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Abstract 15 

Big biodiversity datasets have great potential for monitoring and research because of their large 16 

taxonomic, geographic and temporal scope. Such datasets have become especially important for 17 

assessing the temporal change of species’ populations and distributions. Gaps in the available 18 

data, however, often hinder drawing large-scale inferences about species’ trends. Here, we 19 

conceptualise biodiversity data gaps as a missing data problem, which provides a unifying 20 

framework for the challenges and potential solutions across different types of biodiversity 21 

datasets. We characterise the typical types of data gaps in biodiversity data as different classes of 22 

missing data and then use missing data theory to explore the implications for different research 23 

questions. By using this framework, we show that bias due to data gaps can arise when the 24 

factors affecting sampling and/or data availability overlap with those affecting biodiversity. But 25 

the outcome also depends on the ecological questions, which determines choices around the 26 

analytical approach. We argue that typical approaches to long-term species trend modelling are 27 

especially susceptible to data gaps since such models do not tend to account for the factors that 28 

drive missingness. To identify general solutions, we review empirical studies and use simulation 29 

studies to compare some of the most frequently employed approaches to deal with data gaps, 30 

including subsampling, weighting and imputation. All these methods have the potential to reduce 31 

bias but may come at the cost of increased uncertainty of parameter estimates. Weighting 32 

approaches are arguably the least used so far in ecology and have the potential to reduce both the 33 

bias and variance of parameter estimates. Regardless of the method, the ability to reduce bias 34 

critically depends on knowledge of, and the availability of data on, the factors creating data gaps. 35 

We use our review to outline the necessary considerations when dealing with data gaps at 36 

different stages of the data collection and analysis workflow. 37 
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I. Introduction: uneven sampling of biodiversity 66 

Ecologists have ever-growing access to data on species’ occurrence and abundances. Potential 67 

sources of data include long-term citizen-science monitoring schemes (such as the North 68 

American Breeding Bird Survey) (Bled et al., 2013), data aggregators (such as the Global 69 

Biodiversity Information Facility) (Garcia-Rosello et al., 2015), remote-sensing platforms 70 

(Fretwell, Scofield & Phillips, 2017) and synthesis databases (such as BioTIME or the Living 71 

Planet Database) (Dornelas et al., 2014). Since these data cover broad spatial and temporal 72 

scales, they are especially useful for large-scale questions, for instance, about species’ 73 

distributions, population and community-level trends, and ecological niches (Chandler et al., 74 

2017; Sullivan et al., 2017; Fink et al., 2020). These data also underpin many biodiversity trend 75 

indicators that are central for national and international conservation policy (Gregory et al., 76 

2005; van Swaay et al., 2008; Fraisl et al., 2020).  77 

Despite the impressive volume of data, biodiversity data, regardless of the source, tend to 78 

be filled with gaps and redundancies (Boakes et al., 2010). Data gaps are not necessarily 79 

problematic; indeed, most studies rely on statistical inference to make inferences about a broader 80 

region of interest from a sample. Data gaps, however, can be problematic when they lead to 81 

biases (Boakes et al., 2010; Bled et al., 2013; Amano, Lamming & Sutherland, 2016). Already 82 

many ecologists have raised concerns about the impacts of bias on estimated spatial or temporal 83 

biodiversity patterns (Bayraktarov et al., 2019; Valdez et al., 2023). Developing methods to deal 84 

with data gaps and associated biases within large-scale biodiversity data is an increasingly 85 

important task to make full use of the growing big data sources.  86 
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Patterns in the availability of biodiversity data can be affected by the original motivations 87 

for, and constraints on, data collection activities. While some data are collected as part of 88 

scientific studies, much of the available data on species’ occurrence and abundance are collected 89 

through citizen science initiatives (Chandler et al., 2017). Spatial patterns in data availability 90 

from citizen science have been especially well-studied. Citizen science programs have varying 91 

degrees of protocol and sampling designs (Isaac & Pocock, 2015; Pocock et al., 2017) but more 92 

data are typically collected in accessible areas such as near roads and urban areas (Geldmann et 93 

al., 2016). Such biases are not unique to citizen science data, as even data collected during 94 

formal scientific studies have potential sampling biases towards regions undergoing less habitat 95 

change, which may lead to underestimates of biodiversity change (Gonzalez et al., 2016; Forister 96 

et al., 2023; Cardinale et al., 2018). Various solutions have been proposed to deal with these 97 

biases (Hefley et al., 2013; Cretois et al., 2021; Johnston et al., 2020; Ver Hoef et al., 2021), but 98 

there is still a lack of a general framework for ecologists to guide decisions on when and how to 99 

deal with data gaps. 100 

 Here, we show how using missing data theory (Rubin, 1976) can unify problems 101 

associated with data gaps across different types of biodiversity datasets. Missing data are a 102 

widespread problem crossing disciplines, with a large body of literature on the implications and 103 

possible solutions (Little & Rubin, 2019; Carpenter & Kenward, 2012). We expect that aligning 104 

the generalized problem of missing data, conceptualized within missing data theory, to the 105 

problem of biodiversity data biases discussed above will yield opportunities so far overlooked. 106 

We mostly focus our review on modelling trends in species occupancy or abundance using 107 

monitoring data collected by volunteer citizen scientists, but the ideas transfer to other types of 108 

biodiversity data or questions. We show that bias is not a property of a dataset but rather a 109 
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property of the use of a dataset for a specific question and target population that are imposed by 110 

the data analyst. We review some commonly used solutions to missing data to highlight potential 111 

approaches that could be considered in biodiversity analyses.  112 

II. Classifying data gaps using missing data theory 113 

(1) Biodiversity data gaps 114 

Species occurrence or abundance data can have gaps in different dimensions. We distinguish 115 

between spatial, annual and within-year gaps (Fig. 1). We define spatial gaps as those formed by 116 

sites with no data, and annual gaps as those formed by a lack of data in some years at sites that 117 

have been otherwise sampled. Together, spatial and annual gaps determine the spatial and 118 

temporal coverage of a dataset. Within-year gaps arise when data are lacking in specific seasons 119 

or months, which can be important because most organisms are seasonal and multiple visits are 120 

usually necessary to robustly estimate detection probabilities. Considering why these gaps arise 121 

can help understand their likely impact, for instance, on long-term species trend estimation. Data 122 

gaps are found in different types of monitoring data including highly structured monitoring 123 

schemes with a standardised protocol, such as many national bird survey schemes, as well as 124 

opportunistic monitoring data that are typically an aggregation of heterogeneous observations. 125 

Biodiversity datasets can also have taxonomic gaps (Troudet et al., 2017), but this is outside the 126 

scope of this paper. 127 
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 128 

