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ABSTRACT: Anisogamy has evolved in most sexually reproducing multicellular organisms allowing the definition of the male and female

sexes, producing small and large gametes. Anisogamy, as the initial sexual dimorphism, is a good starting point to understand the evolution

of further sexual dimorphisms. For instance, it is generally accepted that anisogamy sets the stage for more intense mating competition in

males than in females. We argue that this idea stems from a restrictive assumption on the conditions under which anisogamy evolved in the

first place: the absence of sperm limitation (assuming that all female gametes are fertilized). Here, we relax this assumption and present a

model that considers the coevolution of gamete size with a mating competition trait, starting in a population without dimorphism. We vary

gamete density to produce different scenarios of gamete limitation. We show that, while at high gamete density the evolution of anisogamy

always results in male investment in competition, gamete limitation at intermediate gamete densities allows for either females or males to

invest more into mating competition. Our results thus suggest that anisogamy does not always promote mating competition among males.

The conditions under which anisogamy evolves matter, as well as the competition trait.

anisogamy | mating competition | gamete motility | gamete limitation | adaptive dynamics | sexual selection

Introduction

Anisogamy is widespread among sexually reproducing multicellular organisms (Lessells et al., 2009), across animals, plants, and

fungi. Because it is the earliest possible sexual dimorphism to have evolved, anisogamy is likely to have influenced the evolution

of later sexual dimorphisms or sex-biases by affecting how the sexes experience selection on reproductive traits. Here, we focus

on the relationship that anisogamy bears with the evolution of sex-biases in traits involved in intrasexual competition for

mating opportunities, a question that belongs to the field of sexual selection. The sexual selection perspective has so far been

centred on the study of animal species, and with a bias towards clades that exhibit conspicuous morphologies and behaviours

related to sexual selection (Beekman et al., 2016). Such a bias could restrict our understanding of the evolutionary dynamics at

play, by generalizing from the special cases of motile organisms, that are internal fertilizers or targeted external fertilizers and

may not represent well the ancestral species in which the transitions from isogamy to anisogamy would have occurred (Parker,

2014).

Here, we attempt to clarify the relationship between the evolution of anisogamy and sex-biases in mating competition traits,

by taking the point of view of sessile broadcast spawning animals transitioning from isogamy to anisogamy. In the introduction,

we explore the current line of thinking about the relationship between anisogamy and sex-biases in competition for matings in
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the field of sexual selection, largely dominated by the Darwin-Bateman paradigm (Dewsbury, 2005) stating that anisogamy

should generally favour more intense competition for mating in males. We highlight what we consider to be hidden restrictive

assumptions that underlay this claim. We propose predictions regarding the evolution of sex-biases in mating competition

traits corresponding to different scenarios of anisogamy evolution: they include, but are not limited to, the predictions made by

the Darwin-Bateman paradigm. We then present and analyse an evolutionary dynamics model of the coevolution of gamete

size and mating competition traits, starting in an isogamous population.

Anisogamy and the Darwin-Bateman paradigm. The field of sexual selection strives to describe patterns of sex-differences in

competition for mating and understand their evolutionary origin (Andersson, 1994, pages 5-7). An empirical approach to

the question suggests that, in the range of species studied today from the perspective of sexual selection, competition for

mating is on average more intense in males (Janicke et al., 2016; Singh and Punzalan, 2018), although there is large inter- and

intraspecific variation, sometimes within populations and on short time scales (e.g. Forsgren et al., 2004). This general trend

raises the possibility that anisogamy could ultimately be favouring the evolution of traits involved in competition for mating in

the sex with the smaller, more numerous gametes. Nevertheless, a well-supported underlying mechanism is missing to conclude

to a causal link with anisogamy. In addition, most species for which this type of sex-specific data are available (see Janicke

et al., 2016) are model organisms or have been the focus of sexual selection studies because they present conspicuous mating

traits and thus do not represent a random sample of taxa.

The so-called "Darwin-Bateman" paradigm (Dewsbury, 2005) proposes that males should often experience stronger selective

pressure to invest in mating competition traits because anisogamy causes variance in reproductive success to be higher in

males than in females, a pattern directly caused by differences in gamete numbers. Another way to understand the argument

is that female reproductive success is limited by fecundity, because all female gametes are always fertilized, sperm being in

excess, while male reproductive success is limited by the number of mates. This line of thinking originated with the verbal

arguments of Bateman (1948), which were influential in the field of sexual selection and fruitfully criticized (see Sutherland,

1985; Tang-Martinez and Ryder, 2005; Gowaty et al., 2012; Hoquet, 2020), leading to several controversies on the actual

evolutionary forces at play (e.g. Queller, 1997; Kokko and Jennions, 2008; Fromhage and Jennions, 2016). The Darwin-Bateman

paradigm is currently widely accepted in the field of sexual selection (Schärer et al., 2012; Janicke et al., 2016; Parker and

Pizzari, 2015; Parker, 2014; Lehtonen et al., 2016; Fromhage and Jennions, 2016, to cite a few). However, it relies on the

assumption that sperm limitation is absent, a view that may have been influenced by model species chosen for the study of

sexual selection.

Thinking like a sessile broadcast spawner. To avoid being influenced by analogies with classical sexual selection model systems

(birds, fish, amphibians, or insects) that have evolved in an anisogamous state for a long time, let us instead imagine a scenario

involving animals that resemble the ones that are likely to have transitioned from isogamy to anisogamy in the first place:

sessile marine broadcast spawners (Lehtonen and Parker, 2014; Parker, 2014). Being external fertilizers, they release gametes

in the water column and there is no direct contact between mating partners or between parents and offspring. This precludes

post-fertilization parental care, but does not prevent sexual selection from acting through competition and mate choice. Indeed,

as is the case for all sessile sexually reproducing species (Beekman et al., 2016), broadcast spawners can develop gamete-level

traits that allow competition or mate choice to occur as gametes encounter before fertilization (Evans and Sherman, 2013;
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Kekäläinen and Evans, 2018). It is important to realize that these gamete-level traits influence the reproductive success of

adult individuals and are thus comparable to classical examples of sexually selected traits (e.g. peacock tail or deer antlers).

Because of external fertilization, broadcast spawners can also easily be subjected to situations of gamete limitation, where

the assumption that sperm is in excess does not hold (Levitan and Petersen, 1995; Levitan, 1998a,b; Yund, 2000; Crean and

Marshall, 2008). Given that sessile marine broadcast spawners are expected to be the ancestral stage transitioning from

isogamy to anisogamy (Lehtonen and Parker, 2014; Parker, 2014), this raises the question of the role of gamete limitation in

the evolution of anisogamy.

Anisogamy, from gamete competition to gamete limitation. Classically, there are two main theoretical frameworks for the

evolution of anisogamy in animals (Lehtonen and Parker, 2014), gamete competition and gamete limitation. Gamete competition

refers to a context where gamete encounters are frequent so that competition between the more numerous male gametes is the

limiting factor for their fertilization success, while Gamete limitation refers to a context where gamete encounter rate is so low

that it becomes the limiting factor for fertilization success of both sexes.

In the gamete competition framework, initially developed by Parker (Parker et al., 1972), the evolution of anisogamy is

mainly driven by a constraint imposed on the survival of the zygote (Bulmer and Parker, 2002), which itself depends on gamete

size: larger gametes harbour more resources and provide zygotes with higher survival chances. In this framework, there is

no sperm limitation because gamete density is high enough and gametes encounter each other easily, which means that all

larger gametes are automatically fertilized while some proportion of the smaller gametes are in excess. In the gamete limitation

framework, which originated with Kalmus (Kalmus, 1932) the evolution of anisogamy arises as a strategy to increase gamete

encounter rates, in an environment where gamete density is very low (see also Dusenbery, 2000; Iyer and Roughgarden, 2008).

The evolution of anisogamy in this framework is favoured by gamete limitation, i.e. the fact that not all the gametes get

fertilized and this suggests that both sexes could experience selection to develop traits increasing fertilization success. Thus, in

the classical gamete competition framework, we find the conditions for females to evolve as a provisioning parent and males as

intrasexual competitors, which is concordant with the Darwin-Bateman paradigm, while in the gamete limitation framework

both sexes have the scope to invest into a competition trait that could increase their fertilization success, given that not all

female eggs are fertilized.

Lehtonen and Kokko (2011) showed that gamete competition and gamete limitation are not two mutually exclusive theories

on the evolution of anisogamy, but rather two complementary ideas that speculate on how anisogamy may have evolved in

populations of high or low gamete densities. Gamete densities can vary continuously, and we envision the classical scenarios of

gamete competition and gamete limitation as opposite extremes on that spectrum. The complete absence of gamete limitation

corresponding to the classical gamete competition scenario would be a special case, occurring only at very high gamete density.

As gamete density decreases, gamete limitation would appear but would not preclude competition for mating. As competition

intensity decrease with decreasing gamete density, it can eventually become negligible at the lower extreme of the spectrum,

which corresponds to the classical gamete limitation scenario and is termed here extreme gamete limitation.

Given the putative role of broadcast spawners in anisogamy evolution and them being subjected to sperm limitation in

contemporary species, the role of gamete limitation in the evolution of anisogamy and competition for mating should be

investigated. In recent years, researchers have generally emphasized the importance of sperm limitation in fully understanding
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sexual selection (Iyer and Roughgarden, 2008; Levitan, 1998b; Beekman et al., 2016; Evans and Sherman, 2013) and the

evolution of anisogamy (Dusenbery, 2000, 2006; Lehtonen and Kokko, 2011). We now want to understand how it can influence

the connection between anisogamy and traits involved in competition for mating.

Does anisogamy promote male competition? The Darwin-Bateman paradigm assumes that anisogamy causes males to compete

because their gametes are always in excess. However, models of the evolution of anisogamy do not imply the absence of sperm

limitation, and contemporary broadcast spawning species are often subject to gamete limitation. We thus feel that there is

a disconnect between theories of the evolution of anisogamy, and how the role of anisogamy is integrated in theories of the

evolution of sex-biases in competition for mating. In particular, the consequences of gamete limitation on the evolution of

sex-specific competition for mating remain largely unexplored (but see Lehtonen et al., 2016). We want to bridge this gap with

a model that explores the role that anisogamy, as a first sexual dimorphism, can have in the evolution of sex-biases in mating

competition traits. To do this, we start from a population with two mating types but no sexual dimorphism, and allow both

gamete size and a competition trait to coevolve, drawing from the same fixed energy budget allocated to reproduction.

We predict in agreement with previous work (Schärer et al., 2012; Lehtonen et al., 2016) that in a model of the evolution of

anisogamy in the absence of gamete limitation, mating competition traits should evolve more readily in males, as this situation

already presupposes male competition and the absence of female reproductive failure. However, we argue that with some

degree of gamete limitation either sex should be able to evolve competition traits, due to the fact that both could maximize

their reproductive success that way. The final outcome could be dependent on the sex-specific cost of the competition trait

(Kokko et al., 2012).

