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ABSTRACT25

In ecosystems, species interact in various ways with other species, and with their local26

environment. In addition, ecosystems are coupled in space by diverse types of flows.27

From these links connecting different ecological entities can emerge circular pathways28

of indirect effects: feedback loops. This contributes to creating a nested set of ecological29

feedbacks operating at different organizational levels as well as spatial and temporal30

scales in ecological systems: organisms modifying and being affected by their local31

abiotic environment, demographic and behavioral feedbacks within populations and32

communities, and spatial feedbacks occurring at the landscape scale. Here, we review33

how ecological feedbacks vary in space and time, and discuss the emergent properties34

they generate such as species coexistence or the spatial heterogeneity and stability of35

ecological systems. With the aim of identifying similarities across scales, we identify36

the abiotic and biotic modulators that can change the sign and strength of feedback37

loops and show that these feedbacks can interact in space or time. Our review shows38

that despite acting at different scales and emerging from different processes, feedbacks39

generate similar macroscopic properties of ecological systems across levels of organization.40

Ultimately, our contribution emphasizes the need to integrate such feedbacks to improve41

our understanding of their joint effects on the dynamics, patterns, and stability of ecological42

systems.43

Keywords: Feedback loops, temporal and spatial scales, level of organization, emergent44

properties, self-organization, ecosystem patterns, species coexistence, stability, ecosystem45

3



functioning, niche construction46
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INTRODUCTION47

The discovery of art caves depicting species interactions (e.g., Viereck and Rudner, 1957), or48

more recently, narratives and paintings about self-organized patterns in ecosystems (Walsh49

et al., 2023) illustrate that human curiosity toward patterns and interdependencies in nature50

has been a long-standing interest. In the last century, the development of cybernetics (i.e.,51

the study of regulation and dynamics of interconnected systems; Wiener, 1948; Maruyama,52

1963) has led feedbacks to become increasingly studied. In a set of connected entities, a53

feedback loop corresponds to a circular path of dependencies. This means that a focal54

entity modulates its own dynamics by changing other entities composing the system,55

which, in turn, affect its variations. Examples involve social norms that regulate people’s56

behaviors in complex societies (Fehr and Fischbacher, 2004), or nitrogen-fixing plants57

that increase the local availability of nitrogen on which they grow (Menge and Hedin,58

2009). The feedback concept now infuses all complex systems including climatology (Rial59

et al., 2004; Kemp et al., 2022), history (Downey et al., 2016; Centeno et al., 2023), political60

and economic sciences (Casillas and Kammen, 2010; Leonard et al., 2021), and ecology61

(DeAngelis et al., 1986).62

In ecology, the adoption of a system’s approach to quantifying indirect effects began with63

the early development of ecosystem ecology (Margalef, 1963; Hannon, 1973; Patten and64

Odum, 1981), which was built using a complex system approach, with compartments65

(biotic and abiotic) mapped into a network of flows of resources and energy (Lindeman,66

1942; Odum, 1968; O’Neill et al., 1987). Since then, feedbacks have been used across all67
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levels of organization from individuals interacting with their environment (Cuddington68

et al., 2009), communities (Zelnik et al., 2022), ecosystems (Veldhuis et al., 2018), including69

at larger spatial scale (Phillips, 2016) to explain how emergent macroscopic properties70

of complex adaptive systems could derive from the interdependency of smaller entities71

(Levin, 1998). Incorporating such feedbacks often leads to interdisciplinary outcomes. For72

instance, in the context of ongoing global changes, knowledge of feedbacks is central to73

understanding how ecosystems participate in the global carbon balance, and ultimately74

whether ecosystems will amplify or dampen climate change in a warmer world (Field75

et al., 2007; Heimann and Reichstein, 2008). More practically, the mechanistic understand-76

ing of feedbacks has been crucial to design effective restoration programs for degraded77

ecosystems such as coastal areas or shallow lakes (Suding et al., 2004; Byers et al., 2006;78

Silliman et al., 2015).79

Hitherto, despite the development of feedback-based studies at different levels of organiza-80

tion in ecology, we lack an integrative understanding of their global implications. Indeed,81

because feedbacks are observed at different scales, they may generate similar emergent82

properties and principles across levels of organization (see Table 1 for examples). A unified83

framework of feedbacks going from organisms to the landscape extent could help to84

better understand the pervasiveness of feedbacks, how they contribute to the organization85

of ecological systems by linking scales and levels of organization, and how they determine86

the response of ecological systems to different type of disturbances. Indeed, feedbacks are87

key mechanisms of the regulation of ecological systems and contribute to their stability88

properties. Feedbacks are thus involved in the response of ecosystems to disturbances and89

more broadly to human-induced global changes.90
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With this contribution, we emphasize that ecological feedback loops connecting entities91

(from organisms to ecosystems) give rise to emergent properties across scales. For this92

purpose, we first give a general definition that includes a set of properties characterizing93

each ecological feedback. Then, we present how feedbacks vary across space and time,94

and show that, while acting at different scales, they interact in both space and time. We95

also show that these feedback loops generate emergent properties that impact the patterns96

of coexistence, functioning, stability, and heterogeneity of ecological systems. We give97

examples where a better knowledge of feedbacks has helped to build conservation and98

restoration measures (Table 2). Finally, after acknowledging mechanisms that modulate99

the strength and sign of these loops, we propose open avenues for studying ecological100

feedbacks.101

PROPERTIES OF FEEDBACK LOOPS102

System and ecological entities103

Let us consider a system composed of a set of entities interacting with each other. In ecology,104

these entities can represent individuals, or a species interacting with its local environment105

(abiotic or biotic), but also higher levels of organization such as complete ecosystems106

connected by flows of resources, organisms , and information across landscapes. Each107

entity acts on others through both direct and indirect pathways, creating a network of108

dependencies (Hutchinson 1948). Feedbacks emerge when an entity modulates, through109

these different paths, the direction and speed of its own dynamic. A feedback loop is110
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therefore defined relative to a response variable measured on the focal entity such as body111

temperature, population abundance, or carbon or nutrients stocks in ecosystems.112

Feedbacks emerge from links between entities113

Feedbacks emerge when there is a circular path of directed links (Fig. 1). In the simplest114

context, a feedback loop appears when two entities are bidirectionally connected. Here,115

because the feedback is made up of two steps, goes to another entity and then back to the116

focal entity, the feedback is said to be of length two. In consumer-resource systems, the117

consumer generates negative feedback on its own demography because it is continuously118

lowering its resource availability (Fig. 1). At higher spatial scales, bidirectional flows119

of resources connecting forests and streams (e.g., through aquatic insect emergence and120

plant litter subsidies) generate spatial feedbacks across the landscape (Leroux and Loreau,121

2012; Baruch et al., 2021). Yet, in more complex settings, feedbacks can involve far122

more than two links. For instance, in intransitive competitive communities, long loops123

can emerge because there is no best competitor (rock-paper-scissors game; see Fig. 1):124

all species beat some competitors and are weaker than some others (Kerr et al., 2002;125

Allesina and Levine, 2011). Together, this entails that for a set of connected entities, the126

interdependency of entities can result not only from direct links but also from the many127

emerging feedback loops of varying length. Importantly, the definition of the feedback128

loop, and the quantification of its length, depends on the defined system, and in particular129

on the nature of its entities. Demographic regulation, for instance, corresponds to a130

negative feedback between individuals of a given population, directly (e.g., interference131
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competition) or indirectly (e.g., through a resource in exploitative competition). If one132

wants to consider only the population level, or to ignore the resource dynamics, then the133

underlying feedback could be represented in a phenomenological way (as in the logistic134

growth) and the feedback would be of length one (of the population on itself). Hence, the135

way the system is defined and its scale impose a “perceptual bias” (sensu Levin, 1992) on136

the feedback identified and their lengths (see also O’Neill et al., 1987). Here we base our137

definition on a mechanistic representation of feedbacks, with a minimal length of two.138

