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Abstract 45 

Spatial patterns in population trends, particularly those at finer geographic scales, can help us better 46 

understand the factors driving population change in North American birds. The standard trend models for 47 

the North American Breeding Bird Survey (BBS) were designed to estimate trends within broad 48 

geographic strata, such as countries, Bird Conservation Regions, U.S. states, and Canadian territories or 49 

provinces. Calculating trend estimates at the level of the BBS’s individual survey transects (“routes”) 50 

allows us to explore finer spatial patterns and simultaneously estimate the effects of covariates, such as 51 

habitat loss or annual weather, on both relative abundance and trend (changes in relative abundance 52 

through time). Here, we describe four related hierarchical Bayesian models that estimate trends for 53 

individual BBS routes, implemented in the probabilistic programming language Stan. All four models 54 

estimate route-level trends and relative abundances using a hierarchical structure that shares information 55 

among routes, and three of the models share information in a spatially explicit way. The spatial models 56 

use either an intrinsic Conditional Autoregressive (iCAR) structure or a distance-based Gaussian Process 57 

(GP) to estimate the spatial components. We fit all four models to data for 71 species and then, because of 58 

the intensive computations required, fit two of the models (one spatial and one non-spatial) for an 59 

additional 216 species. In a leave-future-out cross-validation, the spatial models outperformed the non-60 

spatial models for 284 out of 287 species. The best approach to modeling the spatial components depends 61 

on the species being modeled; the Gaussian Process had the highest predictive accuracy for 69% of the 62 

species tested here and the iCAR was better for the remaining 31%. We also present two examples of 63 

route-level covariate analyses focused on spatial and temporal variation in habitat for Rufous 64 

Hummingbird (Selasphorus rufus) and Horned Grebe (Podiceps auritus). In both examples, the inclusion 65 

of covariates improved our understanding of the patterns in the rate of population change for both species. 66 

Route-level models for BBS data are useful for visualizing spatial patterns of population change, 67 

generating hypotheses on the causes of change, comparing patterns of change among regions and species, 68 

and testing hypotheses on causes of change with relevant covariates.   69 



Introduction 70 

The North American Breeding Bird Survey (BBS) is the main source of bird population change 71 

information in North America. The BBS provides data at geographic scales ranging from national to 72 

regional across much of Canada and the United States for up to 500 species of birds (Hudson et al. 2017, 73 

Sauer et al. 2017). The BBS exemplifies the power of citizen science, given this standardized monitoring 74 

program has been running since 1965. BBS data are collected annually over 5400 routes by observers 75 

conducting 50, 3-minute point-counts along a roughly 40-km long section of roadside (Hudson et al. 76 

2017). BBS data are often used to estimate the change in a species' population over time (i.e. trend) across 77 

regions such as Bird Conservation Regions (BCRs) or the intersection of states/provinces with BCRs 78 

(Sauer et al. 2003, Soykan et al. 2016, Link et al. 2020, Smith and Edwards 2020). These regional-scale 79 

summaries have been critical for identifying and prioritizing species in peril (Government of Canada 80 

2010, IUCN 2012, Rosenberg et al. 2017) and understanding broad-scale patterns of change in North 81 

American birds (North American Bird Conservation Initiative Canada 2019, Rosenberg et al. 2019, North 82 

American Bird Conservation Initiative 2022).  83 

The BBS dataset can also be analyzed at a finer spatial resolution to complement the regional estimates, 84 

and to address different ecological questions and conservation efforts. Incorporating the explicit spatial 85 

relationships among individual survey sites (BBS routes) provides the information necessary to estimate 86 

abundance and trends at a fine resolution (Smith et al. 2023). Many factors influence the relative 87 

abundance and trends in bird populations, and they act and interact to induce spatial patterns across a 88 

range of spatial scales (Morrison et al. 2010). Factors such as habitat change (Stanton et al. 2018, Betts et 89 

al. 2022), biotic factors like prey availability (Drever et al. 2018), or broad-scale patterns in abiotic factors 90 

like precipitation, temperature, and phenology (Renfrew et al. 2013, Wilson et al. 2018) can induce spatial 91 

patterns in trends or abundance and can act across different periods in the species’ annual cycles 92 

(Morrison et al. 2010, Wilson et al. 2011). Likewise, conservation actions occur at many scales, from the 93 

broad scales of international conventions to the fine scales of an individual wetland (Prairie Habitat Joint 94 



Venture 2020). Fine-scale estimates of population trends may provide a more useful unit for local 95 

conservation efforts and a better scale to model covariates with fine-scale effects such as species 96 

interactions, local land cover, and agricultural practices (Thogmartin et al. 2004, Paton et al. 2019, 97 

Mirochnitchenko et al. 2021).  98 

The factors affecting population trends may differ from those affecting relative abundance, so it makes 99 

sense to model abundance and trend separately. Earlier fine-scale models designed for application across 100 

the full BBS dataset did not explicitly model the rate of population change as a parameter in the model 101 

(Bled et al. 2013). However, more recent work has demonstrated the utility of modeling both abundance 102 

and trends, such as a recent analysis of the effects of forest change on species’ trends on BBS routes 103 

(Betts et al. 2022).  A spatially-explicit hierarchical regression can model both spatial patterns in mean 104 

relative abundance and the rate of change in relative abundance (Ver Hoef et al. 2018, Wright et al. 2021). 105 

Separating these parameters in the model also allows for the inclusion of covariates (Meehan et al. 2019) 106 

to better understand the processes affecting local abundance (e.g., mean habitat amount or edge vs core of 107 

a species’ range) and trends (local habitat change through time, or differences in climate change effects at 108 

Northern or Southern range limits).   109 

Spatially explicit models in ecology treat individual sample units as either points within continuous space 110 

(Golding and Purse 2016), or discrete areas with neighborhood relationships (Ver Hoef et al. 2018). 111 

Intrinsic Conditional Autoregressive (iCAR) structures are areal and model spatial relationships using the 112 

adjacency between a discrete spatial area and its neighbors (Besag and Kooperberg 1995). These 113 

structures have been used to model the relatively fine-scale population trends in Christmas Bird Count 114 

data (Meehan et al. 2019) and the annual relative abundance of birds using BBS data (Bled et al. 2013). 115 

Gaussian Process (GP) models use the Euclidean distance between points and can model fine-scale spatial 116 

patterns in a species’ relative abundance, treating spatial distances among survey sites to estimate the 117 

covariance of parameters in space (Golding and Purse 2016).  118 



Here we describe and demonstrate four models that share two goals: 1) to estimate bird population trends 119 

and relative abundance for each BBS route; and 2) to visualize spatial patterns in both trend and relative 120 

abundance across a species’ monitored range. Three of the models share information on relative 121 

abundance and trend in a spatially explicit way, while the fourth model lacks any spatial information. We 122 

describe two models that rely on an iCAR structure to model the spatial relationships: the first is the 123 

iCAR model, which uses only the iCAR structure to model variation in abundance and trends; and the 124 

second is a version of the BYM model, named for Besag, York, and Mollié (Besag et al. 1991), which is 125 

identical to the iCAR model but includes an additional random effect on the route-level trends to allow 126 

extra non-spatial variation in trends. The third is an isotropic Gaussian Process (GP) model that models 127 

covariance among routes in the abundance and trends using the Euclidean distances among routes. Finally 128 

the fourth model is a non-spatial version that estimates route-level variation in trends and abundances as a 129 

simple, log-normally distributed random effect. We fit all four models to 71 species and fit the non-spatial 130 

model and the iCAR model to another 216 species, selected based on sufficient data and computational 131 

requirements (details below). We compare the predictive accuracy of models for a given species in a 132 

leave-future-out cross-validation to assess the benefits of including spatial information to predict 133 

observations in the next year based on the estimated trend. Finally, we provide two examples of route-134 

level covariate analyses to demonstrate elaborations of these models that directly estimate the effects of 135 

covariates on trends and the utility of modeling BBS data at a relatively fine, route-level scale.  136 

