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Abstract 42 
Spatial patterns in population trends, particularly those at finer geographic scales, can help us better 43 

understand the factors driving population change in North American birds. The standard status and trend 44 

models for the North American Breeding Bird Survey (BBS) were designed to estimate trends within 45 

broad geographic strata, such as Bird Conservation Regions, U.S. states, and Canadian territories or 46 

provinces. Calculating trend estimates at the level of individual survey transects (“routes”) from the BBS 47 

allows us to explore finer spatial patterns and simultaneously estimate the effects of covariates, such as 48 

habitat-loss or annual weather, on both relative abundance and trend (changes in relative abundance 49 

through time). Here, we describe four related hierarchical Bayesian models that estimate trends for 50 

individual BBS routes, implemented in the probabilistic programing language Stan. All four models 51 

estimate route-level trends and relative abundances using a hierarchical structure that shares information 52 

among routes, and three of the models share information in a spatially explicit way. The spatial models 53 

use either an intrinsic Conditional Autoregressive structure or a distance-based Gaussian process to 54 

estimate the spatial components. We fit all four models to data for 71 species and then fit only two of the 55 

models (one spatial and one non-spatial) for an additional 216 species due to computational limitations. 56 

Leave-future-out cross-validation showed the spatial models outperformed the non-spatial model for 284 57 

out of 287 species. For the species tested here, the best approach to modeling the spatial components 58 

depended on the species; the Gaussian Process had the highest predictive accuracy for 2/3 of the species 59 

tested here and the iCAR was better for the remaining 1/3.  We also present two examples of route-level 60 

covariate analyses focused on spatial and temporal variation in habitat for Rufous Hummingbird 61 

(Selasphorus rufus) and Horned Grebe (Podiceps auritus). Covariates explain or affect patterns in the rate 62 

of population change for both species. Route-level models for BBS data are useful for visualizing spatial 63 

patterns of population change, generating hypotheses on the causes of change, comparing patterns of 64 

change among regions and species, and testing hypotheses on causes of change with relevant covariates.  65 



Introduction 66 
The North American Breeding Bird Survey (BBS), is often used to produce regional estimates of 67 

population change which inform national and international conservation initiatives. The BBS is a 68 

standardized monitoring program that has been running for over 50 years across North America and 69 

provides data for up to 500 species (Sauer et al. 2017, Hudson et al. 2017). BBS data are collected by 70 

conducting 50, 3-minute point-counts along a 40 km route, with over 5400 routes across North America 71 

(Hudson et al. 2017). BBS data are often used to estimate the change in a species' population over time 72 

(i.e. trend) across regions such as Bird Conservation Regions (BCRs; Sauer et al. 2003) or the intersection 73 

of states/provinces with BCRs (Soykan et al. 2016, Link et al. 2020, Smith and Edwards 2020). These 74 

regional-scale summaries have been very useful to identify and prioritize species in peril (Government of 75 

Canada 2010, IUCN 2012, Rosenberg et al. 2017) and to understand broad-scale patterns of change in 76 

North American birds (North American Bird Conservation Initiative Canada 2019, Rosenberg et al. 2019, 77 

North American Bird Conservation Initiative 2022).  78 

Finer-scale models using BBS data are another use of the long-term dataset, which can address different 79 

ecological questions and conservation efforts. Many factors influence the relative abundance and trends in 80 

bird populations, and they act and interact across a range of spatial scales (Morrison et al. 2010). Spatial 81 

patterns in populations can be induced by factors such as habitat change (Stanton et al. 2018, Betts et al. 82 

2022), biotic factors such as prey availability (Drever et al. 2018), or broad-scale patterns in abiotic 83 

factors including precipitation, temperature, and phenology (Renfrew et al. 2013, Wilson et al. 2018), and 84 

these factors can act or interact within or across different periods in the species’ annual cycles (Morrison 85 

et al. 2010, Wilson et al. 2011). Likewise, conservation actions occur at many scales, from international 86 

conventions, to very fine scales, such as an individual wetland (Prairie Habitat Joint Venture 2020). Fine-87 

scale estimates of population trends may provide a more useful unit for local conservation efforts and a 88 

better scale to model covariates with fine-scale effects such as species interactions, local landcover, and 89 

agricultural practices (Thogmartin et al. 2004, Paton et al. 2019, Mirochnitchenko et al. 2021). Therefore, 90 



fine-scale estimates of population trends complement the broader-scale estimates and can represent 91 

patterns in the factors shaping populations as well as the scales at which conservation is implemented.  92 

The factors affecting population trends may differ from those affecting relative abundance and so it 93 

makes sense to model those processes separately. Earlier fine-scale models for the BBS did not explicitly 94 

model the rate of population change as a parameter in the model (Bled et al. 2013), although see (Betts et 95 

al. 2022).  However, a spatially-explicit hierarchical regression can model both spatial patterns in mean 96 

relative abundance and the rate of change in relative abundance (Ver Hoef et al. 2018, Wright et al. 2021). 97 

Separating these parameters in the model also allows for the inclusion of covariates to better understand 98 

the processes affecting local abundance and trends (Meehan et al. 2019).   99 

Spatially explicit models in ecology are well defined to treat individual sample units as either points 100 

within continuous space (Golding and Purse 2016), or discrete areas with neighborhood relationships 101 

(Ver Hoef et al. 2018). Intrinsic Conditional Autoregressive (iCAR) structures are areal and consider the 102 

adjacency between a discrete spatial area and its neighbors (Besag and Kooperberg 1995). These 103 

structures have been used to model the relatively fine-scale population trends in Christmas Bird Count 104 

data (Meehan et al. 2019) and the annual relative abundance of birds using BBS data (Bled et al. 2013). 105 

Gaussian Process (GP) models consider the Euclidean distance between points and can model fine-scale 106 

spatial patterns in animal relative abundance, treating spatial distances between survey sites as the basis 107 

for modeling the covariance of parameters in space (Golding and Purse 2016).  108 

Here we describe four regression models to 1) estimate bird population trends and relative abundance for 109 

each BBS route and 2) visualize spatial patterns in both trend and relative abundance across a species’ 110 

monitored range. Three of the models share information on relative abundance and trend in a spatially 111 

explicit way, while the fourth model lacks any spatial information. We describe two models that rely on 112 

an iCAR structure to model the spatial relationships: the first is the iCAR model; which uses only the 113 

iCAR structure to model variation in abundance and trends; and the second is the BYM model (Besag 114 

York Mollié, (Besag et al. 1991), which is identical to the iCAR model but includes an additional random 115 



effect on the route-level trends to allow extra non-spatial variation in trends. We also describe a GP model 116 

that uses an isotropic Gaussian Process to model covariance among routes in the abundance and trends, 117 

and finally a non-spatial version of the model that estimates route-level variation in trends and 118 

abundances as a simple normally distributed random effect. We fit all models to 71 species, and fit the 119 

non-spatial model and the iCAR model to another 216 species, selected based on sufficient data and 120 

computational limits (details below). We compare the predictive accuracy of all models for a given 121 

species in a leave-future-out cross-validation to assess the benefits of including spatial information. 122 

Finally, we provide examples of route-level covariate analyses to demonstrate modifications of these 123 

models and the utility of modeling BBS data at a relatively fine, route-level scale.  124 

