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Abstract  

 

Despite receiving significant recent attention, the relevance of Structural Variation (SV) in 

driving phenotypic diversity remains understudied. Advances in long-read sequencing, 

bioinformatics and pangenomic approaches, enhance SV detection. We review the role of SVs 

in shaping phenotypes in avian model systems, and identify general patterns in SV type, length, 

and their associated traits. Notably, most of the identified SVs are short indels in chickens, 

frequently associated with changes in body weight and plumage coloration. This review 

highlights how SVs underlie phenotypes in avian model systems and sets expectations for when 

long-read technologies become commonly implemented in non-model birds. The growing 

interest in this subject suggests an increase in our understanding of the phenotypic effects of 

SVs in upcoming years.	 
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Structural Variants shape phenotypes in avian model systems 

 
Avian model species vary in plumage color and patterns, beak morphology, vocalizations and 

behaviors, as well as in economically relevant traits such as body size, immune response and 

egg production. Therefore, these systems can shed light on the underlying genomic 

mechanisms shaping such traits, both in model and non-model birds. Most research on the 

genetic basis of phenotypic traits has focused on single-nucleotide polymorphisms (SNPs, see 

Glossary) and smaller genetic rearrangements such as short insertion/deletion (indel) 

mutations. The impact of structural variants (SVs) on avian phenotypes, even in model systems, 

remains largely understudied despite their potential importance. SVs (Box 1), including 

insertions, deletions, inversions, and duplications, typically defined as longer than 50bp [1], can 

affect gene structure and function [2]. This knowledge gap may be due to methodological 

challenges in detecting SVs, the complex genetic basis of some traits and the lack of highly 

contiguous reference genomes. SVs are hard to detect and characterize, requiring third-

generation sequencing techniques (i.e., long-read technologies such as Pacific Biosciences and 

Oxford nanopore sequencing), chromosome conformation capture techniques like Hi-C, and the 

implementation of robust analytical tools [3]. The more widely used short-read technologies 

are unable to cover many repetitive regions, leading to challenges in genome assembly and 

hindering SV identification. Additionally, when mapping population-level data against a 

reference genome, SVs might be overlooked if they are absent in the reference sequence. 

Moreover, SVs can interact with multiple genes to shape complex and polygenic traits, further 

complicating the ability to pinpoint the individual effects of each gene on a given phenotype. 

These challenges must be addressed to understand how SVs shape avian phenotypic evolution. 

 

In this review, we explore how SVs shape different phenotypes in avian model systems, and 

compare their effect in relation to what is known for other types of genetic variation, such as 

SNPs. With the accessibility of third-generation sequencing, telomere-to-telomere genomes, 

and advances in bioinformatics, we expect a significant increase in studies uncovering the 

influence of SVs on avian phenotypes in the coming years, including in non-model species. We 

focus on avian model systems for various reasons. First, their commercial value attracts many 
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research resources, setting them apart from other avian species. Second, the longer-standing 

availability and superior quality of reference genomes, along with the availability of pedigrees, 

animal husbandry and genetic mapping techniques, facilitates precise phenotype/genotype 

associations. In consequence, the earlier studies utilizing long-read sequencing have been 

conducted on these species. Based on these criteria, we consider as avian model systems the 

chicken (Gallus gallus), Zebra finch (Taeniopygia guttata), Wild turkey (Meleagris gallopavo), 

Domestic Mallard duck (Anas platyrhynchos), Domestic pigeon (Columba livia) and the Common 

and Japanese quails (Coturnix coturnix and Coturnix japonica). The outline of the review is 

organized around four major issues: type and length of SVs related with phenotypic traits in 

avian model systems, the main traits associated with SVs, the current pangenome availability 

and relevance, and the relationship between Transposable Elements (TEs) and SVs and their 

impact on phenotypes. 

Systematic analysis of SVs in avian model systems 

 

We conducted a systematic search in Web of Science and Google Scholar using the terms 

shown in Table S1, which yielded 2,005 studies. From these, we identified 103 articles reporting 

SVs in avian model systems associated with phenotypic traits. We categorized the studies based 

on SV type, including small Indels, larger insertions, deletions, duplications, copy number 

variants (CNV) which encompasses both deletions and duplications, inversions, or complex 

rearrangements. SV lengths were subsequently classified into the following intervals: <50bp, 

50bp to 1Kb, 1-10Kb, 10-100Kb, >100Kb, or Unknown. When a study reported multiple SVs, we 

used the mean length for our analysis, if it was provided. Similarly, if a study reported multiple 

SVs associated with different phenotypes, we treated them as distinct entities for analysis. 