  137 



Methods 138 

Data   139 

We used data for the Baird’s Sparrow (Centronyx bairdii) as an example species to demonstrate the 140 

spatial structures, model fit, and convergence. We chose Baird’s Sparrow as it has sufficient data to 141 

produce robust estimates but has a very restricted distribution, confined to the northern Great Plains 142 

region (Figure 1), which reduces model run-time. We used data for an additional 70 species (Table S1) to 143 

fit all four of the models and compared the predictions and predictive accuracy among the models. We 144 

chose these 70 species (71 including Baird’s Sparrow) because they have small ranges with relatively few 145 

BBS routes, which minimizes the size of distance matrices and/or adjacency matrices for computational 146 

efficiency, and yet are also commonly observed during surveys and so provide high-quality data on any 147 

given route. Species with large ranges that appear on many routes will increase the computational power 148 

required to run the models, increasing the model run-time. Specifically, from 2006 to 2021, these small-149 

range species were observed on 125-400 BBS routes, with at least 600 total observations of each species 150 

(positive counts), and at least an average of four observations per route. We are only able to compare the 151 

fit and predictive accuracy of all four models using these small-range species because the computational 152 

time required to fit the GP model was prohibitive for large inter-route distance matrices, given that days 153 

or even weeks are required for convergence for a single species. For the additional 216 species that were 154 

observed on 400 or more BBS routes during 2006-2021, we compare the predictions and predictive 155 

accuracy of the non-spatial model to one of the spatial models (iCAR) to assess the benefits of including 156 

spatial information when estimating trends for a large number of species.   157 

We limited all but one of our analyses to a 15-year period, which we considered short enough that a log-158 

linear slope can be a meaningful summary of the population change (Buckland et al. 2004, Thompson and 159 

La Sorte 2008). In effect, 15 years is likely long enough to estimate a meaningful rate of change on each 160 

route, but also short enough to reduce the likelihood of complex non-linear population patterns. The only 161 

exception is the Horned Grebe covariate example, where we used a 43-year period because the covariate 162 



was designed to adjust for annual fluctuations and non-linear patterns in regional moisture/drought cycles 163 

(details below). This 15-year period that we demonstrate here is somewhat arbitrary and for many species 164 

or ecological questions, it may be very informative to fit these models (or modifications of these models) 165 

to longer or shorter periods of time.  166 

Model structure 167 

The four models are relatively simple, hierarchical log-link negative binomial regressions similar to other 168 

models commonly applied to BBS data (Sauer and Link 2011, Smith et al. 2014), but modeling trend and 169 

abundance as spatially-varying coefficients (Barnett et al. 2021, Thorson et al. 2023). In all four models, 170 

each route has a separate slope and intercept but there are no annual intercepts to model annual or non-171 

linear temporal patterns in population change. Therefore, the interpretation of “trend” in these models is 172 

limited to this log-linear slope parameter (i.e., a single mean rate of change over the entire modeled time-173 

series).  174 

𝐶𝑟,𝑗,𝑡 = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜆𝑟,𝑗,𝑡 , 𝜙) 175 

𝑙𝑜𝑔(𝜆𝑟,𝑗,𝑡) = 𝛼𝑟 + 𝛽𝑟 ∗ (𝑡 − 𝑡𝑚) + 𝜂𝛪[𝑗, 𝑡] + 𝜔𝑗 176 

We modeled the observed counts (𝐶𝑟,𝑗,𝑡) of a given species on route-r, in year-t, by observer-j as 177 

realizations of a negative binomial distribution, with mean 𝜆𝑟,𝑗,𝑡 and inverse dispersion parameter 𝜙. The 178 

log of the mean (𝜆𝑟,𝑗,𝑡) of the negative binomial distribution was modeled as an additive combination of 179 

route-level intercepts (𝛼𝑟), observer-effects (𝜔𝑗), a first-year observer-effect (𝜂𝛪[𝑗, 𝑡]), and route-level 180 

slope parameters (𝛽𝑟) for the continuous effect of year (𝑡) centered on the mid-year of the time-series 181 

(𝑡𝑚). 182 

For the parameters that were common to all models, we estimated observer effects drawn from a normal 183 

distribution with estimated variances (𝜔𝑗~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜔)), the inverse dispersion parameter as the 184 

inverse of a half, standard t-distribution with 3 degrees of freedom (𝜙~ |𝑡(3,0,1)|−1), and the first-year 185 



observer-effect 𝜂, as an independent parameter with a weakly informative prior (𝜂 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)). All 186 

other parameters were estimated as hierarchical effects, sharing information among routes or among 187 

observers. To encourage convergence, we constrained each of the random effects in the model, including 188 

the spatial route-level parameters, to sum to zero. These constraints often improved model sampling 189 

efficiency, but they do not affect the interpretation of the final route-level slopes or intercepts. The models 190 

here varied only in the estimation of the route-level intercepts and slope terms. Three of the models used 191 

spatial information to estimate the intercepts and slopes (i.e., effectively shrinking towards a local mean 192 

of neighboring routes), while the fourth model estimated the intercepts and slopes as simple exchangeable 193 

random effects (i.e., shrinking towards a global mean of all routes).  194 

To estimate route-level abundance, while accounting for variation among observers, we modeled separate 195 

intercepts for routes and observers. Using separate observer and route effects has not been commonly 196 

included in hierarchical Bayesian models for the BBS (Sauer and Link 2011, Smith et al. 2014, Link et al. 197 

2020, Edwards and Smith 2021), until recently (Betts et al., 2022, Smith et al., 2023). In general, 198 

observers and routes are correlated in the BBS dataset, by design as an experimental control for variation 199 

among observers (Kendall et al. 1996). However, observers and routes vary in the number of surveys 200 

conducted and the database still contains a lot of information on variation among routes and among 201 

observers: considering only the years modeled here (2006-2021), more than 69% of surveys were 202 

conducted on routes that have had more than one observer during those 15 years, and 55% of surveys 203 

were conducted by observers who have surveyed more than one route. Separating observer from route 204 

effects is also possible due to the added spatial information included in the route-level intercept estimate, 205 

the sum to zero constraints in the model parameterization, the weakly informative priors that constrain 206 

parameters to plausible values given the log-link model, and the improved efficiency of the Hamiltonian 207 

Monte Carlo (HMC) samplers in Stan (Betancourt 2018, Stan Development Team 2022) over the Markov 208 

Chain Monte Carlo (MCMC) samplers in earlier probabilistic programming languages such as JAGS 209 

(Plummer 2003). Finally, we also used an informative prior on the standard deviation of the observer 210 



effects (𝜎𝜔), and we ensured that all parameters had converged when fitting the models (details below). 211 

We used a half-normal prior on the standard deviation among observers, scaled to imply that variation 212 

among observers is unlikely to result in variation in mean counts greater than a factor of approximately 213 

six (i.e., it is very unlikely that a change in observer on a route will result in a six-fold increase, or 214 

reduction,  in a given species abundance; 𝜎𝜔 ~ |𝑁𝑜𝑟𝑚𝑎𝑙(0,0.3)|), and that variation among observers is 215 

less than variation among routes. We suggest this prior is reasonable given that BBS observers are highly 216 

skilled and familiar with the local bird community (Link and Sauer 1997). 217 

Spatial structures 218 

We fit models with two different approaches to account for spatially explicit relationships among routes: 219 

1) an intrinsic Conditional Autoregressive (iCAR) structure that uses a sparse matrix of adjacencies 220 

between pairs of routes, treating spatial relationships as a series of discrete neighbors; and 2) an isotropic 221 