Strength, sign, and dynamical properties139

Feedbacks are characterized by their length, but also their strength and sign. On one side,140

positive feedbacks emerge when the circular path benefits the focal species (e.g., plants141

attracts pollinators, while pollinators feed on nectar in a mutually beneficial interaction;142

Fig. 1). Such positive loops are destabilizing because they can self-reinforce over time143

(Maruyama, 1963; DeAngelis et al., 1986), potentially leading to a runaway growth (“orgy144

of mutual benefaction”, May, 1981) and/or alternative stable states and tipping point dy-145

namics in ecosystems (Scheffer and Carpenter, 2003). On the contrary, negative feedbacks,146

for instance generated by consumptive interactions, tend to be regulation forces that limit147

exploding dynamics (see Emergent properties from feedback loops section).148

The quantification of the feedback strength and sign relies on a multiplicative network149

approach derived from the input–output theory in economy (Hannon, 1973). In a network150

of connected entities, the strength and sign of a loop is given by the product of all signed151

weights of the links forming the loop. Then, positive feedbacks can emerge from negative152
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interactions when the loop contains an even number of negative interactions (see Fig. 1).153

For instance, in a two-species competitive community, each species competes with the154

other, therefore limiting the negative effect that it experiences from its competitor (positive155

feedback on each species). Accessing the feedback sign alone provides information about156

whether the system will be stable or not. Notably, qualitative loop analysis can be used to157

infer the stability of a system from the sign of links between entities (May, 1973a; Levins,158

1974). Moreover, the feedback strength depends on the cumulation of the link weights159

along the feedback loop. The weight of a link can correspond to interaction strengths for160

food-webs or plant-pollinator networks (i.e., the effect that a species has on the growth161

of another for instance obtained by the partial derivative of the per capita growth rate162

with respect to the density of another species, typically summarized in the Jacobian163

matrix; see Ramesh and Hall, 2023 or Zelnik et al., 2022 for the generic framework ), or to164

material flows between populations, communities or ecosystems in a spatial context. Many165

methods have been proposed to quantify the weight of links (as reviewed in Wootton166

and Emmerson, 2005). In practice, direct interactions are often difficult to measure due167

to possible influence of indirect effects (Lawlor, 1979; Paine, 1992), timescale, functional168

response, and context dependencies (Berlow et al., 1999; Wootton and Emmerson, 2005).169

Yet, assuming all link weights are known, the strength of a loop corresponds to the product170

of the weights of links involved in the loop. Interestingly, when using feedbacks within an171

ecological network (i.e., the different links of the feedback loop correspond to ecological172

interactions), a general pattern seems to emerge. Ecological interactions are known to be173

heterogeneous in strength, with ecological communities typically having few strong and174

many weak interactions (McCann et al., 1998; Wootton and Emmerson, 2005). Therefore,175
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as a loop becomes longer it will likely contain weak interactions so that the product176

of links will become weaker. This leads to a predicted pattern, where longer loops are177

expected to be weaker, that is often observed in nature (Neutel et al., 2002, 2007; Lever178

et al., 2023). Moreover, because each link connecting entities has a unit (e.g., consumption179

rate in food-webs in mass.m−2.year−1, or interaction strength in interaction networks in180

year−1; De Ruiter et al., 1995). This implies that two feedbacks of different lengths have181

different dimensions, making them impossible to be compared (Ulanowicz, 2004). To avoid182

this dimensionality issue, studies have proposed to define direct interactions relatively to183

self-links (e.g., corresponding to regulation mechanisms) by dividing interaction strengths184

by self-links, thereby making each link non-dimensional (Neutel and Thorne, 2014; Zelnik185

et al., 2022). Since its first application on ecosystem flows (Hannon, 1973), this network186

approach has been applied in a wide variety of contexts, including the integration and187

interdependence of species within communities (Zelnik et al., 2022) or the evolution of188

species in mutualistic networks (Guimarães et al., 2017). To summarize, quantifying189

feedback strength and sign allows comparing different loops and understanding whether190

a given loop will self-amplify or counteract the effects of a perturbation. However, this191

is not sufficient if one wants for instance to quantify the contribution of a given loop on192

the transient dynamics following a perturbation (e.g., how much a given feedback loop193

increases or decreases the effect of a disturbance and the recovery time). Therefore, a194

complementary approach has been proposed, which we detail in Box 1.195
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Timescales are the essence196

Feedbacks are characterized by the focal entity on which it acts (e.g., an organism , an197

ecosystem), as well as a timescale. Each process and entity has a characteristic timescale:198

decomposition is faster in freshwater compared to terrestrial ecosystems (Gounand et al.,199

2020), and a given feedback duration will be perceived differently by species that have very200

different generation times (e.g., a phytoplankton vs a tree species if considering primary201

producers; Steele and Henderson, 1994). For a feedback loop, the timescale corresponds to202

the sum of all durations of processes involved in the loop. It therefore always generates a203

time lag between the cause and its effect (Higashi and Patten, 1989). In the case of nutrient204

recycling feedback on plants for instance, the delay is due to decomposition and nutrient205

release by decomposers (McClaugherty et al., 1984). Comparing the generation timescale206

of the focal entity and the one of the feedback is critical to determine how the loop may207

impact the focal entity. If the timescale of the feedback loop is high compared to the one of208

the entity, its effect may generate slow-fast dynamics and induce cycles (Daufresne and209

Hedin, 2005; Pastor and Durkee Walker, 2006; Barraquand et al., 2017) or long transients210

(Hastings, 2010; Hastings et al., 2018; Miller and Allesina, 2023). When the feedback has211

a very long timescale compared to the entity of interest, the feedback loop may impact212

the system but via long-term legacy effects (Albertson et al., 2022). Let us illustrate this213

point by considering phytoplankton. Phytoplankton participates in capturing carbon and214

regulating the climate, which ultimately conditions its own environment, but the timescale215

at which this feedback operates makes it irrelevant to investigate phytoplankton life-cycle.216

However, in the long term, the feedback between plankton and the climate has been shown217
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to strongly shape the dynamics of planktonic assemblages (Gibbs et al., 2006; Slater et al.,218

2022). Hence, depending on the timescale defined by the entity of interest (here cell versus219

assemblage), the same feedback may matter or not, depending on the temporal scale one220

looks at. On the contrary, the timescale of the feedback can be smaller than the one of221

the entity, in which case it is important for the focal entity: in forest-savanna systems for222

instance, the fire-mediated feedback loop, which determines the canopy cover and the223

strategies of plants, occurs at a smaller timescale compared to the life-span of trees, and224

determines the bistable dynamics in the system (Pausas and Bond, 2020).225

Framing feedbacks in terms of timescales has received a lot of attention in the context of226

climatic mitigation measures such as carbon sequestration to understand when will carbon227

sequestrated in biomass or the ocean be remineralized (i.e., return to the atmosphere, Table228

2; Boyd et al., 2019; Friggens et al., 2020). Also, this strongly matters when comparing the229

timescales of ecological and evolutionary processes (see Govaert et al., 2019; Fronhofer230

et al., 2023 for dedicated reviews on this topic).231

FEEDBACKS ACROSS LEVELS OF ORGANIZATION232

Organisms interact with its abiotic environment but is itself embedded in a community,233

while populations, communities and ecosystems are part of a landscape and interconnected234

through flows of individuals, information and resources. The feedback concept can be235

applied at any of these levels of organization. Here, we identify three types of feedbacks236

depending on the level they act on: feedbacks from organisms interacting with their abiotic237

environment, demographic and behavioral feedbacks in populations and communities238
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and spatial feedbacks at landscape scale (Fig. 2, Table 1).239

Feedbacks between organisms and their abiotic environment240

From the observation that organisms interact with their abiotic environment, Tansley241

defined the concept of ”ecosystem” encapsulating both species and their environment242

