend (more negative trends on routes where habitat has decreased). These example findings 559 

coincide with a recent study which found that the survival rate of rufous hummingbirds was negatively 560 

affected by high human population density (English et al. 2024), where there is likely less habitat. 561 

Interestingly, it also shows that during this period, the variation among routes in habitat change does not 562 

account for all of the decline in the species’ population (Figure 11, and Figure S7), suggesting that factors 563 

other than local habitat or factors acting outside of the breeding range may be driving the overall decline. 564 



However, covariates other than habitat suitability could represent local habitat better for the Rufous 565 

Hummingbird and could result in a different relationship between local habitat and relative abundance. 566 

For the Horned Grebe, the effect of annual fluctuations in available wetland habitat (the number of ponds) 567 

is positive overall and varies in magnitude across the species’ range. The effect is strongest in the western 568 

prairies where the effects of drought are often strongest (Johnson et al. 2005, Millett et al. 2009, Roy 569 

2015). These results highlight the importance of continued investment in wetland conservation programs 570 

for waterbird populations breeding in the Prairie Potholes Region, and the vulnerability of these species to 571 

climate change since their breeding habitat is highly sensitive to climatic conditions.   572 

The structure of the BBS, designed for monitoring temporal changes in bird populations, allows for the 573 

efficient estimation of fine-scale patterns in trends and the effects of local drivers of those trends, 574 

provided the survey design and the model sufficiently account for potential changes in detectability. 575 

Unmodeled changes in detectability of birds through time could explain some of the spatial patterns in 576 

trends from these models, if the changes in detectability were coincident across many BBS routes in a 577 

particular region. For example, changes in vegetation that affect detectability, such as forest loss adjacent 578 

to the roads where surveys occur, could bias estimates of trends from BBS observations or bias estimates 579 

of the effects of that changing vegetation on bird populations. The BBS field methods control for many 580 

factors that are known to affect detectability, including weather, season, time of day, and among observer 581 

variation. Other potential sources of bias in BBS trends include changes in phenology, changes in traffic 582 

during surveys, among observer variation, and within observer variation, although so far each of these 583 

when studied have be shown to have minor effects on trend estimates (Kendall et al. 1996, Griffith et al. 584 

2010, English et al. 2021), or can be statistically adjusted in the models (Sauer et al. 1994). There is 585 

ongoing work to further explore the potential bias in trends due to observer aging (Farmer et al. 2014, 586 

U.S. Geological Survey and Canadian Wildlife Service 2020). The models here could also be modified to 587 

integrate BBS observations with additional data that could support adjustments for possible changes in 588 



detectability (e.g., (Edwards et al. 2023a)), or additional data that could directly estimate changes in 589 

detectability through time (Pavlacky et al. 2017, Zhao et al. n.d.).    590 

Fine-scale models can also be used to inform different scales of decisions and communities. Decisions on 591 

land use for industries such as agriculture, forestry, and housing are often made at fine scales (Sodhi et al. 592 

2011, Malek et al. 2019). Likewise, habitat protection and restoration by community organizations, 593 

municipal governments, and non-governmental organizations occur at fine scales (Sheppard 2005, 594 

Aronson et al. 2017). For example, the Horned Grebe covariate analysis confirms the vulnerability of 595 

waterbird species in the northwestern Prairie Potholes Region and supports a current initiative to protect 596 

critical shallow wetlands in the region (Prairie Habitat Joint Venture 2020). Community support is 597 

important for the success of conservation initiatives (Berkes 2004, Bennett and Dearden 2014), and so 598 

providing estimates at scales relevant to communities may increase community support for conservation 599 

and encourage a feeling of stewardship. Further, routes are a relevant scale for the volunteer observers 600 

dedicated to the BBS, with the average BBS volunteer participating for 12 years. Producing estimates at a 601 

route-level allows volunteers’ to see the direct results of their efforts over the years, a large motivator for 602 

many citizen science volunteers (Phillips et al. 2019). 603 

We hope that the models and examples here will facilitate greater use of the BBS data, providing new 604 

ways to explore the spatiotemporal patterns in relative abundance and trends, and new tools with which to 605 

better understand the drivers of those patterns. The long-term information from the BBS provides a 606 

priceless benchmark against which to calibrate an otherwise shifting ecological baseline. In addition to its 607 

monitoring role, the structured design of the BBS also provides excellent data to study the drivers and 608 

correlates of population change using tractable and interpretable models such as these.   609 

  610 
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Figure 1. North American Breeding Bird Survey (BBS) route start locations (points in the lower left and 826 

lower right images) for routes on which Baird’s Sparrow was observed (2006-2021), demonstrating the 827 

process used to identify the discrete neighbor relationships for the iCAR and BYM spatial models. The 828 

top centre panel shows the full set of standard BBS strata within Canada and the United States. These 829 

strata represent the spatial intersection of the countries’ states, provinces, and territories (darker grey 830 

lines) with the North American Bird Conservation Regions (BCRs lighter grey lines; ecological zones 831 

that share similar ecological and climatic features as well as similar bird communities). The dark inset 832 

box shows the region highlighted in the lower two panels. The left bottom panel shows the Voronoi 833 

tessellated surface used to assign the intervening space to the nearest BBS route start location, the outer 834 

edge of this surface is defined by an intersection of a concave polygon surrounding the points and the 835 

standard BBS strata where the species occurs. The lower right panel shows routes considered neighbors 836 

using lines linking points that share an edge separating their associated Voronoi polygons.  837 

 838 



 839 

Figure 2. The base model showing the components that are common to all four models. The observed 840 
counts (equation 1) for a given species on route-r, by observer-j, in year-t, are realizations of a negative 841 
binomial distribution, with mean expected count and inverse dispersion parameter. The log of the mean of 842 
the negative binomial distribution was modeled as an additive combination of route-level intercepts, 843 
observer-effects, a first-year observer-effect, and route-level slope parameters for the continuous effect of 844 
year (t) centered on the mid-year (tm) of the time-series (equation 2). The observer-effect (random 845 
intercept for each observer, equation 3) is a zero-mean normal distribution with an estimated standard 846 
deviation. Equation numbers are consistent across Figures 2, 3, and 4. 847 

  848 



 849 

Figure 3. The four spatial models and the components that vary among the models: their treatment of the 850 
route-level variation in the intercepts (relative abundance) highlighted in light yellow and route-level 851 
variation in slope (trend) highlighted in darker green. All four models use the same base model (equation 852 
2 here and in Figure 2), and all estimate the intercepts independently of the slopes. For each of the 853 
models, the intercepts (equation 4) and slopes (equation 5) are additive combinations of a mean and the 854 
component that models the route-level variation. In the iCAR model (intrinsic Conditional 855 
Autoregressive) and BYM model (Besag York Mollie), the route-level variation from the mean intercept 856 
(equation 6) is drawn from a normal distribution centered on the means of the Nr neighboring routes. For 857 
the iCAR, the route-level variation in slope on each route (equation 7) was estimated in the same way as 858 
the intercepts (a normal distribution centered on the means of the Nr neighboring routes). For the BYM, 859 
the route-level variation in slope like the iCAR model (equation 8) but with an additional non-spatial 860 
component (equations 9 and 10) as a random effect drawn from a normal distribution. For the GP model, 861 
the route-level variation in intercepts and trends (equations 11 and 12) are estimated as zero-mean, 862 
multivariate normal distributions (MVN), with covariance matrices estimated using a squared exponential 863 
kernel function. The covariance of the parameters among routes is a function of the distance between 864 
them modeled by two parameters that control the magnitude of the covariance when distance is zero and 865 
the effect of distance (the rate at which covariance decreases with distance, equations 13 and 14). The 866 
non-spatial model estimates the route-level variation in intercepts and slopes as independent random 867 
effects (equations 15 and 16). Equation numbers are consistent across Figures 2, 3, and 4. 868 
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 870 