Gaussian process (GP) model that uses a matrix of Euclidean distances separating the start locations of 222 

each BBS route, treating distance between routes as a continuous measure of separation.   223 

We used these two different approaches because the spatial locations of BBS observations are not 224 

perfectly represented by either discrete areas or points in space. It is not obvious whether the iCAR or the 225 

GP better reflects reality (Pebesma and Bivand 2023), because the observations from a given BBS route 226 

are collected along a transect that is approximately 40 km long. Both approaches are necessary 227 

simplifications of the true spatial processes underlying variation in abundance and trends among BBS 228 

routes. The iCAR approach (also used for the spatial relationships in the BYM model) simplifies the 229 

spatial structure by assuming each route represents a discrete area of space (i.e. a polygon surrounding the 230 

route), but the neighboring routes may be separated by a wide range of distances depending on the spatial 231 

distribution and spatial density of those routes. The GP approach simplifies spatial relationships by 232 

assuming each route represents a point in space, but the measure of intervening distance only applies to 233 

the distance between the start points of the routes, not to the full transect. To illustrate the differences 234 

between the approaches, the GP considers the abundance or trends of two distant routes as effectively 235 



independent if the distance is large enough relative to the estimated distance decay function. In contrast, 236 

the iCAR structure considers these same two routes as having a very close connection if there are no 237 

intervening routes. In some cases, treating two relatively distant routes as close neighbors may be useful if 238 

their relative proximity could inform the parameter estimates, but may also introduce error into the 239 

estimate of spatial variance (Pebesma and Bivand 2023).   240 

We used a Voronoi tessellation to generate the discrete neighborhood relationships required to support the 241 

iCAR model (Ver Hoef et al. 2018, Pebesma and Bivand 2023). iCAR models are often applied to 242 

contiguous area-based stratifications, such as regular grids, census regions, or political jurisdictions, 243 

which have natural neighborhood relationships defined by their adjacencies (Ver Hoef et al. 2018, 244 

Meehan et al. 2019). To generate contiguous discrete spatial units without imposing a regular grid 245 

structure, we used a Voronoi tessellation to create contiguous polygons, centered on the start point of each 246 

BBS route (Pebesma 2018). We further limited the adjacency matrix to the approximate boundaries of the 247 

species’ range by clipping the tessellated surface using the standard BBS analytical strata where the 248 

species occurs (Sauer and Link 2011) and a concave polygon surrounding start locations of all routes with 249 

data for that species (Gombin 2023). This clipping ensured that adjacency relationships did not extend 250 

beyond the borders of the species’ range and allowed the adjacency matrix to respect large-scale, complex 251 

range boundaries (e.g., gaps in forest bird ranges created by the great plains). Within the species’ range 252 

boundaries, routes were considered neighbors if their Voronoi polygons shared a linear segment along a 253 

separating boundary (an edge; Figure 1). This approach to generating adjacency relationships distorts 254 

Euclidian space to create a matrix of relative spatial relationships because some neighboring routes may 255 

be much further apart than others. However, it is sufficiently flexible to ensure a comprehensive and 256 

contiguous network of among-route links, and accurately represents those relative spatial adjacencies (i.e. 257 

each route is considered adjacent to its nearest neighbors). We separately modeled the spatial dependence 258 

of intercept parameters (route mean relative abundance) and slope parameters (route trends), under the 259 

assumption that each parameter may be influenced by different ecological processes acting at different 260 



spatial scales. To fit the GP model, we used a squared exponential kernel to model the isotropic distance-261 

based decline in covariance, assuming that the covariance declines exponentially in all directions with the 262 

squared distance between each BBS route’s start point. We adapted functions and code in the Stan 263 

probabilistic programming language from the “rethinking” R-package for inclusion in our GP model 264 

(McElreath 2023). Similar to the iCAR approach, we used independent GPs to model the covariance of 265 

the intercept parameters and the slope parameters. We estimated the full matrix for between-route 266 

distances using functions in the “sf” package for R (Pebesma 2018).    267 

 268 

Intrinsic Conditional Autoregressive model - iCAR 269 

We estimated the route-level intercepts and slopes using an iCAR structure, where the parameter for 270 

route-r is drawn from a normal distribution, centered on the mean of that parameter’s values in all 271 

neighboring routes, with an estimated standard deviation that is proportional to the inverse of the number 272 

of neighbors for that route (Morris et al. 2019). Specifically, the intercept term that represents the mean 273 

relative abundance on each route (𝛼𝑟) is estimated as an additive combination of a species-mean (𝛼𝑟
′ ) and 274 

a random route-level term (𝛼𝑟
′′) drawn from a normal distribution centered on the mean of the intercepts 275 

for all neighboring routes (𝛼𝑟 =   𝛼′ + 𝛼𝑟
′′).  276 

𝛼𝑟
′′~𝑁𝑜𝑟𝑚𝑎𝑙 (

∑ 𝛼𝑛
′′

𝑛∈𝑁𝑟

𝑁𝑟
,
𝜎𝛼′′

𝑁𝑟
) 277 

The slopes representing the trend on each route (𝛽𝑟) were estimated similarly as a species-level mean 278 

trend plus random route-level terms from a normal distribution centered on the mean of the slopes for all 279 

neighboring routes (𝛽𝑟 =   𝛽′ + 𝛽𝑟
′′).  280 

𝛽𝑟
′′~𝑁𝑜𝑟𝑚𝑎𝑙 (

∑ 𝛽𝑛
′′

𝑛∈𝑁𝑟

𝑁𝑟
,
𝜎𝛽′′

𝑁𝑟
) 281 



 282 

Besag York Mollié iCAR model - BYM 283 

We used an implementation of the Besag, York, Mollié (BYM) spatial iCAR model (Besag et al. 1991) to 284 

estimate route-level slopes. This model is an elaboration on the iCAR model where we estimated the 285 

slopes as additive combinations of a spatial random effect and a non-spatial random effect (Besag et al. 286 

1991). 287 

𝛽𝑟 = 𝛽′ + 𝛽𝑠𝑝𝑎𝑐𝑒𝑟
′′ + 𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒𝑟

′′  288 

We estimated the spatial component using the same structure as for the iCAR model. 289 

𝛽𝑠𝑝𝑎𝑐𝑒𝑟
′′ ~𝑁𝑜𝑟𝑚𝑎𝑙 (

∑ 𝛽𝑠𝑝𝑎𝑐𝑒𝑛
′′

𝑛∈𝑁𝑟

𝑁𝑟
,
𝜎𝛽𝑠𝑝𝑎𝑐𝑒

𝑁𝑟
) 290 

We estimated the additional non-spatial component as a simple random effect drawn from a normal 291 

distribution with an estimated standard deviation:  292 

𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒𝑟
′′ ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