In the following sections, we develop and analyse a mathematical model of the coevolution of gamete size together with

a mating trait starting in a population without sexual dimorphism. The mating traits affect fertilization success and we

consider them to be competition trait whenever they impose a cost on the reproductive success of other individuals of the

same mating type (intrasexual cost). We consider a population of sessile marine invertebrates releasing gametes in the water

column, and, inspired by Lehtonen and Kokko (2011), we vary population density continuously to explore increasing levels

of gamete limitation. Individuals have a fixed energy budget that can be allocated to either gamete provisioning (gamete

size) or mating traits. Gamete and zygote survival probability are a function of their size. Fertilization events are controlled

by a time-dependent process that accounts for gamete density, size and speed, and is Fisher consistent (the total number of

male and female fertilizations are equal). We analyse independently the evolution of two types of mating traits, of which

the effect on fertilization success is mechanistically described in the model. They are typical mating competition traits for

sessile organisms (Beekman et al., 2016): gamete-level traits that allow adults of the same mating type to compete with each

other over fertilization opportunities. The first type is gamete motility traits, often found in nature prominently in the smaller

gametes. The second type is traits increasing the apparent size of the gametes, which boosts the ability to capture nearby

gametes of the opposite mating type, corresponding to several strategies observed in nature: chemoattraction and jelly coat

surrounding the larger gametes of several marine invertebrates (e.g. Farley and Levitan, 2001; Podolsky, 2002). We focus on

parameter spaces where mating competition occurs and explore several possible relationships between gamete size and cost

efficiency of the mating traits based on mechanistic modelling. We then examine the resulting evolving sex-bias in energy

investment to the mating competition trait.
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Model

We present a mechanistic mathematical model of the evolution of anisogamy, where we consider the coevolution of gamete size

(volume) and a mating trait in a population of sessile marine animals with two mating types, reproducing through external

fertilization. We first give a verbal and graphical presentation of the structure and analysis of the model before going into the

mathematical details.

The life cycle of the organism is modelled in two steps and assumes discrete, non-overlapping generations (Figure 1). In the

first step of the life cycle, a fixed number of brooding spots on the sea floor are occupied by adult individuals that produce

gametes. Individuals share the allocation of a fixed reproductive budget between the production of gamete and investment into

a mating trait. The mating trait increases the gamete fertilization success of individuals, but is at the exclusion of another

fitness component, as it reduces the number of gametes produced per individual due to the investment trade-off. The mating
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Fig. 1. Diagram representation of the model structure, with the complete life cycle and main parameters. The different trade-offs of energy allocated to
reproduction are represented in the top left panel, where e is the fixed total energy budget allocated to reproduction by each individual. e can be invested
into provisioning (gamete mass) which increases gamete and zygote survival, or into a mating trait increasing fertilization success. rx,y and mx,y ,
respectively, the relative investment in mating trait and gamete mass are the two coevolving traits, independent for the x and y mating types. Hexagons
represent diploid individuals, either adults with a determined mating type (x or y) or newly formed zygotes prior to mating type determination. Circles
represent haploid gametes, marked with the mating type of the parent individual and only able to fertilise gametes marked with the opposing mating type.
Red crosses denote gametes or zygotes that do not pass the size-dependent survival stages.
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trait affects the reproductive success of other individuals in the population as well. It can impose a cost to other individuals of

the same mating type (intrasexual cost of the trait), in which case the mating trait is termed a mating competition trait. At

the same time, the mating trait is likely to increase the reproductive success of individuals of the other mating type (intersexual

benefit of the trait) in most scenarios where gamete density is not extremely high. Intrasexual cost and intersexual benefit are

not mutually exclusive. We quantify the intrasexual cost of the mating trait and use it to define parameter spaces of interest,

where substantial competition for mating occurs. The number of gametes is also traded off against the size of each gamete,

with larger gametes having a higher chance of surviving to the next step of the life cycle (Figure 2). Although there is little

empirical data on the specific relationship between gamete size and survival (but see: Togashi et al., 1997), it seems reasonable

to assume that larger gametes are more robust and thus have greater chances to survive to enter the mating pool.

In the second step of the life cycle, gametes are synchronously released into a common mating pool. In this mating pool,

the gametes have a fixed amount of time during which they have to find a fusion partner to fertilize. Fertilizations occur as

the result of collisions between gametes of opposite mating types, generating zygotes, the volume of which corresponds to

the added volumes of the gametes (Figure 1). Zygote survival is also size-dependent (Figure 2). Surviving zygotes enter the

next generation as adult individuals. Our model does not make restrictive assumption on the genetic architecture of the sex

determination system. However, it does assume that individuals are produced in equal frequencies for both mating types.

In our analysis, we investigate the evolution of anisogamy by allowing for coevolution of two gametic traits: gamete size

and the relative investment into the mating trait. We assume evolution to start under the constraint of isogamy, meaning

equal trait values for both mating types. Under the isogamic constraint, the gamete traits of the population evolve towards an

isogamic attractor. If asymmetric selection appears, such as disruptive selection, the constraint can then be removed, which

would correspond to the evolution of a genetic machinery allowing for sexual differentiation, and anisogamy evolves. Even

though disruptive selection can appear already before reaching the isogamic attractor, we assume that evolving the genetic

machinery necessary to remove the isogamic constraint is non-trivial, so that the system reaches the attractor before the

constraint is removed. Therefore, we first solve for evolutionary attractors under constrained isogamy. Then, we determine if

these isogamic attractors are endpoints of evolution or if disruptive selection appears, leading to the evolution of anisogamy.

For parameter combinations where anisogamy arises, we determine how the trait values of gamete size and investment in the

mating trait evolve for the two mating types by solving for the evolutionary path.
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Fig. 2. Survival probability of gametes and zygotes as a function of their excess mass (volume) allocated to survival, m− 1. A survival of 50% is reached
when the excess mass equals the half-saturation constant K marked out by the dashed line.
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Gamete production. In the first step of the life cycle, surviving adult individuals are randomly chosen to occupy brooding

spots occurring with a density of 2d, where they can produce gametes. Surviving individuals are assumed to be in abundance

such that all brooding spots are occupied. As the two mating types x and y are in equal frequency, individuals of each mating

type occupy spots with a density of d. Each individual possesses a fixed amount of energy e allocated to gamete production. A

proportion of the energy ri is spent on a mating trait (see details further down), where i denotes the mating type and can be

either x or y. We refer to the trait ri as relative mating trait investment (or shortly, mating trait investment). The remaining

energy e(1 − ri) is converted into gamete volume, with each gamete having a volume of mi. The number of gametes ni produced

per individual of mating type i is thereby a function of both the gamete volume mi and the mating trait investment ri, and is

given by

ni(mi, ri) = e(1 − ri)
mi

, [1]

where one can see that the investment into the mating trait ri is traded off against gamete numbers ni, as mentioned above.

The probability that a gamete survives until it enters the mating pool (the second step of the life cycle) is an increasing

function of its size. We assume gamete cells must have a minimum volume of mi = 1 to perform their function and that any

additional gamete size, mi − 1, makes the gamete more robust and therefore more likely to survive. The survival probability of

a gamete sg is given by the following saturating function sg(mi) = (mi − 1)/(Kg +mi − 1), where Kg gives the half-saturation

constant of gamete survival, i.e. the excess mass required for a 50% probability of survival (Figure 2). We will refer to Kg as

the gamete size-survival parameter, where the survival probability drops quickly for gametes with sizes smaller than Kg.

Hence, the number of gametes entering the mating pool, per individual of mating type i, ni,0, equals the number of gametes

produced times their survival probability: ni,0(mi, ri) = ni(mi, ri)sg(mi).

Note, the gamete survival function is qualitatively similar to the one used in Bulmer and Parker (2002), but ours only has

one parameter. In contrast to Bulmer and Parker (2002), where the survival function models both the gamete survival and

gamete fertilization probability, our survival function only gives initial gamete survival. We model the gamete fertilization

dynamics mechanistically as presented below.

Gamete fertilization. In the mating pool, the second and last step of the life cycle, gamete fertilization occurs, which produces

the zygotes that will become the adult individuals of the next generation. Here, the gametes that survived enter the mating

pool, with a fixed amount of time tend after which the mating period ends. During the mating period, the gametes move

around randomly and can collide with each other. Each collision between gametes of the two mating types x and y results in a

fertilization with probability p. A fertilization event removes both gametes from the mating pool and produces a zygote. To

determine the collision frequency between gametes of the two mating types, we use collision theory (originally used to model

chemical reaction rates between gas particles, McNaught et al., 2014). The collision frequency depends on three factors: the

sizes of the gametes mx and my, the gamete speeds vx and vy (see details further down) and the density of gametes, where all

three factors increases the collision frequency (see Appendix A1, Eq. A1).

The initial gamete density of mating type i is given by ni,0(mi, ri)d, i.e. the number of surviving gametes per individual

contributing to the mating pool (at t = 0) multiplied by the population density d. The number of gametes then declines over

time as they collide and get fertilized. At the end of the mating time tend, the fertilization success fi is given by the fraction of

fertilized gametes fi = (ni,0 − ni,tend )/ni,0 forming zygote offspring (Figure 3, Eq. A6). Higher population density increases
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Fig. 3. Number of gametes and zygote offspring per adult individual over the mating period under a. gamete limitation (low gamete density) and b. gamete
competition (high gamete density). These graphs are given by equation A6 with parameters: initial female gamete count nx,0 = 5× 105, initial male
gamete count ny,0 = 106 and the product of pdσxyvxy equals 10−7 in a. and 10−5 in b. (this product contains population density d and is proportional
to the gamete fertilization rate)

the chances for the gametes to find a fusion partner within the mating time (compare low and high population density in

Figure 3a and b, respectively).

The life-cycle completes by the zygotes having to survive until adulthood. Just as for the gametes, the survival probability

of zygotes is an increasing function of volume mz (which is given by the combined volumes of the two gametes that fused to

produce it mz = mx+my) according to sz(mx,my) = (mx +my − 1)/(Kz +mx +my − 1), where Kz gives the half-saturation

constant of zygote survival (Figure 2), and we will refer to Kz as the zygote size-survival parameter.

The mating traits and mating competition. We define a mating trait as a trait increasing the fertilization success fi. The trait

is subjected to an evolutionary trade-off, whereby investing into the mating trait is at the cost of reducing another fitness

component (in our model, gamete numbers in Eq. 1, we elaborate more on this in Supplementary information S2.4). We

investigate separately two alternative types of mating traits: gamete motility or fusion partner capture, and we are particularly

interested in parameter spaces where these traits are involved in competition for mating. We quantify competition by the

intrasexual cost of the trait, which is defined as the reduction in the reproductive success of a focal individual caused by an

increased investment in the mating trait in individuals of the same mating type (see Supplementary information S2.6). For

example, an intrasexual cost of 1 means that the mating trait causes a reduction in relative fitness of the focal individual equal

to the increase in proportional investment (without trade-off) into the mating trait of individuals of the same mating type.

Accordingly, an intrasexual cost of 0.1 means that the reduction in relative fitness of the focal individual is one tenth of the

increase in proportional investment into the mating trait. In a similar way, we define the intersexual benefit of the mating trait

as the increase in fitness perceived by a focal individual when the mating trait of the other mating type increases. We note

that the intrasexual cost and intersexual benefit of the mating trait do not describe selection on the trait, or explain why the

trait evolves, but rather describe population level consequences of the evolution of the trait.

(i) Competition through motility: In this scenario, we assume that gametes are in still water, resulting in no basal

motility of the gametes. The mating trait is then a flagella-like mobility structure that allows gametes to move and encounter a

fusion partner.
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To mathematically derive the gamete speed, we use fluid mechanics assuming spherical gametes and rely on the two different

methods proposed by Dusenbery (2009), giving different outcomes in terms of the size-speed relationships (see Supplementary

information S1.1 for full details and derivations). The first method is strictly mechanistic, and we assume that (i) the metabolism

dedicated to propulsion is proportional to the energy spent on the propulsion trait and (ii) the thrust of the propulsion trait is

proportional to the metabolism dedicated to it. Applying fluid dynamics principles for friction of small entities in water (small

Reynolds numbers), this scenario results in gamete speed being proportional to linear size (radius). There is good empirical

evidence for such a linear size-speed relationship when comparing the motility of small organisms in water across a large

range of genera of different sizes (Dusenbery, 2009, Fig. 8.3), as well as comparing gamete speeds between different genera

(Dusenbery, 2009, Table 20.1).