(Tansley, 1935). Later, Lewontin suggested thinking of the environment as a third helix of243

the DNA because the environment constrains the evolution of organisms and is in turn244

modified by organisms (Lewontin, 2000, see also Patten, 1982). Though we do not focus on245

eco-evolutionary feedbacks here, this metaphor illustrates the importance of interactions246

between organisms and their environment.247

Organism-environment interactions can involve modifications of the physical habitat248

and landforms that feed back on the focal species’ growth, survival, or abundance (i.e.,249

biogeomorphic feedback; Temmink et al., 2022). Examples include intertidal sea-grass250

meadows that stabilize the sediments (soil accretion) and change the hydrodynamic251

system via their rooting and shooting systems (Bouma et al., 2013; Maxwell et al., 2017),252

or coastal plants that capture sediments transported by wind and help maintain dunes253

that limit the erosion by waves and sand resuspension (Zarnetske et al., 2012). All these254

mechanisms foster plant survival by buffering against the physical stress induced by255

anoxic conditions, or waves and wind erosion (Silliman et al., 2015; Maxwell et al., 2017),256

and therefore have been used as knowledge to guide restoration of coastal areas (Table257

2). These engineering species “modify their own niche and/or each other’s niches” (sensu258

Odling-Smee et al., 1996), a wide phenomenon called niche construction. Such habitat259
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modifications in turn affect the ecology of other species, thereby creating new feedback260

loops. For instance, seagrass recruitment provides shelter from predation to meso-grazers261

that graze on seagrass epiphytes and invasive algae, which benefits seagrasses (Maxwell262

et al., 2017). Hence, niche construction encapsulates both biotic and abiotic changes (see263

next section for biotic niche construction; Odling-Smee et al., 1996, 2013).264

Organism-environment interactions often involve the modulation of local resource avail-265

ability. On one side, consumers deplete their resources, which generates a negative266

feedback loop: increased consumption leads to lower resource availability (negative niche267

construction). Such a loop can switch from negative to positive for engineering or facilitat-268

ing species (positive niche construction; Kylafis and Loreau, 2008). In intertidal systems,269

sea-grass meadows or mussel-beds increase organic deposition, availability of oxygen and270

nutrients, either by trapping them in their rooting system for sea-grass (Maxwell et al.,271

2017) or by ammonium excretion in mussel beds Pfister, 2007. Ultimately, it positively272

affects their growth. Similarly, facilitation by nurse species in stressed ecosystems (arid,273

salted mashed, alpine) enhances local availability of resources (through the increase in274

water infiltration, organic matter and by limiting evaporation; Filazzola and Lortie, 2014)),275

which enhances seedling recruitment. Feedbacks bounding species and the availability of276

resources are also observed at the ecosystem-level. Each species is involved in a recycling-277

mediated feedback loop, where organic matter is recycled and in return positively or278

negatively affects each trophic level through a bottom-up cascade (Loreau, 2010). These279

loops between the ecology of species and their ever-changing local environment set the280

theater for evolution to play (Lewontin, 1978; Odling-Smee et al., 1996; Phillips, 2016).281
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Population and community-level feedbacks282

Individuals do not simply interact with their abiotic environment, they also eat, compete283

or cooperate with each other. These interactions generate demographic and behavioral284

feedbacks within and between populations of the same or different species (Fig. 2, central285

panel).286

Within populations, demography is modulated by the balance between growth and reg-287

ulation. Contrary to intrinsic population growth , that acts by definition positively288

on population demography, regulation from density-dependent mechanisms such as in-289

traspecific competition for resources slows down population growth (e.g., due to stronger290

intraspecific competition or to the accumulation of specialized enemies), thereby acting as291

a negative loop ( see also Table 2 human-induced demographic regulation of harvested292

systems ). Negative density-dependent mechanisms regulate population growth, however,293

conspecific density-dependence mechanisms such as cooperation can also positively affect294

population growth (Gil et al., 2019). For example, group defense in meerkats reduces295

the individual risk of being eaten by predators. Another example comes from the collec-296

tive foraging of coral-reef fishes that increases their foraging rate when they have more297

conspecific in their neighborhood (Gil et al., 2020). At low density, these social or sexual298

interactions between individuals generate positive feedback between population demog-299

raphy and growth rate (positive density-dependence). By contrast, as the population300

grows, density-dependent negative feedbacks overcome positive ones. Such an interplay301

of positive and negative feedback loops at the population level leads to Allee effects (Allee,302

1931, Box 2), where the population can collapse under a defined threshold (minimum303
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viable population) as it becomes insufficient to sustain the cooperation level required for304

population persistence (see also Kylafis and Loreau, 2008; Koffel et al., 2021).305

Species are also embedded in a complex web of diverse interactions with other species.306

The intertwinement of interaction in networks such as in plants-pollinators, and food-webs307

illustrate this ‘entangled bank of species’ (Darwin, 1876), describing the diversity and308

complexity of interspecific interactions. In a network, direct interactions between pairs309

of species are well pictured. Direct interactions also generate a multitude of less visible310

indirect loops that create strong interdependence of species (Ulanowicz, 2004). Because311

positive and negative interactions such as competition, mutualism, exploitation coexist in312

communities (Fontaine et al., 2011; Pocock et al., 2012), these loops vary in sign, strength313

and length. Consequently, when a species enters a community, by interacting with other314

species it modulates the emergent feedbacks that any species in the community experiences315

(Arnoldi et al., 2022). Recently, Zelnik et al (2022) proposed the term “interaction horizon”316

to describe the maximal length of indirect pathways connecting species that significantly317

contribute to the community patterns and dynamics. In particular, using the network318

approach to decompose the direct and indirect effects of perturbations (Box 1), they found319

that indirect paths increase in importance when species interact more strongly together,320

that is, when species assemblages are more integrated (i.e., interdependent).321

Spatial feedbacks coupling ecosystems322

Feedbacks can also emerge in space when species, individuals or material flows are323

exchanged at the landscape extent (Fig. 2). Such feedbacks have been addressed in324
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all theoretical frameworks of spatial ecology (metapopulations, metacommunities and325

metaecosystems) and will be discussed hereafter. Considering metapopulations (i.e., sets326

of local populations linked by the dispersal of individuals), spatial feedbacks can emerge327

from the dispersal of individuals through local patches, and thus affect the general state328

of the metapopulation (e.g., total abundance or occupancy). For instance, the “spatial329

rescue” effect relies on the idea of a positive feedback between population abundance and330

spatial flows of organisms. Specifically, migration from locally abundant populations331

increases the size of small populations and therefore decreases their risk of extinction332

(Brown and Kodric-Brown, 1977). In turn, the number of individuals dispersing from333

these small populations increases (positive density-dependent dispersal, e.g., Fonseca and334

Hart, 1996, for an empirical example) and can rescue other populations, thereby increasing335

the metapopulation occupancy (Hanski and Gyllenberg, 1993). Further, spatial flows336

of individuals link local and spatial feedbacks in various ways. If local feedbacks are337

dominated by intraspecific competition, a common expectation is that the dispersal of338

individuals will balance competitive constraints among patches (Fretwell and Lucas, 1969).339

If, on the other hand, the establishment of local populations is constrained by local positive340

feedbacks (e.g. local Allee effects), the effectiveness of dispersal at the landscape scale is341

reduced. For instance, local Allee effects constrain the range expansion of the gypsy moth,342

an invasive species in North America (Tobin et al., 2007). Finally, from an evolutionary343

point of view, spatial heterogeneity in the local states of patches is expected to select for344

lower dispersal levels and weaker spatial feedbacks (Hastings, 1983; Parvinen et al., 2020).345

Similarly, in metacommunities (i.e., sets of local species assemblages linked by dispersal),346

spatial feedbacks emerge from the dispersal of species through the different local assem-347
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blages. For instance, when competition among species dominates in metacommunities,348

low dispersal leads to high local competition and competitive exclusion, so that species349

are sorted differently in different patches depending on local environmental conditions350

(“species sorting”; Leibold et al., 2004). When dispersal is high, spatial feedbacks homoge-351

nize local communities making competition happen at the scale of the metacommunity352

and may lead to competitive exclusion at this level (Mouquet and Loreau, 2003). While353

most metacommunity works assume undirected dispersal (diffusion), dispersal can also be354

context-dependent (i.e., when it depends on the presence of resources, competitors, preda-355

tors and mutualists,Cote et al., 2013; Fronhofer et al., 2015; Trekels and Vanschoenwinkel,356