) 293 

The additional random effect included in the BYM model allows the route-level trend estimates to vary 294 

more among neighboring routes, if supported by the data (Besag et al. 1991). 295 

 296 

Gaussian Process model - GP 297 

In the Gaussian Process (GP) model, the intercepts and slopes were also estimated as the sum of a route-298 

level random term and a species-level mean (𝛽𝑟 =   𝛽′ + 𝛽𝑟
′′). The slope and intercept random terms for 299 

each route (𝛽𝑟
′′ and 𝛼𝑟

′′) are estimated as zero-mean, multivariate normal distributions, 300 

𝛽′′~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛫𝛽) and 𝛼′′~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛫𝛼), with covariance matrices (𝛫𝛽 301 

and 𝛫𝛼) estimated using a squared exponential kernel function (Gelman et al. 2013, pg 501). The 302 



covariance of the slope parameters for two routes (𝑘𝛽(𝛽1
′′, 𝛽2

′′)) is a function of the distance between them 303 

(𝑑1,2) plus the two parameters that control the magnitude of the covariance when distance is zero (𝜃𝛽) and 304 

the scale of the spatial dependency (𝜌𝛽). 305 

𝑘𝛽(𝛽1
′′, 𝛽2

′′) = 𝜃𝛽
2 ∗ 𝑒

(−𝜌𝛽
2 ∗𝑑1,2

2 )
 306 

We estimated the intercept parameters using the same squared exponential kernel function with separate 307 

parameters for the magnitude and scale of the spatial dependency. 308 

𝑘𝛼(𝛼1
′′, 𝛼2

′′) = 𝜃𝛼
2 ∗ 𝑒(−𝜌𝛼

2∗𝑑1,2
2 ) 309 

The parameters of GP models can be quite sensitive to prior distributions (McElreath 2020). We scaled 310 

the distance matrix in units of 1000 km and set a half-standard t-distribution prior on 𝜃𝛼
2 and 𝜃𝛽

2 with 5 311 

degrees of freedom (Gelman et al. 2013). The half-t prior on 𝜃2 places most prior density at relatively 312 

small values and includes a relatively long tail that allows for larger values, if supported by the data. For 313 

most species, we used a weakly informative inverse gamma distribution prior with scale and shape = 5 for 314 

𝜌𝛼
2 and 𝜌𝛽

2 . For some species, the values of 𝜌2 failed to converge with this prior, so we set an alternative 315 

and more informative prior using a gamma distribution with scale and shape = 2. The gamma and inverse 316 

gamma priors on 𝜌2 both avoid 0, ensuring that spatial dependency decreases with distance. The weakly 317 

informative inverse gamma includes a long right tail that allows the model to estimate spatial dependency 318 

that declines steeply with distance (e.g., 𝜌𝛼
2 > 500 and therefore covariance values near 0 for routes 319 

separated by the approximate 40-km length of a BBS route), but for some species, this long tail created 320 

convergence difficulties. For these species, we used the gamma prior with a shorter right tail and 321 

effectively constrained the estimates of 𝜌2 to values < 20. This places most of the prior density at values 322 

that imply there is some spatial dependency that may extend out to larger distances (500 km – 3000 km).  323 



Non-spatial model 324 

To assess the benefits of assuming spatial dependence among BBS routes, we compared the predictions 325 

and predictive accuracy of the spatial models to an otherwise identical model that lacked spatial 326 

information. This non-spatial model had all the same parameters as the spatial models, except that the 327 

route-level intercepts and slopes were estimated as simple random effects.  328 

𝛽𝑟
′′~ 𝑁 (0, 𝜎𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

2 ) 329 

𝛼𝑟
′′~ 𝑁 (0, 𝜎𝛼𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

2 ) 330 

Remaining priors 331 

We used weakly informative (Gelman 2006, Lemoine 2019) standard normal priors for the mean species-332 

level intercept and the first-year effect parameter. The mean species-level slope parameter was given a 333 

weakly informative normal prior (𝛽′~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.1)). We consider this prior weakly informative as it 334 

reflects our belief that extreme rates of change are unlikely (it places approximately 95% of the prior 335 

density for the survey-wide population trends between -20 and +20%/year). 336 

For the iCAR, BYM, and non-spatial models, the priors for the standard deviations of the spatial variation 337 

and non-spatial variation of the route-level slopes (𝜎𝛽𝑠𝑝𝑎𝑡𝑖𝑎𝑙
 and 𝜎𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

) had gamma priors with shape 338 

= 3 and scale = 30. These gamma priors were weakly informative such that the standard deviation of 339 

trends was constrained to more probable scales based on the log-link of the model and to avoid estimates 340 

of zero (Chung et al. 2013). Specifically, this gamma prior places the mean of the prior density at 341 

approximately 10% per year, and 99% of the prior density on the standard deviation of route-level trends 342 

at values less than 28% per year, while also including a long tail so that the model can estimate more 343 

extreme variation, if supported by the data (Chung et al. 2013). The standard deviation of the intercept 344 

terms in these models (𝜎𝛼𝑠𝑝𝑎𝑡𝑖𝑎𝑙
 and 𝜎𝛼𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

) were given a half-normal prior with standard deviation = 345 

2. This weakly informative prior placed most prior density at values < 5, and reflects our belief that across 346 



a species’ range, mean relative abundance for a fixed survey effort can vary a great deal but is unlikely to 347 

vary by more than a few orders of magnitude (Fink et al. 2023a). For some species, this relatively wide 348 

prior created convergence issues, so for these species we re-fit the models with a prior that considered the 349 

observed variation in mean counts among routes for a given species. Specifically, we used a half-normal 350 

prior with the standard deviation equal to the observed standard deviation of mean log-transformed 351 

observed counts among routes. We are confident that this prior is only weakly informative and likely 352 

over-estimates the among-route variance because the observed data includes variation among routes, as 353 

well as variation among observers.  354 

Convergence 355 

We fit all models using 1000-2000 warmup iterations and an equal number of sampling iterations for each 356 

of the four independent chains (or three independent chains for each iteration of cross-validation). We 357 

assessed convergence by monitoring for divergent transitions and estimating split-Rhat values and bulk 358 

effective sample sizes for all parameters. We considered convergence to have failed if any Rhat was > 359 

1.03 or if any parameter’s effective sample size is < 100 (although the vast majority of parameters had 360 

effective sample sizes > 1000 and Rhat < 1.01). If any models failed to converge, we re-fit the models 361 

with the alternative priors described above.  362 

Model assessment 363 

To assess the benefits of adding spatial information into the model, we compared the 1-step-ahead, leave-364 

future-out (LFO) predictive success of the four models for the 71 species with relatively small ranges 365 

(Roberts et al. 2017, Bürkner et al. 2020). We also compared the iCAR spatial model with the non-spatial 366 

version of the model using a LFO assessment for an additional 216 species (Table 1). We used the LFO 367 

approach to directly test the temporal predictions of the models (i.e. test the accuracy of predictions of 368 

next year’s observations). In this application of LFO, we fit the model to the first eight years of data 369 

(2006-2013; the minimum length of time we considered sufficient for prediction), and used the parameter 370 

estimates from this model to predict the counts in the following year (2014). Then we iterated this 371 



approach making predictions for the remaining years (2015-2019, and 2021), predicting the observed data 372 

in year n using data for all years up to year (n-1) to fit the model. We could not assess predictive accuracy 373 

for the year 2020 because the BBS survey season was canceled due to concerns over COVID-19. The 374 

cross-validation process generated predictions for every count in the dataset and an estimate of the log 375 

pointwise predictive density (lppd) of the observed count, given the model and the data in all previous 376 

years (Gelman et al. 2014). For interpretation and visualization, we calculated pairwise differences in 377 

lppd between pairs of models for each count and transformed summaries of these lppd differences across 378 

many counts into approximate z-scores (mean divided by the standard error of the point-wise differences 379 

in lppd). These z-scores provide a way to summarise the support in the data for each model, accounting 380 

for the variation across all observations and providing an interpretable and consistent scale to summarize 381 

pair-wise model comparisons across species with different numbers of observations (Link and Sauer 382 

2016). They are an approximation of the test statistic in a paired t-test; e.g., absolute values greater than 383 

approximately 2 could be interpreted as a “significant difference” in predictive success, although we put 384 

little emphasis on this kind of arbitrary threshold in our interpretation here.   385 

Route-level covariate examples 386 

Modeling covariates of finer-scale trends and relative abundances is a major benefit of modeling BBS 387 

trends and abundances at the route level. To demonstrate this, we present two examples, each including 388 

route-level predictors to inform estimates of abundance and trend. The first example uses data on the 389 