The second method has a less mechanistic underpinning, but is based on insights from empirical evidence comparing gamete

speeds within genera. In that case, data suggests that it may be more appropriate to assume the force of propulsion to be

invariant to cell size (Dusenbery, 2009, Table 20.1). This assumption leads to gamete speed being inversely proportional to

the radius, which is the classically assumed scenario for earlier mechanistic models of anisogamy evolution (Hoekstra, 1984;

Hoekstra et al., 1984; Dusenbery, 2000, 2006; Togashi et al., 2009).

These two approaches result in opposite behaviour in terms of the size-speed relationships, but both relationships have

empirical support at different scales. This leaves us with two different size-speed relationships that are relevant to consider,

and we find that both can be expressed by the following equation,

vi(mi, ri) = v0

√
ri

1 − ri
m
αm/3
i , [2]

where v0 is a velocity scale factor and αm determines how gamete speed is affected by gamete size mi. The positive size-speed

relationship is given by αm = 1 and the negative size-speed relationship by αm = −1. An intermediate value of αm corresponds

to an intermediate scenario where for αm > 0, larger gametes are faster than smaller gametes for a given proportional

investment ri, while αm < 0 results in smaller gametes being faster for the same ri.

(ii) Competition through fusion partner capture: In this scenario, we assume that all gametes are in suspension in

water currents, and have similar motility due to the movement of their environment with gamete speed given by just the basal

velocity v0.

Here, we introduce another type of mating trait, which increases the collision target size of the gamete. Gametes move

around randomly, with similar motility v0, which is invariant to size, and the mating trait either increases the gamete target

size through physical structures or by chemoattraction. In the absence of this trait, the gamete volume m is made of the

expensive vital structures, increasing the survival probability of both the gamete and its potential zygote. The mating trait

introduces a less costly way of increasing the collision target, but without giving any benefits in terms of survival of the gamete

or zygote. The efficiency of this trait depends on αd, the dimensionality of the scaling between energy invested and increase in

apparent volume (see Supplementary information S1.2 for full details and derivations).

We consider several variants of the trait’s physical structure, where different limiting or costly cellular compounds lead to

different dimensionalities of the cost. First, we consider that the compound used to fill the apparent volume is costly (although

cheaper than the regular cell volume). This fits the biological scenario of producing a jelly coat outside the cell membrane
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or adding cytoplasm. The cost of the trait is then relatively high because it is proportional to the increased volume, and its

dimensionality is therefore αd = 3. Second, we consider that the cost of increased volume mostly comes from compounds of the

cell membrane, which gives a cost proportional to increased surface area, with a dimensionality αd = 2. For completeness, we

include a third variation of this competition trait, for which we lack a good biological example. In this third scenario, the main

cost comes from a cellular function that scales with the radius of the cell, and its dimensionality is therefore αd = 1.

The following single equation gives the volume of the collision target of a gamete of mating type i,

m̂i(mi, ri) = mi

(
1 + 10m(3−αd)/3

i

ri
1 − ri

)3/αd
. [3]

where αd gives the dimensionality at which the mating trait scales with energy investment, and a value of 3, 2 or 1 corresponds

to producing jelly coat, membrane area and a function with a cost scaling with cell radius, respectively.

As an alternative to the scenarios above, where the gamete uses physical structures to increase its collision target, we also

consider a scenario where gametes can use chemoattraction to attract a fusion partner. In this case, the gametes produce and

release chemoattractants and can be detected at a certain threshold concentration. At detection, which is always caused by the

gamete with the larger chemoattractant zone, fertilization ensues. A particularity of chemoattraction is that the trait is only

effective in the mating type with the larger chemoattraction radius, because the chemoattractant from the mating type with

the smaller radius will never reach the cell surface of the other mating type before detection occurs in the other direction. The

chemoattractant therefore increases the apparent volume of the collision-target of the gamete with the larger chemoattractant

zone, which is given by Eq. 3 with αd = 1, and the volume simply remains m̂j(mj) = mj for the mating type with the smaller

chemoattractant zone (i.e., the mating trait investment rj has no effect).

Analysis

We investigate the coevolution of two traits, gamete size mi and mating trait investment ri, in the two mating types x and y,

in a large diploid population. These two traits are coded by many autosomal loci of small effect. The expression of each

trait is linked to the mating type: each genotype carries the two trait values of the two mating types, defined by the vector

T = (mx, rx,my, ry), but an individual will only express the trait values corresponding to its own mating type. Initially,

we assume evolution to be under isogamic constraint, meaning that the two mating types x and y have equal gamete size

mx = my = mc and equal mating trait investment rx = ry = rc. Under the isogamic constraint, the strategy of a genotype is

thereby given by only two traits Tc = (mc, rc), where c denotes the traits being under the constraint.

In our analysis, we consider a large resident population with a strategy T determined by many loci, which are initially all

homozygous. We consider the iterative introduction of new mutations, each affecting arbitrarily one of the loci determining

the strategy and producing a slight deviation in one or more of the traits. When the mutating locus is homozygous for the

new allele, it leads to strategy T ′A. However, because new mutations are rare, they initially always occur as heterozygotes

with the resident allele at that locus. Such mutant heterozygotes have the strategy (T ′A + T )/2 = T ′ = (m′x, r′x,m′y, r′y). This

assumption aligns with the locally additive genotype-to-phenotype mapping as described in Metz and de Kovel (2013).

To evaluate the initial invasion success of such a mutant allele, we only need to consider the reproductive success of the

strategy of this mutant heterozygote T ′, as discussed in Metz and de Kovel (2013) and we refer to this strategy as the mutant

10



Siljestam and Martinossi-Allibert | Anisogamy and sex-bias in competition | Am.Nat.

strategy. In the context of evolution under isogamic constraint, we replace T with Tc and T ′ with T ′c. The expected long term

growth of such rare mutant strategy T ′ is given by its reproductive success F ′i (Eq. A14) divided by the reproductive success of

the resident strategy Fi (Eq. A9), averaged for the two mating types x and y (Shaw and Mohler, 1953),

w(T ′, T ) = 1
2

(
F ′x(m′x, r′x, T )

Fx(T ) +
F ′y(m′y, r′y, T )

Fy(T )

)
. [4]

Note that the resident reproductive success Fi is not affected by the mutant strategy T ′, as the mutant is assumed to be

rare. For the same reason, the mutant reproductive success F ′i is not affected by the mutant traits of the other mating type.

We refer to w(T ′, T ) as the invasion fitness of the mutant strategy where the mutant is able to increase in frequency, and

thereby invade, whenever w(T ′, T ) > 1.

Adaptive dynamics. By assuming large population and rare mutations of small effect, we can use the adaptive dynamics

framework to predict the evolutionary dynamics (Metz et al., 1992; Geritz et al., 1998; Metz and de Kovel, 2013). Large

populations ensure close to deterministic dynamics, small mutational effect ensures that a mutant allele that invades will always

replace and become the new resident allele as long as the population is under directional selection (Dercole and Rinaldi, 2008;

Priklopil and Lehmann, 2020) and rare mutations ensure that a mutant allele will either fixate or go extinct before a new

mutant is introduced. If a mutant allele T ′A fixates, its strategy will become the new resident strategy T of the population.

This results in a trait substitution sequence where the strategy of the population T evolves in a step-wise manner for each

invading mutant.

The selection gradient β is given by the gradient of the invasion fitness (Eq. 4) when the mutant strategy T ′ is similar to

the resident strategy T ,

β(T ) = Ow(T ′, T )
∣∣∣
T ′=T

. [5]

The selection gradient β gives the direction in the trait space of T in which mutants have the highest invasion fitness, and

multiplied with the mutational variance-covariance matrix, it gives the expected direction of evolution. Within the limit of

small mutational effect, iterating this mutation-invasion process results in a gradual evolutionary path given by

dT
dt = 2Cβ(T ), [6]

(Dieckmann and Law, 1996; Champagnat et al., 2006; Durinx et al., 2008; Metz and de Kovel, 2013), where C is the product of

the mutation rate, effective population size and the mutational variance-covariance matrix on T ′ (examples of evolutionary

paths obtained using Eq. 6 are found in the Result section in Figure 4). The factor two comes from the fact that as soon a

mutant allele with strategy T ′ in heterozygote form has invaded and then fixated, it will be the resident in homozygote form

with strategy T ′A providing twice the phenotypic changes of the heterozygote strategy T ′ (Metz and de Kovel, 2013).

For our analysis, we consider the traits to evolve proportionally at equal rates with C being equal to the identity matrix

times one half (for details, see Appendix A5.1) and the evolutionary path (Eq. 6) is then given by the selection gradient (Eq. 5).

Predicting the evolutionary outcomes. We can predict the outcomes of the evolutionary path (as given by Eq. 6) using the

adaptive dynamics framework. Strategies T where directional selection ceases, i.e β(T ) = 0, are of special importance. These
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strategies are called singular strategies, and we denote them T ∗ (or T ∗c for evolution under the isogamic constraint). A singular

strategy T ∗ has two important stability properties. First, convergence stability tells whether T ∗ is an attractor or a repeller of

the evolutionary dynamics, i.e, whether trait evolution will approach it or not. Second, evolutionary stability tells whether T ∗

can be invaded by nearby mutant strategies. In Appendix A5.3 we give details on how we derive these stability properties for

the four and two-dimensional trait spaces of T and Tc, respectively.

Each strategy of the isogamic constrained evolution Tc = (mc, rc) has a corresponding isogamic strategy for the unconstrained

evolution, namely T = (mc, rc,mc, rc) and we denote this strategy T=. Also, each singular strategy of the constrained

evolution T ∗c = (m∗c , r∗c ) happens to also always be a singular strategy at its corresponding point in the unconstrained

evolution T ∗= = (m∗c , r∗c ,m∗c , r∗c ), due to the symmetry of the competition trait between the mating type (Supplementary

information S2.1). This gives each isogamic singular strategy pair (T ∗c , T ∗=) a total of four stability properties: the convergence

stability and evolutionary stability of both the constrained and the corresponding unconstrained evolution.

The evolutionary process is as following: first, under the isogamic constraint, evolution reaches its attractor (singular

point) T ∗c . Then, the constraint is released, and we see if the evolution diverges from T ∗=. Under this setting we can, as

described below, classify the evolutionary dynamics at each singular strategy pair (T ∗c , T ∗=) into different scenarios. For our

model, four different scenarios for the singular strategy pair turn out to be important: it can either be a point that repels

isogamic constrained evolution, or it can be an attractor of the constrained evolution in which case three outcomes are possible:

evolution transitions from isogamy to anisogamy, evolution comes to a halt and the population stays isogamic, or genetic

polymorphism evolves.

Classification of the evolutionary dynamics at isogamic singular point. To predict the evolutionary dynamics, we look at the properties

of the isogamic singular strategies. We classify the evolutionary dynamics around each isogamic singular strategy pair (T ∗c , T ∗=),

where we first look at the convergence stability of T ∗c telling whether the constrained evolution will approach T ∗c in the first

place or not. If T ∗c is a repeller it will not be approached by evolution and the other three stability properties (the evolutionary

stability of T ∗c and the convergence and evolutionary stability of T ∗=) have no relevance. On the other hand, if T ∗c is an attractor,

the isogamic constrained evolution will approach it and, two or potentially three different evolutionary outcomes can follow

depending on the other three stability properties:

1) An attractor of the isogamic constrained evolution T ∗c is an evolutionary end-point if both T ∗c and its corresponding T ∗=

are attracting and uninvadable. Then when evolution reaches T ∗c , no further mutants can invade in either the constrained or

unconstrained trait space. Hence, evolution stops and the population stays isogamic.