2019). Spatial flows of species are then directly coupled to locally dominant feedbacks.357

In addition to flows of species, resources or information connect ecosystems in space and358

can also generate spatial feedbacks (meta-ecosystems; Polis et al., 1997; Loreau et al., 2003;359

Massol et al., 2011; Gounand et al., 2018a). An interesting example comes from oceanic360

salmon that migrate upstream for reproduction. By doing so, salmons produce carcasses361

that foster biofilm growth (Rüegg et al., 2011), and serve as resources for freshwater insects.362

In turn, salmon juveniles feed on these insects, which positively increase their growth363

and survival (Giannico and Hinch, 2007). A recent synthesis on spatial flows of resources364

shows that their magnitude can be as high as the local ecosystem fluxes in some ecotones365

(e.g., freshwater-terrestrial; Gounand et al., 2018b), suggesting that the spatial feedbacks366

generated by resource flows can be as important as local feedbacks within ecosystems.367

These flows of species and resources generate negative and positive spatial feedbacks368

through other ecosystems (Montagano et al., 2018). Resource flows between ecosystems369

can relax local limitations in nutrients or carbon in each local ecosystem, therefore gener-370
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ating a mutually beneficial spatial loop (Pichon et al., 2023). However, spatial feedbacks371

can also be negative, when dispersing individuals carry parasites or diseases that de-372

crease the demography of local populations (anti-rescue effect; Harding and McNamara,373

2002) or when subsidy flows correspond to low-quality resources ((Kelly et al., 2014); see374

Modulators of feedback properties).375

EMERGENT PROPERTIES FROM FEEDBACK LOOPS376

We next review the effects of positive and negative feedback loops on species coexistence,377

the functioning, stability and emergent spatial patterns of ecological systems.378

Feedbacks have contrasting effects on species coexistence379

Positive feedbacks can have positive effects on species coexistence. In drylands, the380

facilitation-driven positive feedbacks between nutrients and water in soil and some facili-381

tating species create a favorable environment for their growth but also sustain some species382

that would not be able to persist without facilitation (Filazzola and Lortie, 2014; Bulleri383

et al., 2016). This heterospecific positive density-dependence acts on mortality: higher384

density of the facilitating species decreases the mortality of other species. In theoretical385

models, this mechanism fosters species coexistence (Gross, 2008; Gil et al., 2019, see also386

Aubier, 2020 for similar results between conspecifics).387

Such positive effects on coexistence are however not systematic. Because of the cost388

associated with facilitating another species that also competes for resources and space389

(Schöb et al., 2014), the species benefiting from facilitation may eventually out-compete the390
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facilitating species when environmental conditions allow its persistence alone and decrease391

coexistence (Koffel et al., 2021). When the positive density-dependence acts on conspecific392

growth rates, it can also reinforce the competitive hierarchy thereby decreasing coexistence393

(i.e., reducing further the growth rate of least competitive species that already have a lower394

abundance compared to best-competing species; Wang et al., 1999). Similar effects can be395

observed with nutrient recycling that can promote the dominance of a single plant when it396

increases the loss of the nutrient that limits their competitor growth (Daufresne and Hedin,397

2005), or the dominance of a mobile consumer connecting ecosystems by foraging: if the398

consumer forage in the ecosystem that is fertilized by its competitors, it benefits from the399

positive recycling feedback and can exclude other mobile consumers (Peller et al., 2021).400

Positive feedbacks may also generate priority effects when species pre-empt or modify401

available niches, ultimately limiting further invasions (Drake, 1991; Fukami, 2015). Such402

priority effects may be reinforced over evolutionary timescales when early-arriving species403

adapt to local conditions and radiate available niches (“monopolization hypothesis”,404

De Meester et al., 2002; Leibold et al., 2022). These mechanisms may explain the patterns of405

dominance and low species diversity in some ecosystems such as peatlands, boreal forests,406

or coastal mangroves (Zobel et al., 2023). For instance, in bog areas where the pH is low, a407

moss species (Sphagnum) can colonize and modulate the local conditions by increasing408

acidity in its neighborhood and limiting decomposition (Clymo, 1984), which promotes its409

ecosystem dominance. By contrast, in areas where pH is higher, the community is more410

diverse and composed of grasses, forbes, and sedges (Laine et al., 2021). Similarly, in the411

context of biotic invasion, an invader experiencing a positive feedback while invading a412

resident species will enter a community and replace the resident species (i.e., invasional413
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meltdown; ‘Arnoldi et al., 2022). By contrast, when positive feedbacks are more frequent414

between native plant species than between invasive ones, they offer a mechanism of415

resistance against invasions (Yin et al., 2022).416

Links between negative feedbacks and species coexistence have a long history in ecol-417

ogy. Classical theory suggests that coexistence is enhanced when intraspecific negative418

feedbacks are stronger than interspecific competition (e.g., when species have large niche419

differences; Levins, 1966). The later work of Janzen and Connell (Janzen 1970, Connell,420

1971) suggested that the accumulation of pathogens near adult trees inhibiting the sur-421

vival and recruitment of their juveniles would favor coexistence (a mechanism known as422

negative-conspecific density-dependence or self-regulation). Since then, there has been423

accumulated evidence of the positive effect of negative density-dependence on coexistence424

using both experiments (Klironomos, 2002; Mangan et al., 2010; Teste et al., 2017), regional425

observations (Johnson et al., 2012; LaManna et al., 2017), and theory on plant-soil feedbacks426

(Bever et al., 1997; Loeuille and Leibold, 2014; Eppinga et al., 2018). This is corroborated by427

the negative relationship between the species abundances in plant communities and the428

strength of the negative feedback loop with the soil: least abundant species are the ones429

involved in the stronger negative feedbacks with the soil (Mangan et al., 2010; Johnson430

et al., 2012).431

While we simplified the explanation above by splitting positive and negative feedback432

loops, in communities, feedbacks of different signs are generally intertwined. In addition,433

given that their signs can change along environmental gradients and timescales (see434

Modulators of feedback properties section; Box 2), understanding how each loop relates435

to species coexistence can be tricky. In this regard, recent developments of niche theory436
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explicitly link the feedbacks emerging from organism-environment interactions (both437

biotic or abiotic environment), the niche of each species and species coexistence (see Koffel438

et al., 2021 for details on the mathematical framework). Another possible way of unveiling439

the links between different feedback loops and the patterns of species coexistence is to440

acknowledge the scale at which each feedback loop acts (see Zobel et al., 2023). At the441

scale of an individual, or a patch of vegetation, species-level positive feedbacks driven by442

facilitation may promote species coexistence by enhancing environmental conditions and443

expanding the niche of other species (Bulleri et al., 2016; Koffel et al., 2021). Yet, when this444

positive niche construction scales-up to be dominant at the ecosystem level, it promotes445

the dominance of a single species (e.g., due to priority effects or monopolization). Over446

timescales, niche construction may shift to ecosystem-level negative feedbacks that limit447

such cases of dominance, by accumulating resources that promote competition-driven448

coexistence mechanisms (Box 2). Therefore, in many ecosystems the maintenance of a high449

number of species may tie in the balance of feedbacks having various signs and acting at450

different scales. We argue for the development of a theory investigating how feedbacks451

acting at different scales modulate species coexistence.452

The central role of organism-abiotic resource feedbacks on ecosystem functioning453

and development454

Feedbacks are key to understanding how ecosystems and landscapes function. At the root455

of many ecosystems lies a positive feedback loop between plants, performing photosyn-456

thesis, and decomposers that close the recycling loop of matter, a loop that can also be457
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accelerated by herbivores (Mazancourt et al., 1998). Depending on whether decomposers458

are limited by either carbon or nutrients, plants and decomposers compete for nutrients or459

become mutualists, respectively (Daufresne and Loreau, 2001). In the latter case, plants460

and decomposers benefit from the by-product of the other (decomposers decompose litter461

produced by plants and make nutrients available again for plants) making an autocatalytic462

loop (sensu Veldhuis et al., 2018; Fig. 3). As long as this self-reinforcing loop is fed with463

energy (i.e., light for photosynthesis), resource competition leads to the selection of species464

with the highest resource-use intensity (lowest R∗ according to resource competition the-465

ory, Tilman, 1982) within plants and decomposers, and consequently increases biomass466

and energy production while minimizing resource losses (Loreau, 1998; see also Box 2).467