Figure 4. Models used in the two covariate examples. The Rufous Hummingbird example is a 871 
modification of the iCAR model where habitat suitability is used as a covariate on route-level slopes and 872 
intercepts. Route-level intercepts (equation 17) are the sum of a mean intercept, a non-spatial residual 873 
component (equation 15), and a component that is due to the effect of mean habitat suitability (averaged 874 
across all years) on each route (equation 19). Route-level slopes (equation 18) are the sum of a mean 875 
slope, a spatially varying residual component (equation 7), and a component that is due to the effect of the 876 
change in habitat suitability over time on each route (equation 21). The route-specific parameters that 877 
estimate the effect of habitat suitability and change in habitat suitability were estimated as normally 878 
distributed effects centered on a mean hyperparameter that represents the average effect of the covariate 879 
on either the intercept (equation 20) or the slope (equation 22).  The Horned Grebe example is a 880 
modification of the iCAR model (equation 23) with a spatially varying coefficient (equations 24 and 25) 881 
on the effect of the number of ponds surrounding each BBS route in each year on the expected count. The 882 
remainder of this model (everything to the left of the pond-effect) is identical to the iCAR model 883 
(equations 2, 4, 5, 6, and 7 in Figure 2). Equation numbers are consistent across Figures 2, 3, and 4. 884 
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 886 

Figure 5. Estimates of trend (colors) and mean relative abundance (size of the points) for Baird’s Sparrow 887 

populations on BBS routes from 2006-2021, from three spatially explicit models (iCAR, GP, and BYM) 888 

and one non-spatial model. Points with warm colors (reds) represent routes with decreasing counts 889 

through time, points with cool colors (blues) represent routes with increasing counts through time. The 890 

three spatially explicit models suggest very similar spatial patterns in trends, although the GP model 891 

suggests smoother spatial variation in trend than either the iCAR or BYM models. Dark grey lines within 892 

the maps represent boundaries of state/provinces/territories and the light grey lines represent the 893 

boundaries of Bird Conservation Regions. The extents of these map panels are similar to those in figure 1.  894 
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 896 

Figure 6. Estimates of mean relative abundance (colors) and the Coefficient of Variation for the estimates 897 

(CV) for Baird’s Sparrow populations on BBS routes from 2006-2021, from three spatially explicit 898 

models and one non-spatial model. Points with brighter colors (greens and yellows) represent routes with 899 

higher estimated mean counts, and points with more precise estimates of abundance (smaller CV) are 900 

larger. The iCAR and BYM models estimate almost identical spatial patterns in abundance with a 901 

relatively clear peak in the center of the species’ range, and relatively smoother spatial variation than 902 

either the GP or the non-spatial model. Dark grey lines within the maps represent boundaries of 903 

state/provinces/territories and the light grey lines represent the boundaries of Bird Conservation Regions. 904 

The extents of these map panels are similar to those in figure 1. 905 

 906 

  907 



 908 

Figure 7. Leave Future Out (LFO) cross-validation results for 71 small-range species from the North 909 

American Breeding Bird Survey (BBS) database, comparing among the four different models. The 910 

stacked dot-plots represent species-level summaries of the differences in log posterior predictive density 911 

(lppd) between pairs of models. Each point represents one species for a given model comparison. Z-score 912 

values on the x-axis represent the difference between the lppd for the two models indicated on the y-axis. 913 

Z-scores > 0 (points that fall to the right of the black vertical line) represent species for which the 914 

predictive accuracy of the first model is higher than that of the second model (e.g., all but two species in 915 

the iCAR vs non-spatial comparison), and vice versa. Z-scores > 2 or < -2 (points that fall to the right or 916 

left of the vertical dark gray lines, respectively) represent species for which the mean of the differences 917 

between the two models are clear and could be considered “significant” in some statistical frameworks. 918 

The top three dot-plots show the comparisons between each of the three spatial models and the non-919 

spatial model. The lower two plots compare the predictive accuracy among the three spatial models and 920 

show that the iCAR model out-performs the BYM model for all species, and that the GP model out-921 

performs the iCAR model for some species but not for others.  See Figure S4 for species-level details.       922 



 923 

Figure 8. Leave Future Out (LFO) cross-validation results for all 287 species (including the 71 species 924 

results in Figure 7) from the North American Breeding Bird Survey (BBS), comparing the iCAR spatial 925 

model and the non-spatial model. The stacked dot-plots represent species-level summaries of the 926 

differences in log posterior predictive density (lppd) between the two models. Each point represents one 927 

species. Z-score values represent the difference between the lppd for the two models accounting for the 928 

variation across all counts, and the stacked dots form a histogram. Points that fall to the right of the black 929 

vertical line represent species for which the predictive accuracy of the spatial model is higher than that of 930 

the non-spatial model. The iCAR spatial model outperforms the non-spatial model for all but four species. 931 

For those four species, the predictive accuracy of the two models is very similar (< -1).  932 
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 934 

Figure 9. Examples of the spatial patterns in estimated route-level trends for four broad-range species 935 

from an iCAR spatial model (left column) compared to trends estimated from an otherwise identical, non-936 

spatial version of the model (right column). All points are the same size in this plot because the mean 937 

abundances vary too much among species to display meaningful variation in this plot. Dark grey lines 938 

within the maps represent boundaries of state/provinces/territories in Canada and the United States and 939 

the light grey lines represent the boundaries of Bird Conservation Regions. 940 



 941 

Figure 10. An example illustrating that the spatial patterns in estimated trends for iCAR and GP models 942 

are quite similar, even when one of the models strongly out-performs the other in a cross-validation 943 

analysis. For the Canyon Towhee (Melozone fusca), the GP model clearly out-performs the iCAR model 944 

in predictive accuracy (z-score comparison iCAR – GP = -4.3, left of the center line in Figure 7). For the 945 

Western Bluebird (Sialia mexicana), the iCAR model out-performs the GP model in predictive accuracy 946 

(z-score comparison iCAR – GP = 2.9, right of the center line in Figure 7). Despite the relatively strong 947 

difference in predictive accuracy, the spatial patterns are quite similar for both models. All panels in this 948 

figure are focused on the western United States and southwestern Canada. Dark grey lines within the 949 

maps represent boundaries of state/provinces/territories in Canada and the United States and the light grey 950 

lines represent the boundaries of Bird Conservation Regions. 951 
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 954 

Figure 11. Map of route-level trend estimates for Rufous Hummingbird (Selasphorus rufus) from 2006-955 

2021. The colors represent two sets of trends estimated from the model: “Full with Habitat-Change” 956 

represent trends that include the spatially explicit random effects and the effects of local habitat change 957 

(left panel) and the “Residual” represent only the residual spatially explicit estimate of trend, after 958 

removing the effects of habitat change (right panel). Habitat change appears to be driving most of the 959 

variation in trends within the core latitudes of the species range (45°-55° N). The faster rates of decline 960 

(darker red) in the western regions and the slower rates of decline (lighter yellow) in the east are evident 961 

in the left panel that includes the effects of habitat and are missing from the panel on the right. Dark grey 962 

lines within the maps represent boundaries of state/provinces/territories on the West coast of Canada and 963 

the United States and the light grey lines represent the boundaries of Bird Conservation Regions. 964 

 965 

 966 



 967 

Figure 12. A map of the spatial variation in the effects of annual fluctuations in available habitat (ponds) 968 

on the expected counts of Horned Grebe on the North American Breeding Bird Survey (BBS) routes 969 

(1975-2017). The pond effect is estimated as a spatially varying coefficient using the iCAR structure 970 

among routes and was strongest in the West. Pond effect represents the log-scale effect of annual 971 

variation in the number of ponds surrounding a BBS route in a given year on the annual expected count 972 

after adjusting for spatially varying long-term trends, observer-effects, and the other parameters included 973 

in all of the models we used. Dark grey lines within the maps represent boundaries of 974 

state/provinces/territories in the central prairie regions of Canada and the United States (similar extent to 975 

Figure 1) and the light grey lines represent the boundaries of Bird Conservation Regions. 976 
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Model Priors 

 

We used weakly informative (Gelman 2006, Lemoine 2019) standard normal priors for the mean 

species-level intercept and the first-year effect parameter. The mean species-level slope parameter was 

given a weakly informative normal prior (𝛽′~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.1)). We consider this prior weakly 

informative as it reflects our belief that extreme rates of change are unlikely (it places approximately 95% 

of the prior density for the survey-wide population trends between approximately -20 and +20%/year). 