Moreover, when a study documented multiple SVs of the same type that resulted in the same 

phenotype, we counted one occurrence for our analysis. Additionally, only the initial study from 

several that described the same SV was counted. Ten out of the eleven studies that focused on 

characterizing SVs among breeds or populations were excluded from the analysis, as they 

reported numerous SVs related to broad traits such as domestication or multiple inter-breed 
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differences. The retained study [4] met the criteria for inclusion. After this initial revision, 88 

studies remained in our analysis (see a full list in Table S1). 

Type and length of SVs associated with phenotypic traits in avian model systems 

 
All types of SVs are implicated in shaping phenotype, ranging from less than 50 bp all the way to 

megabases. However, the most commonly detected SVs are indels and duplications, and they 

tend to be short (<1Kb) (Fig. 1A, B). We note that all the reviewed articles (except one, [5]) 

relied primarily on short-read sequencing, which introduces a bias towards short SV detection 

due to the challenges in identifying long SVs with short reads. As the use of long-read 

technologies becomes more prevalent, long SV identification may increase due to more 

accurate detection. 

 

In total, 95 SVs were identified among the 88 articles that associated SVs with phenotypic 

changes. Most of the detected SVs (31.6%) were shorter than 50bp, 46.4% ranged between 50-

bp and 100Kb, and only 13.7% of SVs were over 100Kb (Fig. 1A). Considering SVs exclusively as 

variants over 50bp [1] reduces the number of studies included in our analyses by over 30%. 

However, several studies show that variants shorter than 50bp can influence phenotype. For 

instance, short SVs underlie plumage coloration in Japanese quail [6,7] and chickens [8], as well 

as impacting egg production in both species [9-11]. As proposed by Mérot et al. [2], we agree 

that the SV concept should encompass the full size-range, from single nucleotide SVs to 

megabases, without an arbitrary size threshold.  

 

The types of SVs reported in each model species is limited by the availability of studies. In the 

case of the Zebra finch, only inversions have been reported. Similarly, for the turkey, only 

deletions and duplications have been documented. Conversely, species such as the Japanese 

quail and, particularly, the chicken, which were the subjects of a higher percentage of studies 

included in the review (9.2% and 74.7%, respectively), show higher SV diversity (Fig. 1C, D). 

Although we included both Common and Japanese quails in our analyses, eight out of nine 

studies focused on the Japanese quail. Considering the relationship between SV length and 
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type, insertions are typically shorter, while deletions and duplications show the highest length 

variability (ranging from a few bases to over 100Kb). Inversions and complex SVs are longer, 

always exceeding 10Kb (Fig. 1D), yet there are relatively few examples of these SVs. This 

pattern is most likely a product of detectability and reduced discovery, rather than indicating 

that inversions and complex rearrangements are uncommon SVs, which is consistent with the 

limitations of detecting long SVs using the prevailing short-read sequencing methods. 

 

Phenotypic traits associated to SVs 

 
SVs underlie traits primarily related to body size and weight [12-42] followed by plumage 

coloration and pigmentation [4,6-8,16,38,43-61] in avian model systems. There are examples in 

quails, where both traits are affected by the same SV [62,63]. There are many studies, mostly in 

chickens, on feathering phenotypes (45,64-72); comb, muff and beard traits [73-81], and egg 

production [9-11,82,83]. Although less common, there are also associations between SVs and 

behavior and domestication [4,5,64,84-90]. Other uncommon traits associated with SVs are 

craniofacial deformities [91,92], fertility [93], muscle glycogen content [94], number of 

vertebrae [95] and Aldehyde flavor [96]. The most detected traits are usually economically 

relevant, such as body size and egg production, and/or conspicuous like plumage coloration. 

This pattern could be due to a detection bias leaving traits, which are harder to study, like 

immune responses, underrepresented. 

 
The same phenotype in different species can be achieved by modifying the same gene in 

various ways. For instance, the late feathering trait, that is a sex-linked phenotype used for 

sexing individual birds at an early age, in both chickens [72] and turkeys [65], involves SVs in the 

Prolactin receptor gene (PRLR). In chickens, the SV is a partial duplication of the PRLR and SPEF2 

genes that affects gene expression through dosage effect, while in turkeys, a 5bp deletion in 

the PRLR terminal exon results in a truncated protein lacking 98 C-terminal amino acids (Fig 2A). 