  125 



Methods 126 

Data   127 
We used data for the Baird’s Sparrow (Centronyx bairdii) as an example species to demonstrate the 128 

spatial structures, model fit, and convergence. We chose the Baird’s Sparrow as it had sufficient data to 129 

produce robust estimates but has a very restricted distribution, confined to the northern Great Plains 130 

region (Figure 1), which reduces model run-time. We used data for another 70 species (Table S1) to fit all 131 

four of the models and compared the predictions and predictive accuracy among the models. We chose 132 

these 70 species (71 including Baird’s Sparrow) because they have small ranges with relatively few BBS 133 

routes, which minimizes the size of distance matrices and/or adjacency matrices for computational 134 

efficiency, and yet also relatively high-quality data on any given route. Specifically, from 2006 to 2021 135 

these small-range species had been observed on 125 - 400 BBS routes, with at least 600 observations of 136 

the species (positive counts), and the average number of positive counts per route was greater than four. 137 

We could only compare the fit and predictive accuracy of all four models using these species with 138 

relatively few data because the time required to fit one of the models (GP) was prohibitive for large inter-139 

route distance matrices. For the additional 216 species that were observed on at least 400 BBS routes 140 

during the years 2006 - 2021, we compare the predictions and predictive accuracy of the non-spatial 141 

model to one of the spatial models to assess the broader benefits of including spatial information when 142 

estimating trends.   143 

We limited all but one of our analyses to a 15-year period, which we considered short enough that a log-144 

linear slope can be a meaningful summary of the population change (Buckland et al. 2004, Thompson and 145 

La Sorte 2008). In effect, 15 years is likely long enough to estimate a meaningful rate of change on each 146 

route but also short enough to reduce the likelihood of complex non-linear population patterns. The only 147 

exception is the Horned Grebe covariate example, where we used a 43-year period because the covariate 148 

was designed to adjust for annual fluctuations and non-linear patterns in regional moisture/drought cycles 149 

(details below). This 15-year period that we demonstrate here is somewhat arbitrary and for many species 150 



or ecological questions, it may be very informative to fit these models (or modifications of these models) 151 

to a longer (or even shorter) period of time.  152 

Model structure 153 
The four models are relatively simple, hierarchical log-link negative binomial regressions, broadly similar 154 

to other models commonly applied to the BBS (Sauer and Link 2011, Smith et al. 2014), but modeling 155 

trend and abundance as spatially varying coefficients (Barnett et al. 2021, Thorson et al. 2023). For all our 156 

models, each route has a separate slope and intercept and there are no annual intercepts to model annual 157 

or non-linear temporal patterns in population change. Therefore, the interpretation of “trend” in these 158 

models is limited to this log-linear slope parameter (i.e., a single mean rate of change over the entire 159 

modeled time-series).  160 

We modeled the observed counts (𝐶𝑟,𝑗,𝑡) of a given species on route-r, in year-t, by observer-j as 161 

realisations of a negative binomial distribution, with mean 𝜆𝑟,𝑗,𝑡 and inverse dispersion parameter 𝜙. The 162 

log of the mean (𝜆𝑟,𝑗,𝑡) of the negative binomial distribution was modeled as an additive combination of 163 

route-level intercepts (𝛼𝑟), observer-effects (𝜔𝑗), a first-year observer-effect (𝜂𝛪[𝑗, 𝑡]), and route-level 164 

slope parameters (𝛽𝑟) for the continuous effect of year (𝑡) centered on the mid-year of the time-series 165 

(𝑡𝑚). 166 

𝐶𝑟,𝑗,𝑡 = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜆𝑟,𝑗,𝑡 , 𝜙) 167 

𝑙𝑜𝑔(𝜆𝑟,𝑗,𝑡) = 𝛼𝑟 + 𝛽𝑟 ∗ (𝑡 − 𝑡𝑚) + 𝜂𝛪[𝑗, 𝑡] + 𝜔𝑗 168 

For the parameters that were common to all models, we estimated observer effects drawn from a normal 169 

distribution with estimated variances (𝜔𝑗~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜔)), the inverse dispersion parameter as the 170 

inverse of a half, standard t-distribution with 3 degrees of freedom (𝜙~ |𝑡(3,0,1)|−1), and the first-year 171 

observer-effect 𝜂, as an independent parameter with a weakly informative prior (𝜂 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)). All 172 

other parameters were estimated as hierarchical effects, sharing information among routes or among 173 

observers. To encourage convergence, we constrained each of the random effects in the model, including 174 

the spatial route-level parameters, to sum to zero. These constraints often improved model sampling 175 



efficiency, but they do not affect the interpretation of the final route-level slopes or intercepts. The models 176 

here varied only in the estimation of the route-level intercepts and slope terms. Three of the models used 177 

spatial information to estimate the intercepts and slopes (i.e., effectively shrinking towards a local mean 178 

of neighboring routes), while the fourth model estimated the intercepts and slopes as simple exchangeable 179 

random effects (i.e., shrinking towards a global mean of all routes).  180 

To estimate route-level abundance, while accounting for variation among observers, we modeled separate 181 

intercepts for routes and observers. Using separate observer and route effects has not been commonly 182 

included in hierarchical Bayesian models for the BBS (Sauer and Link 2011, Smith et al. 2014, Link et al. 183 

2020, Edwards and Smith 2021, but see (Betts et al. 2022, Smith et al. 2023). In general, observers and 184 

routes are correlated in the BBS dataset, by design as an experimental control for variation among 185 

observers (Kendall et al. 1996). However, observers and routes vary in the number of surveys conducted 186 

and the database still contains a lot of information on variation among routes and among observers: 187 

considering only the years modeled here (2006 – 2021)  more than 2/3 of surveys were conducted on 188 

routes that have had more than one observer during those 15 years and more than half of surveys were 189 

conducted by observers who have surveyed more than one route. Separating observer from route effects is 190 

also possible due to the added spatial information included in the route-level intercept estimate, the sum 191 

to zero constraints in the model parameterization, the weakly informative priors that constrain parameters 192 

to plausible values given the log-link model, and the improved efficiency of the Hamiltonian Monte Carlo 193 

(HMC) samplers in Stan (Betancourt 2018, Stan Development Team 2022) over the Markov Chain Monte 194 

Carlo (MCMC) samplers in earlier probabilistic programming languages such as JAGS (Plummer 2003). 195 

Finally, we also used an informative prior on the standard deviation of the observer effects (𝜎𝜔), and we 196 

ensured that all parameters had converged when fitting the models (details below). We used a half-normal 197 

prior on the standard deviation among observers, scaled to imply that variation among observers is 198 

unlikely to result in variation in mean counts greater than a factor of approximately 6 (i.e., it is very 199 

unlikely that  a change in observer on a route will result in a sixfold increase, or reduction,  in a given 200 



species abundance; 𝜎𝜔 ~ |𝑁𝑜𝑟𝑚𝑎𝑙(0,0.3)|), and that variation among observers is less than variation 201 

among routes. We suggest this prior is reasonable given the screening process used to ensure all BBS 202 

observers have adequate experience and bird identification skills for the region they are surveying. 203 

Spatial structures 204 
We fit models with two different approaches to  account for spatially explicit relationships among routes: 205 

1) an intrinsic Conditional Autoregressive (iCAR) structure that uses a sparse matrix of adjacencies 206 

between pairs of routes, treating spatial relationships as a series of discrete neighbors; and 2) an isotropic 207 

Gaussian process (GP) model that uses a matrix of Euclidean distances separating the start locations of 208 

each BBS route, treating distance between routes as a continuous measure of separation.   209 