Rufous Hummingbird (Selasphorus rufus) and models the effect of habitat suitability on relative 390 

abundance and trend. The second example looks at the effects of annual variation in available habitat—391 

the number of ponds surrounding a BBS route in a given year in the Prairie Pothole region (PPR)—on the 392 

expected counts of a water bird, the Horned Grebe (Podiceps auratus).   393 

Rufous Hummingbird covariate example 394 

This example application is an elaboration of the iCAR route-level trend model, where the route-level 395 

intercepts and slopes are additive combinations of two components: 1) one that is a function of a route-396 



level predictor, and 2) one that is a residual component, estimated using the iCAR structure (Ver Hoef et 397 

al. 2018). The route-level predictors are derived from a previous study on Rufous Hummingbirds that 398 

modeled variation in habitat suitability over space and time. Habitat suitability was estimated using an 399 

independent dataset of bird observations and annual remotely sensed data on weather, climate, landcover, 400 

and elevation. More detail on the methods used to estimate habitat suitability is and the model used here 401 

is available in the supplemental methods. Mean habitat suitability across all years in a 200m buffer 402 

surrounding each BBS route was used as a predictor on the intercept (i.e., mean habitat suitability as a 403 

predictor on the mean relative abundance on a given route). The rate of change in habitat suitability over 404 

time within the same buffer was used as a predictor on the slope (i.e., change in habitat as a predictor on 405 

the trend in the species' abundance). This model structure relies on relatively simple assumptions that the 406 

amount of habitat around a BBS route should predict the mean number of birds observed, and that the 407 

change in habitat amount should predict the change in the number of birds. 408 

We estimated the route-level intercepts and slopes as an additive combination of a mean species-level 409 

intercept or slope (𝛼′ or 𝛽′), a varying intercept or slope that was a function of the mean habitat suitability 410 

on the route (𝛼𝑟
′′′) or rate of change in habitat suitability on the slope (𝛽𝑟

′′′), and spatially varying effects 411 

for the residual variation in relative abundance (𝛼𝑟
′′) and slope (𝛽𝑟

′′) that were not explained by habitat. 412 

𝛼𝑟 =   𝛼′ + 𝛼𝑟
′′ + 𝛼𝑟

′′′ 413 

𝛽𝑟 =   𝛽′ + 𝛽𝑟
′′ + 𝛽𝑟

′′′ 414 

This partitioning of the intercept and slope parameters allows the model to generate two alternative 415 

estimates of the mean abundance and trend on each route. The full trend (𝛽′ + 𝛽𝑟
′′ + 𝛽𝑟

′′′) represents the 416 

estimated trend on a given route, including the effects of habitat change. The residual trend (𝛽′ + 𝛽𝑟
′′) 417 

represents an alternate trend if habitat suitability stayed constant on a given route. Similarly, the full 418 

relative abundance (𝛼′ + 𝛼𝑟
′′ + 𝛼𝑟

′′′) represents the estimated relative abundance on a given route, 419 



including the effects of habitat change. The residual relative abundance (𝛼′ + 𝛼𝑟
′′) represents an alternate 420 

abundance that we would expect if habitat suitability stayed constant across all routes. 421 

We estimated the effect of mean habitat suitability on the route-level intercept as a simple product of a 422 

route-specific coefficient (𝜌𝛼𝑟
) and mean habitat suitability (across all years; 2006-2021) in a 200m buffer 423 

around each route-path (𝛼𝑟
′′′ = 𝜌𝛼𝑟

∗ 𝑀𝑒𝑎𝑛𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑟). To model the effects of habitat change on 424 

population trend, we estimated the effect of the rate of change in habitat suitability on each route 425 

(𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑟) with a route-specific coefficient (𝜌𝛽𝑟
). The route-specific coefficients for the 426 

effects of habitat suitability on the intercept and slope were allowed to vary among routes, but were 427 

centered on hyperparameter mean effects across routes 𝜌𝛼𝑟
∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑃𝛼 , 𝜎𝜌𝛼

) and 𝜌𝛽𝑟
∼428 

𝑁𝑜𝑟𝑚𝑎𝑙 (𝑃𝛽 , 𝜎𝜌𝛽
). As such, the hyperparameters for the effect of mean habitat suitability on the intercept 429 

(𝑃𝛼) and the effect of change in habitat suitability on slope (𝑃𝛽) represent a clear species-level estimate of 430 

the effects of habitat change on abundance and trend.  431 

 432 

Horned Grebe covariate example 433 

This example application was an elaboration of the iCAR route-level trend model, where trends and 434 

relative abundances are estimated while accounting for the annual variation in climatically dependent 435 

habitat. The route-level predictors are derived from a study of the effects of moisture/drought patterns on 436 

Horned Grebe (more detail in the supplemental methods), a waterbird species that breeds in small to 437 

moderately sized shallow, freshwater ponds (Stedman 2020). To represent annual variation in available 438 

habitat for the Horned Grebe in the Canadian Prairie Pothole Region (PPR), we used data collected by the 439 

U.S. Fish and Wildlife Service (USFWS) and the Canadian Wildlife Service (CWS) on the number of 440 

ponds (natural or artificial ponds that are flooded seasonally, semi-permanently, and permanently) during 441 

the Waterfowl Breeding Population and Habitat Survey (Smith 1995). Annual fluctuations in moisture 442 

affect the number of wetlands available, which in turn has a strong influence on waterbird populations 443 



that are highly dependent on wetlands abundance (Sorenson et al. 1998, Johnson et al. 2005, Roy 2015, 444 

Steen et al. 2016). The model was based on the iCAR model and added an additional iCAR component to 445 

create a varying-coefficient model on the effects of available habitat on the observed counts during a 446 

given survey on a given route. 447 

We estimated the effect of the number of ponds in a buffer surrounding BBS routes as a spatially-varying 448 

coefficient representing the route-specific effect of local ponds (𝜌𝑟 ∗ 𝑝𝑜𝑛𝑑𝑠𝑟,𝑡). Local ponds are the 449 

number of ponds surrounding a BBS route each year, where 𝑝𝑜𝑛𝑑𝑠𝑟,𝑡 represents the log(1 + number of 450 

ponds) surrounding BBS route 𝑟 in year 𝑡, centered on the mean number of ponds across years for each 451 

route. This route-specific centering ensured we could separately estimate the route-level intercepts and the 452 

effects of the annual variations in ponds and ensured that it only represented the temporal variation in 453 

ponds and not the spatial variation. The effects of ponds per route were centered on a mean 454 

hyperparameter (𝜌𝑟
′) and allowed to vary among routes using the same iCAR spatial structure as for the 455 

slopes and intercepts (𝜌𝑟
′’). 456 

𝜌𝑟  =  𝜌𝑟
′  +  𝜌𝑟

′′ 457 

𝜌𝑟
′′ ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (

∑ 𝑝𝑛
′′

𝑛𝜖𝑁𝑟 

𝑁𝑟
,
𝜎𝑝′′

𝑁𝑟
) 458 

Finally, we also fit the same data to the simple iCAR model (i.e., an identical model with no covariates) 459 

to compare the difference in estimated trends with and without accounting for the annual variations in 460 

available habitat. 461 

Results 462 

 463 

In general, there are clear spatial patterns in the estimated trends and relative abundances from the spatial 464 

models, with similar patterns among the three types of spatial models. Those patterns are obscured or 465 

completely lacking from the non-spatial version of the model (e.g., the results for Baird’s Sparrow in 466 



Figures 2 and 3). The GP model tended to smooth the spatial pattern in trends more than the iCAR model, 467 

which in turn smoothed more than the BYM model (Figure 2). The spatial smoothing in relative 468 

abundance was stronger in both the iCAR and BYM models than the GP model for Baird’s Sparrow 469 