2) An isogamic attractor T ∗c is a point where anisogamy evolves if T ∗c is uninvadable, but T ∗= is invadable and repelling for

the unconstrained evolution. Then it is a special type of saddle point, being a fitness maximum in the isogamic constrained

two-dimensional trait manifold but a fitness minimum in orthogonal directions (where the gamete traits of the mating types

diverge) in the four-dimensional unconstrained trait manifold. This corresponds to disruptive selection for gamete size mi

and/or mating trait investment ri to diverge between the two mating types x and y for the unconstrained evolution, which acts

as a selection pressure for the removal of the isogamic constraint. As soon the isogamic constraint is removed, gamete size mi

and mating trait investment ri of the two mating types x and y diverge and the population evolves anisogamy as it repels away

from the isogamic strategy T ∗=. The mating type with larger gametes (arbitrarily) gets the index x, and is defined as female,
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while the other mating type y is defined as male (i.e., mx > my).

3) If an attractor of the isogamic constrained evolution T ∗c is both invadable by nearby mutants, and also an invadable

repeller for the unconstrained singular strategy T ∗=, two different outcomes can follow. First, anisogamy can evolve removing

the isogamic constraint, just as described above in case (2). Second, because T ∗c is an invadable attractor for the constrained

evolution, it is a special point where isogamic genetic polymorphism can evolve: if T ∗c is reached by evolution and the isogamic

constraint remains, nearby isogamic mutant strategies can invade and coexist with T ∗c resulting in two isogamic genotype

strategies. The strategies of these two isogamic genotypes then diverge as evolution proceeds (evolutionary branching, Geritz

et al., 1998, 2016). One genotype then evolves larger gametes (with equal size for both mating types) and the other evolves

smaller gametes (still equal size for both mating types). Hence, this introduces genetic variation in gamete size in the population

becoming pseudo-isogamic, as this gamete size polymorphism within mating types can be seen as an anisogamous situation,

but with each genotype remaining isogamous. However, if the isogamic constraint is removed because anisogamy is favoured by

selection, the possibility for isogamic genetic polymorphism is ruled out, and there is indeed evidence that the evolution of

isogamic polymorphism is unlikely if anisogamy is allowed to evolve, as anisogamy will evolve first, prohibiting the evolution of

isogamic polymorphism (Van Dooren et al., 2004). For the scope of this manuscript we will report whenever the suboptimal

pseudo-isogamic genetic polymorphism can evolve, but we will focus on the evolution of anisogamy assuming it to be the final

evolutionary outcome.

By classifying the evolutionary dynamics for all isogamic singular strategy pairs in this way, we can predict the evolutionary

outcome. For a given parameter combination, we first numerically solve for the singular strategies (Appendix A5.2) and

then derive their convergence and evolutionary stability (Appendix A5.3). We report if these attractors are points where

evolution either (1) stops resulting in stable isogamy, (2) transitions into anisogamy, (3) transitions into either anisogamy or

pseudo-isogamic genetic polymorphism. We iterate this procedure for a wide range of scenarios by systematically varying the

parameters of the model.

A special case occurs if there is a single attractor of the isogamic constrained evolution T ∗c,a with negative and real eigenvalues,

and there are either no other singular points, or alternatively if all other singular points, which are repellers (T ∗c,r1, T
∗
c,r2, . . .),

are located on the edge of the trait space (occurs for minimum gamete size m∗c,ri = 1, no mating trait investment r∗c,ri = 0, or

full mating trait investment r∗c,ri = 1). Then, we find T ∗c,a to be an unequivocal destination of the isogamic evolution. In all

other cases, there might be multiple evolutionary outcomes, and which one is reached might depend on the initial trait value

from where evolution starts and the mutational covariance matrix C. Conveniently, we find that for any set of parameters

within our investigated parameter ranges, this special case holds, such that there is always a single isogamic attractor T ∗c,a to

which evolution converges, independently of from where it starts.

If anisogamy evolves (cases (2) and (3)) after reaching the isogamic attractor T ∗c,a, the isogamic constraint is removed, leading

to an increase in the number of evolving traits from two: Tc = (mc, rc), to four: T = (mx, rx,my, ry). While we can numerically

determine all isogamic singular strategies, solving for the singular strategies of the unconstrained evolution (T ∗1 , T ∗2 , . . .) becomes

hard due to the high dimensionality of this trait space. Therefore, to get the evolutionary endpoint after anisogamy evolves, we

have to rely on numerically solving the evolutionary path (Eq. 6).
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Numerically solving for the evolutionary path. In parallel with analysing the isogamic singular strategies predicting the

evolutionary outcomes, we also numerically solve for the evolutionary path given by Eq. 6 (as described in Supplementary

information S2.3). For completeness, we start by solving for the evolutionary path under the isogamic constraint, and verify

that evolution leads to the isogamic attractor T ∗c,a = (m∗c,a, r∗c,a). Then, we continue the numerical solution without the isogamic

constraint, starting at the corresponding singular point of the unconstrained evolution T ∗= = (m∗c,a, r∗c,a,m∗c,a, r∗c,a), and thereby

allow anisogamy to evolve (ignoring the possibility for isogamic polymorphism to evolve in case (3) as mentioned above). If T ∗=

is an attractor no evolution follows, the population stays isogamic, and we conclude that T ∗c,a was an isogamic end-point of

evolution. On the other hand, if T ∗= is a repeller, trait values for the different mating types diverge away and anisogamy evolves.

Finally, we continue the unconstrained evolutionary path until it stabilizes at an anisogamic attractor T ∗a = (m∗x,a, r∗x,a,m∗y,a, r∗y,a)

giving us the anisogamic end-point of evolution (a fixed point attractor), or until evolution stabilize in an oscillating cycle (a

limit cycle attractor). Since we could not solve for the anisogamic singular strategies, numerically solving for evolutionary path

gives us additional results that we could not obtain with the stability analysis of singular point presented above.

Parameter reduction and gamete density. We find that the number of parameters can be reduced down by four when analysing

the evolutionary dynamics of the model. Five of the parameters (d, e, p, tend and v0) always occur as a product together

in the invasion fitness function (Eq. 4) and thereby also in the selection gradient (Eq. 5) as well as in the evolutionary

path (Eq. 6). Hence, when analysing the evolutionary dynamics, we can substitute their product into a single parameter

δ = d× e× p× tend × v0.

Varying the parameter δ is the same as varying one or more of the five parameters of its product, all increasing how likely

gametes are to get fertilized. It can correspond to varying the gamete density, as it contains d× e: the two parameters being

proportional to the initial gamete density ni,0. Furthermore, δ contains tend × v0 which is proportional to the distance travelled

per gamete, and also p the probability of a collision resulting in fertilization. All five parameters encapsulated in δ have

identical effects on the evolutionary dynamics (as they occur together in a product): they regulate whether the system tends

towards low encounter rates resulting in high levels of gamete limitation at low values of δ, or high encounter rates resulting in

low levels of gamete limitation at high values of δ. From now on, for the sake of simplicity, we will refer to δ as the gamete

density constant (d× e), assuming the other parameters (p, tend, and v0) to be fixed. Note that when we vary the gamete

density constant δ = d× e, it can both correspond to changing from low to high population density d, or from low to high

amount of energy allocated to gamete production per individual e.

Results

Here, we present how two gametic traits, gamete size mi and investment ri into a mating trait, coevolve in a population with

two mating types x and y. We begin with some general results of the stability analysis, giving insights about the transition

from isogamy to anisogamy. Then, we present the results gained from solving for the evolutionary path (Eq. 6) of the gamete

traits T = (mx, rx,my, ry). When performing the analysis, we vary the model parameters, δ, Kg, Kz, and αm (or αd for the

fusion partner capture scenario) to represent a wide range of scenarios. A subset of the analysed parameter range is presented

in Figure 5, showing the result for a high Kz (zygote survival highly size-dependent) which appears as the most biologically

relevant scenario. In Supplementary Figures S1-S2 we also show results for Kz intermediate and absent.
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Transition from isogamy to anisogamy. For our investigated parameter ranges (Figures 5 and Supplementary Figures S1-S2),

there is a single isogamic attractor T ∗c,a to which the isogamic constrained evolution converges. We find that the evolution

either stops at this attractor T ∗c,a and the population stays isogamic (Figure 4a) or selection turns disruptive for the gamete

traits of the two mating types x and y. This disruptive selection results in divergence of the gamete sizes, mx and my, and

usually also of the mating trait investments, rx and ry, and anisogamy evolves (Figure 4b-d). For both types of mating traits

(motility and fusion partner capture), we show in Figures 5 and S1-S2 the parameter regions where evolution leads to isogamy

(within dashed contour lines) or anisogamy (outside dashed contour lines). This shows that anisogamy is very common at

lower gamete density (below δ = 1), which is not a surprise because anisogamy favours gamete encounters in that context

(Dusenbery, 2006). At higher densities, there is always a possibility for isogamy to remain, depending on complex interactions

between the mating trait, the relationship between trait efficiency and gamete size and the size-survival parameters Kg and Kz.

For a considerable subset of the parameter region where the evolution of anisogamy is expected, there is the possibility for

the suboptimal pseudo-isogamic genetic polymorphism to evolve (outlined with gray contours in Figures S1-S2). In that case,

the isogamic attractor is invadable under the constrained evolution, which can result in two diverging isogamic genotypes, one

producing large gametes (of both mating types) and the other producing small gametes. However, in line with Van Dooren

et al. (2004), we assume that anisogamy evolves first, ruling out the possibility for polymorphism to evolve (see more details in

the Analysis section).

The evolutionary path of the gamete traits in two mating types. Solving for the isogamic singular strategies and analysing their

evolutionary stability told us whether anisogamy evolves or not. In addition, we solve numerically for the evolutionary path

(Eq. 6) finding the trait values at the anisogamic endpoint of evolution T = (mx, rx,my, ry). The outcomes of the evolutionary

path analysis matches our predictions of the stability analysis. For the parameter regions where the evolutionary path leads
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Fig. 4. Four examples of the evolutionary path of the gamete traits depicting qualitatively all possible evolutionary outcomes of the model: a. no evolution
of sexual dimorphism in gamete size or mating trait, b. evolution of anisogamy with female-biased mating trait investment, c. evolution of anisogamy with
male-biased mating trait investment and d. oscillating evolutionary dynamics (limit cycle) alternating between female-biased and male-biased mating trait
investment. In each graph, the horizontal axis represents evolutionary time in equation 6, and the vertical axis gives trait value for gamete mass (top
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anisogamy evolves (cases b. and c.), the mating type with the larger gamete size is called female, denoted x (blue), and the one with smaller gametes is
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Fig. 5. Sexual dimorphism in gamete size, sex-bias in mating trait investment between the two mating types x and y and intrasexual cost of the mating
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case of chemoattraction, denoted by a c on the plot axis and separated by a gray bar from the physical structure case. The dashed line comes from
derivations of the stability analysis and encapsulates the area where isogamy is the expected evolutionary end-point; in the remaining area, anisogamy is
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same mating type (details are given in Supplementary information S2.6). For anisogamic parameter region, the intrasexual cost is evaluated for the
mating type investing more into the mating trait. We present results for a high value of Kz (Kz = 104), meaning that zygote survival is highly dependent
on zygote size, and for three values of Kg , the size-dependent survival parameter for gametes.
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to anisogamy, we present the degree of gamete size-dimorphism measured as the ratio of gamete sizes of the two mating

types mx/my, and the sex-bias in mating trait investment measured as the difference rx − ry in Figure 5 and Supplementary

Figures S1-S2. We note that for all the parameter regions explored with motility and the large majority with fusion partner

capture, only one mating type invests in the mating trait for a given evolutionary scenario, so that the absolute value of

the investment bias also gives the mating investment ri for the mating type that invests. We find that four qualitatively

different types of anisogamic outcomes are possible. The first two outcomes are anisogamy with either female-bias (rx > ry,

Figure 4b) or male-bias (rx < ry, Figure 4c) in mating trait investment represented as blue or orange regions, respectively,

in Figure 5 and S1-S2b. Third, for the case of chemoattraction in the fusion partner capture model, there is a restricted

parameter region within the anisogamy space where only one of the two gamete traits (either size or mating trait investment)

diverges between the mating types. This is visible as a white pixel outside the dashed contour line on Figure 5b left panel

(mx = my, size does not diverge) and right panel (rx = ry, mating trait investment does not diverge). Finally, there are some

very restricted parameter regions where the anisogamic attractor is a limit cycle, resulting in never ending oscillating dynamics

(Figure 4d). In some of these cases, we have smaller non-symmetric oscillations where the mating types stays separated such

that one consistently has larger gamete size than the other. We then report averaged trait values over several oscillation periods.