Fig. 1 Different types of data gaps within biodiversity data.  129 

We imagine a scenario where there are multiple survey visits across sites and years. Visits can be in 130 

response to a protocol (‘structured’ data) or opportunistic (‘unstructured’), and repeat visits can be by the 131 

same or multiple recorders. Data gaps, or more generally uneven data availability, can arise due to (a) 132 

within-year gaps (e.g., blue square, i.e., ordinarily there are three visits, but some sites are only visited 133 

once or twice in a year); (b) annual gaps (e.g., yellow square, i.e., some sites that are usually sampled are 134 

entirely unvisited in some years) or (c) spatial gaps (e.g., red square, i.e., some sites within the region of 135 

interest are never visited across all years). Some sites are well-sampled within and across years and hence 136 

have no missing data (e.g., green square).  137 

 138 

While both structured and opportunistic monitoring data can be affected by similar data 139 

gaps (Binley & Bennett, 2023), there are some key differences between these types of 140 

monitoring data. Moreover, structured schemes themselves vary in the degree of structure and 141 

standardisation. In structured schemes with a formal spatial sampling design, data gaps include 142 
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both planned and unplanned gaps. Planned gaps arise because only a sample of sites was ever 143 

intended to be sampled. Unplanned gaps occur because of failure to recruit and retain surveyors 144 

at sites that were intended to be sampled (Zhang et al., 2021; Marsh & Cosentino, 2019). In most 145 

other types of data, gaps are neither planned or unplanned. Some monitoring schemes have 146 

sampling protocols but participants are free to choose their own sampling sites. In fully 147 

opportunistic monitoring schemes, participants make individual decisions about where to sample 148 

and gaps emerge from unevenness in the cumulative sampling effort of all participants. Due to 149 

the high number of participants, and lack of coordination of their effects, sampling effort is 150 

generally more strongly skewed across space and time in opportunistic schemes than in 151 

structured schemes, leading to more pervasive data gaps (Geldmann et al., 2016). Synthesis 152 

databases such as BioTIME and the Living Planet Database, and data aggregators such as GBIF, 153 

are similar in these respects to schemes without a formal spatial sampling design since they 154 

contain data that were independently collected as part of separate studies, without coordinated 155 

efforts.  156 

Despite these differences, correlates of data gaps tend to be similar across monitoring 157 

schemes, especially those involving citizen scientists. Spatial gaps often occur in remote areas 158 

because there is a smaller pool of potential participants nearby (Geldmann et al., 2016; 159 

Mandeville, Nilsen & Finstad, 2022). Spatial gaps can also be more common where species have 160 

lower abundance or land cover is perceived to be less attractive for biodiversity and for 161 

surveying e.g., agricultural land (Tulloch et al., 2013; Dambly et al., 2021; Marsh & Cosentino, 162 

2019). Annual gaps can arise due to project turnover or because of external factors (e.g. the 2020 163 

season for most countries was highly compromised by the Covid-19 pandemic). Annual gaps 164 

have also been linked with local land use changes that negatively affected species abundance and 165 
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the attractiveness of a site for sampling (Zhang et al., 2021; Marsh & Cosentino, 2019). Within-166 

year data gaps can be caused by periods of inclement weather (Zimney & Smart, 2022; Diekert 167 

et al., 2023) or vary seasonally e.g., missing surveys for butterflies are more common at start and 168 

end of the main flight period (Dennis et al., 2016), while bird sampling can be higher during 169 

their migration periods (La Sorte & Somveille, 2020).  170 

 171 

(2) Classes of missing data  172 

Within the classic missing data theory, there are three classes of missing data (Missing 173 

Completely at Random, Missing at Random, Missing Not at Random), defined below, each with 174 

different consequences for bias (Table 1) (Rubin, 1976; Nakagawa & Freckleton, 2008; Little & 175 

Rubin, 2019). These classes vary in their missing data mechanism, which describes the 176 

relationship between the probability of missing data (or sampling effort in the monitoring 177 

context) and the values of other variables. Hefley et al. (2013) already proposed viewing spatial 178 

biases in presence-only data as a form of missing data. Here, we extend it more broadly across 179 

different types of biodiversity data. 180 

Within the context of biodiversity data, missingness can be regarded as Missing 181 

Completely at Random (MCAR) if the factors affecting biodiversity sampling, and causing 182 

missingness, are independent of those affecting biodiversity (Table 1). Under MCAR, the 183 

observed data are effectively a random sample of the whole population, and the values of the 184 

variable of interest are similar in sampled and non-sampled sites or times. For instance, if site 185 

selection is driven by human accessibility, but species distribution is primarily driven by climate, 186 

and if accessibility and climate are not correlated, then spatial data gaps would be MCAR. 187 

Within-year gaps associated with weekdays (Evans & Day, 2002; Courter et al., 2013), or annual 188 
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gaps associated with project turnover, are also examples likely to cause MCAR data gaps since 189 

such gaps are probably not associated with biodiversity patterns (Table 1). In this case, missing 190 

data could reduce the precision of parameters estimates through reduced sample size, but not 191 

increase the bias. 192 

When the factors affecting sampling are the same as, or correlated with, those affecting 193 

biodiversity, the missing data mechanism can either be Missing at Random (MAR) or Missing 194 

Not at Random (MNAR). For instance, if road density affects both sampling probability and 195 

species abundance, then spatial gaps are not MCAR. Road density might affect sampling 196 

probability directly (e.g., if people are more often looking for wildlife along roads) or indirectly 197 

(e.g., if road density affects species detectability); in either case, road density influences data 198 

gaps. Similarly, habitat degradation could reduce both species abundance and observer retention 199 

to continue sampling at a site, creating an annual data gap that is MAR or MNAR (Table 1). In 200 

these cases, there are systematic differences in the biodiversity quantity of interest between 201 

sampled and non-sampled sites or times (Table 1).  202 

To borrow from an infamous quote, if we regard data gaps as “unknowns”, then MAR 203 

can be thought of as “known unknowns” while MNAR are “unknown unknowns”.  The “known” 204 

needed for MAR is knowledge and availability of data on the shared covariates affecting 205 

sampling and biodiversity.  If complete data for shared covariates are available and included in 206 

the analysis, then the missing data mechanism is MAR. Hence, despite its name, MAR does not 207 

mean that sampling effort is randomly distributed in the landscape. Rather, it means that the 208 

covariates affecting sampling are known and that there is available covariate data to fully explain 209 

the differences between sampled and non-sampled potential data. If any of the relevant factors 210 

affecting sampling and biodiversity are unknown, or not modelled, the missing data mechanism 211 
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becomes MNAR (Table 1). Hence, decisions of the analyst can determine whether a data gap is 212 

MNAR or MAR (discussed more fully in section III). MNAR may also arise when missingness 213 

is dependent on the value of biodiversity itself, i.e., if sampling effort directly depends on species 214 

occurrence or abundance. 215 

Statistical tests can only partly indicate which missing data class is most likely (Little, 216 

1988). Analysis of relationships between data availability and observed covariates can point 217 

towards MAR if some relationships are significant. But a lack of any association, or an 218 

incomplete explanation of data gaps, could reflect MCAR or MNAR. Because MNAR is 219 

associated with unavailable data, it cannot be directly tested. Concerns about whether 220 

missingness in the biodiversity data is directly associated with its values could be explored if 221 

there is a related variable that is fully available (Wu, 2022). We argue that MCAR is unlikely in 222 

most biodiversity data since unplanned data gaps can affect even the most structured monitoring 223 

schemes.  224 

  225 
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Table 1 Missing data mechanisms in biodiversity data, including examples and implications 226 

Mechanism Typical meaning Meaning in the context of 

biodiversity data 

Examples  Typical 

implications 

Missing 

completely at 

random 

(MCAR) 

Missingness is 

independent of 

observed and 

unobserved 

variables.   