We used these two different approaches, because the spatial locations of BBS observations are not 210 

perfectly represented by either discrete areas or points in space. It is not obvious whether the iCAR or the 211 

GP better reflects reality (Pebesma and Bivand, 2023), because the observations from a given BBS route 212 

are collected along a transect that is approximately 40 km long. Both approaches are necessary 213 

simplifications of the true spatial processes underlying variation in abundance and trends among the BBS 214 

routes. The iCAR approach (also used for the spatial relationships in the BYM model) simplifies the 215 

spatial structure by assuming each route represents a discrete area of space (a polygon surrounding the 216 

route), but the neighboring routes may be separated by a wide range of distances depending on the spatial 217 

distribution and spatial density of those routes. The GP approach simplifies the spatial relationships by 218 

assuming each route represents a point in space, but that measure of intervening distance only applies to 219 

the distances between the start points of the routes, not to the full transect. As an example of where the 220 

two approaches can differ, the GP could consider the abundance or trends of two distant routes as 221 

effectively independent, if the distance is large enough relative to the estimated distance decay function. 222 

By contrast, the iCAR structure could consider these same two routes as having a very close connection if 223 

there were no intervening routes. In some cases, treating two relatively distant routes as close neighbors 224 



may be useful if their relative proximity provides useful information to inform the parameter estimates, 225 

but may also introduce error into the estimate of spatial variance (Pebesma and Bivand 2023).   226 

We used a Voronoi tessellation to generate the discrete neighborhood relationships required to support the 227 

iCAR model (Ver Hoef et al. 2018, Pebesma and Bivand 2023). iCAR models are often applied to 228 

contiguous area-based stratifications, such as regular grids, census regions, or political jurisdictions, 229 

which have natural neighborhood relationships defined by their adjacencies (Ver Hoef et al. 2018, 230 

Meehan et al. 2019). To generate contiguous discrete spatial units without imposing a regular grid 231 

structure, we used a Voronoi tessellation to create contiguous polygons, centered on the start point of each 232 

BBS route (Pebesma 2018). We further limited the adjacency matrix to the approximate boundaries of the 233 

species’ range, by clipping the tessellated surface using the standard BBS analytical strata where the 234 

species occurs (province/territories/states intersected with Bird Conservation Regions; Link and Sauer 235 

2002) and a concave polygon surrounding the routes’ start locations (concaveman package; Gombin 236 

2023). This clipping ensured that adjacency relationships did not extend beyond the borders of the 237 

species’ range and allowed the adjacency matrix to respect large-scale, complex range boundaries (e.g., 238 

gaps in forest bird ranges created by the great plains). Within the species’ range boundaries, routes were 239 

considered neighbors if their Voronoi polygons shared a linear segment along a separating boundary (an 240 

edge; Figure 1). This approach to generating these adjacency relationships distorts Euclidian space to 241 

create a matrix of relative spatial relationships, because some neighboring routes may be much further 242 

apart than others. However, it is sufficiently flexible to ensure a comprehensive and contiguous network 243 

of among-route links, and accurately represents those relative spatial adjacencies (each route is considered 244 

adjacent to its nearest neighbors). We separately modeled the spatial dependence of intercept parameters 245 

(route mean relative abundance) and slope parameters (route trends), under the assumption that each 246 

parameter may be influenced by different ecological processes acting at different spatial scales. To fit the 247 

GP model, we used a squared exponential kernel to model the isotropic distance-based decline in 248 

covariance, assuming that the covariance declines exponentially in all directions, with the squared 249 



distance between the start points of each BBS route. We adapted functions and code in the Stan 250 

probabilistic programming language from the “rethinking” R-package for inclusion in our GP model 251 

(McElreath 2023). Similar to the iCAR approach, we used independent GPs to model the covariance of 252 

the intercept parameters and the slope parameters. We estimated the full matrix for between-route 253 

distances using functions in the “sf” package for R (Pebesma 2018).    254 

 255 

Intrinsic Conditional Autoregressive model - iCAR 256 

We estimated the route-level intercepts and slopes using an iCAR structure, where the parameter for 257 

route-r is drawn from a normal distribution, centered on the mean of that parameter’s values in all 258 

neighboring routes, with an estimated standard deviation that is proportional to the inverse of the number 259 

of neighbors for that route (Morris et al. 2019). Specifically, the intercept term that represents the mean 260 

relative abundance on each route (𝛼𝑟) is estimated as an additive combination of a species-mean (𝛼𝑟
′ ) and 261 

a random route-level term (𝛼𝑟
′′) drawn from a normal distribution centered on the mean of the intercepts 262 

for all neighboring routes (𝛼𝑟 =   𝛼′ + 𝛼𝑟
′′).  263 

 264 

𝛼𝑟
′′~𝑁𝑜𝑟𝑚𝑎𝑙 (

∑ 𝛼𝑛
′′

𝑛∈𝑁𝑟

𝑁𝑟
,
𝜎𝛼′′

𝑁𝑟
) 265 

The slopes representing the trend on each route (𝛽𝑟) were estimated similarly as a species-level mean 266 

trend plus random route-level terms from a normal distribution centered on the mean of the slopes for all 267 

neighboring routes (𝛽𝑟 =   𝛽′ + 𝛽𝑟
′′).  268 

𝛽𝑟
′′~𝑁𝑜𝑟𝑚𝑎𝑙 (

∑ 𝛽𝑛
′′

𝑛∈𝑁𝑟

𝑁𝑟
,
𝜎𝛽′′

𝑁𝑟
) 269 

 270 



Besag York Mollie iCAR model - BYM 271 

We used an implementation of the Besag, York, Mollié (BYM) spatial iCAR model (Besag et al. 1991) to 272 

estimate route-level slopes. This model is an elaboration on the iCAR model where we estimated the 273 

slopes as additive combinations of a spatial random effect and a non-spatial random effect (Besag et al. 274 

1991). 275 

𝛽𝑟 = 𝛽′ + 𝛽𝑠𝑝𝑎𝑐𝑒𝑟
′′ + 𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒𝑟

′′  276 

We estimated the spatial component using the same structure as for the iCAR model. 277 

𝛽𝑠𝑝𝑎𝑐𝑒𝑟
′′ ~𝑁𝑜𝑟𝑚𝑎𝑙 (

∑ 𝛽𝑠𝑝𝑎𝑐𝑒𝑛
′′

𝑛∈𝑁𝑟

𝑁𝑟
,
𝜎𝛽𝑠𝑝𝑎𝑐𝑒

𝑁𝑟
) 278 

We estimated the additional non-spatial component as a simple random effect drawn from a normal 279 

distribution with an estimated standard deviation:  280 

𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒𝑟
′′ ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

)  281 

The additional random effect included in the  BYM model, allowing the route-level trend estimates to 282 

vary more among neighboring routes, if supported by the data (Besag et al. 1991). 283 