Moreover, deletions in the Prolactin gene (PRL) are independently involved in egg production 

both in chickens and Japanese quails [9,82] (Fig 2B). Similarly, larger body size in commercial 

chicken [37] and Mallard duck breeds [38] has been associated with an SV in the promoter 



 6 

region of the IGF2BP1 gene that results in increased expression. In chickens, the SV is a 

deletion, whereas in ducks, it involves a Gypsy long terminal repeat (LTR) TE insertion which 

leads to higher body mass (Fig 2C). More complex traits such as body size and growth are 

commonly linked to a wide variety of genes and SVs [e.g., 13,14,18,35,97]  

 

The same phenotype can also be obtained through different types and lengths of SVs in 

different genes. For instance, the white phenotype in chickens [8] and domestic ducks [38] is 

attributed to a 4bp deletion in the RAI14 gene and a 6kb insertion in the MITF gene, 

respectively. In white chickens, the deletion is accompanied by variation in 3 SNPs, one of them 

affecting the TYR gene. In Pekin and Cherry Valley ducks, a Gypsy TE insertion generates a novel 

MITF transcript that lacks 39 amino acids, which in turn affects the expression of four 

downstream genes including the TYR gene, resulting in white plumage (Fig. 2D).  

 

Moreover, the same trait can be modified by either the same or different genes. For instance, 

in Japanese quails, Fawn-2-beige and yellow plumage coloration arise from a tandem 

duplication and a deletion in the ASIP locus, respectively [52] (Fig. 1E). Notably, different 

chicken combs, such as the pea-comb [79], V-shape, buttercup [73], and Rose comb [78], are 

strongly linked to SVs in different genes. The pea and V-shape combs are associated with 

duplications in the SOX5 and EOMES genes, respectively; while the Rose comb is associated 

with an inversion that affects expression of the MNR2 gene, which is not within the inversion 

but located adjacent to its breakpoints. Interestingly, in all these cases, the SVs lead to the 

ectopic expression of the affected genes, likely impacting comb development and resulting in 

their phenotypic diversity (Fig. 2F). Moreover, the same genetic variant can have pleiotropic 

effects on several traits. For example, the inversion causing the rose comb phenotype also 

affects sperm mobility [78]. 

 

Additionally, the same phenotype can be achieved by similar types of SVs in different genes. In 

Zebra finches, sperm mobility is also influenced by an inversion, yet on a different chromosome 

than in the chicken example [78], clustering several genes into a supergene [98]. Supergenes 
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involve inversions which link genes by reducing the recombination rate, causing blocks of 

multiple genes to be transmitted as a unit, with the potential for co-adaptation. Because these 

supergenes include several genes, whereas SNPs are limited to more localized nucleotide 

differences generally affecting one gene, this type of SV may result in more complex phenotypic 

variation, such as changes in behaviors, compared to what may be generated by SNPs [99].  

Among avian model systems, two such supergenes have been reported, one in Common quails 

[62] and the aforementioned one in Zebra finches [98], with different and pleiotropic 

phenotypic effects. In quails it is associated with geographically isolated populations that differ 

in several traits, including body size, throat color and wing shape; whereas the Zebra finch 

supergene affects sperm morphology and swimming speed (Fig. 2G).  

 

Only four complex rearrangements have been reported in avian model systems, and due to 

their larger size, they typically impact multiple genes, potentially shaping various phenotypic 

traits. For example, in quails two inversions and a partial deletion that affect four genes result 

in changes in plumage coloration, body weight and temperature [63] (Fig. 2E). Two studies on 

hyperpigmentation [46,54] and muff and beard development [74,80] in chickens have reported 

SVs implicating the same genes. Interestingly, the initial set of studies for each trait showcased 

complex SVs, yet the second set, while trying to narrow down the genomic mechanism, 

reported only duplications. These studies illustrate the complexity of both characterizing SVs 

and understanding the genetic causes underlying a specific trait. 