 

Sampling is independent of any 

covariates, or covariates that 

affect sampling probability are 

independent of those affecting 

biodiversity 

Within-year: Weekday 

gaps 

Annual/Spatial: Gaps 

caused by the completion 

of a fixed-term project or 

retirement of a participant  

Ignorable  

Missing at 

random (MAR) 

Missingness is 

associated with 

observed data but 

not any 

unobserved 

variables 

Covariates that affect sampling 

probability are shared with those 

affecting biodiversity, but data are 

available on all these covariates  

within-year: Season (day 

of year) 

Annual: Urban 

development 

Spatial: Accessibility 

Ignorable if the 

model includes all 

relevant covariates 

Missing not at 

random 

(MNAR) 

Missingness 

depends on 

unobserved 

variables or the 

missing values 

itself 

CS sampling varies with 

biodiversity value or an unknown 

or unavailable covariate affects 

sampling and biodiversity 

 

within-

year/annual/spatial: 

unknown factors causing 

variation in species 

activity/abundance that 

are also correlated with 

sampling effort 

Non-ignorable - 

the missing data 

mechanism needs 

to be modelled 

III. Implications of missingness for ecological questions 227 

Missing data (i.e., data gaps) themselves do not necessarily have strong impacts on the results of 228 

biodiversity modelling, but can depend on the specific question and parameter of interest 229 

(Bartlett, Harel & Carpenter, 2015; Collins, Schafer & Kam, 2001; Little et al., 2022). Viewing 230 

data gaps as a form of missing data can help decide whether a particular data gap matters. As we 231 
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note above, data gaps that are MCAR do not cause bias, but data gaps in biodiversity data are 232 

unlikely to be wholly MCAR. For a data gap to be MAR rather than MNAR can depend on the 233 

ecological question being pursued by an analyst. This is because the ‘missing at random’ 234 

assumption of MAR is conditional on controlling for covariates affecting sampling probability, 235 

which means that these covariates are known, reflected in available data and included in the 236 

analysis (Fig. 2) (Conn, Thorson & Johnson, 2017; Hefley et al., 2013). Different ecological 237 

questions will lead to different decisions about which variables to include in an analysis. Hence, 238 

data gaps of the same dataset might be MAR under some questions but MNAR under others. To 239 

illustrate these potential differences, we contrast two typical questions asked with biodiversity 240 

data. 241 

 242 

(1) Understanding the roles of environmental drivers on species’ distributions 243 

Monitoring data are often used to understand the environmental factors explaining species 244 

distribution patterns. The implications of missing data for species distribution models have been 245 

considered in terms of niche truncation. Niche truncation happens when a dataset only contains 246 

occurrence data from part of the geographic range of a species, which usually also means that the 247 

dataset only covers part of the ecological/environmental space that is suitable for the species 248 

(Chevalier et al., 2022; Albert et al., 2010; Guo et al., 2023). These studies show that the 249 

implications of niche truncation depend on the functional form of the relationship between the 250 

associated covariate and the species response (Chevalier et al., 2022) and whether occurrence 251 

data are presence/absence or presence-only (Baker et al., 2022).  252 

We begin considering the scenario when presence-absence data are available. In this case, 253 

if there is a simple linear relationship, missing data do not necessarily cause bias in the estimated 254 
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effect of the covariate on biodiversity, even when missingness depends on the same covariate 255 

(Fig. 1a, c, e, g) (Collins et al., 2001). For instance, we could estimate the effect of elevation on 256 

species occurrence, if it is linearly related, even if elevation is also associated with data gaps. 257 

This is because the relationship between the covariate and species occurrence can be estimated 258 

without bias using data over a restricted range of covariate values. This is shown in e.g., Fig. 1c - 259 

the same relationship is found with a full dataset (green) or a restricted dataset with data gaps 260 

(purple). Missing data can, however, cause problems when the underlying relationship between 261 

the covariate and species occurrence is non-linear. In this case, data gaps can hinder estimating 262 

the true form of the relationship (see Fig. 2i - a curved relationship in fit with the full dataset but 263 

a simple positive linear relationship with the restricted dataset). The relationship that is fit using 264 

the restricted dataset will critically depend on which portion of the covariate range is sampled. 265 

Since many ecological associations show some non-linearity, or context-dependencies such that 266 

relationships depend on the value of other variables (Spake et al., 2023), we expect this issue is 267 

likely to be widespread in species distribution models.  268 

We now consider the alternative scenario of fitting a distribution model with presence-269 

only data. In this case, any data gaps could represent a lack of sampling or a lack of true species 270 

occurrence. This creates an inherent identifiability challenge for any model seeking to separate 271 

the processes affecting sampling from the true ecological processes affecting species 272 

distributions with presence-only data (Hefley et al., 2013; Baker et al., 2022). Many methods 273 

have been developed to generate pseudo-absences (Barbet-Massin et al., 2012; Hertzog, Besnard 274 

& Jay-Robert, 2014), but such models are still usually more prone to biases when there are 275 

shared covariates affecting sampling and species occurrence (Baker et al., 2022). More recent 276 
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approaches to modelling presence-only data, by integrating them with any available presence-277 

absence data (Fithian et al., 2015), may help minimise some of these biases. 278 

 279 

 280 
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Fig. 2 The impacts of different missing data mechanisms on regression (left) and sample 281 

distributions (right). 282 

We use a hypothetical dataset to highlight different missing data mechanisms. In (a) and (b), the covariate 283 

affecting sampling probability is independent from the covariate affecting species abundance. In this case, 284 

both the estimated effect of the covariate (e.g., in a linear regression, shown in a by the solid line) and the 285 

sample distribution (b) are similar in a dataset with (purple) and without (green) missing data. (i.e., 286 

missingness is MCAR).  In (c) and (d), the covariate affecting sampling probability is the same as or 287 

correlated with the covariate affecting species abundance - in this case, data are missing when the 288 

covariate is above average (i.e., threshold missingness). The estimated effect of the covariate is the same 289 

in the dataset with and without missing values (shown in c) but the sampling distribution is different (d). 290 

In (e) and (f), the missingness pattern is reversed compared to (c) and (d)  (i.e., data are missing when the 291 

covariate is below average), but we can similarly retrieve the same unbiased covariate effect (e) even 292 

though there is greater mean abundance in the dataset with missing values (f). In (g) and (h), the covariate 293 

affecting sampling probability is the same as or correlated with the covariate affecting species abundance 294 

- in this case, the probability of missing data increases with the value of the covariate (i.e., linear 295 

missingness). Again, the estimated effect of the covariate is the same (shown in g) but the sampling 296 

distribution is different (h). In (i) and (j), the covariate affecting sampling probability is the same as or 297 

correlated with the covariate affecting species abundance; additionally, the true relationship between the 298 

covariate and species abundance is non-linear and data are missing when the covariate is above average. 299 

The mechanism is now MNAR since the model cannot be correctly specified with the observed data. 300 