Taken together, this simple system shows that feedbacks can generate auto-catalytic pro-468

cesses that determine the development and functioning of the ecosystem (Odum, 1988;469

Ulanowicz, 2009; Lenton et al., 2021). Interestingly, such ecosystem principles can be ex-470

tended to the landscape extent, where subsidy flows can connect ecosystems with different471

functioning (Harvey et al., 2023). Freshwater or benthic ecosystems tend to have a net472

heterotrophic functioning (respiration > primary production; Gounand et al., 2018b, 2020),473

while terrestrial and pelagic ecosystems have on average a net autotrophic functioning474

but transfer less efficiently energy to the higher-trophic levels (Shurin et al., 2006), making475

them carbon sources at the landscape scale (Fig. 3). In addition, these ecosystems cor-476

respond to communities with different carbon, nitrogen and phosphorous needs (Elser477

et al., 2000). Hence, when looking at terrestrial-freshwater or benthic-pelagic ecotones,478

it appears a spatial analogy of the plant-decomposer relationship: when nutrients and479

detritus are spatially exchanged and meet the local needs of communities within each480
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ecosystem (i.e., the exported by-products of an ecosystem bring the resource limiting the481

other). In that case, a positive feedback loop can emerge at the landscape scale, fostering482

the landscape-scale production and maximizing the use of nutrients and carbon between483

ecosystems (Pichon et al., 2023; see also Modulators section). Taken together, we notice484

similar autogenic development of ecological systems driven by autocatalytic loops at485

different spatial scales.486

Feedbacks properties determine ecosystem stability and fragility487

Feedbacks are also intrinsically linked to the stability of ecological systems. While positive488

feedbacks can maintain an ecosystem in a high biomass state, they can also promote its489

fragility. Indeed, the strong positive interdependencies of entities can serve as a medium490

to amplify and propagate perturbations across the whole system. In multiple ecosystems491

such as lakes, coral-reefs, and drylands, where strong positive feedbacks are observed,492

under some conditions, small perturbations can lead to a sudden change in ecosystem493

state (so-called “catastrophic shifts “; Scheffer, 2009; Kéfi et al., 2016). Similar alternative494

ecosystem states have also been described at the population and community levels (Table495

1; Fig. 3). Priority effects from positive feedbacks discussed in the coexistence section can496

generate alternative community states depending on the order of assembly in the com-497

munity (“historical contingency”; Case, 1990; Fukami and Nakajima, 2011). Importantly,498

the stability of communities is impacted differently when feedbacks are species-specific499

(i.e., depends on the species identity, such as a pollinator specialized on one plant) or500

aggregated (i.e., which does not depend on the species identity; sensu Karatayev et al.,501
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2023). With aggregated feedbacks all species experience the same Allee effect, and there-502

fore a single perturbation can drive the collapse of the community simultaneously (Lever503

et al., 2014; Karatayev et al., 2023). With positive species-specific feedbacks, each species504

experiences a specific Allee threshold, which thereby does not necessarily cause cascades505

of extinctions in the community (Aguadé-Gorgorió et al., 2023). For example in plant-506

pollinator communities, because specialist species experience stronger positive feedbacks,507

they are more vulnerable to perturbations than generalist species (Saavedra et al., 2013).508

Because some traits of interacting partners can be lost over evolutionary timescales (e.g.509

loss of genes to produce arginine in leaf-cutter ants), positive interdependencies between510

species can be strengthened (e.g., ants rely on fungus for arginine; Ellers et al., 2012). In511

some cases, such high specialization to a partner can lead to population collapse due to512

an evolutionary trap (Singer and Parmesan, 2018) or evolutionary ‘cul-de-sac’ at longer513

timescales (Perez-Lamarque et al., 2022). Related impacts of positive dependencies can514

be drawn for spatial systems. In this case, the spatial dependencies emerge from species515

dispersal or spatial flows of resources. When such flows are important, a small local per-516

turbation can spread in space through a traveling wave changing the state of the connected517

populations (Keitt et al., 2001; Villa Martı́n et al., 2015; Saade et al., 2023), or leading to518

alternative ecosystem states (Gounand et al., 2014; Fig. 3). To summarize, mutual benefits519

create dependencies and integration of entities, thereby fostering their joint persistence or520

possible collapse. In other words, interdependency can beget fragility (Vespignani, 2010;521

Centeno et al., 2015; Brummitt et al., 2015).522

Conversely, negative feedbacks have been related to homeostasis, or regulation (Odum,523

1969; Wiener, 1948). Negative feedbacks stabilize ecological systems, avoiding infinite524

26



growth, either by mediating a return of the system to its equilibrium after a perturbation525

(i.e., resilience), or by constraining dynamics in cycles (i.e., avoiding runaway). Cycles are526

observed when long-delayed negative loops overcome shorter ones (Barraquand et al.,527

2017; Lever et al., 2023), as exemplified by the slow-fast dynamics of shallow lakes where528

the interaction between a slow loop with phosphorus and a fast loop with turbidity529

induces primary producer cycles between macrophytes and microalgae (van Nes and530

Scheffer, 2007). Theory also suggests that cycles emerge when the time delay of negative531

feedbacks is long compared to focal entity timescale (e.g., long delayed demographic532

regulation compared to slow population’ growth; (May, 1973b). In such cases, the system is533

destabilized because growth and negative regulation feedbacks are out-of-phase (Ramesh534

and Hall, 2023; Yang et al., 2023). These delayed feedbacks can be promoted by legacy535

effects that can persist for years (Hastings et al., 2007; Albertson et al., 2022). For example,536

drought legacy effects were shown to switch plant-soil feedbacks of two grassland species537

from positive to more negative (and potentially destabilizing) feedbacks (Kaisermann et al.,538

2017). In this experiment, drought led to turnovers in soil fungal communities, which may539

explain the change in feedback sign, although the precise mechanism and the impact of540

the change in feedback sign on the stability of the system were not elucidated (see De Vries541

et al., 2023 and references therein for further discussion on the topic).542

Because ecological systems host both positive and negative interaction types, loops of543

opposite signs are intertwined. Theoretical studies investigating the impact of this diversity544

of interactions in communities showed that inclusion of negative interactions in mutualistic545

communities can stabilize them (i.e., generates negative loops; Mougi and Kondoh, 2014;546

Coyte et al., 2015). This is also corroborated in a simple plant-pollination-herbivore module,547
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where coexistence is favored by the mutualistic part (positive feedback) while stability548

is favored by the herbivory (negative feedback) so that overall maintenance requires a549

specific balance between the two interactions (Yacine and Loeuille, 2022).550

Feedback loops induce spatial heterogeneity551

Lastly, feedbacks can generate emergent spatial patterns (self-organization; Fig. 3; Rietkerk552

and van de Koppel, 2008). Different patterns can be distinguished depending on the type553

of feedback that has generated them (scale-dependent or density-dependent). On the one554

hand, local feedbacks between species and their abiotic resources generate self-organized555

patterns and have been observed across a wide range of biological systems (Rietkerk and556

van de Koppel, 2008; Kondo and Miura, 2010), including drylands (Rietkerk, 2004; Kéfi557

et al., 2007), planktonic communities (Okubo, 1980), salt marsh communities (Zhao et al.,558

2021), and mussel beds (Liu et al., 2014). When seeing these ecosystems from the sky,559

one may see a two-phase mosaic with species aggregated in space separated by open560

areas. This spatial heterogeneity results from two antagonistic forces acting at different561

spatial scales: a short-range facilitation (e.g., by plants or mussels) and a long-range562

competition due to the redistribution of nutrients or water in space. The balance between563

the two determines the sign and the strength of the feedback, as well as the type of pattern564

observed. In particular, when competition is high, these patterns show a regular shape565