For the iCAR, BYM, and non-spatial models, the priors for the standard deviations of the spatial 

variation and non-spatial variation of the route-level slopes (𝜎𝛽𝑠𝑝𝑎𝑐𝑒
′′  and 𝜎𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

′′ ) had gamma priors 

with shape = 3 and scale = 30. These gamma priors were weakly informative such that the standard 

deviation of trends was constrained to more probable scales based on the log-link of the model and to 

avoid estimates of zero (Chung et al. 2013). Specifically, this gamma prior places the mean of the prior 

density at approximately 10% per year difference, and 99% of the prior density on the standard deviation 

of route-level trends at values less than 28% per year difference, while also including a long tail so that 

the model can estimate more extreme variation, if supported by the data (Chung et al. 2013). The standard 

deviation of the intercept terms in these models (𝜎𝛼𝑠𝑝𝑎𝑐𝑒
′′  and 𝜎𝛼𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

′′ ) were given a half-normal prior 

with standard deviation = 2. This weakly informative prior placed most prior density at values < 5, and 

reflects our belief that across a species’ range, mean relative abundance for a fixed survey effort can vary, 

but is unlikely to vary by more than a few orders of magnitude (Fink et al. 2023). If this relatively wide 

prior created convergence issues, we re-fit the models with a prior that considered the observed variation 

in mean counts among routes for a given species. Specifically, we used a half-normal prior with the 

standard deviation equal to the observed standard deviation of mean log-transformed observed counts 

among routes. We are confident that this prior is only weakly informative and likely over-estimates the 

among-route variance because the observed data includes variation among routes, as well as variation 

among observers.  

The parameters of GP models can be quite sensitive to prior distributions (McElreath 2020). We 

scaled the distance matrix in units of 1000 km and set a half-standard t-distribution prior on 𝜃𝛼
2 and 𝜃𝛽

2 

with 5 degrees of freedom (Gelman et al. 2013). The half-t prior on 𝜃2 places most prior density at 

relatively small values and includes a relatively long tail that allows for larger values, if supported by the 

data. For most species, we used a weakly informative inverse gamma distribution prior with scale and 

shape = 5 for 𝜌𝛼
2 and 𝜌𝛽

2 . For some species, the values of 𝜌2 failed to converge with this prior, so we set 

an alternative and more informative prior using a gamma distribution with scale and shape = 2. The 



gamma and inverse gamma priors on 𝜌𝛼
2 both avoid 0. The weakly informative inverse gamma includes a 

long right tail that allows the model to estimate spatial dependency that declines steeply with distance 

(e.g., 𝜌𝛼
2 > 500 and therefore covariance values near 0 for routes separated by the approximate 40-km 

length of a BBS route), but for some species, this long tail created convergence difficulties. For these 

species, we used the gamma prior with a shorter right tail and effectively constrained the estimates of 𝜌𝛼
2 

to values < 20. This places most of the prior density at values that imply there is some spatial dependency 

that may extend out to larger distances (500 km – 3000 km).  
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Supplemental methods for Rufous
Hummingbird habitat covariate example

Model structure

The model is an elaboration of the iCAR route-level trend model, where the route-level inter-
cepts and slopes are additive combinations of a component that is a function of a route-level
predictor and a residual component, estimated either with the iCAR structure or a non-spatial
random effect. The route-level predictors are derived from a habitat modeling study for Rufous
Hummingbirds (Selasphorus rufus). The mean habitat suitability within a buffer of the BBS
route-path is used as a predictor on the intercept (i.e., the mean relative abundance on a given
route). The rate of change in habitat suitability over time within the same buffer was used
as a predictor on the slope (i.e., the trend in the species’ abundance). This model structure
relies on relatively simple assumptions that the amount of habitat around a BBS route should
predict the number of individual birds, and that the change in the amount of habitat should
predict the change in the number of birds.

The original study estimated habitat suitability using spectral remote sensing data and species
distribution modelling approaches to detect and quantify habitat loss for the Rufous Hum-
mingbird. Using a combination of Landsat surface reflectance remote sensing imagery and
long-term climate data, and observations of Rufous Hummingbird occurrence complied from
numerous datasets, the study quantified the annual distribution of habitat suitability over time
(1985–2021) across the species’ entire breeding range in the Pacific Northwest. The habitat
suitability modeling in this study was based on the methods in ((Betts et al. 2022)).

The basic model is the same as all of other models in the main paper.

𝐶𝑟,𝑗,𝑡 = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝜆𝑟,𝑗,𝑡, 𝜙)

𝑙𝑜𝑔 (𝜆𝑟,𝑗,𝑡) = 𝛼𝑟 + 𝛽𝑟 ∗ (𝑡 − 𝑡𝑚) + 𝜂Ι𝑗, 𝑡 + 𝜔𝑗
We modeled the observed counts (𝐶𝑟,𝑗,𝑡) of Rufous Hummingbirds on route-r, in year-t, by
observer-j as as realizations of a negative binomial distribution, with mean 𝜆𝑟,𝑗,𝑡 and inverse



dispersion parameter 𝜙. The log of the mean (𝜆𝑟,𝑗,𝑡) of the negative binomial distribution was
modeled as an additive combination of route-level intercepts (𝛼𝑟), observer-effects (𝜔𝑗), and
a first-year observer-effect (𝜂𝐼[𝑗, 𝑡]), and route-level slope parameters (𝛽𝑟) for the continuous
effect of year (𝑡) centered on the mid-year of the time-series (𝑡𝑚).

We estimated the route-level intercepts and slopes as an additive combination of a mean
species-level intercept or slope (𝛼′ or 𝛽′), a varying intercept or slope that was a function of
the mean habitat suitability on the route (𝛼′′′

𝑟 ) or rate of change in habitat suitability on the
slope (𝛽′′′

𝑟 ), and spatially varying effects for the residual variation in relative abundance (𝛼′′
𝑟 )

and slope (𝛽′′
𝑟 ) that were not explained by habitat.

𝛼𝑟 = 𝛼′ + 𝛼′′
𝑟 + 𝛼′′′

𝑟

𝛽𝑟 = 𝛽′ + 𝛽′′
𝑟 + 𝛽′′′

𝑟

This partitioning of the intercept and slope parameter allows the model to generate two alter-
native estimates of the mean abundance and trend on each route. The full trend 𝛽′ +𝛽′′

𝑟 +𝛽′′′
𝑟

represents the full estimated trend on a given route, including the effects of habitat-change.
The residual trend 𝛽′ + 𝛽′′

𝑟 represents a counter-factual trend that would have been expected
if the habitat had stayed constant on a given route. Similarly, the full relative abundance
𝛼′ + 𝛼′′

𝑟 + 𝛼′′′
𝑟 represents the full estimated relative abundance on a given route, including

the effects of habitat. The residual relative abundance 𝛼′ + 𝛼′′
𝑟 represents a counter-factual

abundance that would have been expected if the habitat suitability was the same across all
routes.

We estimated the effect of mean habitat suitability on the route-level intercept as a simple
product of a route-specific coefficient (𝜌𝛼𝑟

) and the mean (over all years) of the annual habitat
suitabilities in a buffer surrounding each route-path (𝛼′′

𝑟 = 𝜌𝛼𝑟
∗𝜇ℎ𝑎𝑏𝑖𝑡𝑎𝑡𝑠𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑟

).The annual
habitat suitability values are scaled from 0 – 1, so that as scaled, the estimate of 𝜌𝛼𝑟

represents
the maximum possible change in suitability. However, the realized range in values was from
0.2 to 0.7, and so a more relevant interpretation is that it represents twice the maximum
change in abundance due to habitat. To model the effects of habitat-change on population
trend, we estimated the effect of the rate of change in habitat suitability on each route as a
product of a route-specific coefficient (𝜌𝛽𝑟

) and an estimate of the average rate of change in
habitat suitability on each route (𝛿ℎ𝑎𝑏𝑖𝑡𝑎𝑡𝑠𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑟

). We estimated the rate of change in habitat
suitability as the slope of a simple linear regression through the annual estimates of habitat
suitability measured within a buffer surrounding each route-path (𝛽′′

𝑟 = 𝜌𝛽𝑟
∗𝛿ℎ𝑎𝑏𝑖𝑡𝑎𝑡𝑠𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦).