 301 

(2) Estimating trends in species abundances 302 

Models to estimate species’ trends tend to be descriptive: spatial variation is modelled by 303 

including site identity (as a fixed or random term) while any temporal trend is modelled as a 304 

simple year effect (either as a linear, spline or a categorical term) (Amano et al., 2012; Bled et 305 
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al., 2013). Drivers of the trend are not explicitly modelled when the goal is to simply estimate 306 

the mean trend over time. Broader inferences about the trend estimated by such models are based 307 

on the assumed representativeness of the sample, or prior knowledge of the inclusion 308 

probabilities of sampling units (see design weights discussed in section IV 2). Basing inference 309 

from the sampling design is the most traditional approach to surveys (Smith, 1976) and the 310 

approach typically taken by official governmental surveys (van den Brakel & Bethlehem, 2008). 311 

This approach has the advantage of avoiding complex assumptions in the statistical analysis 312 

(Buckland et al., 2012) and is perhaps also easier to analyse and communicate to stakeholders 313 

and laypersons.  314 

Simple trend models may, however, lead to biased trend estimates for biodiversity when 315 

data gaps are not MCAR. We illustrate this in a simple simulation in which site-level species 316 

trends were assumed to depend on a site-level covariate e.g., urban cover (Fig. 3). We assumed 317 

sites were sampled either with a probability affected by an independent covariate (Fig. 3 middle 318 

panel) or with a probability affected by the same site-level covariate affecting species trends 319 

(Fig. 3 right panel), a scenario already identified as a pitfall in some monitoring schemes 320 

(Buckland & Johnston, 2017). We estimated trends using a simple mixed effect model including 321 

site and year. This shows that when the site-level covariate affected both sampling effort and 322 

species’ trends, the trends were biased, but site-level trends were unbiased when an independent 323 

covariate affected sampling. In real world situations, many factors will influence the trend of a 324 

species, but this toy simulation highlights the potential for bias caused by shared covariates. 325 

Since the specific covariates affecting sampling effort and biodiversity trends are not considered 326 

in the typical forms of analysis for trend modelling, trend analyses are liable to be affected by 327 

MNAR, whereas by including appropriate covariates (where possible), the data gaps become 328 
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MAR instead and trends will be unbiased. Without conditioning on the covariates involved, trend 329 

estimates might be overestimated if missing data are more common in static regions where 330 

species trends are more stable; but underestimated if missing data are more common in dynamic 331 

regions where species trends more strongly deviate from zero (Fig. 3) (Bowler et al., 2022; 332 

Buckland & Johnston, 2017).  333 

 334 

Fig. 3 The impacts of different missing data mechanisms on trend modelling 335 

We use a hypothetical scenario in which a mean trend model is fit to datasets that vary in their missing 336 

data mechanism. We assumed a scenario of 50 sites that varied in an environmental covariate affecting 337 

species trends (trends were stable or even increasing at low values of the covariate and declining at 338 

increasingly high values of the covariate). When missing data was independent (i.e., a MCAR pattern - 339 

the covariate affecting sampling probability was a different and uncorrelated covariate), the overall mean 340 

trend (estimated by the year effect in a generalized linear mixed effect model that also included a site 341 

random effect) was similar with (middle panel) and without (left panel) missing data. By contrast, when 342 

the same covariate affected both species’ trends and sampling probability, leading to less sampling in sites 343 
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with low values of the covariate (notice there are fewer blue points in the right panel - a MNAR pattern), 344 

the overall mean trend was downward biased with missing data (right panel) compared to the scenario of 345 

no missing data (left panel). 346 

IV. Missing data solutions 347 

A broad range of methods to deal with missing data have been used in ecology (Hossie, Gobin & 348 

Murray, 2021; Nakagawa & Freckleton, 2008; Lopucki et al., 2022). Many solutions are 349 

particularly relevant when data are missing in both response and predictor variables. Here, we 350 

focus on the typical scenario in biodiversity modelling of missing data only in the response 351 

variable (i.e., in the biodiversity data) since typical predictors tend to have no or few gaps (e.g., 352 

site identity or environmental data from remote sensing). We organise solutions into three groups 353 

- subsampling, weighting and imputation (Fig. 4), which have been tested to varying degrees 354 

already with both structured and unstructured biodiversity data (Table 2). Most solutions to deal 355 

with missing data are only appropriate for MCAR or MAR missingness. MNAR is the most 356 

challenging missing data mechanism to deal with in statistical modelling so, we deal with 357 

MNAR in a later section. 358 
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 359 

Fig. 4 Visualisation of contrasting approaches to deal with data gaps.  360 

We focus on spatial gaps to illustrate the possible approaches, but the ideas apply to other types of data 361 

gaps (Fig. 1). (top) the landscape is divided into four quarters (e.g., representing different habitats or 362 

geographic regions). One quarter (top right quarter) has been sampled more (4 sampling sites) than the 363 

others (2 sampling sites). Solutions: Random subsampling (bottom left): two sites are randomly 364 

subsampled from the oversampled quarter to create a dataset with an even sampling coverage across 365 

quarters. Weighting (bottom middle): data from the oversampled quarter is downweighted in the 366 

statistical model so data from all quarters similarly influence the modelled results. Imputation (bottom 367 

right): missing values at unsampled sites are imputed based on the spatial pattern in the data and/or 368 

environmental covariates, and summary parameters are calculated based on both predictions at sampled 369 

and unsampled sites. In subsampling and weights, the aim is to improve the representativeness of the 370 

sample for statistical inference at the population-level. In imputation, the aim is to directly predict 371 

population-level values.  372 

 373 
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Table 2 Example applications of the solutions to deal with data gaps within biodiversity data. 374 

Type of data 

gaps 

Typical approaches: 

Within-year Sometimes imputed e.g., spline terms to smooth over seasonal variation in sampling times during the 

flight period of butterflies (Dennis et al., 2016) 

Annual Sometimes imputed e.g., general linear models to impute annual gaps based on mean site and year 

effects, optionally allowing for habitat effects e.g., used in TRIM abundance indices, (Lehikoinen et 

al., 2016) 

Spatial Often ignored, but occasionally weighting by geographic regions (Bled et al., 2013) or imputed 

(Breivik et al., 2021),  or reduced by subsampling (Johnston et al., 2021). 

 375 

(1) Subsampling  376 

The ‘Big Data Paradox’ highlights that there can be trade-offs between dataset size and dataset 377 

quality (Bradley et al., 2021; Meng, 2018). Small datasets can be preferable to large datasets, if 378 

they are more representative and less heterogeneous than a larger dataset (Bayraktarov et al., 379 

2019). Based on such thinking, some studies have proposed to ‘reverse engineer’ structure in 380 

biodiversity data by filtering data (Rapacciuolo, Young & Johnson, 2021). Part of this reverse 381 

engineering has attempted to deal with spatial biases; for instance, by spatially subsampling data 382 

to reduce the unevenness of sampling effort across the landscape (Steen et al., 2021; Matutini et 383 

al., 2021; Steen, Elphick & Tingley, 2019; Boria et al., 2014; Robinson et al., 2020). This has 384 

been tested on, for instance, the semi-structured data compiled by eBird (Johnston et al., 2020). 385 

Some have also applied this approach to reduce temporal skews in sampling effort (Hof & 386 

Bright, 2016; Zbinden et al., 2014), although not always successfully (Callcutt, Croft & Smith, 387 