 

Some traits can have a complex genetic basis, and SVs are often associated to phenotypes in 

conjunction with other types of genetic variation, such as SNPs [e.g., 8,74,80]. Therefore, in 

non-model systems, certain traits that have been linked to SNPs, due to the current prevailing 

short-read methodologies, might actually have a more complex genetic basis also involving SVs. 

Overall, given the genetic complexity underlying phenotypic traits, it is important to account for 

multiple types of genetic variation when trying to find associations between phenotypes and 

genotypes.   
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Among the 103 reviewed articles, seven characterize SVs across different chicken breeds and 

populations [16,33,40,47,64,97,100], along with two each on turkey [101,102] and domestic 

ducks [3,4]. Exploring diverse breeds within a species offers an opportunity to examine whether 

similar phenotypes stem from comparable genetic mechanisms. For instance, the Creeper trait 

which involves abnormally short legs, is associated with the IHH gene in two chicken breeds. 

The IHH gene is completely deleted in Chinese Xingyi batam chickens [103], while a complex 

rearrangement involving deletions and an insertion, affects both the IHH and NHEJ1 genes in 

Japanese bantam chickens [104]. Additionally, there are instances where identical or nearly 

identical SVs in the same gene lead to the same phenotype. The frizzle feather trait is caused by 

a 15-bp deletion in the KRT75L4 gene in Kirin chickens [66] and Xiushui Yellow Chickens [105]. 

The same trait is observed in crosses between a heterozygous frizzle rooster and wild-type 

hens, generated by a 69-bp deletion with autosomal incomplete dominant inheritance in the 

same gene [71]. Another example, reviewed in [106], is blue egg coloration in Araucana, 

Chinese and European chicken breeds [57,58]. In these breeds, blue eggs are caused by the 

insertion of a ~4.2Kb retrovirus (EAV-HP) in the promoter region of the SLCO1B3 gene, leading 

to ectopic expression in the shell glands of the uterus. However, the integration site differs 

between the Asian breed and the Araucana and European breeds, suggesting two independent 

origins. Notably, similar SVs can also yield diverse phenotypic outcomes, exemplified by a 

SOX10 gene deletion generating both dark brown and yellow coloration in different chicken 

breeds [48,59]. Overall, these examples illustrate how SVs can generate phenotypic diversity in 

avian model systems. 

 

The role of pangenomes in detecting SVs 

 
The study of SVs is closely linked to the pangenome concept. Traditional reference-based 

genome studies have predominantly focused on a single reference genome, leading to the 

underrepresentation of SVs, as sequences from individuals which possess the SV may not map 

against reference genomes which lack them. Pangenomes integrate information from multiple 

genomes within a species or a group of related organisms, thus revealing a more 
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comprehensive landscape of genetic variation, including SVs [107]. Pangenomes aim to uncover 

the full spectrum of genetic variation, including both small and large-scale SVs, capturing the 

core genome shared among all individuals from that species and the dispensable genome 

containing non-reference sequences. The best resolution is achieved by generating 

pangenomes from high-quality reference genomes derived from long reads, ideally telomere-

to-telomere, because short-read assemblies may not capture important variants, such as long 

repeats. Through pangenomic approaches, researchers have been able to detect and 

characterize previously unknown SVs that play a significant role in shaping phenotypic diversity 

[e.g., 108,109].  

 

Pangenomes, which first emerged for bacteria, remain more prevalent in bacteria and plants, 

but there is a growing tendency and an increasing effort to generate pangenomes in other 

organisms [107]. Currently, the chicken [37,110] and the domestic duck [38] are the only avian 

model species with an available pangenome. This approach revealed new SVs associated with 

phenotypic traits, highlighting the power of using pangenomes to study the complex genomic 

basis of phenotypic diversity. Moreover, the emergence of the first pangenome in a non-model 

avian species, the barn swallow (Hirundo rustica) [111], demonstrates that advances in 

sequencing and bioinformatics are enabling the implementation of this approach in diverse 

organisms. The pangenomes themselves will also improve as larger numbers of individuals (and 

from different populations) are incorporated, leading to the increased detection of rare or 

population-specific variants. 

How transposable elements (TEs) impact SVs and phenotype in avian model systems 

 
Transposable elements (TEs) are mobile genetic elements that play a significant role in shaping 

genome structure, adaptation and the development of reproductive barriers [112]. TEs have 

the potential to act as building blocks for SV formation, as their insertion, deletion, duplication, 

or rearrangement can lead to gene modifications, altered recombination patterns, and changes 

in the genome's structural architecture. TEs can generate phenotypic variation through 

alterations in gene expression patterns due to the introduction of regulatory elements such as 
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promoters, silencers or enhancers or by modifying the spacing between these elements and 

promoters [113]. 