 284 

Gaussian Process model - GP 285 

In the Gaussian Process (GP) model, the intercepts and slopes were also estimated as the sum of a route-286 

level random term and a species-level mean (𝛽𝑟 =   𝛽′ + 𝛽𝑟
′′). The slope and intercept random terms for 287 

each route (𝛽𝑟
′′ and 𝛼𝑟

′′) are estimated as zero-mean, multivariate normal distributions, 288 

𝛽′′~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛫𝛽) and 𝛼′′~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛫𝛼),with covariance matrices (𝛫𝛽 289 

and 𝛫𝛼) estimated using a squared exponential kernel function (Gelman et al. 2013, pg 501). The 290 

covariance of the slope parameters for two routes (𝑘𝛽(𝛽1
′′, 𝛽2

′′)) is a function of the distance between them 291 

(𝑑1,2) plus the two parameters that control the magnitude of the covariance when distance is zero (𝜃𝛽) and 292 

the scale of the spatial dependency (𝜌𝛽). 293 



𝑘𝛽(𝛽1
′′, 𝛽2

′′) = 𝜃𝛽
2 ∗ 𝑒

(−𝜌𝛽
2 ∗𝑑1,2

2 )
  294 

We estimated the intercept parameters using the same squared exponential kernel function with separate 295 

parameters for the magnitude and scale of the spatial dependency. 296 

𝑘𝛼(𝛼1
′′, 𝛼2

′′) = 𝜃𝛼
2 ∗ 𝑒(−𝜌𝛼

2∗𝑑1,2
2 ) 297 

The parameters of GP models can be quite sensitive to prior distributions (McElreath 2020). We scaled 298 

the distance matrix in units of 1000 km and set a half-standard t-distribution prior on 𝜃𝛼
2 and 𝜃𝛽

2 with 5 299 

degrees of freedom (Gelman et al. 2013). The half-t prior on 𝜃2 places most prior mass at relatively small 300 

values and includes a relatively long tail that allows for larger values, if supported by the data. For most 301 

species, we used a weakly informative, inverse gamma distribution prior with scale and shape = 5 for 𝜌𝛼
2 302 

and 𝜌𝛽
2 . For some species, the values of 𝜌2 failed to converge with this prior, so we set an alternative and 303 

more informative prior using a gamma distribution with scale and shape = 2. The gamma and inverse 304 

gamma priors on 𝜌2 both avoid 0, ensuring that spatial dependency decreases with distance. The weakly 305 

informative inverse gamma includes a long right tail that allows the model to estimate spatial dependency 306 

that declines steeply with distance (e.g., 𝜌𝛼
2 > 500 and therefore covariance values near 0 for routes 307 

separated by the approximate 40-km length of a BBS route), but for some species this long tail created 308 

convergence difficulties. For these species, we used the gamma prior with a shorter right tail and 309 

effectively constrained the estimates of 𝜌2 to values < 20. This places most of the prior mass at values 310 

that imply there is some spatial dependency that may extend out to larger distances (500 km – 3000 km).  311 

Non-spatial model 312 

To assess the benefits of assuming spatial dependence among BBS routes, we compared the predictions 313 

and predictive accuracy of the spatial models to an otherwise identical model that lacked spatial 314 

information. This non-spatial model had all the same parameters as the spatial models, except that the 315 

route-level intercepts and slopes were estimated as simple random effects.  316 

𝛽𝑟
′′~ 𝑁 (0, 𝜎𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

2 ) 317 



𝛼𝑟
′′~ 𝑁 (0, 𝜎𝛼𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

2 ) 318 

 319 

Remaining priors 320 
We used weakly informative (Gelman 2006, Lemoine 2019), standard normal priors for the mean species-321 

level intercept and the first-year effect parameter. The mean species-level slope parameter was given a 322 

weakly informative normal prior  (𝛽′~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.1)). We consider this prior weakly informative as it 323 

reflects our belief that extreme rates of change are unlikely (it places approximately 95% of the prior 324 

mass for the survey-wide population trends between -20 and +20%/year). 325 

For the iCAR, BYM, and non-spatial models, the priors for the standard deviations of the spatial variation 326 

and non-spatial variation of the route-level slopes (𝜎𝛽𝑠𝑝𝑎𝑡𝑖𝑎𝑙
 and 𝜎𝛽𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

) had gamma priors with shape 327 

= 3 and scale = 30. These gamma priors were weakly informative such that the standard deviation of 328 

trends was constrained to more probable scales based on the log-link of the model and to avoid estimates 329 

of zero (Chung et al. 2013). Specifically, this gamma prior places the mean of the prior mass at 330 

approximately 10% per year, and 99% of the prior mass on the standard deviation of route-level trends at 331 

values less than 28% per year, while also including a long tail so that the model can estimate more 332 

extreme variation if supported by the data (Chung et al. 2013). The standard deviation of the intercept 333 

terms in these models (𝜎𝛼𝑠𝑝𝑎𝑡𝑖𝑎𝑙
 and 𝜎𝛼𝑛𝑜𝑛−𝑠𝑝𝑎𝑐𝑒

) were given a half-normal prior with standard deviation = 334 

2. This weakly informative prior places most prior mass at values < 5, and reflects our belief that across a 335 

species’ range, mean relative abundance can vary a great deal but is unlikely to vary by more than a few 336 

orders of magnitude. For some species, this relatively wide prior created convergence issues, so for these 337 

species we re-fit the models with a prior that considered the observed variation in mean counts among 338 

routes for a given species. Specifically, we used a half-normal prior with the standard deviation equal to 339 

the observed standard deviation of mean log-transformed observed counts among routes. We are 340 

confident that this prior is only weakly informative and likely over-estimates the among-route variance 341 

because the observed data includes variation among routes as well as variation among observers.  342 



Convergence 343 
We fit all models using 1000-2000 warmup iterations and an equal number of sampling iterations for each 344 

of the 4 independent chains (or 3 independent chains for each iteration of cross-validation). We assessed 345 

convergence by monitoring for divergent transitions and estimating split-Rhat values and bulk effective 346 

sample sizes for all parameters. We considered convergence to have failed if any Rhat was greater than 347 

1.03 or if any parameter’s effective sample size was < 100 (although the vast majority of parameters had 348 

effective sample sizes > 1000 and Rhat < 1.01). If any models did fail to converge, we re-fit the models 349 

with the alternative priors described above.  350 

Model assessment 351 
To assess the benefits of adding spatial information into the model, we compared the 1-step-ahead, leave-352 

future-out (LFO) predictive success of the four models for the 71 species with relatively small ranges 353 

(Roberts et al. 2017, Bürkner et al. 2020). We also ran a LFO assessment comparing the iCAR spatial 354 

model with the non-spatial version of the model for the remaining 216 species (Table 1). We used the 355 

LFO approach to directly test the temporal predictions of the models (i.e. test the accuracy of predictions 356 

of next year’s observations). In this application of LFO, we fit the model to the first 8 years of data (2006-357 

2013; the minimum length of time we considered sufficient for prediction), and used the parameter 358 

estimates from this model to predict the counts in the following year (2014). Then we iterated this 359 

approach making predictions for the remaining years (2015-2019, and 2021), predicting the observed data 360 

in year n using data for all years up to year(n-1) to fit the model. We could not assess predictive accuracy 361 

for the year 2020, because the BBS was cancelled due to concerns over COVID-19. The cross-validation 362 

process generated predictions for every count in the dataset, and an estimate of the log pointwise 363 

predictive density (lppd) of the observed count, given the model and the data in all previous years 364 

(Gelman et al. 2014). For interpretation and visualization, we calculated pairwise differences in lppd 365 

between pairs of models for each count and transformed summaries of these lppd-differences across many 366 

counts into the approximate z-scores used (Link and Sauer 2016); this provided an interpretable and 367 

consistent scale to summarize pair-wise model comparisons across species. 368 



Route-level covariate examples 369 
Modeling covariates of finer-scale trends and relative abundances is a major benefit of modeling BBS 370 

trends and abundances at the route-level. To demonstrate this, we present two examples, each including 371 

route-level predictors to inform estimates of abundance and trend. The first example uses data on the 372 