2018). Subsampling can also be used to balance the amount of data across a single or multi-388 

dimensional environmental gradient; essentially stratified sampling of the original sample 389 
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(Meng, 2022; Nunez-Penichet et al., 2022). Recent class balancing approaches have been 390 

developed to ensure that important observations, especially for rare species, are not lost during 391 

the subsampling process (Robinson et al., 2020; Steen et al., 2021; Gaul et al., 2022).  392 

 393 

(2) Weighting 394 

Weighting is a common practice in survey analysis, especially in the social sciences (Li et al., 395 

2013; Seaman & White, 2013; Raghunathan, 2004). Weighting can serve different purposes, 396 

including reducing the impact of confounding variables when the goal is to estimate the causal 397 

effect of an intervention. But weighting can also be used to deal with missing data that is not 398 

MCAR. For instance, weighting can be used to reduce selection bias caused by participant 399 

nonresponse in surveys (Seaman & White, 2013), but it is less often used to account for data 400 

gaps in biodiversity data (Boyd, Powney & Pescott, 2023a; Aubry & Francesiaz, 2022).  401 

Different types of weights have been used in the analysis of biodiversity data: (1) design 402 

weights; (2) estimated non-response weights (or sampling weights) and (3) population weights. 403 

Each form of weighing is intended to improve sample representativeness of some target 404 

population but vary in terms of whether the weights derive from the sampling design and the 405 

dimension of representativeness under consideration. Design weights are based on the study 406 

sampling design and assumed to be known with certainty, and hence are only relevant for 407 

structured schemes with a sampling design. For instance, in many national bird breeding 408 

schemes, the design weights are based on the geographic strata that underlie a random stratified 409 

study design (Buckland et al., 2012). Non-response weights are used to account for unplanned 410 

missing data in structured schemes (Frair et al., 2004) or variation in sampling effort in 411 

unstructured schemes (Johnston et al., 2020; Hefley et al., 2013), which means that are not 412 
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known with certainty and must be estimated. Population weights are used to ensure the sample is 413 

representative of the full distribution/population of a species and are typically assumed to be 414 

known. Population weights are used in the calculation of supranational/international indicators 415 

(e.g., farmland or woodland bird indicators (Gregory et al., 2005)) in which national estimates 416 

are combined by giving greater weight to regions that harbour a larger proportion of the species 417 

total population. 418 

Non-response weights are usually the most difficult to include since they are not known a 419 

priori and need to be estimated. Predictive models (e.g., random forest models) have been used 420 

to predict the probability that a site is sampled based on the set of covariates (e.g., land cover or 421 

climate, or accessibility) available across all sampled and unsampled sites, with the inverse of 422 

these probabilities used as weights (Little et al., 2022; Johnston et al., 2020). Alternatively, 423 

poststratification (for categorical covariates), or more generalized calibration approaches 424 

(allowing both continuous and categorical covariates), can be used, which adjust the weight 425 

given to each data point until the joint or marginal distributions of covariate values in the 426 

observed sample matches those for the population (Boyd, Stewart & Pescott, 2023b). In both 427 

cases, weighting can cause problems when there are regions within the target population with 428 

close to zero probability of being sampled, which could lead to some data points having 429 

extremely large weights. In this case, weights may need to be redefined e.g., by coarsening the 430 

covariates used to define the weights, or by truncating weight values so that extreme weights are 431 

not produced (Battaglia, Hoaglin & Frankel, 2009). Poststratification can be preceded by multi-432 

level regression (for so-called “Mr P” analysis) for partial pooling of information across strata 433 

before poststratification of the model predictions, which may be especially useful when some 434 

strata contain few data points (Gelman, 2007). 435 
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The most appropriate approach is likely to be question- and taxon-specific, varying with 436 

how much the species range extends across the region of interest. For example, it would usually 437 

not be important to upweight under-sampled regions where a species is rare, or even absent, 438 

when estimating trends in its total population size. If, however, the goal is to estimate trends in 439 

the average site-level population trend, then it would be important to up-weight data from under-440 

sampled regions, even from where the species is rare. For instance, in the UK bat monitoring 441 

scheme, data are weighted to allow for the different sampling rates across England, Scotland and 442 

Wales in proportion to the ratio of non-upland area to number of sites surveyed for the relevant 443 

country (Bat Conservation Trust, 2023). However, this weighting is not applied to range 444 

restricted species, such as the serotine bat, Eptesicus serotinus that is only found in southern 445 

England. 446 

 447 

(3) Imputation  448 

Imputation involves replacing missing values in a dataset with plausible estimates. A range of 449 

imputation procedures have been developed, which can fill gaps in both response and predictor 450 

variables (Carpenter & Kenward, 2012). Imputation is probably the most flexible and widely 451 

used approach to account for missing data across ecology and beyond. In biodiversity modelling, 452 

missing values are more often concentrated in the response variable (i.e., the biodiversity value), 453 

hence imputation here can be equated with making model predictions at unsampled sites and 454 

times.  455 

Imputation is already in use in biodiversity trend monitoring, especially to account for 456 

within-year and annual data gaps (Table 3). Early approaches used chain indices or route 457 

regression (Ter Braak et al., 1992) or the Underhill index, using an expectation-maximisation 458 
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algorithm (Underhill & Prysjones, 1994) designed for waterbirds (Rehfisch et al., 2003). A range 459 

of further model-based approaches have been developed that fill data gaps using mean effects of 460 

site and year, e.g., to fill annual gaps using TRIM/birdSTATs, commonly used for bird indices 461 

(Lehikoinen et al., 2016); or using splines e.g., to fill seasonal gaps in butterfly data (Schmucki 462 

et al., 2016; Dennis et al., 2016) or using ecological covariates (Dakki et al., 2021). A Bayesian 463 

framework is especially useful for dealing with missing values in the response since they are 464 

naturally imputed with a full probability distribution during model fitting. Bayesian occupancy-465 

detection models have been used to analyse opportunistic species observations from citizen 466 

science, with annual data gaps imputed before the predicted annual proportion of occupied sites 467 

is calculated (Outhwaite et al., 2019). The flexibility of Bayesian models means they could also 468 

incorporate expert knowledge as priors as a way to help fill data gaps (Johnson et al., 2023). 469 

While imputation is already used to deal with annual and within-year gaps, it has been 470 

less often used to deal with spatial gaps when the focus is mean trend modelling of species’ 471 

abundances or occurrences. An exception is studies of changes in species’ range sizes, which use 472 

distribution models to predict the full distribution of a species at multiple time points, before 473 

change is assessed (Grattarola, Bowler & Keil, 2023). Monitoring schemes with large spatial 474 

coverage are also beginning to use distribution or abundance models to predict spatio-temporal 475 

patterns of abundance change across whole countries (e.g., eBird maps and BTO maps). In these 476 

cases, regression models fit to the available data make predictions at unsampled sites based on 477 

the effects of environmental covariates and/or spatial structure (Bush et al., 2017; Ver Hoef et 478 

al., 2021; Breivik et al., 2021). Geostatistical methods also offer a range of interpolation 479 

methods for spatial data, including kriging, which are especially useful when there is a strong 480 

spatial pattern in the data (Ballesteros-Mejia et al., 2013; Kreft & Jetz, 2007; Lin et al., 2008).  481 

https://science.ebird.org/en/status-and-trends/range-maps
https://www.bto.org/our-science/projects/breeding-bird-survey/latest-results/maps-population-density-and-trends
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V. Pro and cons of each solution  482 