(Figure 2). The covariance in relative abundance of Baird’s Sparrow among routes was effectively 0 at 470 

distances of only 100 km (posterior mean of 𝜌𝛼
2 = 650), whereas the covariance in trend was relatively 471 

strong even at distances > 1000 km (posterior mean of 𝜌𝛽
2  = 1.5, Figure S1). Predictions of route-level 472 

trends had smaller standard errors when including spatial information, and trend precision generally 473 

increased with the degree of spatial smoothing (Figure S2). For Baird’s Sparrow, all three spatial models 474 

had better predictive accuracy than the non-spatial model, with z-scores of pairwise differences between 475 

one of the spatial models and the non-spatial model ranging from 2.7 – 3.3 (Figure S4). The iCAR model 476 

had better predictive accuracy than the BYM model (z-score of the difference = 3.8; Figure 4), and there 477 

was little difference in predictive accuracy between the iCAR and GP models (z-score difference = -0.51; 478 

Figure 4).   479 

The leave future out (LFO) cross-validation shows that the iCAR and GP models out-perform (i.e. more 480 

accurately predicted next-year’s data) the non-spatial model for almost all the 71 small-range species 481 

(Figure 4 and Figure S4). The BYM model had lower predictive accuracy than the other spatial models. It 482 

had lower accuracy than the iCAR model for all species and was the only spatial model that had clearly 483 

lower predictive accuracy than the non-spatial model (i.e., four species for which the z-score difference is 484 

< -2, Figure 4 and Figure S4). The iCAR model and the GP model had similar predictive accuracy for 485 

many species; 69% (49 of 71 species) of the species were better predicted by the GP model and the 486 

remaining species were better predicted by the iCAR model (Figure 4). When including the additional 487 

216 species for which fitting the GP model was prohibitively time-consuming (days or even weeks are 488 

required for convergence for a given species), the iCAR model had higher predictive accuracy than the 489 

non-spatial model for 283 of 287 species, and predictive accuracy was very similar for the remaining four 490 

(Figure 5).  491 



The iCAR model generated trend prediction maps with clear spatial patterns that likely relate to spatially 492 

dependent variation in processes affecting populations (Figure 6). These patterns are not evident in 493 

predictions from an identical model without spatial information (Figure 6). The spatial patterns in route-494 

level trends vary widely among species (Figures S3 and S5), suggesting varied drivers of population 495 

change across the continent and among species.  496 

In general, the iCAR and GP models were comparable in predictive accuracy for the 71 small-range 497 

species we analyzed (Figure S9). In addition, the spatial patterns in predicted trends were very similar 498 

between these two models, even for species where the predictive accuracy differed between the models 499 

(Figure 7). For example, the GP model had higher predictive accuracy than the iCAR model (z-score 500 

difference = -4.3, Figure S4) for Canyon Towhee (Melozone fusca), but the opposite was true for Western 501 

Bluebird (Sialia mexicana; z-score difference = 2.3, Figure S4). Regardless, the spatial pattern in 502 

predicted trends between the two models is quite similar for both species (Figure 7 and Figure S3). For 503 

both species, and in general, the GP model trend estimates had narrower credible intervals (higher 504 

estimated precision) than the iCAR model (Figure S6). Precision of the iCAR trend estimates also showed 505 

a clear relationship to the number of neighbors for any given route, in that routes with few neighbors (on 506 

the edges of the species’ range) were much less precise than estimates in the core of the species’ range 507 

(Figure S6).  508 

Including habitat suitability in the Rufous Hummingbird population model had an effect on estimates of 509 

route-level abundance and improved estimates of the spatial pattern in long-term trends (Figure 8). 510 

However, much of the overall decline was not related to covariates describing route-level habitat change, 511 

as the negative population trends across the species’ range remained after removing the effects of local 512 

habitat change covariates (right panel, Figure 8). The effect of habitat suitability on mean relative 513 

abundance was strong and positive (𝑃𝛼 = 3 [95% CI 2.2:3.8]), such that routes with higher overall habitat 514 

suitability had higher mean counts. From 2006-2021, the Rufous Hummingbird’s overall population 515 

declined steeply, decreasing by approximately -43% (95% CI -52:-33). There was an effect of change in 516 



habitat suitability on trends, such that routes with habitat loss had more negative population trends 𝑃𝛽 = 517 

0.025 (95% CI 0.003:0.047). Trends were negative across the species’ range, but most negative in the 518 

coastal regions where the habitat has changed the most and where the species is also most abundant (left 519 

panel, Figure 8, and Figure S7). The change in habitat suitability affected the spatial patterns in trend 520 

(Figure 8), with the greater loss of habitat in the coastal regions (Figure S7) accounting for most of the 521 

increased rates of decline in the core of the species’ range. The residual trend component alone does not 522 

show the same coastal-decline pattern (right panel, Figure 8).  523 

Annual variation in the number of ponds around BBS routes affected the overall rate of population change 524 

in Horned Grebes and showed a spatial relationship (Figure 9). In a model including the annual pond 525 

variation, the Horned Grebe population declined overall at a rate of -1.9 %/year from 1975-2017. After 526 

removing the effect of annual pond variation, the long-term rate of decline was -2.2 %/year. The effect of 527 

annual fluctuations in the number of ponds was positive across the region: the mean value of 𝑃 = 0.42 528 

(95% CI 0.29:0.55), but there was also a spatial gradient in intensity. The effect of the number of ponds 529 

per year was strongest in the northwest part of the Prairies (Figure 9) and declined to the south and east.  530 

 531 

 532 

 533 

  534 



Discussion 535 

Spatially explicit, route-level models are useful for visualizing fine spatial patterns at scales more relevant 536 

to local conservation, understanding the drivers of population change, and estimating the effects of 537 

covariates on relative abundance and trends (e.g., Betts et al. 2022). At this fine spatial scale, 538 

incorporating spatial information improves the models’ predictions of future data. This improvement is 539 

particularly clear for both the iCAR and the GP models, where the spatial models had higher accuracy for 540 

out-of-sample predictions than the non-spatial model for almost every species we compared.  Fine spatial 541 

patterns in trend estimates across a species’ range are useful for generating hypotheses on the ecological 542 

drivers of population change. Route-level models also allow for the incorporation of local habitat 543 

covariates on abundance and trend at fine scales, which is important as some covariates affect bird 544 

populations at scales much smaller than the strata often used for broad-scale analyses, such as Bird 545 

Conservation Regions (BCRs) or states/provinces/territories (Thogmartin et al. 2004, Paton et al. 2019, 546 

Monroe et al. 2022). Route-level patterns are also useful in guiding conservation and/or further 547 

monitoring efforts, such as identifying small areas for conservation purposes or diverging population 548 

trends within management areas (i.e., strata or BCR). 549 

These route-level, spatial models generate smoothed patterns of variation in population trends across a 550 

species’ range, which will greatly facilitate hypothesis generation and direct investigation to better 551 

understand the drivers of population change similar to (Fink et al. 2023b). For example, the spatial 552 

models show relatively smooth patterns in Baird’s Sparrow trends across the species’ range (Figure 2), 553 

which are not evident in the simpler, non-spatial model. In the spatial models, Baird’s Sparrow has 554 

increased in the west and decreased in the eastern portion of its range. This latitudinal pattern may suggest 555 

hypotheses related to spatial variation in factors such as climate, or habitat amount, which could then be 556 

directly tested by incorporating covariates representing these factors into a subsequent model. Similarly, 557 

the complex spatial patterns in the trends of Hairy Woodpecker (Dryobates villosus, Figure 6) show some 558 

latitudinal variation in trends in the west that is not as clear in the east, suggesting that there may be 559 



distinct processes driving trends in these two regions. Comparisons of these patterns among species may 560 

be particularly informative. For example, the similar southeast to northwest gradients in trends for 561 