Otherwise, the oscillations are large and symmetric, such that the mating types alternate which is the larger (female) and the

smaller (male), as in Fig. 4d; these are represented as black regions in Figures 5 and S1-S2 (just a few pixels in total). In the

next subsections, we detail the influence of the model parameters on the evolution of anisogamy and sex-bias in investment for

each mating trait. We vary the gamete density constant δ which alters the level of gamete limitation, and the gamete and

zygote size-survival parameters, Kg and Kz. We focus on parameter regions where mating competition occurs to investigate the

relationship between anisogamy evolution and sex-biases in competition for mating. We consider that significant competition

occurs from an intrasexual cost of 10−2 and higher in Figures 5 and S1-S2. A cost of 10−2 means that if other individuals

of the same mating type increase their investment in the mating trait (without trade-off), a focal individual gets a relative

reduction in fitness corresponding to a one-hundredth of this increase.

General trends of sex-bias in mating competition. Focusing on the parameter spaces where anisogamy evolves, we start by

highlighting some general trends across the two types of mating traits (Figure 5a and b, and Figures S1-S2). At high gamete

density (δ >> 1), anisogamy only evolves if the mating trait is efficient in small gametes, and anisogamy evolution requires in

addition that at least one of the size-survival parameters is high (see Figures S1-S2). At high density, anisogamy is thus limited

to the motility scenario with low αm (Figure 5a), and is accompanied by a high intrasexual cost of the mating traits, indicating

mating competition. We propose that anisogamy emerges in this context because there is a trade-off between maximizing

gamete or zygote survival and maximizing mating competition efficiency. The trade-off only occurs if the mating trait is more

efficient in small gametes, which is only found for the motility trait with αm < 0. This leads to specialization of small gametes

into the mating competition trait, and of large gametes into fertilisation targets as well as into zygote provisioning when Kz is

high. When the mating trait is more efficient in large gametes (αm > 0), there is no trade-off and the population stays isogamic

where all gametes evolve to be large.

As density δ decreases, there is an area of parameter space, starting from around δ = 1, where anisogamy also evolves

when the mating trait is more efficient in large gametes, i.e. in the motility scenario with αm > 0 and in the fusion partner
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capture scenario (Figure 5b). In this region, there are many instances where the intrasexual cost of the mating trait is still

high, indicating mating competition. Competition occurs when there is either a strong gamete survival constraint (top row in

Figure 5a and b) or a weaker zygote survival constraint (subplots in Figure S1 and S2 where either Kz ≤ 30 or Kg = 104).

Importantly, at these intermediate densities, female biased mating competition occurs, meaning that females can invest more

energy than males into a mating competition trait. We suggest that in these cases disruptive selection on size may be driven

by decreasing encounter rates as density δ lowers. At very low densities (δ << 1), the intrasexual cost of the mating trait

becomes negligible so that the mating trait is primarily a trait maximizing gamete encounter rates under extreme gamete

limitation rather than a competition trait. However, when the mating trait is highly energy efficient (e.g., chemoattraction, or

low αd for fusion partner capture by physical structures), competition can still occur at very low density, likely because the

high efficiency of the trait attenuates the effect of gamete limitation. In these particular cases as well, females invest more than

males into a mating competition trait (chemoattraction case in both Figure 5b top row, and in Figure S2 where either Kz ≤ 30

or Kg = 104).

When Kg is low and Kz high, we observe the strongest anisogamy because there is no cost in having small gametes but

a high cost in having a small zygote (Figure 5b two bottom rows, and in Figure S2 where both Kz = 104 and Kg ≤ 30).

Because of the fixed energy budget for gamete production, this strong size difference leads to a large difference in gamete

numbers between mating types, which magnifies gamete limitation. In that special case, the intensity of competition is much

reduced when the mating trait investment ri transitions from male-biased to female-biased. This means that strong constraint

of zygote size on survival and low constraint of gamete size on survival create conditions where competition for mating can

evolve primarily in males.

When motility is more efficient in small gametes. The scenario of a motility mating competition trait with αm = −1 corresponds to

the force of propulsion being invariant to gamete size, leading to increased speed for smaller gametes due to reduced drag. This

type of size-speed relationship is observed among gametes within genera (Dusenbery, 2009, chapter 20, Table 20.1). In this

case, with high Kz we observe that anisogamy evolves from low to high gamete density, and is always accompanied by male

biased investment in the mating trait (Figure 5a). Only in the case where both Kg and Kz are low does anisogamy not evolve

at high densities (Figure S1), simply because there is no limitation imposed on gamete size by survival and both mating types

can produce small and efficient motile gametes leading to viable zygotes.

When motility is more efficient in large gametes. The other scenario for motility corresponds to αm = 1, which is the mechanistically

explicit case when thrust increases proportionally to gamete volume, a size-speed relationship that is consistent with trends

observed across small water organism of vastly different genera and sizes (Dusenbery, 2009, Fig. 8.3) as well as in gametes

across genera (Dusenbery, 2009, Table 20.1). In this case, anisogamy does not evolve at high densities. When anisogamy

evolves, at lower densities, it most often leads to female biased investment in the mating trait, except for a restricted range of

intermediate densities that shows male-biased investment, when Kg < Kz (Figure 5a and Figure S1). The condition Kg < Kz

is generally expected to encourage anisogamy and male competition because zygote survival strongly depends on size, while

there is no strong dependency of gamete survival on size.
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Fusion partner capture by physical structures. In this scenario, gametes can produce an increase in apparent size with a cost

proportional to the increase in the volume of its jelly coat (αd = 3), the surface of the cell membrane surface (αd = 2) or the

cell radius (αd = 1). Comparable to the motility case with αm = 1, physical structures are more efficient in large gametes

(with αd = 1 having the highest efficiency), and the outcome is qualitatively similar: anisogamy only evolves at relatively

lower densities, paralleled by female biased investment in the mating trait (Figure 5b and Figure S2), except for a restricted

space of male biased investment that appears at intermediate densities when Kg < Kz. Whenever the intrasexual cost of the

mating trait is high (> 10−2), it reveals competition for mating. Mating competition and anisogamy co-occur at intermediate

density and when investment into the mating trait is sufficiently energy efficient in large gametes (αd is low enough). As for the

motility trait, female biased investment in a mating competition trait evolves when either Kg is high, or Kz is low (Figure 5b

top row and Figure S2 where either Kz ≤ 30 or Kg = 104).

Fusion partner capture by chemoattraction. With chemoattraction, gametes can extend the range in which they can be detected,

and is only effective in the mating type with the larger detection zone. For this reason, chemoattraction can only benefit one

mating type, which creates an inherent asymmetry. This mating trait is more efficient in large gametes, in the same degree as

the physical structures with αd = 1, but allows for the evolution of anisogamy at higher density than for physical structures. It

can also, rarely, lead to cases where only one of the gametic traits diverges (either gamete size or mating trait investment),

which is not seen in any of the other mating traits. Even at low densities, the intrasexual cost of chemoattraction is high,

which supports the view that mating competition traits can easily evolve in females in nature, where chemoattraction is a

widespread feature of female gametes.

Conclusion We highlight some overarching results: (i) when anisogamy evolves it seems to almost always be accompanied by a

sex-biased investment in the mating trait, (ii) whereas only male-biased investment in the mating trait can evolve under high

gamete density, both male and female bias investment can evolve at intermediate densities, and finally, (iii) female-biased

investment in the mating trait also appear in areas where the trait has a strong competition component (chemoattraction

being the most striking case). At lower densities, either sex may evolve mating traits, but the intensity of mating competition

becomes negligible because of extreme gamete limitation. We have seen that the relationship between gamete size and trait

efficiency is key in determining the resulting sex-bias in investment into the mating trait, which may appear as self-evident.

However, we advocate that this result is still meaningful, in showcasing the variety of mating competition traits that may arise

by chance, some more efficient in large gametes and some in small gametes. The special case of chemoattraction is insightful,

in revealing that some types of traits are prone to producing asymmetries in selection pressures between the mating types.

Examining this diversity is necessary to fully understand the relationship between the evolution of anisogamy and that of

mating competition traits. On the contrary, making the restrictive assumption that competition should only arise in small

gametes (by only considering motility with negative αm values for example) can lead to the conclusion that males should invest

more into competition, but this view leaves many possible scenarios aside. With these other mechanistic traits, we show that

the evolution of anisogamy and sex-bias in mating competition investment is also possible when competition happens through

a trait favouring female strategies (large gametes). We elaborate more on this point in the discussion.
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Discussion

Two pathways to anisogamy and resulting sex-bias in competition for fertilization. We have presented a mechanistic model of

mating competition for fertilization, in which gamete size and a mating trait that increases adult reproductive success coevolve.

The mechanistic nature of our model allows us to describe mating traits with a clear biological function. Our work shows that

anisogamy often evolves along with a sex-biased investment in mating traits. This is true for the different types of mating

traits investigated here, first, gamete motility that may be more efficient in either small or large gametes, and second, fusion

partner capture modelled as either physical structures or chemoattraction. Previous work has shown that anisogamy may

have evolved under gamete competition (high gamete density and absence of gamete limitation) or gamete limitation (not all

female gametes are fertilized) (e.g. Bulmer and Parker, 2002; Lehtonen and Kokko, 2011; Hoekstra et al., 1984). We believe

that this distinction is important because the forces of selection that would have acted to produce gamete size differences in

these two scenarios are not the same. This has implications for the evolution of traits involved in mating competition, which

we investigate here. This question is relevant to the initial evolution of anisogamy from an isogamous state, but also to the

maintenance and continuous evolution of gamete size in contemporary species, as we discuss later.

In the absence of gamete limitation, under high gamete densities, the forces that are expected to drive the evolution of

anisogamy are size-dependent survival selection of both gametes and zygotes, and competition for fertilization success. In that

context, anisogamy should only evolve under a size constraint on survival. If anisogamy does evolve, all large gametes become

fertilized, but smaller ones are in excess, leading to the evolution of male-biased investment in intrasexual competition. In

essence, the dimorphism in gamete size and number that evolve in the absence of gamete limitation can already be thought of as

parental investment and competition traits for females and males respectively. Under extreme gamete limitation, corresponding

to very low gamete densities, the force expected to drive the evolution of anisogamy is disruptive selection on gamete size,

maximizing encounter rates of gametes from the two mating types. In that context, both sexes could be expected to invest in a

trait increasing encounter rates because they may both have unfertilized gametes at the end of a mating event (Evans and

Lymbery, 2020).