Table 3 Summary of the pros and cons of each approach to deal with missing data in biodiversity 483 

monitoring 484 

Solution Pros Cons 

Subsampling - arguably the simplest approach, especially for 

spatial gaps 

 

- already a routine feature of many species 

distribution modelling protocols 

 

- aligns with rarefaction approaches used in 

community ecology 

- could mean excluding a large amount of data, 

which may be unacceptable for citizen science and 

engaging/retaining volunteers 

- most protocols focus on a single dimension (e.g., 

filtering by geographic region)  

- more complex to implement when gaps are multi-

dimensional or temporally varying 

Weighting - standard practise to deal with sample 

unrepresentativeness in other disciplines, 

especially social sciences 

-  poorly understood in ecology 

 

- diverse range of possible weighting techniques 

(Valliant, 2020; Boyd et al., 2023b) but little 

ecological guidance available to help selection 

 

Imputation - suitable approach if missing data are within 

the environmental covariates as well as within 

the biodiversity response 

- offers the promise to generate the continuous 

space-time data cubes of the Essential 

Biodiversity Variable framework (Kissling et 

al., 2018; Jetz et al., 2019). 

- becomes inefficient as missingness increases, e.g., 

when the number of unsampled locations/times is 

large 

 

- requires a good understanding of the ecological 

system to predict the missing biodiversity values 

 485 

All of the approaches have the potential to reduce the bias in parameter estimates but 486 

differ in complexity, scope and typical practice (Table 3) (Little et al., 2022; Collins et al., 487 
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2001). Moreover, while we separated the methods into three categories for convenience, their 488 

distinctions are not absolute. For instance, subsampling essentially assigns those population units 489 

included in the subsample a weight of 1 and the remainder a weight of 0. Often, but not always, 490 

the reduction in bias due to application of the above solutions comes at a cost of increasing 491 

parameter uncertainty: the classic bias-variance trade-off (Hefley et al., 2013). This is because 492 

subsampling directly reduces the sample size; weighting reduces the effective sample size; and 493 

imputation adds uncertainties via predictions at unsampled points. But this trade-off does not 494 

always apply; for instance, poststratification can lead to the dual benefits of reduced bias and 495 

increased precision depending on the choice of covariates (Little & Vartivarian, 2005).  496 

Covariates used to account for data gaps are often called ‘auxiliary variables’ (Little et 497 

al., 2022), which are typically not of central interest to the scientific questions but are included in 498 

one or more of the analysis steps for subsampling, weighting or imputing. The general 499 

recommendation from the missing data theory and survey sampling literature is to be generous 500 

when deciding which covariates to use to adjust for data gaps, considering covariates relating to 501 

the missingness (i.e., sampling effort in the context of biodiversity data gaps) to reduce bias and 502 

those related to the biodiversity outcome to reduce the variance (Collins et al., 2001; Caughey et 503 

al., 2020). It is worth noting, however, that selecting auxiliary variables on a purely correlative 504 

basis can increase bias in some circumstances (Thoemmes & Rose, 2014), and a safer strategy is 505 

to select them on theoretical grounds (Mohan & Pearl, 2021). When auxiliary variables are 506 

related to both the biodiversity outcome and the pattern of missingness, weighting approaches 507 

can reduce bias and improve precision (Little & Vartivarian, 2005). The success of any of the 508 

solutions, hence, critically depends on the choice of auxiliary variables (Little et al., 2022). A 509 

recent study testing the use of weighting approaches to account for spatial biases in a reasonably 510 
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well-understood ecological system found that the selected auxiliary variables had only limited 511 

success in mitigating bias (Boyd et al., 2023b).   512 

We illustrate some of these challenges and the application of each potential solution with 513 

a toy example of an abundance dataset with missing values (Fig. 5). We simulated a landscape in 514 

which a covariate (let’s say representing ‘habitat quality’) affected both species abundance and 515 

the likelihood of a site being sampled. The analysis aimed to estimate the mean abundance of the 516 

species across all sites in the landscape. We varied the total fraction of sites that were sampled 517 

and the degree of knowledge available on the covariate affecting sampling/species (modelled as 518 

the correlation between the covariate involved in the data generation process and the covariate 519 

available to the modeller). We compared subsampling, weighting and imputation, which all used 520 

the available covariate data for adjustment. For subsampling, we subsampled one site at random 521 

at each habitat quality value. For weighing, we compared two approaches: fitting a weighted 522 

regression model using model-robust sandwich variance estimators or using a poststratification 523 

approach. For imputation, we fit a Bayesian model using JAGS in which NA values were 524 

inserted to represent the missing response data. 525 

The results show that all methods do better than a naive approach that did not attempt to 526 

account for missingness in the estimation of the mean abundance (Fig. 5). Subsampling 527 

performed the worst, while weighting and imputation performed similarly. Poststratification 528 

tends to perform less well with a lower sampling fraction i.e., when the number of missing 529 

values was high (Fig. 5A), because the sample did not always contain all the habitat quality 530 

values found in the population and the weighing could not account for entirely unsampled 531 

regions. All models performed less well at the available covariate became a weaker proxy of the 532 

true driving covariate (Fig. 5B). In further simulations, we found that imputation performed 533 
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poorer when there were additional covariates affecting species abundance and these covariates 534 

were not modelled, highlighting the importance of understanding the ecological system for 535 

imputation (Fig. S1). We do not intend this simulation to be exhaustive - rather to highlight the 536 

potential ways in which the availability of data and degree of knowledge about the factors 537 

causing bias and the availability of covariate data affects any attempts to account for missing 538 

data.  539 

We point the reader towards some useful R packages and functions in the Supporting 540 

Information (Table S1). 541 
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 542 

Fig. 5 The ability of missing data solutions to adjust for bias in biodiversity data. 543 

 We assumed a landscape of 400 cells and that a covariate affected both species abundance and the likelihood of a 544 

cell being sampled. In A: we vary the fraction of the cells that were sampled. In B: we vary the correlation between 545 

the true covariate and the covariate available for analysis, as measure of the available knowledge (correlation of 1 = 546 

perfect covariate and knowledge). The models to estimate the parameter of interest (mean abundance) were: naive 547 