(Turing-like; Klausmeier, 1999; Rietkerk and van de Koppel, 2008), while they have more566

irregular structures, characterized by a scale-free patch size distribution (i.e., power-law)567

when facilitation dominates the system (Kéfi et al., 2007; Scanlon et al., 2007). Importantly,568
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the emergent feedback from the balance of interactions in space is somehow similar to the569

temporal balance of feedback loops found to trigger oscillations in shallow lakes (van Nes570

and Scheffer, 2007): both spatial patterns and oscillatory dynamics emerge when there are571

differences in scale (space or time) between loops of contrasting signs.572

On the other hand, biogeomorphic feedbacks in intertidal ecosystems described previously573

generate another type of self-organized pattern, referred to as phase separation (see Liu574

et al., 2016 for review). Contrary to Turing patterns, they involve a density-dependent575

aggregation and are found across a wide range of systems (Ge and Liu, 2021; Siteur et al.,576

2023). In seagrass meadows for example, because seagrass patches favor the accumulation577

of sediments, it limits grazing by waterfowl during low tide as they cannot feed on dense578

seagrass patches elevated above the water and thereby graze on the water-logged hollows579

(Van Der Heide et al., 2012). Grazing pressure is therefore determined by the spatial580

distribution of the seagrass, which in turn is controlled by grazing (via consumption). Ulti-581

mately, this feedback between grazing/foraging behavior and seagrass density generates582

emergent spatial patterns (Ge and Liu, 2021). These types of patterns differ from the Turing583

ones as the mean patch-size coarse-grain over time and their patch-size distribution is best584

described by a log-normal distribution (Siteur et al., 2023).585

Spatial heterogeneity can also emerge from single negative or positive feedbacks. Because586

mobile consumers such as predators actively track hotspots of resources, they can produce587

heterogeneity in the spatial distribution of their prey by feeding preferentially on some588

areas rather than on others (Barraquand and Murrell, 2013). In addition, by spending589

more time in these areas, they excrete more nutrients locally, which can positively feed590

back on their growth (Anderson et al., 2010; McLoughlin et al., 2016). For example,591
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nutrient-rich guano deposited by birds on islands has been shown to leach to neighboring592

marine ecosystems, boost fish growth, and positively affect sea-bird demography in return593

(Graham et al., 2018; McInturf et al., 2019). Hence, localized animal wastes generate594

nutrient hotspots and spatial heterogeneity (Monk and Schmitz, 2022; Ferraro et al., 2022;595

Johnson-Bice et al., 2023). Interestingly, the interaction between this positive recycling loop596

and a negative one acting at lower scale can erase spatial heterogeneity. In the example of597

bird guano, islands where birds deposit large amounts of nutrients can also be invaded by598

coconut trees that benefit from the bird nutrient enrichment. By consuming the nutrients599

locally, and inhibiting the deposition of guano because seabirds prefer to roost on non-600

invasive trees, these invasive trees limit the emergence of heterogeneity (Young et al., 2010;601

Table 2). By being antagonists and acting at different scales, feedback loops therefore may602

cancel each other.603

MODULATORS OF FEEDBACK PROPERTIES604

Physical constraints can switch the sign of feedbacks605

Physical constraints are a strong modulator of feedbacks across spatial scales: in arid606

ecosystems, local slopes determine how water is redistributed in space and acts in fine607

on the scale of interspecific competition. Higher slopes lead to change from spot to stripe608

patterns due to water flowing downhill between each stripe; this structures competition in609

space: competition is stronger in the direction of the slope compared to orthogonally to the610

slope (Klausmeier, 1999; Deblauwe et al., 2011). Similarly, because of gravity, the structure611
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of ecosystems (e.g., convex versus concave profiles; Lindeman, 1942) changes the strength612

of spatial feedbacks through ecosystems. Watersheds or streams receive more resource613

flows than grasslands or forests (Gounand et al., 2018b), which modulates trophic cascades614

(Leroux and Loreau, 2008) and how many subsidies are exported back. In addition, in615

alpine, arid, or salt marshes ecosystems, the sign of the feedback among plants can change616

with the level of stress (“stress-gradient hypothesis”; (Callaway et al., 2002; Maestre et al.,617

2009)). In particular, what is generally being observed across ecosystems, is that stress618

promotes positive facilitation-driven feedbacks (McCluney et al., 2012; He et al., 2013;619

Piccardi et al., 2019).620

Species traits can change the sign and strength of feedback loops621

Stoichiometry of organisms (i.e., elemental composition) modulates the recycling-mediated622

feedback loops at different spatial scales. At the ecosystem-level, when plants get richer623

in carbon due to nitrogen depletion for instance or predation risk (Hawlena and Schmitz,624

2010), their detritus have a higher C:N ratio due to more recalcitrant carbon structures (e.g.,625

lignin), which slows down the decomposition process (Cherif and Loreau, 2013; Hawlena626

et al., 2012) and reduces the strength of nutrient cycling. In a meta-ecosystem context,627

we previously stressed that spatial positive feedbacks can emerge through ecosystems628

(see Emergent properties from feedback loops section), but the stoichiometry of spatial629

flows may also exacerbate local stoichiometric mismatches between consumers and their630

resources (e.g., decomposers and detritus). This happens when a large magnitude of631

nutrient-poor terrestrial litter falls into lakes or streams (Kelly et al., 2014), and leads632
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to reduced secondary production, eutrophication, or hypoxia (Subalusky et al., 2015;633

Dutton et al., 2018). In this case, terrestrial and aquatic ecosystems are involved in a634

negative feedback loop: terrestrial ecosystems benefit from nutrient-rich spatial subsidies,635

while stoichiometric mismatch impairs freshwater functioning (Pichon et al., 2023). Trait636

variation can largely constrain the sign and intensity of these feedbacks. In arid ecosystems,637

whether plants are involved in positive (facilitation) or negative (exploitation) niche638

construction with the soil depends on their position on the slow-fast functional gradient:639

contrary to slow facilitating species, fast exploitative ones exhibit high density tissues640

and leaf-dry mass adapted to the conditions beneath canopies (Liancourt et al., 2005;641

Butterfield and Briggs, 2011). As a consequence, variation in species traits can change642

the emergent patterns in ecosystems such as intertidal areas where the stiffness and the643

density of plant shoots have been shown to modulate the flow velocity, the sedimentation644

rates, and ultimately, the scale-dependent feedback (Zarnetske et al., 2012; Bouma et al.,645

2013; Schwarz et al., 2015 in coastal areas and Box 2).646

Last, we want to emphasize species with uncooperative strategies (cheaters), and their647

cascading effect on the stability of communities. Cheating is a phenomenon in cooperative648

systems where some species have evolved an uncooperative strategy by benefiting from649

an interaction without paying the associated cost (e.g., Klironomos, 2003; Genini et al.,650

2010). While there are constraints upon cheating (Perez-Lamarque et al., 2020), when a651

cheater enters the community, it exercises a negative effect on its mutualistic partners,652

consequently switching some mutually beneficial feedbacks to negative ones. Such changes653

of the emergent biotic feedbacks ultimately affect the stability of communities (e.g., Mougi654

and Kondoh, 2012; Coyte et al., 2015). Duchenne et al. (2023) recently suggested that when655
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cheaters emerge among pollinators, they reduce the community-level positive feedback656

between mutualistic species, which negatively impacts community persistence.657

TOP-DOWN AND BOTTOM-UP VIEWS OF FEEDBACK’658

REGULATION659

We reviewed existing knowledge on the tight bounds between entities and macroscopic660

systems’ behavior in complex adaptive systems. A question remains, however: how are661

feedbacks modulating the system? Feedbacks between entities contribute to the dynamics,662

patterns and stability of the whole system (see “Emergent properties” section). In this663

regard, the system can be constrained by the feedbacks between lower-level entities (i.e.,664

feedbacks as bottom-up regulating forces). At the same time, the system’s organization665

may reciprocally impose structural or stability constraints on the interacting entities (i.e.,666

the system is a top-down regulating force). To illustrate this top-down view of systems’667

functioning, let us consider the non-random organization of mutualistic networks and668

food-webs. Nestedness is often observed in mutualistic networks, with specialist species669

interacting more with a subset of the more generalist species (Bascompte et al., 2003).670