We multiplied the slopes of the suitability over time by 100, so that they had a standard
deviation of approximately 0.5, and so the estimate of 𝜌𝛽𝑟

represents the change in the log-
scale slope parameter associated with the difference between a route on which habitat has
been stable and a route where the habitat has increased a lot (i.e., 2 standard deviations from
the mean). The habitat suitability predictors were centered to improve convergence. The
route-specific coefficients for the effects of habitat suitablility on the intercept and slope were
allowed to vary among routes, but were centered on a hyperparameter mean effects across



routes 𝜌𝛼𝑟
∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝑃𝛼, 𝜎𝜌𝛼

) and 𝜌𝛽𝑟
∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝑃𝛽, 𝜎𝜌𝛽

). As such, the hyperparameters
for the effect of mean habitat suitability on the intercept (𝑃𝛼) and the effect of change in
habitat suitablility on slope (𝑃𝛽), represent a clear species-level estimate of the overall effects
of habitat on abundance and trend, after adjusting for the species mean abundance and trend,
as well as the residual spatially dependent variation in abundance and trend.

In the fully spatial implementation of the model, we estimated the residual component of
the intercepts and slopes using an intrinsic iCAR structure, where the parameter for route-r
is drawn from a normal distribution, centered on the mean of that parameter’s values in all
neighbouring routes, with an estimated standard deviation that is proportional to the inverse
of the number of neighbours for that route (Morris et al. 2019). Specifically, the component
of the intercept that represents the residual spatially dependent relative abundance (𝛼′′′

𝑟 ) was
drawn from a normal distribution centered on the mean of the intercepts for all neighbouring
routes.

𝛼′′′
𝑟 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (

∑𝑛∈𝑁𝑟
𝛼′′′

𝑛
𝑁𝑟

, 𝜎𝛼′′′

𝑁𝑟
)

The spatially varying component of the slope (𝛽𝑟′′′) was estimated similarly as random route-
level terms from a normal distribution centered on the mean of the slopes for all neighbouring
routes using the same iCAR structure.

𝛽′′′
𝑟 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (

∑𝑛∈𝑁𝑟
𝛽′′′

𝑛
𝑁𝑟

, 𝜎𝛽′′′

𝑁𝑟
)

Alternative non-spatial residual term on intercepts

In the fully spatial version of the model, there was a relatively strong spatial autocorrelation
in both the habitat suitability and the mean abundance of the species. As a result, the spatial
iCAR component of the intercept absorbed much of the variation in abundance among routes,
leaving relatively little variation explained by habitat.

Since the spatial component of habitat suitability could reasonably be considered a cause of the
spatial dependency in abundance, we drew our final inference on the effect of habitat suitability
on abundance from a model that estimated the residual component of the intercept term with
a non-spatial varying effect (i.e., a simple random effect). Specifically, the component of
the intercept that represents the residual relative abundance (𝛼′′′

𝑟 ) was drawn from a normal
distribution centered at zero with an estimated standard deviation (𝛼′′′

𝑟 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝛼′′′)).

library(bbsBayes2)
library(tidyverse)
library(sf)



library(cmdstanr)
library(patchwork)

output_dir <- "output"
species <- "Rufous Hummingbird"

species_f <- gsub(gsub(species,pattern = " ",replacement = "_",fixed = T)
,pattern = "'",replacement = "",fixed = T)

spp <- "_habitat_"

exp_t <- function(x){
y <- (exp(x)-1)*100

}

firstYear <- 2006
lastYear <- 2021

out_base <- paste0(species_f,spp,firstYear,"_",lastYear)

sp_data_file <- paste0("data_open/",species_f,"_",firstYear,"_",lastYear,
"_covariate_stan_data.RData")

load(sp_data_file)

mod.file = paste0("models/slope",spp,"route_NB.stan")

stan_data[["fit_spatial"]] <- 0 # this sets an option in the model
# to estimate the residual intercept component using a simple random
# effect, instead of a spatial one. This allows the model to estimate
# variation in abundance that is not predicted by local habitat suitability
# but does not fit an inherently spatial residual structure
# setting this fit_spatial value to 1 uses the iCAR structure to model
# a spatially explicit residual term

The stan_data[["fit_spatial"]] <- 0 line sets a false conditional statement in the data



list that allows the model to estimate the residual intercept component using a simple random
effect, instead of a spatial one. This allows the model to estimate variation in abundance that is
not predicted by local habitat suitability but does not fit an inherently spatial residual structure
setting this stan_data[["fit_spatial"]] <- 1 results in a true conditional statement and
uses the iCAR structure to model a spatially explicit residual term on the intercept.

slope_model <- cmdstan_model(mod.file, stanc_options = list("Oexperimental"))

stanfit <- slope_model$sample(
data=stan_data,
refresh=400,
iter_sampling=2000,
iter_warmup=2000,
parallel_chains = 4)

summ <- stanfit$summary()
print(paste(species, stanfit$time()[["total"]]))

saveRDS(stanfit,
paste0(output_dir,"/",out_base,"_stanfit.rds"))

saveRDS(summ,
paste0(output_dir,"/",out_base,"_summ_fit.rds"))

summ %>% arrange(-rhat)

Fitting the model

Before fitting the model, we prepared the BBS counts, the neighbourhood structures necessary
to estimate the iCAR residual spatial component, and joined them to the habitat suitablity
predictors. The full code and data necessary to replicate the data-preparation is available in
the online supplement. In brief, we selected all routes on which the species had been observed
during and for which we had GIS route-path information that would allow us to estimate the
route-specific annual habitat suitability values.

We fit the model using the probablistic programming language Stan (Stan Development Team
2022), accessed through the R-package cmdstanr (Gabry and Cešnovar 2022). We used a
warm-up of 2000 iterations, and cmdstanr default settings for other arguments, followed by a
draw of 2000 samples from which we estimated the posterior distributions. All parameters in
all models converged based on Rhat < 1.02 and bulk effective sample sizes > 500.



Results

During the 15-years from 2006-2021, the species overall population declined steeply. The model
estimated an overall change in the population of approximately -43% [-52–33]. Trends were
negative across the species’ range, but most negative in the coastal regions where the species
is also most abundant (Figure 1). The effect of habitat suitability on mean relative abundance
was strong and positive ( 𝑃𝛼 = 3 [2.2-3.8]), and this effect was robust, whether the residual
abundance component was spatially autocorrellated or random. There was a clear positive
effect of change in the habitat suitability on trends, such that routes with habitat-loss had
more negative population trends 𝑃𝛽 = 0.025 [0.0026-0.047]. The greater loss of habitat in the
coastal region accounts for most of the increased rates of decline in that region (Figure 2), the
residual trend component alone (Figure 2, right panel) does not show the same coastal-decline
pattern.
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Figure 1: Map of the trends for Rufous Hummingbird from 2006-2021 The colours represent
the trends in the uppper panel and the relative abundance in the lower panel. The
left panel represents the full estimated trends and abundance on each route, includ-
ing both the effect of habitat-suitability and the residual component not related to
habitat. The right panel represents the trends and relative abundances after remov-
ing the effect of habitat-suitability. In the top-left panel, the greater declines in
coastal regions are evident from the darker red points compared to the top-right
panel. In the bottom-left panel, the higher abundance near the coast is evident from
the lighter colours. The bottom-right panel shows much more even relative abun-
dance across the species’ range, showing that habitat suitability accounts for much
of the variation in abundance
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Supplemental methods for Horned Grebe
habitat covariate example

Model structure

The model is an elaboration of the iCAR route-level trend model, where the route-level
intercepts and slopes are estimates of relative abundances and trends, after account-
ing for the effects of annual fluctuations caused by a route-level annual climate-related
predictor. The route-level predictors are derived from a study of the effects of mois-
ture/drought patterns on Horned Grebe (Podiceps auritus) trends in Canada. To represent
annual variation in available habitat for wetland birds, we used the data collected by
the United States Fish and Wildlife Service and the Canadian Wildlife Service on the
number of ponds (primarily, temporary small wetlands often referred to as “Prairie Pot-
holes”) during aerial surveys (Waterfowl Breeding Population and Habitat Survey Data.
1955-2022)[https://ecos.fws.gov/ServCat/Reference/Profile/140698]. Annual fluctuations in
moisture have a strong influence on the number of these wetlands available for waterbird
habitat in the Prairie Pothole region of Canada. These annual fluctuations could complicate
assessments of a possible long-term decline in the species’ population, if strong short-term
fluctuations in the amount of habitat being surveyed could overwhelm or counter-act longer-
term gradual changes in populations. We designed this model to estimate the long-term
rate of population change after statistically controlling for the annual variations in available
habitat.