Rufous Hummingbird (Selasphorus rufus) and models the effect of habitat suitability on relative 373 

abundance and trend. The second example looks at the effects of annual variation in available habitat—374 

the number of ponds surrounding a BBS route in a given year in the Prairie Pothole region (PPR)—on the 375 

expected counts of a water bird, the Horned Grebe (Podiceps auratus).   376 

Rufous Hummingbird covariate example 377 

This example application is an elaboration of the iCAR route-level trend model, where the route-level 378 

intercepts and slopes are additive combinations of two components: 1) one that is a function of a route-379 

level predictor, and 2) one that is a residual component, estimated using the iCAR structure (Ver Hoef et 380 

al. 2018). The route-level predictors are derived from a previous study on Rufous Hummingbirds that 381 

modeled variation in habitat suitability over space and time (Jefferys et al. unpublished, supplemental 382 

methods). Mean habitat suitability for a given year within a 200m buffer of each BBS route was used as a 383 

predictor on the intercept (i.e., the mean relative abundance on a given route). The rate of change in 384 

habitat suitability over time within the same buffer was used as a predictor on the slope (i.e., the trend in 385 

the species' abundance). This model structure relies on relatively simple assumptions that the amount of 386 

habitat around a BBS route should predict the mean number of birds observed, and that the change in 387 

habitat amount should predict the change in the number of birds. 388 

We estimated the route-level intercepts and slopes as an additive combination of a mean species-level 389 

intercept or slope (𝛼′ or 𝛽′), a varying intercept or slope that was a function of the mean habitat suitability 390 

on the route (𝛼𝑟
′′′) or rate of change in habitat suitability on the slope (𝛽𝑟

′′′), and spatially varying effects 391 

for the residual variation in relative abundance (𝛼𝑟
′′) and slope (𝛽𝑟

′′) that were not explained by habitat. 392 

𝛼𝑟 =   𝛼′ + 𝛼𝑟
′′ + 𝛼𝑟

′′′ 393 



𝛽
𝑟

=   𝛽′ + 𝛽𝑟
′′ + 𝛽𝑟

′′′ 394 

This partitioning of the intercept and slope parameters allows the model to generate two alternative 395 

estimates of the mean abundance and trend on each route. The full trend (𝛽′ + 𝛽𝑟
′′ + 𝛽𝑟

′′′) represents the 396 

full estimated trend on a given route, including the effects of habitat change. The residual trend (𝛽′ + 𝛽𝑟
′′) 397 

represents an alternate trend if the habitat had stayed constant on a given route. Similarly, the full relative 398 

abundance (𝛼′ + 𝛼𝑟
′′ + 𝛼𝑟

′′′) represents the full estimated relative abundance on a given route, including 399 

the effects of habitat. The residual relative abundance (𝛼′ + 𝛼𝑟
′′) represents an alternate abundance that 400 

would have been expected if the habitat suitability were the same across all routes. 401 

We estimated the effect of mean habitat suitability on the route-level intercept as a simple product of a 402 

route-specific coefficient (𝜌𝛼𝑟
) and mean (across all years; 2006-2021)  habitat suitability in a 200m 403 

buffer around each route-path (𝛼𝑟
′′′ = 𝜌𝛼𝑟

∗ 𝑀𝑒𝑎𝑛𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑟). To model the effects of habitat change 404 

on population trend, we estimated the effect of the rate of change in habitat suitability on each route 405 

(𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑢𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑟) with a route-specific coefficient (𝜌𝛽𝑟
). The route-specific coefficients for the 406 

effects of habitat suitability on the intercept and slope were allowed to vary among routes, but were 407 

centered on hyperparameter mean effects across routes 𝜌𝛼𝑟
∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑃𝛼 , 𝜎𝜌𝛼

) and 𝜌𝛽𝑟
∼408 

𝑁𝑜𝑟𝑚𝑎𝑙 (𝑃𝛽 , 𝜎𝜌𝛽
). As such, the hyperparameters for the effect of mean habitat suitability on the intercept 409 

(𝑃𝛼) and the effect of change in habitat suitability on slope (𝑃𝛽) represent a clear species-level estimate of 410 

the overall effects of habitat on abundance and trend, after adjusting for the residual, spatially-dependent 411 

variation in abundance and trend.  412 

 413 

Horned Grebe covariate example 414 

This example application is an elaboration of the iCAR route-level trend model, where trends and relative 415 

abundances are estimated while accounting for the annual variation in climatically dependent habitat. The 416 

route-level predictors are derived from a study of the effects of moisture/drought patterns on Horned 417 



Grebe (supplemental methods), a waterbird species which breeds in small to moderately sized shallow 418 

freshwater ponds (Stedman 2020). To represent annual variation in available habitat for the Horned Grebe 419 

in the Canadian Prairie Pot Holes Region (PPR), we used data collected by the U.S. Fish and Wildlife 420 

Service (USFWS) and the Canadian Wildlife Service (CWS) on the number of ponds (natural or artificial 421 

ponds that are flooded seasonally, semi-permanently and permanently) during the Waterfowl Breeding 422 

Population and Habitat Survey (U.S. Fish and Wildlife Service 2022). Annual fluctuations in moisture 423 

affect the number of wetlands available, which has a strong influence on waterbird populations that are 424 

highly dependent on wetlands abundance (Sorenson et al. 1998, Johnson et al. 2005, Roy 2015, Steen et 425 

al. 2016). The model uses the iCAR model and adds an additional iCAR component to create a varying-426 

coefficient model on the effects of available habitat on the observed counts during a given survey on a 427 

given route.  428 

 429 

We estimated the effect of the number of ponds in a buffer surrounding BBS routes as a spatially-varying 430 

coefficient representing the route-specific effect of local ponds (𝜌𝑟 ∗ 𝑝𝑜𝑛𝑑𝑠𝑟,𝑡). Local ponds are the 431 

number of ponds surrounding a BBS route each year, where 𝑝𝑜𝑛𝑑𝑠𝑟,𝑡 represents the log(1 + number of 432 

ponds) surrounding BBS route 𝑟 in year 𝑡, centered on the mean number of ponds across years for each 433 

route. This route-specific centering ensured we could separately estimate the route-level intercepts and the 434 

effects of the annual variations in ponds and ensured that it only represented the temporal variation in 435 

ponds and not the spatial variation. The effects of ponds per route were centered on a mean 436 

hyperparameter (𝜌𝑟
′) and allowed to vary among routes using the same iCAR spatial structure as for the 437 

slopes and intercepts (𝜌𝑟
′’). 438 

𝜌𝑟  =  𝜌𝑟
′  +  𝜌𝑟

′′ 439 

𝜌𝑟
′′ ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (

∑ 𝑝𝑛
′′

𝑛𝜖𝑁𝑟 

𝑁𝑟
,
𝜎𝑝′′

𝑁𝑟
) 440 



Finally, we also fit the same data to the simple iCAR model (i.e., an identical model with no covariates) to 441 

compare the difference in estimated trends with and without accounting for the annual variations in 442 

available habitat. 443 

 444 

 445 

 446 

 447 

 448 

 449 

  450 



Results 451 
 452 

 In general, there are clear spatial patterns in the estimated trends and relative abundances from the spatial 453 

models, the patterns are similar among the three types of spatial models, and those patterns are obscured 454 

or completely lacking from the non-spatial version of the model (e.g., the results for Baird’s Sparrow in 455 