This non-random structure has been shown to reduce interspecific competition among671

mutualistic partners (Bastolla et al., 2009), widen the conditions of coexistence (Rohr et al.,672

2014), and ultimately promote the stability of mutualistic communities (Thebault and673

Fontaine, 2010). In the same vein, in food webs, studies have sought to explain food-674

chain lengths or the skewed distribution of interaction strengths towards a dominance675
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of weak links in food webs (De Ruiter et al., 1995; Wootton and Emmerson, 2005): longer676

food-chains are less stable (Pimm and Lawton, 1977) and weak links promote food-webs677

stability (Yodzis, 1981; McCann et al., 1998; Neutel et al., 2002; Rooney et al., 2006). Notably,678

such system’s non-random organization may explain why empirical networks include679

remarkably few feedback loops (Albergante et al., 2014; Domı́nguez-Garcı́a et al., 2014;680

Johnson and Jones, 2017). Hence, under such “systemic selection” (sensu Borrelli et al.,681

2015), the macroscopic properties of a system (e.g., stability, robustness or coherence)682

constrain the links connecting species, the strength of interactions, and ultimately the683

emergent feedbacks in the community.684

CONCLUSION685

Since the early cybernetic interest in positive and negative feedbacks, ecological studies686

have scaled-up from organism level to the whole landscape to understand how feedback687

loops could generate diverse, emergent properties. Throughout our contribution, we688

emphasize, from locally interacting species to spatially connected ecosystems, the ubiquity689

of feedbacks interacting across space and time and levels of organization, and their im-690

portance in generating macroscopic patterns, such as species diversity, emergent spatial691

patterns or the functioning and stability of ecological systems. Furthermore, properties692

such as species traits, or physical constraints modulate the strength and sign of feedback693

loops, and ultimately the pattern they generate across scales.694

All the research reviewed suggests that knowledge about ecological feedbacks is essential695

to improve our fundamental understanding of the interdependence of ecological systems696
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across scales and levels of organization. Given their contribution to the functioning and697

stability of ecological systems, acknowledging the links connecting species and ecosystems698

(i.e., ecological interdependencies) could help improve the design of effective conservation699

and restoration measures that integrate local and spatial dependencies.700
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BOX 1: QUANTIFYING THE DYNAMICAL EFFECT OF A FEEDBACK LOOP

Let us consider the recycling loop that links herbivores and decomposers as an illustration

(Fig. below). Herbivores feed soil decomposers through their carcasses and excretions.

Microbes and fungi decompose organic matter, making nutrients available again for plants

to grow and indirectly benefiting herbivores that feed on plants. Quantifying the strength of

this recycling loop is not sufficient in itself to understand how the feedback loop modulates

the transient response of herbivores (or any other compartment) to a perturbation such as

nutrient enrichment. To do so, one can compare how herbivores deviate from its equilibrium

following nutrient enrichment, as well as their recovery dynamics with and without the

feedback loop. For the system in the Figure of Box 1, it can be done by replacing the

link between decomposers and the nutrient compartments with a controlled inflow of

nitrogen, corresponding to the flow at equilibrium when the loop is closed (i.e., breaking the

recycling loop). Then, comparing the system with and without the feedback loop allows us

to understand how the feedback loop contributes to transiently increasing or decreasing the

perturbation even if the long-term equilibrium in the two situations might be the same. This

method has been for instance applied to quantify the impact of the feedback emerging from

nutrient recycling on the asymptotic stability of food web (Quévreux et al., 2021).
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BOX 2: FEEDBACKS ACROSS TEMPORAL SCALES (1/2)

Ecological feedbacks do not only vary in space, but also in time, along the development of

populations, communities or ecosystems. At the population level, positive feedback loops

can dominate at small populations, while negative feedbacks (e.g., resource competition)

seem inevitable at high population levels. Starting at low levels, Allee effects will constrain

the development of the population, as too few individuals are present for cooperation or

group defense to be effective. This creates a minimum viable population. If, however, the

population manages to pass this threshold, the positive feedback will act to favor population

growth, eventually leading to a state where individuals are abundant and resources are

scarce. Competition for resources then creates a dominant negative feedback. When reaching

a demographic threshold, there is therefore a switch in the sign of the dominant feedback

loop that individuals experience: from positive feedbacks to negative ones. Such changes

in the sign of dominant feedbacks can also happen along ontogenies. This is for instance

the case of some shrubs in drylands: adult shrubs facilitate the establishment of juveniles,

while juveniles compete with adults for the availability of water and nutrients (Miriti, 2006).

When juveniles grow, adult plants no longer facilitate their recruitment but compete for the

resource availability, therefore changing the sign of the dominant feedbacks from positive to

negative. From a community point of view Yin et al. (2022) highlight how local feedbacks

can vary in time within communities, along succession. The authors show that facilitative

interactions are globally as frequent as competitive interactions in New Jersey grasslands

over fifty years. They also reveal that facilitation among species dominates at the early stages

of their settlement (colonization probability and general occurrence probability), while it

is less common at later stages (survival of species in the patch and the growth of their

population). This leads to a succession of dominant feedbacks (from positive to negative)

that is akin to the one proposed above within populations (Allee effects).
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BOX 2: FEEDBACKS ACROSS TEMPORAL SCALES (2/2)

At the ecosystem level, temporal succession of feedbacks along successional stages have

also been discussed. In their seminal work, Odum and Margalef suggested that ecosystem

development would lead to increasing dominance of negative feedbacks regulating ecosys-

tem functions and increasing its stability to external perturbations (Margalef, 1963; Odum,

1969). While the argument was mostly verbal at the time, there is now evidence of such

changes along successional times. In nitrogen-poor ecosystems, facilitation dominates at

early-successional stages because some nitrogen-fixing plants increase the availability of

nitrogen, which positively affects their growth capacities (positive feedbacks with soil). As

succession goes, higher availability of nitrogen drives phosphorus limitation and competi-

tive exclusion of early nitrogen-fixing species by late-colonizing ones eventually leading to

dominant negative feedbacks during the late stages (Menge and Hedin, 2009; Koffel et al.,

2021). Finally, this succession from positive to negative feedbacks can also be observed

in the context of species invasion. For instance, the “enemy release hypothesis” suggests

that invasive species may escape pathogens at initial stages, therefore leading to positive

(or weakly negative) feedback with the soil at initial stages. However, the accumulation

of pathogens in later stages contribute to stronger negative feedbacks (Klironomos, 2002;

Diez et al., 2010). Importantly, because feedbacks change over successional stages, they can

scale up to produce self-organized patterns at different times. This is the case in intertidal

systems, where fast colonizer plants do not self-organize in patches because they produce

many seedlings that rapidly occupy most of the landscape and stabilize existing wetland

channels (Schwarz et al., 2018). Later colonizing plants, on the other hand, are characterized

by a higher lateral expansion which leads to stronger biogeomorphic feedbacks and the

emergence of new vegetation-induced channels.
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39



Figure Box 1: Understanding a feedback loop using two complementary approaches. The716

feedback strength is obtained by multiplying the weight of the links along the circular path717

(here, egestion, mineralization, uptake, and grazing processes; left panel). The feedback718

strength estimates whether a loop will self-amplify (when positive) or limit (when negative)719

the effects of a perturbation. This also allows to compare the strength of different loops720

in a system. As a complementary approach, to understand how this feedback modulates721

the transient dynamics of the focal entity (here the herbivore) following a perturbation722

(here nutrient enrichment), one needs to control for the loop, and compare the dynamics723

of recovery and the distance to equilibrium with the feedback and when controlling for it724