The model is based on the iCAR models in the main paper, but includes count-level predictors
for the effects of available habitat.

𝐶𝑟,𝑗,𝑡 = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝜆𝑟,𝑗,𝑡, 𝜙)

𝑙𝑜𝑔 (𝜆𝑟,𝑗,𝑡) = 𝛼𝑟 + 𝛽𝑟 ∗ (𝑡 − 𝑡𝑚) + 𝜌𝑟 ∗ 𝑝𝑜𝑛𝑑𝑠𝑟,𝑡 + 𝜂Ι𝑗, 𝑡 + 𝜔𝑗

We modeled the observed counts (𝐶𝑟,𝑗,𝑡) of Horned Grebes on route-r, in year-t, by observer-j
as as realizations of a negative binomial distribution, with mean 𝜆𝑟,𝑗,𝑡 and inverse dispersion



parameter 𝜙. The log of the mean (𝜆𝑟,𝑗,𝑡) of the negative binomial distribution was modeled
as an additive combination of route-level intercepts (𝛼𝑟), observer-effects (𝜔𝑗), and a first-year
observer-effect (𝜂𝐼[𝑗, 𝑡]), and route-level slope parameters (𝛽𝑟) for the continuous effect of year
(𝑡) centered on the mid-year of the time-series (𝑡𝑚).

We estimated the effect of the number of ponds surrounding each route in a given year on BBS
counts as a spatially-varying coefficient representing the route-specific effect of local ponds
(𝜌𝑟 ∗ 𝑝𝑜𝑛𝑑𝑠𝑟,𝑡). Where 𝑝𝑜𝑛𝑑𝑠𝑟,𝑡 represents the log(1 + number of ponds) surrounding BBS
route 𝑟 in year 𝑡, centered on their mean across years for each route. This route-specific
centering ensured we could separately estimate the route-level intercepts and the effects of
the annual variations in ponds. The effects of ponds at each route were centered on a mean
hyperparameter 𝑃 , and allowed to vary among routes using the same iCAR spatial structure
as for the slopes and intercepts (𝜌′

𝑟.

𝜌𝑟 = 𝑃 + 𝜌′
𝑟

𝜌′
𝑟 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 (

∑𝑛∈𝑁𝑟
𝜌′

𝑛
𝑁𝑟

, 𝜎𝜌′

𝑁𝑟
)

Finally, we also fit the same data to the simple iCAR model (i.e., an identical model with no
covariates) to compare the difference in estimated trends with and without accounting for the
annual variations in available habitat.

Fitting the model

To fit the model, we prepared the BBS counts, the neighbourhood structures necessary to
estimate the iCAR trend and covariate spatial components, and joined the climate predictor
to the data. The full code and data necessary to replicate the data-preparation is available
in the online supplement. In brief, we selected all routes on which the species had been
observed in the years 1975 - 2017, and for which we had ponds data (Prairie-pothole region of
Canada).

We fit the model using the probabilistic programming language Stan (Stan Development Team
2022), accessed through the R-package cmdstanr (Gabry and Cešnovar 2022). We used a warm-
up of 2000 iterations, and cmdstanr default settings for other arguments, followed by a draw
of 2000 samples from which we estimated the posterior distributions. All parameters in all
models converged based on Rhat < 1.02 and bulk effective sample sizes > 500 (Gelman et al.
2020).



Results

During the 43-years from 1975-2017, the species population declined at a rate of -1.9 %/year.
After removing the effect of annual variations in the number of ponds surrounding each BBS
route, the long-term rate of decline was -2.2 %/year. This difference suggests that annual
fluctuations in moisture, such as the relatively high-moisture periods in 2014-2017, have been
responsible for reducing the species’ rate of decline. It also suggests that the species’ Prairie
populations may decline even further in the future, given the predictions for reduced precipi-
tation and higher temperatures in the region with ongoing climate change.

The effect of annual fluctuations in the number of ponds was positive across the region: the
mean value of 𝑃 = 0.42 [0.29 : 0.55]. but there was also a spatial gradient in intensity. The
effect of number of ponds in a given year was strongest in the western part of the Prairies
(Figure 1). This spatial pattern makes sense given that the western prairies tend to experience
more intense and frequent drought conditions ((Millett, Johnson, and Guntenspergen 2009)).
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Figure 1: Map of the effect of the number of ponds surrounding each BBS route in a given
year on the counts of Horned Grebes, 1975-2017. The colours represent the route-
specific coefficient for the effect of the log-transformed count of the number of ponds
surrounding each Breeding Bird Survey route. The more positive values (lighter
colours) indicate a stronger positive effect of the number of ponds (available habitat)
during a given year on counts of Horned Grebes during a given survey. The upper
panel shows the posterior mean effects at each route and the lower panel shows the
lower 95% credible limit for the effect.
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Black-bellied Whistling-Duck Dendrocygna autumnalis Non-spatial, iCAR, BYM, and GP 