 

SVs are closely interrelated with TEs and therefore pangenomes are essential for their 

characterization, and to understand their relevance in evolutionary processes. Notably, the 

domestic duck pangenome revealed that the phenotypic impact of TE-related SVs can be 

important, exemplified by a Gipsy LTR element insertion in the promoter region of the IGF2BP1 

gene, that accounts for a large proportion (27.61%) of the variation in body mass [38]. 

Moreover, the domestic duck pangenome [38] and Zebra finch inversions [114] have shown an 

accumulation of TEs at the breakpoints of SVs, suggesting a potential correlation between TEs 

and the generation of SVs. Specifically, the presence of endogenous retrovirus LTR 

retrotransposons is relatively common among avian model systems, and associates with 

different phenotypic traits such as blue eggshell in chickens [115] and domestic duck body size 

and plumage coloration [38]. Boman et al. [114] reported 4.5Mb of LTR in the Zebra finch 

genome, likely associated with the numerous inversions present in this species. However, the 

causality between the presence of LTR at the breakpoints and the generation of the inversion 

that affect sperm motility [19,116] remains to be established. Overall, more effort is needed to 

annotate and characterize the TE diversity and abundance in avian genomes, a challenging 

process that has likely led to their underreporting [117]. Investigating the impact of TEs in avian 

model systems, as well as their interactions with other genetic elements and environmental 

factors, will provide valuable insights on how they shape phenotypic diversity. 

 

Concluding remarks and future perspectives 

 

There are still relatively few studies associating SVs with phenotypic traits in avian model 

systems, and most examples detect small variants (<50 bp) in chickens (Fig. 1A and B). This 

knowledge gap is likely due to the requirements of third-generation sequencing and robust 

analytical methods for long SV detection, rather than indicating that their impact on the 

phenotype is insignificant. With the increased affordability of long-read sequencing methods, 
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the continuous improvement of bioinformatics to detect and characterize SVs, and the 

emergence of pangenomic approaches, we anticipate a shift in focus in the coming years. The 

almost exclusive emphasis on SNPs will give way to a more integrative approach that includes 

different types of genetic variants and their interactions, incorporating the detection of SVs and 

evaluating their role in shaping phenotypic traits. Many studies have initially associated certain 

phenotypes to specific SNPs, yet the underlying reality might be more complex. SVs may be at 

play, and uncovering these associations will provide a deeper understanding of such traits.  

Moreover, understanding the intricate relationship between SVs and TEs is crucial for 

comprehending the genetic basis underlying evolutionary processes. Further research is needed 

to elucidate the specific mechanisms by which TEs and SVs interact, including the impact of TEs 

on SV formation and the influence of SVs on TE behavior. This will provide a better 

understanding of the functional significance of SV-TE interactions and their contributions to 

phenotypic diversity in various organisms, including avian model and non-model systems.	

 
The adoption of an integrative approach that studies multiple forms of genetic variation holds 

great potential to clarify how different types of variants interact to generate the wide diversity 

of phenotypic traits observed in avian species. Avian model systems provide an opportunity to 

understand the relative roles of SVs and their interrelationships with for example SNPs and TEs 

(see Outstanding questions). Avian model systems can serve as a valuable resource in 

disentangling the complex genetic mechanisms underlying phenotypic diversity, ultimately 

leading to a better understanding of gene regulation and expression. As the different 

techniques discussed in this review become more widely available, we expect to see 

associations between SVs and phenotypes in non-model avian systems become more common. 
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Box 1. Structural Variants (SVs) and their phenotypic effect 

 
Structural variants (SVs) encompass a wide range of genomic alterations, ranging in size from 

small changes (~50 bp) to large-scale modifications spanning megabases. These mutations 

classified into two categories. Unbalanced changes lead to alterations in DNA content. These 

changes include insertions and 

deletions (indels), which are short-

scale genetic changes involving the 

insertion or deletion of one or more 

nucleotides, Copy Number Variants 

(CNV) involving both deletions and 

duplications, and presence/absence 

variants (PAV) that represent changes 

related to the presence or absence of 

large genomic segments. Such 

mutations result in the loss or gain of 

DNA information. Secondly, balanced 

changes, such as inversions and inter 

or intra-chromosomal translocations, 

impact the orientation or location of 

DNA without altering the overall 

genetic content. Additionally, in a 

broader sense, SVs include insertions 

of transposable elements, tandem and 

segmental duplications, as well as complex rearrangements involving combinations of all these 

mutations, for example, inverted duplications (Figure I).   