(right panel). “R” stands for resources.725
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Figure 1: The length and sign of the feedback loop. Feedbacks can emerge when726

two species interact through mutualism (positive feedback) or between a species and727

its resource (negative feedback). Some feedback loops have longer lengths such as in728

intransitive competitive networks, where the feedback sign is determined by the number729

of negative links involved in the loop. “R” stands for resources.730
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Figure 2: Ecological feedbacks across spatial scales. At the scale of an individual or a731

species, interactions with the local abiotic environment generate feedback with resource732

availability or landforms (biogeomorphic feedbacks), but also more generally through733

niche construction processes (e.g., habitat creation or modification). At the population734

or community level, the individual or species may also be involved in demographic or735

behavioral feedbacks emerging from competition, facilitation, and density-dependent736

behavior. Last, at the landscape scale, populations, communities and ecosystems exchange737

individuals, resources and information, which generates spatial feedbacks linking local738

and landscape scale dynamics. For detailed examples not represented in this figure (e.g.,739

behavioral feedbacks or dispersal spatial feedback) see Table 1. “R” stands for resources.740
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Figure 3: Mapping the emergent properties from feedback loops. The position of each741

emergent property corresponds to a level of organization (from individual to ecosystem)742

and a spatial scale (local or spatial). See Table 1 for examples for each emergent property743

and the associated references.744
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Table 1: Examples of the different types of feedbacks and their associated emergent745

properties746

48



37 

Table 1:  Examples of the different types of feedbacks and their associated emergent properties 

Type of feedback Example Emergent property 

Species-environment 

feedbacks 

Biogeomorphic  Sea-grass meadows stabilize sediments and change hydrodynamic regime [1] 
Alternative stable states [2] 

Landscape formation [3-4] 

Involving resources  
Plant facilitation increases the availability of nutrients, water, and limits water 

evaporation, which positively affect their growth and maintenance in 

drylands [5] 

Alternative stable states [5-7] 

Self-organized patterns [6,7] 

Population and 

community-level 

feedbacks 

Behavioural 

feedbacks 

Fish populations in coral reefs display density-dependent foraging rates [8] Alternative stable states [8, 9]  

High predation risk areas generate nutrient hotspot through decomposition of 

carcasses and nutrient excretion, which fosters plant growth and the patch 

quality for herbivore consumption [10-13] 

Patchy distribution of resources [10-13] 

Demographic 

feedbacks 

Positive feedback between plants and pollinators [14] 

Negative feedbacks between predators and preys [15] 

Alternative stable states [14] 

Long transients, cycles [15,16] 

Spatial feedbacks 

Feedbacks driven by 

dispersal 

Dispersing individuals can experience density-dependent dispersal emerging 

from interspecific competition [17] or patch-dependent colonization rate [18] 

(e.g. which depends on the patch quality) creating a feedback between local 

and spatial dynamics  

Alternative stable states [19] 

Spatial heterogeneity and source-sink dynamics [18,20] 

Positive spatial feedbacks (rescue) or negative spatial 

feedbacks (anti-rescue) [19] 

Feedbacks driven by 

resource flows 

Seabirds excrete guano that positive affect their growth through a cascading 

effect on coral reefs and fish [21, 22] 

Source-sink dynamics of carbon and nutrients [23] 

Spatial auto-catalytic loop on functioning [24] 

Emergent colimitation of resources [25] 

Bidirectional exchanges of resources between ecosystems (e.g., at terrestrial-

aquatic ecotone) [25-27] 

Alternative stable states [28] 

Diffusion-induced instabilities [29,30] 

 

[1] Maxwell et al., 2017, [2] Carr et al., 2010, [3] Schwarz et al., 2018, [4] Temmink et al., 2022, [5] Rietkerk and van de Koppel 1997, [6] Klausmeir 1999, [7] Kéti et al., 2007, [8] De Roos and Persson 2002,                            

[9] Gil et al., 2020, [10] Bump et al., 2009, [11] Schmitz et al., 2010, [12] Monk & Schmitz 2022, [13] Johnson-Bice et al. 2022, [14] Lever et al., 2014, [15] Barraquand et al., 2017, [16] Hasting et al., 2018,                                    

[17] Fronhofer et al., 2015, [18] Pulliam 1988, [19] Harding and McNamara 2002, [20] Hui et al., 2004, [21] Graham et al., 2018, [22] Benkwitt et al., 2021, [23] Gravel et al., 2010, [24] Pichon et al., 2003,                                       

[25] Marleau et al., 2015 [26] Bartels et al., 2012, [27] Klemmer et al., 2020, [28] Gounand et al., 2014 [29] Marleau et al., 2010, [30] McCann et al., 2021   



Table 2: Examples of how feedback knowledge can help for conservation, restoration747

and mitigation measures across scales748
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Table 2:  Examples of how feedback knowledge can help for conservation, restoration and mitigation measures across scales 

 Description Consequence 

Ecosystem 

restoration 

Increasing the success of dryland restorations through higher seeding 

(fostering positive feedback from facilitation) and weed control (limiting 

competition on seedlings) 

Higher establishment success of plants [1] 

More carbon sequestration and services provided by plants [2] 

Maximizing the restoration success of coastal ecosystems by planting 

propagules in clustered patches and adding clams (interspecific facilitation) 

to promote positive feedbacks during establishment 

Higher survivorship, biomass and expansion of propagules [3-5] 

Landscape formation, carbon capture and storage [6] 

Managing the demography of harvested species to regulate population 

demography and maintain high catch or yield 

Fisheries assessment and management control can, in theory, maintain fisheries at a maximal sustainable 

yield either by increasing the catch when population demography is high (i.e., more negative feedbacks) or 

by adopting rebuilding plans for overfished species (promoting positive feedbacks) [7] 

Conservation 

Limiting the spread of invasive species such as island rats or foxes preying 

on seabirds, or coconut trees replacing birds’ nesting habitats to maintain the 

positive recycling feedback loop from bird guano 

Nitrogen depletion in soils that changes the stoichiometry of plants and the community composition [8,9] 

Disrupts the positive feedback mediated by guano that increased sea-bird demography, fostered island 

vegetation and coral-reefs’ functioning [10,11] 

Protecting the spatial feedbacks between adjacent ecosystems such as at the 

forest/stream ecotone 

Forest subsidies can cascade from organic matter to top consumers in streams (fish), where it fosters fish 

growth and food-web functioning [12]. Disruption of such coupling may lead to nutrient loading and 

stream eutrophication [13] 

Protecting specific marine areas by excluding fishing pressure to promote 

restoration of adjacent areas through spatial rescue (positive spillover via 

dispersal from the marine protected area) 

Designing effective marine protected areas contribute to preserve larval sources, areas connectivity, and 

fish population abundances [14] 

Climatic 

mitigation 

Understanding the feedback loop involved in decomposition process (from 

organic carbon to carbon release in the atmosphere) to design efficient 

carbon sequestration measures 

Mechanisms such as predation risk [15,16] and priming effect [17-19] can accelerate the loop of carbon 

decomposition and lead to more carbon loss and in shorter timescales 

Understanding animal-driven recycling loops involving nutrient and carbon 

cycles to design climatic mitigation measures and species conservation 

Trophic downgrading of large animals breaks nutrient and carbon recycling loops and lead to reduced 

nitrogen and carbon cycles, higher soil-respiration rates, lower ecosystem functioning, and can ultimately 

switch ecosystems from carbon sink to source [20-24] 

[1] Gómez-Aparicio 2009, [2] Shackelford et al., 2021, [3] Zhang et al., 2021 [4] Renzi et al., 2019, [5] Silliman et al., 2015, [6] Temmink et al., 2022, [7] Frank et Oremus, 2023, [8] Croll et al., 2005, [9] Young et al., 2010,  

[10] Graham et al., 2018, [11] Klemmer et al., 2020, [12] Tanentzap et al., 2014, [13] Harvey et al., 2016, [14] Gaines et al., 2010 , [15] Fontaine et al., 2004, [16] Fontaine et al., 2007, [17] Hawlena et al., 2010,                    

[18] Hawlena et al., 2012, [19] Friggens et al., 2020, [20] Wilmers et al., 2012, [21] Dirzo et al., 2014, [22] Doughty et al., 2016, [23] Leroux et al., 2020, [24] Malhi et al., 2022 
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