Figures 2 and 3). The GP model tended to smooth the spatial pattern in trends more than the iCAR model, 456 

which in turn smoothed more than the BYM model (Figure 2). The spatial smoothing in relative 457 

abundance was stronger in both the iCAR and BYM models than the GP model for Baird’s Sparrow 458 

(Figure 2. The covariance in relative abundance of Baird’s Sparrow among routes was effectively 0 at 459 

distances of only 100 km (posterior mean of 𝜌𝛼
2 = 650), whereas the covariance in trend was relatively 460 

strong even at distances > 1000 km (posterior mean of 𝜌𝛽
2  = 1.5, Figure S1). Predictions of route-level 461 

trends had smaller standard errors when including spatial information, and trend precision generally 462 

increased with the degree of spatial smoothing (Figure S2). For Baird’s Sparrow, all three spatial models 463 

had better predictive accuracy than the non-spatial model, with z-scores of pairwise differences between 464 

one of the spatial models and the non-spatial model ranging from 2.7 – 3.3 (Figure S4). The iCAR model 465 

had better predictive accuracy than the BYM model (z-score of the difference = 3.8, Figure 4), and there 466 

was little difference in predictive accuracy between the iCAR and GP models (z-score difference = -0.51, 467 

Figure 4).   468 

The leave future out (LFO) cross-validation shows that the iCAR and GP models out-perform the non-469 

spatial model (more accurately predicted next-year’s data), for almost all the 71 small-range species 470 

(Figure 4 and Figure S4). The BYM model had lower predictive accuracy than the other spatial models. It 471 

had lower accuracy than the iCAR model for all species and was the only spatial model that had clearly 472 

lower predictive accuracy than the non-spatial model (i.e., four species for which the z-score difference is 473 

< -2,  Figure 4 and Figure S4). The iCAR model and the GP model had similar predictive accuracy for 474 

many species; just over 2/3 of the species were better predicted by the GP model (49 of 71 species) and 475 

the remaining species were better predicted by the iCAR model (Figure 4). When including the additional 476 



216 species for which fitting the GP model was prohibitively time-consuming (days or even weeks 477 

required for convergence for a given species), the iCAR model had higher predictive accuracy than the 478 

non-spatial model for 283 of 287 species, and predictive accuracy was very similar for the remaining four 479 

(Figure 5).  480 

The iCAR model generated trend prediction maps with clear spatial patterns that likely relate to spatially 481 

dependent variation in processes affecting populations (Figure 6). These patterns are not evident in 482 

predictions from an identical model without spatial information (Figure 6). The spatial patterns in route-483 

level trends vary widely among species (Figures S4 and S5), suggesting varied drivers of population 484 

change across the continent and among species.  485 

In general, the iCAR and GP models were comparable in predictive accuracy for the 71 small-range 486 

species we analyzed (Figure S9). In addition, the spatial patterns in predicted trends were very similar 487 

between these two models, even for species where the predictive accuracy differed between the models. 488 

For example, the GP model had higher predictive accuracy than the iCAR model (z-score difference = -489 

4.3) for Canyon Towhee (Melozone fusca), but the opposite was true for Western Bluebird (Sialia 490 

mexicana; z-score difference = 2.3, Figure S4). Regardless, the spatial pattern in predicted trends between 491 

the two models is quite similar for both species (Figure 7). For both species, and in general, the GP model 492 

trend estimates had narrower credible intervals (higher estimated precision) than the iCAR model (Figure 493 

S6). Precision of the iCAR trend estimates also showed a clear relationship to the number of neighbors 494 

for any given route, in that routes with few neighbors (on the edges of the species’ range) were much less 495 

precise than estimates in the core of the species’ range (Figure S6).  496 

Including habitat suitability in the Rufous Hummingbird population model had an effect on estimates of 497 

route-level abundance and improved estimates of the spatial pattern in long-term trends, however much of 498 

the overall decline was not related to route-level habitat-change (Figure 8). The effect of habitat 499 

suitability on mean relative abundance was strong and positive (𝑃𝛼 = 3 [95% CI 2.2:3.8]), such that routes 500 

with higher overall habitat suitability had higher mean counts. From 2006-2021, the Rufous 501 



Hummingbird’s overall population declined steeply, decreasing by approximately -43% (95% CI -52:-33) 502 

over the 15 years. There was an effect of change in habitat suitability on trends, such that routes with 503 

habitat loss had more negative population trends 𝑃𝛽  = 0.025 95% CI 0.003:0.047. Trends were negative 504 

across the species’ range, but most negative in the coastal regions where the habitat has changed the most 505 

and where the species is also most abundant (left panel, Figure 8). The change in habitat suitability 506 

affected the spatial patterns in trend (Figure 8), the greater loss of habitat in the coastal regions (Figure 507 

S7) accounts for most of the increased rates of decline in the core of the species’ range, the residual trend 508 

component alone does not show the same coastal-decline pattern (Figure 8, right panel). However, 509 

changes in habitat suitability did not account for the overall decline in the species population, as the data 510 

suggest negative population trends across the species’ range after removing the effects of local habitat 511 

change (right-panel in Figure 8). 512 

Annual variation in the number of ponds around BBS routes affected the overall rate of population change 513 

in Horned Grebes and showed a spatial relationship (Figure 9). In a model including the annual pond 514 

variation, the Horned Grebe population declined overall at a rate of -1.9 %/year from 1975-2017. After 515 

removing the effect of annual pond variation, the long-term rate of decline was -2.2 %/year. The effect of 516 

annual fluctuations in the number of ponds was positive across the region: the mean value of 𝑃 = 0.42 517 

95% CI 0.29:0.55, but there was also a spatial gradient in intensity. The effect of the number of ponds per 518 

year was strongest in the northwest part of the Prairies (Figure 9) and declined to the south and the east.  519 

 520 

 521 

 522 

  523 



Discussion 524 
Spatially explicit, route-level models are useful for visualizing fine spatial patterns at scales more relevant 525 

to local conservation, understanding the drivers of population change, and estimating the effects of 526 

covariates on relative abundance and trends (e.g., Betts et al. 2022). At this fine spatial scale, 527 

incorporating spatial information improved the models’ predictions of future data. This improvement was 528 

particularly clear for both the iCAR and the GP models, where these spatial models had higher accuracy 529 

for out-of-sample predictions than the non-spatial model for almost every species compared.  The spatial 530 

patterns in trend estimates should be useful for visualizing the variations in trends across the species’ 531 

range that may help generate hypotheses of the ecological drivers of population change and potential 532 

conservation strategies. Route-level models also allow for the incorporation of local habitat covariates on 533 

abundance and trend at fine scales, which is important as some covariates affect bird populations at scales 534 

much smaller than strata often used for broad-scale analyses, such as Bird Conservation Regions (BCRs) 535 

or states/provinces (Thogmartin et al. 2004, Paton et al. 2019, Monroe et al. 2022). Route-level patterns 536 

are useful in guiding conservation and/or further monitoring efforts, such as identifying small areas for 537 

conservation purposes or diverging population trends within management areas (i.e., strata or BCR). 538 