Canyon Towhee and Western Bluebird may suggest some similarity in the underlying drivers of 562 

population change (Figure 7). These observations are meant to illustrate the types of hypothesis-563 

generating that these fine-scale, spatially explicit models can help generate.  564 

All three of the spatial models (iCAR, GP, and BYM) generated broadly similar spatial patterns in route-565 

level trends for the subset of species we compared (Figure 4 and Figure S3). The best spatial structure to 566 

use will depend on the species and the goals of a given study. For the species in this study, there is little 567 

support for the extra variation in route-level trends in the BYM model, given it had lower predictive 568 

accuracy than the simpler iCAR model in all cases. The iCAR structure outperformed the GP models for 569 

31% of the species, and is more computationally efficient. Overall, the GP model outperformed the iCAR 570 

model for most (69%) of the species we compared. The GP model also produces smoother spatial patterns 571 

in population trends than the other spatial models and for some, the difference is striking (e.g. Black-572 

throated Gray Warbler Setophaga nigrescens, California Quail, Callipepla californica, and the Golden-573 

winged Warbler Vermivora chrysoptera in Figure S3). For the first two species, the GP outperformed the 574 

iCAR for accuracy, while for the third species, the iCAR was better (Figure S4). Until GP models become 575 

more efficient to implement (Hoffmann and Onnela 2023), the iCAR structure may be preferable for 576 

larger datasets (e.g., broad-ranging species and or longer time-series). The iCAR structure may also 577 

provide more direct control to model discontinuities in the spatial relationships, such as complex range 578 

boundaries (Ver Hoef et al. 2018, Pebesma and Bivand 2023), since there are many ways to define 579 

neighborhood relationships (Freni-Sterrantino et al. 2018). A species with limited dispersal may be 580 

particularly sensitive to the Euclidean distance between points and therefore better modeled with the GP, 581 

but the simplification of space using the iCAR structure may be sufficient for most wide-ranging 582 

migratory birds. For example, for some species, there are routes on the periphery of the BBS sampling 583 

distribution or the periphery of a species’ range that are separated from most other routes by relatively 584 



large distances. These “isolated” routes are treated very differently by the iCAR and GP models: they are 585 

considered close neighbors in the iCAR model irrespective of the intervening distance, whereas in the GP 586 

model, the large separation from other routes reduces their correlation with their nearest neighbors. 587 

Interestingly, when we compared the predictive accuracy between GP and iCAR models for routes that 588 

are more isolated than most (nearest neighboring route where the species was detected > 200km away), 589 

the simplified relative-spatial relationships of the iCAR tend to outperform the continuous spatial 590 

treatment of the GP for these isolated routes (Figure S8).Therefore, the more accurate representation of 591 

the long distances separating these isolated routes in the GP model does not necessarily result in more 592 

accurate predictions, and in some cases it may be more effective to treat space as a series of relative 593 

spatial relationships.  594 

These route-level BBS models provide many opportunities for further comparisons, applications, and 595 

elaborations. Fine-scale estimates could be summarized across species and within regions, such as 596 

summaries of the spatial patterns in grassland bird trends or summaries for a given species within BCRs 597 

or states/provinces/territories and compared to estimates from models fit at those broader spatial scales. 598 

The spatial patterns in trend estimates also allow for comparison of BBS data to other fine-grained maps 599 

of species trend and relative abundance, such as eBird (Sullivan et al. 2014, Fink et al. 2023a) or the 600 

Integrated Monitoring in Bird Conservation Regions (IMBCR) program (Pavlacky et al. 2017). 601 

Comparison of trend estimates between the two programs for the same species and periods of time could 602 

provide useful validation of and or help understand differences between the two sources of information. 603 

Similarly, there are many possible avenues to integrate information across programs for a given period 604 

(e.g., recent trends) or through time (e.g., long-term information from the BBS with more recent 605 

information from eBird and/or IMBCR). We see an almost limitless potential for customizing route-level 606 

BBS models to include covariates testing hypotheses of drivers of population abundance and trends (e.g., 607 

Betts et al. 2023). The examples of covariate models in addition to our application of LFO cross-608 



validation will hopefully provide useful tools to better understand the causes of population change in 609 

North American birds.  610 

     Separating the route-level intercepts from the observer-level intercepts allows us to better model 611 

patterns in relative abundance. It should also allow for improved modeling of among-observer variation. 612 

Although many previous BBS analyses have treated each observer-route combination as an independent 613 

sampling unit (Link et al. 2020, Smith and Edwards 2020), doing so necessarily allocates some of the 614 

biological variation in abundance in space (i.e., among-route variation in abundance) to an effect that is 615 

treated as sampling noise (among-observer variation). The model will struggle to separately estimate 616 

intercepts for observers and routes in situations where there are few data to inform the estimates (e.g., 617 

intercepts for observers who only contribute data to a route that has never been surveyed by another 618 

observer). However, we suggest that a model that includes a few of these weakly estimable parameters is 619 

likely preferable to a model that fails to attempt to separate the biological variation among routes from the 620 

sampling noise of observer variation, at least in the situations where there are data to support their 621 

separation. In a practical sense, this separation of the observer from route effects is improved by the 622 

hierarchical structure of the models, spatial information, weakly informative priors, and the improved 623 

efficiency of HMC algorithms over the Gibbs sampling algorithms of earlier Bayesian BBS models. 624 

Although initially motivated by our desire to directly model route-level abundance, this approach is 625 

equally applicable to other BBS analyses (Smith et al. 2023), and is included in the models in the R-626 

package bbsBayes2 (Edwards et al. 2023).       627 

     In both covariate examples, incorporating spatial covariates into the trend analyses tested hypotheses 628 

related to the drivers of population change and helped identify specific areas for further research and 629 

conservation action. For the Rufous Hummingbird, the model shows higher mean abundance on routes 630 

with more habitat suitability and positive effects of the change in habitat suitability on the species’ trend 631 

(more negative trends on routes where habitat has decreased). Interestingly, it also shows that during this 632 

period, the variation among routes in habitat change does not account for all of the decline in the species’ 633 



population (Figure 8, and Figure S7), suggesting that factors other than local habitat or factors acting 634 

outside of the breeding range may be driving the overall decline. However, covariates other than habitat 635 

suitability could represent local habitat better for the Rufous Hummingbird and by using other covariates 636 

we may have had a different relationship between local habitat and abundance. For the Horned Grebe, the 637 

effect of annual fluctuations in available wetland habitat (the number of ponds) is positive overall and 638 

also varies in magnitude across the species’ range. The effect is strongest in the western prairies where the 639 

effects of drought are often strongest (Johnson et al. 2005, Millett et al. 2009, Roy 2015). These results 640 

highlight the importance of continued investment in wetland conservation programs for waterbird 641 

populations breeding in the Prairie Potholes Region, and the vulnerability of these species to climate 642 

change since their breeding habitat is highly sensitive to climatic conditions.   643 

     Finer-scale modeling is useful for hypothesis generation and testing, and finer-scale estimates can 644 

inform conservation at scales relevant to communities and the volunteers that collect the data. Our fine-645 

scale modeling is made possible by the structured, longitudinal data from the BBS. Complicated 646 

questions can be asked due to the quality of the BBS data, such as our rufous hummingbird example, 647 

where we estimated the component of trend that was a function of local, breeding-season habitat amount 648 

and the remainder that was presumably a function of other factors including those operating outside the 649 

breeding range, and which serves as a counter-factual trend we would expect if habitat amount had 650 

remained constant. Using finer scales allows for the consideration of a different suite of potential 651 

covariates and mechanisms, when compared to larger regional or national scales. Finer scale models can 652 

also be used to inform different scales of decisions and communities. Decisions on land use for industries 653 

such as agriculture, forestry, and housing are often made at fine scales (Sodhi et al. 2011, Malek et al. 654 