By adjusting gamete density, our model allowed the exploration of intermediate ranges of gamete limitation. We have

seen again that anisogamy may evolve in different contexts, implying different intensities of competition for mating and with

different outcomes in terms of the sex-bias in investment into the mating traits. Very high gamete density clearly favoured the

evolution of a male-bias in mating competition. But the evolution of anisogamy in that context was restricted to a parameter

region where the mating trait is more efficient in smaller gametes. Anisogamy evolution was also encouraged at high density by

a strong size-dependence of gamete and zygote survival (as in Bulmer and Parker, 2002 for the latter). On the other hand,

intermediate gamete densities allowed both sexes to invest in mating competition, with the final sex-bias largely determined by

the nature of the mating trait, more specifically whether it was defined as more cost-efficient in smaller or larger gametes.

This result highlights that the evolution of anisogamy needs not result in the evolution of a competition traits in males, but

may lead to a variety of outcomes depending on the circumstances under which anisogamy initially evolved and which trait is

considered. Importantly, we also showed that the evolution of female-biased investment in a mating competition trait was

not limited to parameter spaces where gamete density is so low that mating competition is negligible. Although competition

intensity does decrease with decreasing gamete density, transitioning from male-biased to female-biased investment in the
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trait only reduced the intensity of competition in the parameter space where the gamete and zygote size-survival parameters

encouraged larger anisogamy ratios. This trend may be due to the gamete size-number trade-off imposed by the fixed energy

budget. These results indicate that some moderate level of gamete limitation could allow females to invest more energy than

males into competition traits in contexts where mating competition is a driver of the trait evolution.

In contrast, in the only other model studying this same question, Lehtonen et al. (2016) find that competition trait evolution

should always be favoured in males under most scenarios, although the authors acknowledge that it could be equally favoured

in males and females under severe gamete limitation. This discrepancy between their results and ours stems from a difference in

the component of fitness from which the sex-specific asymmetries that lead to the evolution of sexual dimorphism in competition

arise. We advocate that sex-specific asymmetries in selection are generally more likely to arise from individual competition

components than from group-level fecundity. In terms of evolutionary dynamics, the effect of a mutant strategy on group-level

fecundity becomes negligible as group size increases, while the effect of competition remains important in determining individual

relative fitness for any group size (Supplementary information S2.5.2). We provide more details of how fitness is expressed in

the model of Lehtonen et al. (2016) and in ours in Supplementary information S2.5.

Competition traits in the model and in nature. We implemented in our model two possible mating traits. Although those traits

are gamete-level traits, we remind the reader that they are equivalent to classical sexually selected traits that increase the

reproductive success of the bearer, only adapted to the biology of broadcast spawners. Both traits are flexible with the addition

of one parameter that allows to describe different mechanistic scenarios. The motility trait can either be more efficient in

smaller or larger gametes, two relationships that have received empirical support on different levels (e.g. Dusenbery, 2009, Fig.

8.3 and Table 20.1). The fusion partner capture trait can be described with different cost dimensionalities, corresponding to

cost of producing jelly coat, membrane or a cellular function that scales with an increase in radius. We also consider the case

of chemoattraction, which has a low cost and scales with the radius but only provides function in the mating type with the

largest chemoattraction radius.

We have seen that the nature of the efficiency relationships of the traits greatly influences the resulting sex-bias in selection

in our model. In particular, the trait gamete motility evolves in males at high gamete densities and can evolve in either sex

at intermediate densities, depending on the relationship between trait efficiency and gamete size. In short, if small gametes

benefit more from investing in that trait, then motility will be male-biased and vice versa. The fact that few free swimming

eggs have been observed in nature so far (Motomura and Sakai, 1988; Klochkova et al., 2019) suggests that small gametes may

generally swim more efficiently than large ones. However, motility is not a universal feature of sperm (Morrow, 2004), and eggs

as well as sperm may benefit from assisted motion from the female or male individual that produce them (Gorelick et al., 2017).

We also note that a positive relationship between size and speed of gamete emerges from the most parsimonious mechanistic

description of motility in water, and is supported by across genera comparisons of swimming organisms (Dusenbery, 2009, Fig.

8.3) and gametes alike (Dusenbery, 2009, Table 20.1). A positive relationship between gamete size and speed has also been

reported within genera in a unicellular algae (Seed and Tomkins, 2018), but this relationship may not hold for size differences

of a thousand-fold or more, as is often the case in anisogamous systems.

Regardless, our goal with this model was not to accurately describe the physics of gamete motility as found in nature, but

rather to provide a biologically relevant trait that could either be more cost-efficient in male or female gametes by variation of
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one parameter. Consequently, we admit that swimming egg are rarely observed and therefore may be unrealistic, but this

should not undermine the conclusion that sex-specific cost-efficiency of the trait drives the evolution of mating competition in

the intermediate density scenarios.

To further this point, it is easy to imagine other biologically relevant traits that could be realistically less costly to develop

for larger gametes. With that in mind, we incorporated in our model a second type of trait, fusion partner capture. This type

of trait increases the apparent volume of the gamete, making it a larger fertilization target without increasing its survival

probability. In our model, such traits develop mainly in the mating type producing the larger gamete, resulting in female-biased

competition investment. This trait type can be compared to the egg jelly coat found in several species of broadcast spawning

marine invertebrates (e.g. Podolsky, 2002; Farley and Levitan, 2001), and seems therefore quite realistic. Chemoattraction,

which provides the most striking example of female mating competition in our model, is a common way for gametes to increase

their apparent size in nature (Jantzen et al., 2001). This strategy is found in the eggs of several species, both external and

internal fertilizers, including mammals (Eisenbach and Giojalas, 2006).

Prevailing forces in the evolution and maintenance of anisogamy in animals. In our model, the evolution of anisogamy is

almost always accompanied by a sex-biased investment into the mating trait, but high or low gamete densities allowed for

different outcomes. It is thus important to discuss what can be the respective importance of these different contexts in the

evolution and maintenance of anisogamy. The current theory on the evolution of anisogamy proposes that it likely originated

in sessile broadcast spawners (Parker, 2014), types of animal that are often subjected to gamete limitation (Levitan, 1996).

This then suggests that gamete limitation may have been important in the evolution of an initial sexual dimorphism in gamete

size. According to our results, this scenario can lead to either female or male-biased competition investment, depending on

the nature of the mating trait considered. It seems therefore unlikely that the evolution of anisogamy should have generally

resulted in male-biased investment into mating competition traits in early anisogamous animals.

Whether the sex-bias in mating competition investment at the initial anisogamy has an influence on the patterns of

sex-specific competition in contemporary anisogamous species is unclear. The complex patterns of sex-specific selection that we

observe today may be subjected to an array of confounding factors that we do not account for, such as evolutionary history or

ecological constraints. Nevertheless, we need to comment, with our findings in perspective, the fact that in the majority of

natural systems studied today more intense intrasexual competition is found in males than in females (Janicke et al., 2016;

Janicke and Morrow, 2018). First, the claim of a general male-bias in mating competition should be nuanced: although males

experience more intense intrasexual competition in a majority of species (Janicke et al., 2016; Janicke and Morrow, 2018), there

is a lot of variation among taxa, as clearly visible from Figure 1 in Janicke et al. (2016). Females do experience non-negligible

levels of intrasexual competition in most species, and in some cases more than males (reviewed in Hare and Simmons, 2018).

Female competition is favoured if males provide costly nuptial gifts or parental care, but they may also compete to increase

fertilization success in sperm limited-contexts (Hare and Simmons, 2018), which are not restricted to external fertilizers (see for

example one study in gorillas Niemeyer and Anderson, 1983, and one in saiga antelopes Milner-Gulland et al., 2003). Second,

we propose two non-mutually exclusive hypotheses that may explain the apparent inconsistency between our theoretical claim

about the origin of anisogamy and empirical observations of today’s natural systems. (i): a large proportion of animals studied

by biologists are internal fertilizers. The evolution of internal fertilization reduces the chances for gamete limitation to appear,
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which in turn should favour the evolution of male competition. (ii): our model assumes that individuals invest the same

amount of energy into reproduction regardless of their sex or mating type. This assumption is common to all models of the

evolution of anisogamy and stems from the fact that we start from an isogamous population, where the two mating types

have the same reproductive strategy. If that assumption does not hold after anisogamy evolves however, and if the cost of

producing larger gametes does not scale linearly with gamete size, it is possible that a difference in potential reproductive rate

(PRR, time required for an individual to produce offspring and return to the mating pool, as in Clutton-Brock, Clutton-Brock

and Parker, 1992) arises between the sexes. A sex-bias in PRR, leading to a sex-bias in time out of the mating pool (or "dry

time", sensu Kokko et al. 2012) is likely to cause a sex-bias in intrasexual competition, with the sex with the highest PRR

competing for mating opportunities with the other sex (Clutton-Brock and Parker, 1992; Kokko et al., 2006, 2012). We note

that these two hypotheses (i) and (ii) do not undermine the fact that anisogamy (gamete size dimorphism) is not likely to

explain directly sex-biases in intrasexual competition: in the first case it is the evolution of internal fertilization that causes

males to compete more than females, in the second case it is a sex-bias in PRR, which could arise from anisogamy as well as

from other causes. For example, PRR is highly sensitive to ecological factors, and field studies have shown that sex-biases in

PRR can switch within the course of a single mating season (Almada et al., 1995; Forsgren et al., 2004, reviewed in Ahnesjö

et al., 2008; Kvarnemo and Ahnesjo, 1996).

If it seems likely that gamete limitation played an important role in the evolution of anisogamy in ancestral animals, we can

also wonder what are the evolutionary forces that maintain anisogamy in contemporary species. We have suggested above that

the evolution of internal fertilization should have created a context with no or low gamete limitation (i.e., gamete competition)

favourable to male competition. This claim should, however, be taken with care (Parker, 1982). A recent study in mammals

has shown an inverse relationship between body size and sperm cell size (Lüpold and Fitzpatrick, 2015), a trend suggesting that

in larger mammals, gamete limitation may happen to some extent, leading to the evolution of smaller more numerous sperm

cells, less competitive but increasing chances of fertilization under low gamete density. Sperm limitation, or failure of females to

get all of their eggs fertilized, may also be more common than expected in insects (reviewed in García-González, 2004). Finally,

many contemporary invertebrate marine species are broadcast spawners that are often subjected to gamete limitation (Levitan

and Petersen, 1995). In these species, variance in reproductive success may become higher in either sex depending on gamete

density (Levitan, 2004), indicating that intrasexual competition may easily arise in either sex, as suggested by our results.

Even though empirical explorations of sexual selection in broadcast spawners are rare (Evans and Sherman, 2013; Evans and

Lymbery, 2020), several laboratory and field experiments have reported female traits that increase fertilization success and

could therefore be involved in female intrasexual competition. In three species of sea urchins (Levitan, 1993, 1998a) egg traits

are shown to evolve to maximize fertilization success. In the sea urchin Lytechinus variegatus experimental removal of a jelly

coat around the eggs lowers fertilization success due to reduced target size (Farley and Levitan, 2001). In the sand dollar

Dandraster excentricus a jelly coat that increases up to sixfold the size of the egg increases fertilization success (Podolsky,

2002), and finally in the tunicate Styela plicata (Crean and Marshall, 2008) both sexes adapt their gametes to population

density, with female gametes becoming notably larger at low density, a strategy that increases fertilization success but comes at

a cost for zygote survival. It is important to note that these female traits presumably evolved to increase fertilization success

and not offspring survival, which clearly designates them as mating competition traits. Additionally, Marshall and Evans
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(2005) showed experimentally that selection should act on females to increase fertilization success in the broadcast-spawning

polychaete Galeolaria caespitosa.