These route-level, spatial models generate smoothed patterns of variation in population trends across a 539 

species’ range which will greatly facilitate the hypothesis generation and direct investigation to better 540 

understand the drivers of population change, similar to (Fink et al. 2023). For example, the spatial models 541 

show relatively smooth patterns in Baird’s Sparrow trends across the species’ range (Figure 2), which are 542 

not evident in the simpler, non-spatial model. In the spatial models, the Baird’s Sparrow has increased in 543 

the west and decreased in the eastern portions of its range. This latitudinal pattern may suggest 544 

hypotheses related to spatial variation in factors related to weather or climate, which could then be 545 

directly tested by incorporating covariates representing these factors into a subsequent model. Similarly, 546 

the complex spatial patterns in the trends of Hairy Woodpecker (Dryobates villosus, Figure 6) show some 547 

latitudinal variation in trends in the west that is not as clear in the East, suggesting that there may be 548 

distinct processes driving trends in these two regions. Comparisons of these patterns among species may 549 



be particularly informative. For example, the somewhat similar southeast to northwest gradients in trends 550 

for Canyon Towhee and Western Bluebird may suggest some similarity in the underlying drivers (Figure 551 

7). These are only speculations, and simply provide examples of the kinds of hypothesis generating 552 

explorations that are facilitated by these fine-scale, spatially explicit models of structured monitoring 553 

data.  554 

All three of the spatial models (iCAR, GP, and BYM) generated broadly similar spatial patterns in route-555 

level trends for the subset of species we compared (Figure 4 and Figure S3). The best spatial structure to 556 

use will depend on the species and the goals of a particular study. For the species here, there was little 557 

support for the extra variation in route-level trends in the BYM model; it had lower predictive accuracy 558 

than the simpler iCAR model in all cases. The iCAR structure outperformed the GP models for 1/3 of the 559 

species here, and it is more computationally efficient. Overall, the GP model outperformed the iCAR 560 

model for most (2/3) of the species compared here. In general, the GP model also estimated smoother 561 

spatial patterns in population trends than the other spatial models and for some the difference is striking 562 

(e.g., Black−throated Gray Warbler, Setophaga nigrescens, California Quail, Callipepla californica, and 563 

Golden−winged Warbler, Vermivora chrysoptera in Figure S3). For the first two species the GP 564 

outperformed the iCAR for accuracy, while for the third species, the iCAR was better (Figure S4). 565 

Additionally, although the GP parameterization that we used here required significantly more 566 

computational effort, more efficient ways of implementing Bayesian GP models are being developed 567 

(Hoffmann and Onnela 2023). For larger datasets (e.g., broad-ranging species and or longer time-series), 568 

the iCAR structure may be preferable simply for speed. Since there are many ways to define 569 

neighborhood relationships (Freni-Sterrantino et al. 2018), it may provide more direct control to model 570 

discontinuities in the spatial relationships, such as complex range boundaries (Ver Hoef et al. 2018, 571 

Pebesma and Bivand 2023). A species with limited dispersal may be particularly sensitive to the 572 

Euclidean distance between points and therefore better modeled with the GP, but the simplification of 573 

space using the iCAR structure may be sufficient for most wide-ranging migratory birds. For example, for 574 



some species there are routes on the periphery of the BBS sampling distribution or the periphery of a 575 

species’ range that are separated from most other routes by relatively large distances. These “isolated” 576 

routes are treated very differently by the iCAR and GP models; they are considered close neighbors in the 577 

iCAR model irrespective of the intervening distance, whereas, in the GP model, the large separation from 578 

other routes reduces their correlation with their nearest neighbors. Interestingly, when we compared the 579 

predictive accuracy between GP and iCAR models for routes that were more isolated than most (nearest 580 

neighboring route > 200km away), the simplified relative-spatial relationships of the iCAR tended to 581 

outperform the continuous spatial treatment of the GP for these isolate routes (Figure S8). Therefore, 582 

although the more accurate representation of the long distances separating these isolated routes in the GP 583 

model does not necessarily result in more accurate predictions.  584 

These route-level BBS models provide many opportunities for further applications, elaborations with 585 

covariates, and comparisons to other sources of trend information. The fine-scale estimates could be 586 

summarized across species and within regions, such as summaries of the spatial patterns in grassland bird 587 

trends or summaries for a given species within BCRs or states/provinces and compared to estimates from 588 

models fit at those broader spatial scales. The spatial patterns in trend estimates also allow for comparison 589 

of BBS data to other fine-grained maps of species trend and relative abundance, such as eBird (Sullivan et 590 

al. 2014, Fink et al. 2023) or the Integrated Monitoring in Bird Conservation Regions (IMBCR) program 591 

(Pavlacky et al. 2017). Comparison of trend estimates between the two programs for the same species and 592 

periods of time could provide useful validation of and or help understand differences between the two 593 

sources of information. Similarly, there are many possible avenues to integrate information across 594 

programs for a given period (e.g., recent trends) or through time (e.g., long-term information from the 595 

BBS with more recent information from eBird and/or IMBCR). We see an almost limitless potential for 596 

customizing route-level BBS models to include covariates testing hypotheses of drivers of population 597 

abundance and trends (e.g., Betts et al. 2023). The examples of covariate models here and our application 598 



of LFO cross-validation will hopefully provide useful tools to better understand the causes of population 599 

change in North American birds.  600 

     Separating the route-level intercepts from the observer-level intercepts allowed us to better model 601 

patterns in relative abundance. It should also allow for improved modeling of among observer variation. 602 

Although many previous BBS analyses have treated each observer-route combination as an independent 603 

sampling unit (Link et al. 2020, Smith and Edwards 2020), doing so necessarily allocates some of the 604 

biological variation in abundance in space (i.e., among-route variation in abundance) to an effect that is 605 

treated as sampling noise (among-observer variation). The model will struggle to separately estimate 606 

intercepts for observers and routes in situations where there are few data to inform the estimates (e.g., 607 

intercepts for observers who only contribute data to a route that has never been surveyed by another 608 

observer). However, we suggest that a model that includes a few of these weakly estimable parameters is 609 

likely preferable to a model that fails to attempt to separate the biological variation among routes from the 610 

sampling noise of observer variation, at least in the situations where there are data to support their 611 

separation. In a practical sense, this separation of the observer from route effects is improved by the 612 

hierarchical structure of the models, spatial information, weakly informative priors and the improved 613 

efficiency of HMC algorithms over the Gibbs sampling algorithms of earlier Bayesian BBS models. 614 

Although initially motivated by our desire to directly model route-level abundance, this approach is 615 

equally applicable to other BBS analyses (Smith et al. 2023), and is included in the models in the R-616 

package bbsBayes2 (Edwards et al. 2023).       617 

     In our covariate examples, not only did we estimate local effects of covariates on abundance and trend, 618 

but covariates revealed important spatial patterns. For the Rufous Hummingbird, the model showed 619 

higher mean abundance on routes with more habitat and positive effects of the change in habitat on the 620 

species’ trend (more negative trends on routes where habitat has decreased). Interestingly, it also showed 621 

that during this period, the variation among routes in habitat change does not account for all of the decline 622 

in the species population (Figure 8, and Figure S7), suggesting that factors other than local habitat or 623 



acting outside of the breeding range may be driving the overall decline. For the Horned Grebe, the effect 624 

of annual fluctuations in available wetland habitat (the number of ponds) was positive overall and also 625 

varied in magnitude across the species’ range. The effect was strongest in the western prairies where the 626 

effects of drought are often strongest (Millett et al. 2009, Johnson et al. 2010, Roy 2015). These results 627 

highlight that waterbird populations breeding in the Prairie Potholes Region remain vulnerable to habitat 628 

modifications and climate change, but also suggest strategies and conservation actions in regions where 629 

the waterbird species are the most vulnerable. In both examples, the ability to incorporate spatial 630 

covariates into the trend analysis tested hypotheses around the drivers of population change and helped to 631 

identify specific areas for further research and conservation action.  632 

Finer-scale estimates can be used to inform finer-scale municipal and community-level decisions and to 633 

communicate science at a level important to both communities and volunteers. Decisions on 634 

anthropogenic land use change for industries such as agriculture, forestry, and housing are often made at 635 

fine scales (Sodhi et al. 2011, Malek et al. 2019). Likewise, habitat protection and restoration by 636 

community organizations, municipal governments, and NGOs occur at fine scales (Sheppard 2005, 637 