2019). Likewise, habitat protection and restoration by community organizations, municipal governments, 655 

and non-governmental organizations occur at fine scales (Sheppard 2005, Aronson et al. 2017). For 656 

example, the Horned Grebe covariate analysis confirms the vulnerability of waterbird species in the 657 

northwestern Prairie Potholes Region and supports a current initiative to protect critical shallow wetlands 658 



in the region (Prairie Habitat Joint Venture 2020). Community support is important for the success of 659 

conservation initiatives (Berkes 2004, Bennett and Dearden 2014), and so providing estimates at scales 660 

relevant to communities may increase community support for conservation and encourage a feeling of 661 

stewardship. Further, routes are a relevant scale for the volunteer observers dedicated to the BBS, with the 662 

average BBS volunteer participating for 12 years. Producing estimates at a route-level allows volunteers’ 663 

to see the direct results of their efforts over the years, a large motivator for many citizen science 664 

volunteers (Phillips et al. 2019). These fine-scale models can investigate a different set of questions than 665 

regional models and provide estimates to inform local-scale decisions and inform the ever-important BBS 666 

volunteers that enable all BBS research. 667 

  668 
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Figure 1. North American Breeding Bird Survey (BBS) route start locations (points) for routes on which 861 

Baird’s Sparrow was observed (2006-2021), demonstrating the process used to identify the discrete 862 

neighbor relationships for the iCAR and BYM spatial models. The top panel shows the Voronoi 863 

tessellated surface used to assign the intervening space to the nearest BBS route start location, which is 864 

intersected with a concave polygon and the standard BBS strata (state/provinces/territories by Bird 865 

Conservation Regions). The lower panel shows routes considered neighbors using lines linking points that 866 

share an edge separating their associated Voronoi polygons.  867 

  868 



 869 

 870 

Figure 2. Estimates of trend (colors) and mean relative abundance (size of the points) for Baird’s Sparrow 871 

populations on BBS routes from 2006-2021, from three spatially explicit models (iCAR, GP, and BYM) 872 

and one non-spatial model. Points with warm colors (reds) represent routes with decreasing counts 873 

through time, points with cool colors (blues) represent routes with increasing counts through time. The 874 

three spatially explicit models suggest very similar spatial patterns in trends, although the GP model 875 

suggests smoother spatial variation in trend than either the iCAR or BYM models. Grey lines within the 876 

maps represent boundaries of state/provinces/territories and Bird Conservation Regions. 877 
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 879 

Figure 3. Estimates of mean relative abundance (colors) and the Coefficient of Variation for the estimates 880 

(CV = size) for Baird’s Sparrow populations on BBS routes from 2006-2021, from three spatially explicit 881 

models and one non-spatial model. Points with brighter colors (greens and yellows) represent routes with 882 

higher estimated mean counts, and points with more precise estimates of abundance (smaller CV) are 883 

larger. The iCAR and BYM models estimate almost identical spatial patterns in abundance with a 884 

relatively clear peak in the center of the species’ range, and relatively smoother spatial variation than 885 

either the GP or the non-spatial model.  886 
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 889 

Figure 4. Leave Future Out (LFO) cross-validation results for 71 small-range species from the North 890 

American Breeding Bird Survey (BBS) database, comparing among the four different models. The 891 

stacked dot-plots represent species-level summaries of the differences in log posterior predictive density 892 

(lppd) between pairs of models. Each point represents one species for a given model comparison. Z-score 893 

values on the x-axis represent the difference between the lppd for the two models indicated on the y-axis. 894 

Z-scores > 0 (points that fall to the right of the black vertical line) represent species for which the 895 

predictive accuracy of the first model is higher than that of the second model (e.g., all but two species in 896 

the iCAR vs non-spatial comparison), and vice versa. Z-scores > 2 or < -2 (points that fall to the right or 897 

left of the vertical dark gray lines, respectively) represent species for which the mean of the differences 898 

between the two models are clear and could be considered “significant” in some statistical frameworks. 899 

The top three dot-plots show the comparisons between each of the three spatial models and the non-900 

spatial model. The lower two plots compare the predictive accuracy among the three spatial models and 901 

show that the iCAR model out-performs the BYM model for all species, and that the GP model out-902 

performs the iCAR model for some species but not for others.  See Figure S4 for species-level 903 

comparisons.        904 



 905 

Figure 5. Leave Future Out (LFO) cross-validation results for all 287 species (including the 71 species 906 

results in Figure 4) from the North American Breeding Bird Survey (BBS) database, comparing the iCAR 907 

spatial model and the non-spatial model. The stacked dot-plots represent species-level summaries of the 908 

differences in log posterior predictive density (lppd) between the two models. Each point represents one 909 

species. Z-score values represent the difference between the lppd for the two models accounting for the 910 

variation across all counts, and the stacked dots form a histogram. Points that fall to the right of the black 911 

vertical line represent species for which the predictive accuracy of the spatial model is higher than that of 912 

the non-spatial model. The iCAR spatial model outperforms the non-spatial model for all but four species. 913 

For those four species, the predictive accuracy of the two models is very similar and does not approach -2, 914 

which would support a clear difference between the two models in favor of the non-spatial model. 915 



 916 

 917 

Figure 6. Examples of the spatial patterns in estimated route-level trends for four broad-range species 918 

from an iCAR spatial model (left column) compared to trends estimated from an otherwise identical, non-919 

spatial version of the model (right column). All points are the same size in this plot because the mean 920 

abundances vary too much among species to display meaningful variation in this plot. 921 



 922 

Figure 7. An example illustrates that the spatial patterns in estimated trends for iCAR and GP models are 923 

quite similar, even when one of the models strongly out-performs the other in a cross-validation analysis. 924 

For the Canyon Towhee (Melozone fusca), the GP model clearly out-performs the iCAR model in 925 

predictive accuracy (z-score comparison iCAR – GP = -4.3, Figure 4). For the Western Bluebird (Sialia 926 

mexicana), the iCAR model out-performs the GP model in predictive accuracy (z-score comparison iCAR 927 

– GP = 2.9, Figure 4). Despite the relatively strong difference in predictive accuracy, the spatial patterns 928 

are quite similar for both models.  929 

  930 



 931 

 932 

Figure 8. Map of route-level trend estimates for Rufous Hummingbird (Selasphorus rufus) from 2006-933 

2021. The colors represent two sets of trends estimated from the model: “Full with Habitat-Change” 934 

represent trends that include the spatially explicit random effects and the effects of local habitat change 935 

(left panel) and the “Residual” represent only the residual spatially explicit estimate of trend, after 936 

removing the effects of habitat change (right panel). Habitat change appears to be driving most of the 937 

variation in trends within the core latitudes of the species range (45°-55° N). The faster rates of decline 938 

(darker red) in the western regions and the slower rates of decline (lighter yellow) in the east are evident 939 

in the left panel that includes the effects of habitat and are missing from the panel on the right. 940 

 941 



 942 

Figure 9. A map of the spatial variation in the effects of annual fluctuations in available habitat (ponds) 943 

on the expected counts of Horned Grebe on the North American Breeding Bird Survey (BBS) routes 944 

(1975-2017). The pond effect is estimated as a spatially varying coefficient using the iCAR structure 945 

among routes and was strongest in the western prairies. Pond effect represents the log-scale effect of 946 

annual variation in the number of ponds surrounding a BBS route in a given year on the annual expected 947 

count after adjusting for long-term trends, observer-effects, and the other parameters included in all of the 948 

models we used. 949 
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