Canada Goose Branta canadensis Non-spatial, iCAR 

Wood Duck Aix sponsa Non-spatial, iCAR 

Blue-winged Teal Spatula discors Non-spatial, iCAR 

Northern Shoveler Spatula clypeata Non-spatial, iCAR 

Gadwall Mareca strepera Non-spatial, iCAR 

American Wigeon Mareca americana Non-spatial, iCAR 

Mallard Anas platyrhynchos Non-spatial, iCAR 

Northern Pintail Anas acuta Non-spatial, iCAR 

Green-winged Teal Anas crecca Non-spatial, iCAR 

Ring-necked Duck Aythya collaris Non-spatial, iCAR 

Lesser Scaup Aythya affinis Non-spatial, iCAR, BYM, and GP 

Common Merganser Mergus merganser Non-spatial, iCAR 

Mountain Quail Oreortyx pictus Non-spatial, iCAR, BYM, and GP 

Northern Bobwhite Colinus virginianus Non-spatial, iCAR 

Scaled Quail Callipepla squamata Non-spatial, iCAR, BYM, and GP 

California Quail Callipepla californica Non-spatial, iCAR, BYM, and GP 

Wild Turkey Meleagris gallopavo Non-spatial, iCAR 

Ruffed Grouse Bonasa umbellus Non-spatial, iCAR 

Ring-necked Pheasant Phasianus colchicus Non-spatial, iCAR 

Pied-billed Grebe Podilymbus podiceps Non-spatial, iCAR 

Rock Pigeon Columba livia Non-spatial, iCAR 

Band-tailed Pigeon Patagioenas fasciata Non-spatial, iCAR, BYM, and GP 

Eurasian Collared-Dove Streptopelia decaocto Non-spatial, iCAR 

Inca Dove Columbina inca Non-spatial, iCAR, BYM, and GP 

Common Ground Dove Columbina passerina Non-spatial, iCAR, BYM, and GP 

White-winged Dove Zenaida asiatica Non-spatial, iCAR, BYM, and GP 

Mourning Dove Zenaida macroura Non-spatial, iCAR 

Greater Roadrunner Geococcyx californianus Non-spatial, iCAR, BYM, and GP 

Yellow-billed Cuckoo Coccyzus americanus Non-spatial, iCAR 

Black-billed Cuckoo Coccyzus erythropthalmus Non-spatial, iCAR 

Lesser Nighthawk Chordeiles acutipennis Non-spatial, iCAR, BYM, and GP 

Common Nighthawk Chordeiles minor Non-spatial, iCAR 

Chuck-will's-widow Antrostomus carolinensis Non-spatial, iCAR 

Chimney Swift Chaetura pelagica Non-spatial, iCAR 

Ruby-throated Hummingbird Archilochus colubris Non-spatial, iCAR 

Anna's Hummingbird Calypte anna Non-spatial, iCAR, BYM, and GP 

Rufous Hummingbird Selasphorus rufus Non-spatial, iCAR, BYM, and GP 

Broad-tailed Hummingbird Selasphorus platycercus Non-spatial, iCAR, BYM, and GP 

Sora Porzana carolina Non-spatial, iCAR 

American Coot Fulica americana Non-spatial, iCAR 

Sandhill Crane Antigone canadensis Non-spatial, iCAR 

Killdeer Charadrius vociferus Non-spatial, iCAR 
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Upland Sandpiper Bartramia longicauda Non-spatial, iCAR 

Long-billed Curlew Numenius americanus Non-spatial, iCAR, BYM, and GP 

Marbled Godwit Limosa fedoa Non-spatial, iCAR, BYM, and GP 

Wilson's Snipe Gallinago delicata Non-spatial, iCAR 

Spotted Sandpiper Actitis macularius Non-spatial, iCAR 

Willet Tringa semipalmata Non-spatial, iCAR 

Wilson's Phalarope Phalaropus tricolor Non-spatial, iCAR 

Laughing Gull Leucophaeus atricilla Non-spatial, iCAR, BYM, and GP 

Ring-billed Gull Larus delawarensis Non-spatial, iCAR 

Herring Gull Larus argentatus Non-spatial, iCAR 

Common Loon Gavia immer Non-spatial, iCAR 

Double-crested Cormorant Nannopterum auritum Non-spatial, iCAR 

American White Pelican Pelecanus erythrorhynchos Non-spatial, iCAR 

American Bittern Botaurus lentiginosus Non-spatial, iCAR 

Great Blue Heron Ardea herodias Non-spatial, iCAR 

Great Egret Ardea alba Non-spatial, iCAR 

Little Blue Heron Egretta caerulea Non-spatial, iCAR 

Cattle Egret Bubulcus ibis Non-spatial, iCAR 

Green Heron Butorides virescens Non-spatial, iCAR 

White Ibis Eudocimus albus Non-spatial, iCAR, BYM, and GP 

Black Vulture Coragyps atratus Non-spatial, iCAR 

Turkey Vulture Cathartes aura Non-spatial, iCAR 

Osprey Pandion haliaetus Non-spatial, iCAR 

Golden Eagle Aquila chrysaetos Non-spatial, iCAR 

Northern Harrier Circus hudsonius Non-spatial, iCAR 

Sharp-shinned Hawk Accipiter striatus Non-spatial, iCAR 

Cooper's Hawk Accipiter cooperii Non-spatial, iCAR 

Bald Eagle Haliaeetus leucocephalus Non-spatial, iCAR 

Mississippi Kite Ictinia mississippiensis Non-spatial, iCAR 

Red-shouldered Hawk Buteo lineatus Non-spatial, iCAR 

Broad-winged Hawk Buteo platypterus Non-spatial, iCAR 

Swainson's Hawk Buteo swainsoni Non-spatial, iCAR 

Great Horned Owl Bubo virginianus Non-spatial, iCAR 

Barred Owl Strix varia Non-spatial, iCAR 

Belted Kingfisher Megaceryle alcyon Non-spatial, iCAR 

Red-headed Woodpecker Melanerpes erythrocephalus Non-spatial, iCAR 

Acorn Woodpecker Melanerpes formicivorus Non-spatial, iCAR, BYM, and GP 

Red-bellied Woodpecker Melanerpes carolinus Non-spatial, iCAR 

Yellow-bellied Sapsucker Sphyrapicus varius Non-spatial, iCAR 

Red-naped Sapsucker Sphyrapicus nuchalis Non-spatial, iCAR, BYM, and GP 

Red-breasted Sapsucker Sphyrapicus ruber Non-spatial, iCAR, BYM, and GP 

Downy Woodpecker Dryobates pubescens Non-spatial, iCAR 

Ladder-backed Woodpecker Dryobates scalaris Non-spatial, iCAR, BYM, and GP 
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Hairy Woodpecker Dryobates villosus Non-spatial, iCAR 

Pileated Woodpecker Dryocopus pileatus Non-spatial, iCAR 

Crested Caracara Caracara plancus Non-spatial, iCAR, BYM, and GP 

American Kestrel Falco sparverius Non-spatial, iCAR 

Merlin Falco columbarius Non-spatial, iCAR 

Ash-throated Flycatcher Myiarchus cinerascens Non-spatial, iCAR 

Great Crested Flycatcher Myiarchus crinitus Non-spatial, iCAR 

Cassin's Kingbird Tyrannus vociferans Non-spatial, iCAR, BYM, and GP 

Western Kingbird Tyrannus verticalis Non-spatial, iCAR 

Eastern Kingbird Tyrannus tyrannus Non-spatial, iCAR 

Scissor-tailed Flycatcher Tyrannus forficatus Non-spatial, iCAR 

Olive-sided Flycatcher Contopus cooperi Non-spatial, iCAR 

Western Wood-Pewee Contopus sordidulus Non-spatial, iCAR 

Eastern Wood-Pewee Contopus virens Non-spatial, iCAR 

Yellow-bellied Flycatcher Empidonax flaviventris Non-spatial, iCAR 

Acadian Flycatcher Empidonax virescens Non-spatial, iCAR 

Alder Flycatcher Empidonax alnorum Non-spatial, iCAR 

Willow Flycatcher Empidonax traillii Non-spatial, iCAR 

Least Flycatcher Empidonax minimus Non-spatial, iCAR 

Hammond's Flycatcher Empidonax hammondii Non-spatial, iCAR 

Gray Flycatcher Empidonax wrightii Non-spatial, iCAR, BYM, and GP 

Dusky Flycatcher Empidonax oberholseri Non-spatial, iCAR 

Pacific-slope Flycatcher Empidonax difficilis Non-spatial, iCAR, BYM, and GP 

Cordilleran Flycatcher Empidonax occidentalis Non-spatial, iCAR, BYM, and GP 

Black Phoebe Sayornis nigricans Non-spatial, iCAR, BYM, and GP 

Eastern Phoebe Sayornis phoebe Non-spatial, iCAR 

Say's Phoebe Sayornis saya Non-spatial, iCAR 

White-eyed Vireo Vireo griseus Non-spatial, iCAR 

Bell's Vireo Vireo bellii Non-spatial, iCAR 

Hutton's Vireo Vireo huttoni Non-spatial, iCAR, BYM, and GP 

Yellow-throated Vireo Vireo flavifrons Non-spatial, iCAR 

Cassin's Vireo Vireo cassinii Non-spatial, iCAR, BYM, and GP 

Blue-headed Vireo Vireo solitarius Non-spatial, iCAR 

Plumbeous Vireo Vireo plumbeus Non-spatial, iCAR, BYM, and GP 

Warbling Vireo Vireo gilvus Non-spatial, iCAR 

Red-eyed Vireo Vireo olivaceus Non-spatial, iCAR 

Loggerhead Shrike Lanius ludovicianus Non-spatial, iCAR 

Canada Jay Perisoreus canadensis Non-spatial, iCAR 

Pinyon Jay Gymnorhinus cyanocephalus Non-spatial, iCAR, BYM, and GP 

Steller's Jay Cyanocitta stelleri Non-spatial, iCAR 

Blue Jay Cyanocitta cristata Non-spatial, iCAR 

California Scrub-Jay Aphelocoma californica Non-spatial, iCAR, BYM, and GP 

Woodhouse's Scrub-Jay Aphelocoma woodhouseii Non-spatial, iCAR, BYM, and GP 
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Clark's Nutcracker Nucifraga columbiana Non-spatial, iCAR, BYM, and GP 