Aronson et al. 2017). For example, the Horned Grebe covariate analysis confirmed the vulnerability of 638 

waterbird species in the northwestern Prairie Potholes Region and supported a current initiative to protect 639 

critical shallow wetlands in the region (Prairie Habitat Joint Venture 2020). Community support is 640 

important for the success of conservation initiatives (Berkes 2004, Bennett and Dearden 2014), providing 641 

estimates at scales relevant to communities may increase community support for conservation and 642 

encourage a feeling of stewardship. Further, the routes are a relevant scale for the dedicated BBS 643 

volunteers, with the average BBS volunteer participating for 12 years. Producing estimates at a route-644 

level provides a tangible outcome of volunteers’ efforts and would allow them to share their direct 645 

contributions, a large motivator for many citizen science volunteers (Phillips et al. 2019).  646 

  647 
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Figures and captions 778 
 779 

   780 

Figure 1. BBS route start locations (points) for routes on which Baird’s Sparrow was observed (2006-781 
2021), demonstrating the process used to identify the discrete neighbor relationships for the iCAR and 782 
BYM spatial models. The top panel shows the Voronoi tessellated surface used to assign the intervening 783 
space to the nearest BBS route start location, which is intersected with a concave polygon and the 784 
standard BBS strata (State/Provinces/Territories by Bird Conservation Regions). The lower panel shows 785 
routes considered neighbors using lines linking points that share an edge separating their associated 786 
Voronoi polygons.  787 
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 789 

 790 

Figure 2. Estimates of      trend (colours) and mean relative abundance (size of the points) for Baird’s 791 
Sparrow populations on BBS routes from 2006-2021, from three spatially explicit models (iCAR, GP, and 792 
BYM) and one non-spatial model. Points with warm colours (reds) represent routes with decreasing 793 
counts through time, points with cool colours (blues) represent routes with increasing counts through 794 
time. The three spatially explicit models suggest very similar spatial patterns in trends, although the GP 795 
model suggests smoother spatial variation in trend than either the iCAR or BYM models. Grey lines 796 
within the maps represent boundaries of provinces/states and Bird Conservation Regions. 797 
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 799 

Figure 3. Estimates of mean relative abundance (colours) and the Coefficient of Variation for the 800 
estimates (CV = size) for Baird’s Sparrow populations on BBS routes from 2006-2021, from three 801 
spatially explicit models and one non-spatial model. Points with brighter colours (greens and yellows) 802 
represent routes with higher estimated mean counts, points with more precise estimates of abundance 803 
(smaller CV) are larger. The iCAR and BYM models estimate almost identical spatial patterns in 804 
abundance with a relatively clear peak in the center of the species’ range, and relatively smoother spatial 805 
variation than either the GP or the non-spatial model.  806 
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 809 

Figure 4. Leave Future Out (LFO) cross-validation results for 71 small-range species from the BBS 810 
database, comparing among the four different models. The stacked dot-plots represent species-level 811 
summaries of the differences in lppd between pairs of models. Each point represents one species for a 812 
given model comparison. Z-score values on the x-axis represent the difference between the lppd for the 813 
two models indicated on the y-axis. Z-scores > 0 (points that fall to the right of the black vertical line) 814 
represent species for which the predictive accuracy of the first model is higher than that of the second 815 
model (e.g., all but two species in the iCAR vs Non-spatial comparison), and vice versa. Z-scores > 2 or < 816 
-2 (points that fall to the right or left of the vertical dark gray lines, respectively) represent species for 817 
which the mean of the differences between the two models are clear and could be considered “significant” 818 
in some statistical frameworks. The top three dot-plots show the comparisons between each of the three 819 
spatial models and the non-spatial model. The lower two plots compare the predictive accuracy among the 820 
three spatial models and show that the iCAR model out-performs the BYM model for all species, and that 821 
the GP model out-performs the iCAR model for some species but not for others     .      822 
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 827 

Figure 5. Leave Future Out (LFO) cross-validation results for all 287 species (including the 71 species 828 
results in Figure 4), comparing the iCAR spatial model and the non-spatial model. The stacked dot-plots 829 
represent species-level summaries of the differences in lppd between the two models. Each point 830 
represents one species. Z-score values represent the difference between the lppd for the two models 831 
accounting for the variation across all counts, and the stacked dots form a histogram. Points that fall to the 832 
right of the black vertical line represent species for which the predictive accuracy of the spatial model is 833 
higher than that of the non-spatial model. The iCAR spatial model outperforms the non-spatial model for 834 
all but four species. For those four species, the predictive accuracy of the two models is very similar and 835 
does not approach -2, which would support a clear difference between the two models in favour of the 836 
non-spatial model. 837 
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 840 

Figure 6. Examples of the spatial patterns in estimated route-level trends for four broad-range species 841 
from an iCAR spatial model (left column) compared to trends estimated from an otherwise identical, non-842 
spatial version of the model (right column). All points are the same size in this plot because the mean 843 
abundances vary too much among species to display meaningful variation in this plot. 844 



 845 

Figure 7. An example illustrates that the spatial patterns in estimated trends for iCAR and GP models are 846 
quite similar, even when one of the models strongly out-performs the other in a cross-validation analysis. 847 
For the Canyon Towhee (Melozone fusca), the GP model clearly out-performs the iCAR model in 848 
predictive accuracy (z-score comparison iCAR – GP = -4.3, Figure 4). For the Western Bluebird (Sialia 849 
mexicana), the iCAR model out-performs the GP model in predictive accuracy (z-score comparison iCAR 850 
– GP = 2.9, Figure 4). Despite the relatively strong difference in predictive accuracy, the spatial patterns 851 
are quite similar for both models.  852 
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 854 

 855 

Figure 8. Map of route-level trend estimates for Rufous Hummingbird (Selasphorus rufus) from 2006-856 
2021. The colours represent trends estimated from the model including effects of habitat change (left 857 
panel) and the residual spatially explicit estimate of trend, after removing the effects of habitat change 858 
(right panel). Habitat change appears to be driving most of the variation in trends within the core latitudes 859 
of the species range (45°-55° N). The faster rates of decline (darker red) in the western regions and the 860 
slower rates of decline (lighter yellow) in the east are evident in the left panel that includes the effects of 861 
habitat and missing from the panel on the right. 862 
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 866 

Figure 9. A map of the spatial variation in the effects of annual fluctuations in available habitat (ponds) 867 
on the expected counts of Horned Grebe during BBS routes (1975-2017). The pond effect was estimated 868 
as a spatially varying coefficient using the iCAR structure among routes and was strongest in the western 869 
prairies. Pond effect represents the log-scale effect of annual variation in the number of ponds 870 
surrounding a BBS route in a given year on the annual expected count after adjusting for long-term 871 
trends, observer-effects, and the other parameters included in all of the models we used. 872 
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