Conclusion. We advocate that the importance of gamete limitation in shaping anisogamy should not be overlooked, which

means that the evolutionary forces that are responsible for gamete size differences cannot be expected to always result in

the evolution of male-biased mating competition investment. We thus question the claim that anisogamy necessarily favours

the evolution of male-biased competition traits. Some of the evolutionary forces that spur the evolution of anisogamy in the

gamete competition context do clearly favour male-biased competition traits; but evolutionary forces that shape anisogamy

under different degrees of gamete limitation may produce male-biased or female-biased competition, with the outcome mostly

decided by the nature of the competition trait and how its efficiency relates to gamete size. There are good reason to think

that gamete limitation played an important role in the animals that first evolved the male and female sex. Even though the

evolution of internal fertilization may have attenuated gamete limitation in a wide range of species, there is evidence claiming

that even in internal fertilizers the evolutionary forces of gamete limitation are still at play. Together, this suggests that, as

far as anisogamy is concerned, females should benefit from competing for increased fertilization success, too, a claim that

is supported by the observation of female intrasexual competition in many species, although empirical data from broadcast

spawners is still scant. We suggest that gamete chemoattraction could be a widespread form of female competition in sessile

species. Evidence showing more intense competition in males in a majority of species (a general pattern but not a general rule)

is no proof that anisogamy is the cause for that pattern. We suggest that, for example, potential reproductive rate (PRR) may

be a better predictor of intrasexual competition, as it captures important ecological influences on competition. In turn, PRR

may be related to gamete size in some species, if larger gametes require more time and energy to be produced, but this does

not need to be the case when anisogamy initially evolves. Our results challenge the classical view that anisogamy alone is

enough to explain a trend of more intense intrasexual competition in the male sex.

Appendix

Note: In the main part we present how the variables of the model are functions of the gamete traits (mx, rx, my and ry). We will

not detail this in the appendix for the sake of readability. One exception is made for the case of fertilization rates Fi and F ′i (Eqs. A9 and

A14) that are used to obtain the expected evolutionary path of these gamete traits (Eqs. 4, 5, 6 in the main text). In the supplementary

information S1.1 and S1.2, we give details of the mechanistic underpinning of our two mating traits (Eqs. 2-3), and below, for the

fertilization dynamics.

A1 Collision frequency. To mechanistically model the fertilization dynamics between the gametes of the two mating types x and y in

the mating pool, we make use of classical collision theory from chemistry and physics (McNaught et al., 2014). Hence, we assume that

gametes of the two mating types x and y travel at constant speeds vx and vy with trajectories approximated by straight lines at a local

scale. We obtain the following frequency of collisions between gametes of the two mating types (per unit of time and per unit of volume)

d2σxyvxynx,tny,t. [A1]

Here, ni,t is the number of gametes per zygote of mating type i at time t, and d is the zygote population density (number of zygotes

per mating type per unit of volume). Also, σxy = π(Rx + Ry)2 is the area of trajectories which would result in a collision between

gametes of the two mating types, representing a disk with a radius equal to the combined radiuses of the two gametes (i.e, their collisional

cross-section), assuming spherical gametes and excluding the motility machinery from the collision target. Lastly, vxy =
√
v2
x + v2

y is the
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average relative velocity between gametes of the two mating types.

A2 Gamete fertilization dynamics. Gametes of the two mating types x and y collide at a frequency given by Eq. A1 and each collision has a

probability p of resulting in a fertilization event. Fertilization generates a zygote and removes the colliding gametes from the mating pool.

Multiplying Eq. A1 with p gives the fertilization rate (per unit of time and per unit of volume). Dividing the fertilization rate by the

gamete density of mating type i, dni,t, gives the fertilization rate per gamete of mating type i per unit of time at time t. Multiplying this

rate with the number of gametes per zygote of mating type i, ni,t, gives the fertilization rate per zygote of mating type i per unit of time

at time t.

Gametes that achieve fertilization are removed from the mating pool and the number of gametes present at time t per zygote ni,t

therefore decreases according to their fertilization rate (negative term on the right-hand side of the equation)

dnx,t
dt

= −pdσxyvxynx,tny,t,

dny,t
dt

= −pdσxyvxynx,tny,t.
[A2]

The number of gametes per zygote of the two mating types declines at the same rate (dnx,t/dt = dny,t/dt in Eq. A2) as each fertilization

always removes one gamete of each mating type (Fisher consistent fertilization dynamics). The difference in the number of gametes

between the two mating types ny,t − nx,t thereby stays constant over the mating period and equals the initial difference ny,0 − nx,0. The

initial number of gametes per zygote of mating type i equals

ni,0 = nisg =
e(1− ri)
mi

mi − 1
Kg +mi − 1

, [A3]

where ni is the number of gametes produced per zygote of mating type i and sg the survival probability of each gamete (see main text).

Hence, the number of gametes per zygote of one mating type at time t is given by the number of gametes of the other mating type plus

their initial difference,

ni,t = nj,t + ni,0 − nj,0. [A4]

where i is the focal mating type (x or y) and j is the other mating type.

By using the substitution in Eq. A4 we can express equation A2 as a single differential equation (as the initial gamete densities ni,0

and nj,0, Eq. A3, are constants)
dni,t

dt
= −crni,t(ni,t + nj,0 − ni,0), [A5]

where cr = pdσxyvxy is a constant proportional to the fertilization rate. Eq. A5 is a separable differential equation with the following

solution

ni,t = ni,0
nj,0 − ni,0

exp
(
cr(nj,0 − ni,0)t

)
nj,0 − ni,0

, [A6]

(step-wise calculations in Supplementary information S3.1, Eq. S22).

A2.1 Gamete fertilization dynamics under isogamy. For the case of evolution under isogamic constraint, the gametes of the two mating

types are constrained to equal trait values. Hence, we have that nx,t = ny,t and the change in the number of gametes over time Eq. A5

simplifies to
dni,t

dt
= −crn2

i,t. [A7]

Solving for ni,t in Eq. A7 gives the number of gametes per zygote of mating type i at time t under the isogamic constraint

ni,t =
ni,0

crni,0t+ 1
. [A8]

(step-wise calculations in Supplementary information S3.2, Eq. S23).

A3 Zygote reproductive success. When the mating period is over, the number of fertilized gametes per zygote equals ni,0 − ni,tend

(Eqs. A3 and A6), (i.e., the number of gametes entering the mating pool subtracted by the number of unfertilized gametes at t = tend,

the end of the mating period). Each fertilization produces a zygote (Fig. 3) that has a probability of survival to the next generation
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of sz = (mx +my − 1)/(Kz +mx +my − 1) (as presented in the main text). Hence, the number of fertilized gametes per individual

multiplied with the survival probability of their produced zygote sz gives the per capita reproductive success Fi (or simply: reproductive

success) corresponding to the absolute fitness of the individual,

Fi(T ) =
(
ni,0(mi, ri)− ni,tend(T )

)
sz(mi,mj), [A9]

where i denotes the focal mating type (x or y) and j the other mating type, and where the trait vector T = (mx, rx,my , ry) represents all

four gamete traits.

A4 Fertilization dynamics of a rare mutant strategy. The strategy of a rare mutant individual T ′ = (m′x, r′x,m′y , r′y) deviates in one or more

of the four traits from the resident strategy T = (mx, rx,my , ry) (if evolution occurs under the isogamic constraint T ′ is replaced with

T ′c = (m′c, r′c) and T with Tc = (mc, rc)). The resident population is assumed to be large, and as long as the mutant strategy T ′ is rare its

effect on the fertilization dynamics can be neglected. One can therefore consider the mutant gametes to only collide with gametes of the

resident population. This is used when deriving the invasion fitness of the mutant strategy. To obtain the invasion fitness of the mutant

(Eq. 4), we need its zygote reproductive success (Eq. A9), which in turn requires a solution for the gamete fertilization dynamics of the

mutant (Eq. A12), given below.

A4.1 Gamete fertilization dynamics of a rare mutant strategy. Here, we derive the gamete fertilization dynamics of a rare mutant strategy.

The mutant gametes are removed from the mating pool at each successful fertilization, and the number of gametes per mutant zygote ni′,t
(of mating type i at time t) decreases according to their fertilization rate (negative term on the right-hand side)

dni′,t
dt

= −pdσi′jvi′jnj,tni′,t, [A10]

where nj,t is the number of gametes per resident zygote of the other mating type j, σi′j the collisional cross-section between the mutant

gamete of mating type i and the resident gamete of mating type j, and vi′j is average relative velocity (see Appendix A1) between the

mutant gamete of mating type i and the resident gamete of mating type j.

To solve for ni′,t, we first substitute the number of resident gamete nj,t in Eq. A10 with Eq. A6 giving

dni′,t
dt

= −
cmnj,0(ni,0 − nj,0)

exp
(
cr(ni,0 − nj,0)t

)
ni,0 − nj,0

ni′,t, [A11]

where cm = pdσi′jvi′j is a constant proportional to the collision probability for the mutant gametes of mating type i. Eq. A11 is a

separable differential equation with the following solution

ni′,t = ni′,0 exp(cmni,0t)
(

ni,0 − nj,0
ni,0 exp(crni,0t)− nj,0 exp(crnj,0t)

) cm
cr
, [A12]

giving the number of unfertilized gametes per mutant zygote at time t (step-wise calculations in Supplementary information S3.3, Eq. S29).

If evolution occurs under the isogamic constraint in Eq. A10 we instead substitute the resident gamete number nj,t with Eq. A8 and

we get
dni′,t

dt
= −

cmni,0

crni,0t+ 1
ni′,t. [A13]

which also is a separable differential equation and has the following solution

ni′,t = ni′,0

( 1
crni,0t+ 1

) cm
cr
,

giving the number of unfertilized gametes per mutant zygote at time t in an isogamic population (step-wise calculations in Supplementary

information S3.4, Eq. S30).

A4.2 Zygote reproductive success of a rare mutant strategy. The reproductive success of a rare mutant strategy F ′i (of mating type i)

follows the same logic as for the resident reproductive success (Eq. A9) and is given by

F ′i (m
′
i, r
′
i, T ) =

(
ni,0(m′i, r

′
i)− ni′,tend(m′i, r

′
i, T )

)
sz(m′i,mj), [A14]
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where i denotes the focal mating type (x or y) and j the other mating type, and where the trait vector T = (mx, rx,my , ry) gives all four

gamete traits of the resident strategy.

A5 Predicting the evolutionary dynamics. Below we describe our procedure for predicting the evolutionary dynamics of the gamete traits

mx, rx, my and ry (or mc and rc under the isogamic constraint).

A5.1 Mutational dynamics. In our evolutionary analysis and when solving for the evolutionary path, we consider the logarithm of gamete

size, log(mi), as the evolving trait. This corresponds to mutations causing proportional changes of gamete size mi. Similarly, we let the

logit function of mating trait investment evolve logit(ri) = log(ri/[1− r]), results in proportional changes of ri when ri is close to 0, or of

1− ri when ri close to 1. For the mutation matrix C we use a scaled identity matrix, meaning that we assume no mutational covariances

and equal rate of (proportional) change of the traits. By using the identity matrix scaled by one half, we get that the evolutionary path

described by Eq. 6 is given by the selection gradient expressed in Eq. 5.

A5.2 Solving for isogamic singular strategies. We assume evolution to start under the isogamic constraint (where mx = my = mc and

rx = ry = rc and the isogamic strategy is given by Tc = (mc, rc)). To predict the evolutionary path (given by Eq. 6) we first numerically

solve for the isogamic singular strategies T ∗c , i.e. where the selection gradient is zero, β(T ∗c ) = 0. The singular strategies represent

candidates for attracting strategies. To find these isogamic singular strategies, we numerically solve for when the first and the second

element of β(Tc) are equal to zero, separately (i.e. we solve for both isoclines). We then find their intersections, which gives the singular

points.