 

In chickens, structural variation occurs in both coding and noncoding regions of the genome 

and the presence of these variants is positively correlated with chromosome size [118]. 

Furthermore, due to structural variants involving larger stretches of the genome compared to 

Figure I. Graphical representation of Structural Variants (SVs). 
SVs are categorized into unbalanced changes, which include 
insertions, deletions, and duplications; balanced changes, such 
as inversions and translocations; and complex changes that are a 
combination of the previous types. 
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SNPs, they have the potential to significantly impact phenotype [119,120]. SVs can affect gene 

expression through many mechanisms, including gene disruption, alteration of gene dosage, 

position effects, and disruption of gene expression at breakpoints [78]. SVs can also directly 

affect genes leading to the production of non-functional proteins or causing 

failures/modifications in mRNA translation or expression. Gene dosage alterations occur due to 

CNVs which cause changes in the number of gene copies, subsequently leading to modifications 

in gene expression. Gene expression could also be modified through position effects due to 

shifts in a gene’s genomic location or changes in its surrounding chromatin environment that 

affect gene accessibility and expression. For instance, SVs are likely to alter the position of Cis-

Regulatory Elements (CREs), such as promoters and enhancers. Not only can the SVs impact 

gene expression, but also their breakpoints (the edges at the 5’ and 3’ ends of the SV) can affect 

the expression of nearby genes [2,119,121].  
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Outstanding Questions Box 

 
 

• How do structural variants contribute to the remarkable diversity of phenotypes 

observed in avian species, and what are the specific genetic mechanisms underlying this 

variation? Model species suggest SVs have a strong effect on phenotype and we expect 

the same to be true in non-model avian systems, once detection becomes more 

prevalent. 

 

• What is the extent of structural variation in the avian genome, and how does it compare 

to other forms of genetic variation (e.g., SNPs), in terms of frequency and phenotypic 

impact? Additionally, how do structural variants interact with other sources of genetic 

variation, such as SNPs, TEs or regulatory elements, to shape complex phenotypic traits 

in avian model systems?  

 

• What is the impact of TEs on SV formation and how do SVs influence TE behavior?  

 

• To what extent do structural variants play a role in complex avian phenotypes, such as 

mating displays, vocalizations, or migratory patterns, and how do they influence social 

interactions and reproductive success? 

 

• What are the evolutionary forces driving the maintenance or elimination of structural 

variants in avian populations, and how do they contribute to the generation of genetic 

diversity? 

 

• How can the insights gained from studying SVs in avian model systems be translated to 

improve conservation initiatives, breeding programs and our understanding of the 

genetic basis of phenotypic traits in other avian species? Furthermore, what is the 

contribution of SVs to adaptations in avian populations, particularly in response to 

environmental changes such as habitat fragmentation and climate change? 
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Highlights  

 
• Most SVs associated with phenotypic traits reported in avian model systems are short 

indels and predominantly detected in the chicken, which limits our understanding of 

their relevance in shaping the phenotype in model and non-model systems alike.   

 

• Pangenomes, exemplified by the chicken and the domestic duck, improve SV detection 

and, in combination with long-read sequencing technologies, are crucial for 

characterizing SVs and exploring their impact on phenotypic traits. 

 

• Moving towards an integrative approach that characterizes different forms of genetic 

variation, such as SNPs, SVs, TEs and their interactions, is crucial to improve our 

understanding of the mechanisms underlying phenotypic traits. 

 

• There is a significant gap in our understanding regarding the complex interactions 

between TEs and SVs. 
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Glossary  

 
Cis-regulatory elements (CREs) are non-coding DNA regions, including promoters, enhancers 

and silencers, that regulate the transcription of genes located in the same chromosome or 

neighboring genomic region. 

C-terminal amino acid (AA): last amino acid in a protein sequence.  

Ectopic Expression: atypical expression of a gene in a cell type, tissue, or developmental stage 

where it is normally inactive. This results from genetic or regulatory changes activating the gene 

in a novel context. 