Black-billed Magpie Pica hudsonia Non-spatial, iCAR 

American Crow Corvus brachyrhynchos Non-spatial, iCAR 

Fish Crow Corvus ossifragus Non-spatial, iCAR 

Chihuahuan Raven Corvus cryptoleucus Non-spatial, iCAR, BYM, and GP 

Common Raven Corvus corax Non-spatial, iCAR 

Verdin Auriparus flaviceps Non-spatial, iCAR, BYM, and GP 

Carolina Chickadee Poecile carolinensis Non-spatial, iCAR 

Black-capped Chickadee Poecile atricapillus Non-spatial, iCAR 

Mountain Chickadee Poecile gambeli Non-spatial, iCAR 

Chestnut-backed Chickadee Poecile rufescens Non-spatial, iCAR, BYM, and GP 

Boreal Chickadee Poecile hudsonicus Non-spatial, iCAR 

Juniper Titmouse Baeolophus ridgwayi Non-spatial, iCAR, BYM, and GP 

Tufted Titmouse Baeolophus bicolor Non-spatial, iCAR 

Horned Lark Eremophila alpestris Non-spatial, iCAR 

Bank Swallow Riparia riparia Non-spatial, iCAR 

Tree Swallow Tachycineta bicolor Non-spatial, iCAR 

Violet-green Swallow Tachycineta thalassina Non-spatial, iCAR 

Northern Rough-winged Swallow Stelgidopteryx serripennis Non-spatial, iCAR 

Purple Martin Progne subis Non-spatial, iCAR 

Barn Swallow Hirundo rustica Non-spatial, iCAR 

Cliff Swallow Petrochelidon pyrrhonota Non-spatial, iCAR 

Cave Swallow Petrochelidon fulva Non-spatial, iCAR, BYM, and GP 

Bushtit Psaltriparus minimus Non-spatial, iCAR, BYM, and GP 

Wrentit Chamaea fasciata Non-spatial, iCAR, BYM, and GP 

Ruby-crowned Kinglet Corthylio calendula Non-spatial, iCAR 

Golden-crowned Kinglet Regulus satrapa Non-spatial, iCAR 

Cedar Waxwing Bombycilla cedrorum Non-spatial, iCAR 

Phainopepla Phainopepla nitens Non-spatial, iCAR, BYM, and GP 

Red-breasted Nuthatch Sitta canadensis Non-spatial, iCAR 

White-breasted Nuthatch Sitta carolinensis Non-spatial, iCAR 

Pygmy Nuthatch Sitta pygmaea Non-spatial, iCAR, BYM, and GP 

Brown-headed Nuthatch Sitta pusilla Non-spatial, iCAR 

Brown Creeper Certhia americana Non-spatial, iCAR 

Blue-gray Gnatcatcher Polioptila caerulea Non-spatial, iCAR 

Rock Wren Salpinctes obsoletus Non-spatial, iCAR 

Cactus Wren Campylorhynchus brunneicapillus Non-spatial, iCAR, BYM, and GP 

Bewick's Wren Thryomanes bewickii Non-spatial, iCAR 

Carolina Wren Thryothorus ludovicianus Non-spatial, iCAR 

House Wren Troglodytes aedon Non-spatial, iCAR 

Pacific Wren Troglodytes pacificus Non-spatial, iCAR, BYM, and GP 

Winter Wren Troglodytes hiemalis Non-spatial, iCAR 

Sedge Wren Cistothorus stellaris Non-spatial, iCAR 
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Marsh Wren Cistothorus palustris Non-spatial, iCAR 

Gray Catbird Dumetella carolinensis Non-spatial, iCAR 

Curve-billed Thrasher Toxostoma curvirostre Non-spatial, iCAR, BYM, and GP 

Brown Thrasher Toxostoma rufum Non-spatial, iCAR 

Sage Thrasher Oreoscoptes montanus Non-spatial, iCAR, BYM, and GP 

Northern Mockingbird Mimus polyglottos Non-spatial, iCAR 

European Starling Sturnus vulgaris Non-spatial, iCAR 

Eastern Bluebird Sialia sialis Non-spatial, iCAR 

Western Bluebird Sialia mexicana Non-spatial, iCAR, BYM, and GP 

Mountain Bluebird Sialia currucoides Non-spatial, iCAR 

Townsend's Solitaire Myadestes townsendi Non-spatial, iCAR 

Veery Catharus fuscescens Non-spatial, iCAR 

Swainson's Thrush Catharus ustulatus Non-spatial, iCAR 

Hermit Thrush Catharus guttatus Non-spatial, iCAR 

Wood Thrush Hylocichla mustelina Non-spatial, iCAR 

American Robin Turdus migratorius Non-spatial, iCAR 

Varied Thrush Ixoreus naevius Non-spatial, iCAR, BYM, and GP 

House Sparrow Passer domesticus Non-spatial, iCAR 

Sprague's Pipit Anthus spragueii Non-spatial, iCAR, BYM, and GP 

Evening Grosbeak Coccothraustes vespertinus Non-spatial, iCAR 

House Finch Haemorhous mexicanus Non-spatial, iCAR 

Purple Finch Haemorhous purpureus Non-spatial, iCAR 

Cassin's Finch Haemorhous cassinii Non-spatial, iCAR, BYM, and GP 

Common Redpoll Acanthis flammea Non-spatial, iCAR, BYM, and GP 

Red Crossbill Loxia curvirostra Non-spatial, iCAR 

White-winged Crossbill Loxia leucoptera Non-spatial, iCAR 

Pine Siskin Spinus pinus Non-spatial, iCAR 

Lesser Goldfinch Spinus psaltria Non-spatial, iCAR 

American Goldfinch Spinus tristis Non-spatial, iCAR 

Chestnut-collared Longspur Calcarius ornatus Non-spatial, iCAR, BYM, and GP 

Cassin's Sparrow Peucaea cassinii Non-spatial, iCAR, BYM, and GP 

Grasshopper Sparrow Ammodramus savannarum Non-spatial, iCAR 

Black-throated Sparrow Amphispiza bilineata Non-spatial, iCAR, BYM, and GP 

Lark Sparrow Chondestes grammacus Non-spatial, iCAR 

Lark Bunting Calamospiza melanocorys Non-spatial, iCAR, BYM, and GP 

Chipping Sparrow Spizella passerina Non-spatial, iCAR 

Clay-colored Sparrow Spizella pallida Non-spatial, iCAR 

Field Sparrow Spizella pusilla Non-spatial, iCAR 

Brewer's Sparrow Spizella breweri Non-spatial, iCAR 

Fox Sparrow Passerella iliaca Non-spatial, iCAR 

White-crowned Sparrow Zonotrichia leucophrys Non-spatial, iCAR 

White-throated Sparrow Zonotrichia albicollis Non-spatial, iCAR 

Sagebrush Sparrow Artemisiospiza nevadensis Non-spatial, iCAR, BYM, and GP 
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Vesper Sparrow Pooecetes gramineus Non-spatial, iCAR 