(no correction); subsampled (cells were subsampled along the covariate gradient), weighted (two methods: weighted 548 

glm using the svyglm function, and weighted by poststratification, using postStratify, both in the survey package) 549 
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and imputed (using JAGS to impute NAs in the response). Points show the mean bias (difference between model 550 

prediction and truth) across 100 independent runs.  551 

 552 

VI. Dealing with Missing Not at Random 553 

Dealing with Missing Not at Random (MNAR) is more challenging than dealing with the other 554 

data mechanisms (Little & Rubin, 2019). In this case, missingness is directly associated with 555 

unavailable data, which could be either the missing biodiversity values or missing covariate data 556 

that are not known to be important or are not measured/measurable. This makes MNAR 557 

especially difficult to diagnose (but see Conn et al. (2017) for suggestions) and model, since 558 

auxiliary variables are not available. MNAR can arise through a number of mechanisms in 559 

biodiversity monitoring data. 560 

MNAR can be an outcome of preferential sampling - more intense sampling effort where 561 

the species is expected (Diggle, Menezes & Su, 2010; McClure & Rolek, 2023) - which leads to 562 

more missing values in places where the species is rare or absent. Preferential sampling can 563 

arise, for instance, if observers visit a location to specifically observe a species that others have 564 

observed there before (Laney et al., 2021; Pennino et al., 2019). Preferential sampling can also 565 

be a planned sampling strategy (Alessi et al., 2023). For rare species, preferential sampling can 566 

be optimal when the goal is to estimate species detection probability and account for imperfect 567 

detection, since sufficient observations of the species can only be achieved by sampling where 568 

they are more common (Specht et al., 2017). Similarly, it can be optimal to expend greater 569 

sampling effort where the species is common if the goal is to estimate trends in the total 570 

population size, since regions where the species is scarce are less important for the overall trend. 571 
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For organisms associated with specific habitats, such as wetland species or colonial seabirds, 572 

dedicated structured monitoring schemes target their habitats (McClure & Rolek, 2023). In such 573 

schemes, missing data outside of these core habitats are not considered part of the target 574 

population.  575 

Typical approaches to modelling data allowing for MNAR are selection models 576 

(Heckman, 1979) and pattern-mixture models (Herzog and Rubin, 1983). Both model the joint 577 

distribution of the data and the data availability, but differ in how these processes are 578 

decomposed. Both also require making strong assumptions about the missing data mechanism, 579 

but can be useful to explore the consequences of plausible options as a sensitivity analysis 580 

(Little, 1995). In the ecological literature, preferential sampling has been modelled using marked 581 

point process models, which jointly model the sampling intensity (the points), the biodiversity 582 

value at those points (the marks) and the dependence between them (Conn et al., 2017; Pennino 583 

et al., 2019; Laxton et al., 2023). Another approach to inference in a NMAR scenario is to use 584 

instrumental variables i.e., variables that affect the probability of sampling/data availability but 585 

are independent of the biodiversity variable of interest (Tchetgen & Wirth, 2017; Bailey, 2023). 586 

The challenge, however, is to identify such variables.  587 

VII. General guidelines for dealing with biodiversity data 588 

gaps 589 

Our review highlights the potential value of ‘missing data thinking’ when analysing biodiversity 590 

data. We argue that MCAR data gaps are unlikely in most biodiversity data contexts, which 591 

means that researchers will need to consider whether and how they deal with data gaps in their 592 

https://stefvanbuuren.name/fimd/references.html#ref-HERZOG1983
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analysis. While it is premature to make very specific guidelines, we summarise here some of the 593 

considerations needed when dealing with data gaps in biodiversity data at different stages of data 594 

collection, analysis and reporting. 595 

(1) Study design 596 

For new monitoring schemes, planned data gaps that deviate from MCAR (i.e., a random 597 

sample) can be seen as opportunities rather than challenges since solutions are available to deal 598 

with missing data. Intentionally missing some data has been proposed for ethical or practical 599 

reasons in some study designs e.g., (Noble & Nakagawa, 2021; Herrera, 2019). In citizen 600 

science, planned data gaps could help increase uptake and avoid participant fatigue, especially 601 

caused by collecting difficult data. For instance, the UK Breeding Bird Survey includes an 602 

‘upland rovers’ component in which the standard protocol is modified to allow for fewer visits to 603 

remote sites (Darvill et al., 2020). Alternative study designs, such as wave missingness (Little & 604 

Rhemtulla, 2013) or a rotating panel design (Nielsen et al., 2009) may increase the sustainability 605 

of long-term monitoring for some taxa or regions with few willing participants. But such an 606 

approach has to balance the cost of increased study design complexity and potential implications 607 

for the range of questions that can be addressed.  608 

For existing monitoring schemes, data gaps may be filled, where possible, by promoting 609 

data collection in certain areas. Within citizen science projects, there is evidence that participants 610 

can be nudged to collect more data in regions identified as sampling priorities (Callaghan et al., 611 

2023; Callaghan et al., 2019). Previous studies have identified sampling priorities in different 612 

ways; for instance, based on the expected influence of a data point (Callaghan et al., 2019) or 613 

predictions based on species distribution models (Chiffard et al., 2020). Since data collected by 614 
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monitoring schemes are often collected for multiple purposes, the challenge is identifying the 615 

common set of sampling priorities. 616 

For synthesis studies compiling data from independent studies, data mobilisation efforts 617 

may be tailored to improve sample representativeness of the target population, by expending 618 

more effort to under-sampled units. This could be informed by exploring the transferability of 619 

model predictions across spatial or temporal units based on currently available data (Spake et al., 620 

2022). Regions with high transferability may represent appropriate sampling strata to guide 621 

mobilisation efforts. Moreover, these sampling strata may inform the adjustment for data gaps in 622 

subsequent modelling of the population mean. 623 

(2) Evaluating and reporting missingness 624 

Developing a causal model (e.g., using a DAG) of the factors affecting sampling probability and 625 

biodiversity can be useful first step to identify auxiliary variables for adjusting data gaps – 626 

variables linked to both sampling probability and biodiversity are those creating bias (Mohan & 627 

Pearl, 2021). As far as possible, data should then be collected on the covariates that are likely to 628 

explain missingness. Statistical models can be used to test whether covariates that are associated 629 

with missingness are also associated with biodiversity patterns, though of course this is only 630 

possible in the sampled data. Unplanned missingness in structured schemes could be investigated 631 

by disseminating follow-up surveys to participants to determine their reasons for missed surveys. 632 

Follow-on data collection, e.g., with paid surveys, in regions or times of missing data could also 633 

help understand whether there are fundamental differences in biodiversity patterns between the 634 

original dataset and the extended dataset. 635 

Missingness, and how it is dealt with, tends to be insufficiently reported in biodiversity 636 

trend analyses. Some reporting frameworks for missing data have been developed for other 637 
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disciplines (Lee et al., 2021) but are in their early stages in ecology (Boyd et al., 2022). At a 638 

minimum, we propose that missingness can be reported in terms of the proportion of sampling 639 

units that are spatial, annual and within-year gaps, and the number of unplanned gaps for 640 

structured monitoring schemes (Fig. 1). Visualizations of the distributions of covariates in 641 

sampled and non-sampled times/sites could also effectively highlight key systematic differences.  642 

(3) Modelling to account for data gaps 643 

The impact of data gaps depends on multiple factors: whether the factors affecting missingness 644 

are independent of the factors affecting biodiversity and biodiversity itself; the ecological 645 

questions being asked and which covariates are available and included in the analysis. Because 646 

of this, potential impacts of missingness have to be considered for each species-question-dataset 647 

combination. A dataset per se is not biased. Subsampling, weighting and imputation all have the 648 

potential to reduce bias caused by data gaps. Many, but not all, solutions will navigate the bias-649 

variance trade-off. Weighting is probably the most under-used in ecology and could be applied 650 

more often, especially to account for spatial gaps when the goal is estimating mean abundance or 651 

abundance trends. Imputation methods offer the potential to fill in spatio-temporal gaps to 652 

generate the space-time data cubes of the Essential Biodiversity Framework (Kissling et al., 653 