Enhancers: sequences that can increase transcription by interacting with the transcription 

machinery and can be located either upstream, downstream or within the intronic regions of 

the gene. 

Exon: coding region of a gene that contains the instructions for producing a part of the final 

protein or functional RNA. Exons are interspersed with introns within a gene, and they are 

retained and joined together in the mature mRNA after splicing. 

Gene expression: involves the processes of transcription, where the gene's DNA sequence is 

copied into mRNA, and translation, where mRNA directs the assembly of amino acids into 

proteins. This dual process carries the genetic information necessary for protein synthesis. 

Gypsy Long Terminal Repeat (LTR) Transposable Element: type of TE that belongs to the class 

of retrotransposons, possesses long terminal repeats (LTR) at both ends and can transpose 

within a genome via an RNA intermediate. 

Intron: non-coding regions of a gene between exons. During gene expression, introns are 

removed from the RNA transcript through RNA splicing. 
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Pangenome: Collection of representative DNA sequences from a species, including both the 

sequences shared among all individuals (core genome) and specific sequence information 

unique to subsets of individuals (variable genome). 

Polygenic traits: phenotypes that are influenced by multiple genes, each contributing a small 

effect, in combination with environmental factors. 

Promoters: sequences that provide a binding site for transcription factors and RNA polymerase, 

which initiate gene transcription and are usually located upstream of the gene’s coding region. 

Silencers: sequences that can modulate the transcription process by binding to repressors, 

effectively preventing transcription and leading to lower gene expression.  

Single Nucleotide Polymorphism (SNP): genetic variation that occurs at a single position in the 

DNA sequence, where only one nucleotide differs among individuals. 

Supergene: closely linked genes on a chromosome, inherited as a unit due to reduced 

recombination that results from being captured within an inversion. These genes often evolve 

together to control complex traits facilitating local adaptation. 

Transcription factor (TF): protein that regulates gene expression by binding to specific DNA 

sequences, such as promoters, enhancers or silencers and recruiting the transcription 

machinery.  

Transposable Element (TE): also known as "jumping genes”, are DNA segments that can move 

within a genome. They can contribute to genetic variability by causing mutations, influence 

gene regulation, and have significant evolutionary implications.  
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Figures 

 

  
Figure 1. Summary of Structural Variants (SVs) reported in avian model systems. A) Length distribution of SVs 
associated with phenotypic traits categorized in the following intervals: <50 bp, 50-100 bp, 1-10 Kb, 10-100 Kb, 
>100 Kb and Unknown length. B) Length proportion by SV type, including indels, insertions (INS), deletions (DEL), 
duplications (DUP), Copy Number Variation (CNV) that include both deletions and duplications, inversions (INV) 
and complex rearrangements. The total number of studies reporting each type of SV is also indicated. C) 
Proportion of studies reporting SVs associated with phenotypic traits per species, including the chicken, the 
Common and Japanese quails, the domestic Mallard duck, the Zebra finch and the Wild turkey. D) Proportion of SV 
type reported per species, including the same SV types than those shown in B. 
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Figure 2. Examples of SVs affecting phenotypic traits in different avian model systems. A) Different SVs affecting 
the PRLR gene in chickens [67] and turkeys [65] that lead to changes in feathering time. This trait is linked to the Z 
sex chromosome and can be used for sexing in specific breads because females are heterogametic (ZW) and males 
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homogametic (ZZ).  B) Indel in the PRL gene or its promoter in chickens [82] and Japanese quails [9] that affects 
egg production. C) Different SVs affecting the IGF2BP1 promotor in chicken [37] and domestic ducks [38] modulate 
body weight in both species. D) Different SVs in different genes generate the white phenotype in domestic ducks 
[38] and chickens [8], but in both cases the TYR gene is implicated. In the duck example the representation is 
simplified, including all the genes on the same chromosome, yet in reality some genes are found on different 
chromosomes. E) Different SVs in the ASIP gene generate variation in quail plumage coloration [52] and a large 
complex rearrangement affecting several genes modify several traits in quail, including plumage coloration, body 
weight and temperature [63]. F) Different SVs affect many genes and lead to their ectopic expression generating 
chicken comb diversity [73,78,79]. G) Large inversions in quail [62] and the Zebra finch [19,116] result in 
supergenes affecting different traits in each species.  