LeConte's Sparrow Ammospiza leconteii Non-spatial, iCAR, BYM, and GP 

Baird's Sparrow Centronyx bairdii Non-spatial, iCAR, BYM, and GP 

Savannah Sparrow Passerculus sandwichensis Non-spatial, iCAR 

Song Sparrow Melospiza melodia Non-spatial, iCAR 

Lincoln's Sparrow Melospiza lincolnii Non-spatial, iCAR 

Swamp Sparrow Melospiza georgiana Non-spatial, iCAR 

Canyon Towhee Melozone fusca Non-spatial, iCAR, BYM, and GP 

Rufous-crowned Sparrow Aimophila ruficeps Non-spatial, iCAR, BYM, and GP 

Green-tailed Towhee Pipilo chlorurus Non-spatial, iCAR, BYM, and GP 

Spotted Towhee Pipilo maculatus Non-spatial, iCAR 

Eastern Towhee Pipilo erythrophthalmus Non-spatial, iCAR 

Yellow-breasted Chat Icteria virens Non-spatial, iCAR 

Yellow-headed Blackbird Xanthocephalus xanthocephalus Non-spatial, iCAR 

Bobolink Dolichonyx oryzivorus Non-spatial, iCAR 

Eastern Meadowlark Sturnella magna Non-spatial, iCAR 

Western Meadowlark Sturnella neglecta Non-spatial, iCAR 

Orchard Oriole Icterus spurius Non-spatial, iCAR 

Bullock's Oriole Icterus bullockii Non-spatial, iCAR 

Baltimore Oriole Icterus galbula Non-spatial, iCAR 

Scott's Oriole Icterus parisorum Non-spatial, iCAR, BYM, and GP 

Red-winged Blackbird Agelaius phoeniceus Non-spatial, iCAR 

Brown-headed Cowbird Molothrus ater Non-spatial, iCAR 

Brewer's Blackbird Euphagus cyanocephalus Non-spatial, iCAR 

Common Grackle Quiscalus quiscula Non-spatial, iCAR 

Boat-tailed Grackle Quiscalus major Non-spatial, iCAR, BYM, and GP 

Great-tailed Grackle Quiscalus mexicanus Non-spatial, iCAR 

Ovenbird Seiurus aurocapilla Non-spatial, iCAR 

Worm-eating Warbler Helmitheros vermivorum Non-spatial, iCAR 

Louisiana Waterthrush Parkesia motacilla Non-spatial, iCAR 

Northern Waterthrush Parkesia noveboracensis Non-spatial, iCAR 

Golden-winged Warbler Vermivora chrysoptera Non-spatial, iCAR, BYM, and GP 

Blue-winged Warbler Vermivora cyanoptera Non-spatial, iCAR 

Black-and-white Warbler Mniotilta varia Non-spatial, iCAR 

Prothonotary Warbler Protonotaria citrea Non-spatial, iCAR 

Tennessee Warbler Leiothlypis peregrina Non-spatial, iCAR 

Orange-crowned Warbler Leiothlypis celata Non-spatial, iCAR 

Nashville Warbler Leiothlypis ruficapilla Non-spatial, iCAR 

MacGillivray's Warbler Geothlypis tolmiei Non-spatial, iCAR 

Mourning Warbler Geothlypis philadelphia Non-spatial, iCAR 

Kentucky Warbler Geothlypis formosa Non-spatial, iCAR 

Common Yellowthroat Geothlypis trichas Non-spatial, iCAR 

Hooded Warbler Setophaga citrina Non-spatial, iCAR 
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American Redstart Setophaga ruticilla Non-spatial, iCAR 

Cerulean Warbler Setophaga cerulea Non-spatial, iCAR, BYM, and GP 

Northern Parula Setophaga americana Non-spatial, iCAR 

Magnolia Warbler Setophaga magnolia Non-spatial, iCAR 

Blackburnian Warbler Setophaga fusca Non-spatial, iCAR 

Yellow Warbler Setophaga petechia Non-spatial, iCAR 

Chestnut-sided Warbler Setophaga pensylvanica Non-spatial, iCAR 

Blackpoll Warbler Setophaga striata Non-spatial, iCAR, BYM, and GP 

Black-throated Blue Warbler Setophaga caerulescens Non-spatial, iCAR 

Pine Warbler Setophaga pinus Non-spatial, iCAR 

Yellow-throated Warbler Setophaga dominica Non-spatial, iCAR 

Prairie Warbler Setophaga discolor Non-spatial, iCAR 

Black-throated Gray Warbler Setophaga nigrescens Non-spatial, iCAR, BYM, and GP 

Townsend's Warbler Setophaga townsendi Non-spatial, iCAR, BYM, and GP 

Hermit Warbler Setophaga occidentalis Non-spatial, iCAR, BYM, and GP 

Black-throated Green Warbler Setophaga virens Non-spatial, iCAR 

Canada Warbler Cardellina canadensis Non-spatial, iCAR 

Wilson's Warbler Cardellina pusilla Non-spatial, iCAR 

Summer Tanager Piranga rubra Non-spatial, iCAR 

Scarlet Tanager Piranga olivacea Non-spatial, iCAR 

Western Tanager Piranga ludoviciana Non-spatial, iCAR 

Northern Cardinal Cardinalis cardinalis Non-spatial, iCAR 

Rose-breasted Grosbeak Pheucticus ludovicianus Non-spatial, iCAR 

Black-headed Grosbeak Pheucticus melanocephalus Non-spatial, iCAR 

Blue Grosbeak Passerina caerulea Non-spatial, iCAR 

Lazuli Bunting Passerina amoena Non-spatial, iCAR 

Indigo Bunting Passerina cyanea Non-spatial, iCAR 

Painted Bunting Passerina ciris Non-spatial, iCAR 

Dickcissel Spiza americana Non-spatial, iCAR 
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Figure S1. Sample of posterior draws for the distance−based decay of covariance of
                    abundance and trend among BBS routes for Baird's Sparrow ( Centronyx bairdii ) estimated using an
                    isotropic spatial Gaussian Process model. The modeled estimates show that the
                    covariance among routes in relative abundance of the species decreases very quickly
                    with increasing distance (green lines), while the covariance among routes in trends
                    decreases very slowly with distance (blue lines).
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Figure S4. Leave Future Out (LFO) cross−validation results for 71 small−range species
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Figure S5. Examples of the spatial patterns in standard error of route−level trend 
    estimates for four broad−ranging species from an iCAR spatial model and an otherwise identical
    non−spatial model. Each point represents the starting location of a Breeding Bird Survey route.



iCAR GP

C
anyon Tow

hee
W

estern B
luebird

120°W115°W110°W105°W100°W  95°W120°W115°W110°W105°W100°W  95°W

25°N

30°N

35°N

40°N

45°N

25°N

30°N

35°N

40°N

45°N

SE of Trend 
2006−2021

2

4

6

8

Figure S6. Map of standard error of route−level trend estimates for two species from two spatial models.
                       Although the standard errors of the GP model's estimates are smaller than those of the iCAR model
                       for both species, this higher estimated precision does not reflect higher accuracy
                       because the out−of−sample predictive accuracy suggests that the best model varies between
                       these two species. For Canyon Towhee (Melozone fusca) the GP model has higher accuracy and 
                       for Western Bluebird (Sialia mexicana) the iCAR model has higher accuracy.
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Figure S7. Map of route−level habitat covariates for Rufous Hummingbird from 2006−2021.
                   The left plot shows the relative distribution of mean annual habitat amount. The right plot
                   shows the distribution of the changes in habitat between 2006−2021. These maps demonstrate
                   the general east−west pattern in both habitat amount and habitat change, where habitat has 
                   decreased in western portion of the species' range and increased in the east.
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Figure S8. Mean point−wise differences in log posterior predictive density (lppd, iCAR−GP)
                     between iCAR and GP spatial models for BBS routes that are Isolated from other routes
                     (i.e., greater than 200 km from the nearest neighbour, in dark purple) and other 
                     routes that are more central to the species range and therefor have closer (and usually
                     more) neighbors. For most of the species here, the iCAR based simplification of spatial 
                     relationships has higher predictive accuracy for the trends on Isolated routes than the 
                     GP model (dark points to the right of the vertal line at 0) that uses precise distance 
                     information and therefore necessarily treats these isolated routes as having lower covariance
                     in trends and abundances than the iCAR model that treats them as immediate neighbours of 
                     the nearest routes that are 200 km away.
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Figure S9. Mean point−wise log posterior predictive density (lppd) by species and
                  model for three spatial models (iCAR, GP, and BYM) and one non−spatial model estimating
                  trends and abundance at individual BBS routes.
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