2018), but its success is dependent on the ability to model the variation in the biodiversity 654 

response. Since available covariates are likely to be only partly successful in reducing bias, 655 

sensitivity analysis could be help explore how different assumptions of missingness change the 656 

model coefficients and predictions, and the uncertainties of them (Little, 1995; Leurent et al., 657 

2018). For some contexts, it might be more statistically efficient and ecologically interpretable to 658 

redefine the target region of interest to a region with fewer data gaps.  659 
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VIII. Conclusions 660 

(1) Biodiversity datasets containing information on species’ occurrences and abundances are 661 

rapidly growing in size, but data gaps are not necessarily closing. Nonetheless, big 662 

biodiversity datasets are invaluable for a broad range of basic and applied questions, and 663 

increasingly for policy-relevant questions about the status and trends of biodiversity at 664 

large-scales. Heterogeneity in sampling efforts - whether by citizen scientists or scientists 665 

- creates different types of data gaps in the available data. Such data gaps are among the 666 

biggest hindrances to making use of these growing data sources for large-scale 667 

inferences.  668 

(2) We show how ‘missing data thinking’ can help decide whether a data gap is problematic 669 

in a given context and provides directions on possible solutions. We show that an 670 

important determinant of bias is whether factors affecting sampling effort are correlated 671 

with those affecting biodiversity: shared covariates affecting sampling effort and 672 

biodiversity have the potential to lead to biased analyses if not taken into account. 673 

(3) Multiple approaches are available to account for missing data but they depend on 674 

knowledge and availability of covariates associated with missingness. A lack of training 675 

for ecologists in commonly employed approaches in other disciplines has meant there are 676 

few standard practices in ecology to deal with gaps. We highlight multiple methods that 677 

are ripe for comparison across different ecological problems.  678 

(4) At the same, statistical solutions can only go so far, closing data gaps with more 679 

coordinated data collection across monitoring stakeholders is also important as we move 680 

forwards.  681 
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Supporting Information 
 

Table S1 Selected R tools that can help with missing data problems and their potential application for use in biodiversity research.   

R packages Applications Useful functions  

Exploring missing data 

naniar visualizing/exploring the missing data pattern mcar_test – Little's missing completely at random (MCAR) test 
vis_miss – plot the missing data for all variables 

 

occAssess measure of the potential for bias in 
taxonomic, temporal, spatial, and 
environmental dimensions 

assessEnvBias - assess whether data are sampled from a representative portion of 
environmental space in the spatial domain of interest 
assessSpatialBias – assess whether data resemble a random distribution in the geographic 
space of interest for inference 
assessSpatialCov – assess whether a representative portion of the spatial domain of 
interest has been sampled and whether the same portion of geographic space has been 
sampled over time 

 

sampbias a Bayesian approach to estimate how 
sampling rates vary as a function of proximity 
to one or multiple bias factors 

calculate_bias - calculating the bias effect of sampling bias due to geographic structures, 
such as the vicinity to cities, airports, rivers and roads 

 

Subsampling 

base Base R functions sample - sample data with predefined inclusion probabilities specified with the prob 
argument 

 

sampling draw random samples using different 
sampling schemes 

balancedcluster – selects a balanced cluster sample according to defined auxiliary 
variables 

strata - stratified sampling with unequal probabilities. 

 

https://cran.r-project.org/web/packages/naniar/vignettes/getting-started-w-naniar.html
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.8299
https://onlinelibrary.wiley.com/doi/full/10.1111/ecog.05102
https://cran.r-project.org/web/packages/sampling/index.html


spatialEco spatial data manipulation and modelling stratified.random - creates a stratified random sample of an sp class object 
stratified.distance - draws a minimum, and optional maximum constrained, 
distance sub-sampling 

 

spThin Spatial thinning of species occurence records thin - returns a dataset with the maximum number of records for a given thinning 
distance 

 

terra spatial data manipulation and processing spatSample – sample a SpatRaster, SpatVector or SpatExtent objcy  

Imputation 

agTrend modelling regional trends with missing data mcmc.aggregate - a zero-inflated, nonparameteric model with a definable observation 
model, augmenting missing values before calculating regional abundances 

 

INLA/ 
inlabru 

fitting Bayesian models, especially useful for 
spatial models via its spatial mesh 

inla/bru -  fit a Bayesian model using Integrated Nested Laplace approximation 
predict – draw predictions from the fitted model, where the prediction data frame can be a 
SpatialPointsDataFrame object 

 

LORI imputation of missing count data  lori – impute missing count data using a large covariate set, including interactions, with a 
LASSO penalty 

 

mice multiple imputation by chained equations mice – multiple imputation method that will generate plausible values for any missing data 
– in the response and in any covariates 

 

Rjags 
JAGS 
nimble 

fitting Bayesian models allowing for missing 
values in the response 

Jags/runMCMC - fitting Bayesian models allowing for imputation of missing values in the 
response during model fitting (options available for missing values in covariates too) 

 

rtrim functions to calculate annual indices and 
trends of abundances 

fit a GLM imputing missing values based on mean site and year effects, with optional 
covariates 

 

Weighting 

https://cran.r-project.org/web/packages/spatialEco/index.html
https://onlinelibrary.wiley.com/doi/10.1111/ecog.01132
https://cran.r-project.org/web/packages/terra/index.html
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12231
https://www.r-inla.org/
https://sites.google.com/inlabru.org/inlabru
https://cran.r-project.org/web/packages/lori/vignettes/getting_started.html
https://cran.r-project.org/web/packages/mice/mice.pdf
https://cran.r-project.org/web/packages/rjags/rjags.pdf
https://mcmc-jags.sourceforge.io/
https://r-nimble.org/
https://cran.r-project.org/web/packages/rtrim/index.html


survey 
srvyr 

range of functions for analysis of data from 
complex surveys, including fitting models with 
weights 

Svyglm – generalized linear models with survey weights 
postStratify – function for post-stratification to match the joint distribution of the variables 
of the population 

 

svrep Analysis of replicate/boostrapped survey 
weights 

svyby_repwts – compare estimates from different sets of weights  

twang functions to estimate propensity scores and 
weights 

ps - gradient boosted trees to predict non-response from covariates 
bal.table – compare covariate values between sample and population 

 

 
  

https://cran.r-project.org/web/packages/survey/index.html
https://cran.r-project.org/web/packages/srvyr/index.html
https://cran.r-project.org/web/packages/svrep/index.html
https://cran.r-project.org/web/packages/twang/index.html


 
 
 

 

Fig. S1 The ability of missing data solutions to adjust for bias in biodiversity data. 

 We assumed a landscape of 400 cells and that a covariate affected both species abundance and the likelihood of 

a cell being sampled. We vary the fraction of the cells that were sampled. In contrast to Fig 5A (main text), we 

assumed that the species abundance was affected by an additional covariate that did not affect sampling; this 

variable was not included in any of the analysis. The models to estimate the parameter of interest (mean 

abundance) were: naive (no correction); subsampled (cells were subsampled along the covariate gradient to 

reduce the sampling bias), weighted (two methods: weighted glm using the svyglm function, and weighted by 

poststratification, using postStratify, both in the survey package) and imputed (using JAGS to impute NAs in the 

response). Points show the mean bias (difference between model prediction and truth) across 100 independent 

runs.  

 