A5.3 Stability analysis of singular strategies. To predict the evolutionary dynamics in the vicinity of a singular strategy T ∗ (or T ∗c under

the isogamic constraint), we look at two stability properties of the singular point, namely the convergence stability and evolutionary

stability. Evolutionary stability tells whether a singular strategy T ∗ can be invaded or not. It is uninvadable by nearby mutants if the

four-dimensional Hessian matrix H of the invasion fitness (Eq. 4) with entries

hij =
∂2w(T ′, T )
∂T ′i∂T

′
j

∣∣∣
T ′=T=T∗

[A15]

has only negative eigenvalues, where T ′i and T ′j gives the ith and the jth element of the mutant trait vector T ′ = (m′x, r′x,m′y , r′y).

Otherwise, the singular strategy T ∗ is invadable by nearby mutant strategies (Leimar, 2009).

Note: if isogamic constraint is considered, replace the gamete strategies T and T ′ with the constraint strategies Tc and T ′c, respectively.

This gives the two-dimensional Hessian matrix of the constrained evolution. The same holds for the Q-matrix and Jacobian J presented

below.

Convergence stability tells whether a singular strategy T ∗ is an attractor or a repeller of the evolutionary path, and depends on the

mutational matrix C as well as the Jacobian matrix J of the selection gradient (Eq. 5). The Jacobian, given by J = H + Q where Q is a

four-dimensional square matrix with entries

qij =
∂2w(T ′, T )
∂T ′i∂Tj

∣∣∣
T ′=T=T∗

[A16]

where Tj gives the jth element of the resident trait vector T = (mx, rx,my , ry))

If all eigenvalues of CJ have negative real parts, T ∗ is an attractor, meaning that evolution will converge towards T ∗, and it is so-called

convergence stable. Otherwise, it is either a saddle or a repeller of the evolutionary dynamics, meaning that evolution will diverge away

from it, and we will simply refer to is as T ∗ being a repeller. A more stringent condition is to check if all eigenvalues of the symmetric

part of the Jacobian (J + JT)/2 have negative real parts, then T ∗ is so-called strongly convergence stable, meaning that it will attract for

C being any matrix, not only the identity matrix (Leimar, 2009).

For two-dimensional trait-spaces, evolutionary branching can occur at singular points that have strong convergence stability and that

are invadable Geritz et al., 2016. For our results, all attractors of the isogamic constraint evolution happened to have strong convergence

stability, and invadability is thereby always sufficient for evolutionary branching.

For the chemoattraction mating trait, there are some extra considerations described in Supplementary information S2.2.
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S1. Model

S1.1 Fluid dynamics of gametes locomotion. In our first scenario, we consider a flagella-like mating trait, allowing the gamete to move

and encounter a fusion partner. Below, we use fluid dynamics to derive an equation of the speed of the gamete as a function of its size and

energy spent on the trait.

For small entities (< 1mm) moving in water, viscosity is the dominating force and the effects of inertia can be neglected (this corresponds

to low Reynolds numbers, Dusenbery, 2009). Under such circumstances, Stoke’s law applies, giving the frictional force Ff for a small

sphere moving through still water

Ff = 6πηRv, [S1]

which is linearly dependent on the viscosity of the water η, the radius of the sphere R, and the speed at which the sphere moves v

(Dusenbery, 2009).

A gamete with a constant thrust will, due to its small size resulting in small Reynolds number, reach its equilibrium speed quickly.

At equilibrium speed, the force of propulsion is equal to the frictional force Fp = Ff . Applying this to Stokes law (Eq. S1) gives us the

gamete speed at this equilibrium

v =
Fp

6πηR
. [S2]

Hence, to derive the gamete speed at equilibrium we need the viscosity of the water η, which is a constant, the radius of the gamete R,

and the force that propels the gamete at equilibrium Fp. To obtain Fp, we rely on the methods proposed by Dusenbery (2009), giving two

different approaches which result in two different size-speed relationships: one in which speed is proportional to size, and one in which

speed is inversely proportional to size.

Speed proportional to size. In this first path of derivation, we assume that a gamete of volume m has a total metabolism M proportional

to its volume: M = cMm, with cM giving the proportional relationship between these. Out of the total metabolism M , a certain

proportion is dedicated to the propulsion Mp = cpM , and the remaining proportion is dedicated to base metabolism Mb = (1− cp)M .

The metabolism dedicated to propulsion Mp has an energy conversion efficiency of ce to realized propulsion power, and the power of the

propulsion Pp is therefore given by Pp = ceMp = cecpM = cecpcMm. Hence, the power of propulsion is proportional to the volume of the

gamete m. As power, force and velocity have the following relationship P = Fv, we get that Fp = Pp/v and plugging this into Eq. S2,

S1
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together with the volume to radius relationship of a sphere m = (4π/3)R3, gives

v =
Pp

6πηRv
⇐⇒

v =

√
2cecpcM

9η
R [S3]

where the equilibrium gamete speed v is proportional to its linear size (radius) R of the gamete, and everything within the square root

determines this linear relationship. There is good empirical evidence for such a linear size-speed relationship when comparing the motility

of small organisms in water across a large range of genera of different sizes (Dusenbery, 2009, Fig. 8.3), as well as comparing gamete

speeds between genus (Dusenbery, 2009, Table 20.1).

In our model, m gives the energy spent per gamete on gamete volume (and we let one unit of energy convert into one unit of volume,

and therefore m also gives the gamete volume), while mr/(1− r) gives the energy spent per gamete on the gamete motility trait. We let

the base metabolism Mb and the metabolism dedicated to the propulsion Mp be proportional to the energy spent on gamete volume

m and the energy spent on the propulsion trait r/(1 − r)m, respectively. We let the constant ĉM determine these relationships such

that Mb = ĉMm and Mp = ĉMmr/(1− r). The total metabolism M is therefore given by M = ĉMm/(1− r) = cMm, and we get that

cM = ĉM/(1− r). Hence, the metabolism per gamete volume cM is an increasing function of r, where a gamete investing a lot of energy

into locomotion will simply have a higher overall metabolism per gamete volume.

We find that the proportion of metabolism dedicated to propulsion cp (given by Mp/M), equals the proportion of energy invested into

propulsion, i.e. cp = r. Plugging this into Eq. S3 gives

v = cv1

√
r

1− r
R, [S4]

where cv1 =
√

2ceĉM
9η encompasses the remaining constants and r/(1− r) gives the energy spent on locomotion relative to the energy

spent on gamete mass.

To summarize, we find that gamete speed is proportional to linear size R, and is also an increasing function of the proportion of energy

invested into propulsion r.

Speed inversely proportional to size. This second approach has a less mechanistic underpinning, but is based on insights from empirical

evidence comparing gamete speeds within genera, suggesting that it may be more appropriate to assume the force of propulsion Fp to

be invariant to cell size (Dusenbery, 2009, Table 20.1). Assuming Fp to be constant leads to gamete speed being inversely proportional

to gamete radius: v ∝ R−1 (Eq. S2), which is the classically assumed scenario for earlier mechanistic models of anisogamy evolution

(Hoekstra, 1984; Hoekstra et al., 1984; Dusenbery, 2000, 2006; Togashi et al., 2009).

In our model, r/(1− r) gives the energy spent on the locomotion machinery relative to the rest of the gamete. So, even if Fp is assumed

to be invariant to size, we let it depend on r/(1− r) such that: Fp = cF [r/(1− r)]αr , where αr = 1 gives a linear relationship between

investment in locomotion and the force of propulsion, αr < 1 gives a diminishing rate of return and αr > 1 an increasing rate of return.

Plugging this into Eq. S2 gives

v = cv2

(
r

1− r

)αr
R−1, [S5]

where cv2 = cF /(6πη) encompasses all the constants, and gives an equation similar to Eq. S4, but with gamete speed being proportional

to the inverse of the linear size.
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Combining both size-speed relationships. These two approaches results in equations with opposite behaviour in terms of the size-speed

relationships (Eqs. S4 and S5), but both relationships have empirical support. As mentioned above, the positive size-speed relationship

has empirical support across genera, while the inverse size-speed relationship has empirical support for within genera (Dusenbery, 2009,

Fig. 8.3 and Table 20.1). This leaves us with two different size-speed relationships that are relevant to consider. For Eq. S5 we found that

αr did not have any strong effects on the outcome, and with inspiration from the appearance of Eq. S4 we chose to stick with αr = 1/2

for practicality, as both Eq. S4 and S5 can then be expressed by the following

v = cv3

√
r

1− r
Rαm , [S6]

where cv3 is a constant scale factor. Setting αm = 1 gives Eq. S4 (with cv3 = cv1) and αm = −1 gives Eq. S5 (with cv3 = cv2), and an

intermediate value of αm corresponds to an intermediate scenario

Given the radius-volume relationship of a sphere R = (6m/π)1/3/2, we can write Eq. S6 as a function of gamete volume m, as well as

mating trait investment r, such that the gamete speed of a gamete of mating type i is given by

vi(mi, ri) = v0

√
ri

1− ri
m
αm/3
i , [S7]

where v0 is a constant scale factor encapsulating all constants: v0 = cv3(6/π)1/3/2.

S1.2 Gamete fusion partner capture. In the second scenario of the model, we introduce another mating trait that increases the collision

target size of the gamete. Gametes move around randomly, with similar motility v0, which is invariant to size, and the mating trait either

increases the gamete target size through physical structures or by chemoattraction. In the absence of this trait, the gamete volume m

is made of the expensive vital structures, increasing the survival probability of both the gamete and its potential zygote. The cost to

produce this vital gamete volume is assumed to be proportional to its volume m (where we assume, without loss of generality, that one

unit of energy produces one unit of gamete volume).

The mating trait introduces a less costly way of increasing the collision target, without giving any benefits in terms of survival of the

gamete or zygote. The efficiency of this mating trait depends on the dimensionality of the scaling between energy invested and increase in

apparent size. We take different variations into account, including both physical structures and chemoattraction.

Physical structures. First, the gamete can increase its apparent volume by producing a jelly coat, which is cheaper than the volume of the

gamete cell. With the cost of producing one unit of volume of jelly cJ, as well as the energy spent on the mating trait mr/(1− r), we get

the following volume of the gamete’s collision target m̂ = m+ (1/cJ)mr/(1− r), where m gives the volume of the gamete without the

mating trait. This can be rewritten as

m̂ = m

(
1 + αr

r

1− r

)
, [S8]

where αr = 1/cJ encompasses the constants. For the jelly coat to be cheaper to produce than the vital gamete volume, αr must be greater

than 1.

Second, the gamete can increase its apparent volume m̂ by filling the cell with cytoplasm and producing a corresponding amount of

extra cell membrane surface to encapsulate this additional volume. Here, we assume that the cytoplasm has a negligible cost in comparison

to the cell membrane, which has a cost of cM per unit of membrane surface area. This gives a surface area of the gamete collision target of

Â = A+ (1/cM)mr/(1− r), where A is the surface area the cell would have without the mating trait. With the relationships between

volume m and surface area A of a sphere, with m = A3/2/(6
√
π)) and therefore A = (6

√
πm)2/3, we get that the total volume of the
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gamete m̂ is given by

m̂ = m

(
1 + αrm

1/3 r

1− r

)3/2
, [S9]

where αr = 1/[(6
√
π)2/3cM] encompasses the constants. We assume, in turn, that the cell membrane is cheap to produce in comparison to

producing the vital gamete volume (e.g., the membrane cost is neglected in the cost of producing the main volume of the cell m, being

proportional to volume only). For the minimum cell volume of m = 1, there are (6
√
π)2/3 ≈ 5 units of area per unit of volume of a sphere

(this drops to around 1 at m = 100, and around 1/5 at m = 104), and the cost of the membrane cM must be much smaller than 1/5 for

the membrane to have a negligible cost compared to vital cell mass. This corresponds to αr >> 1.

To provide a comprehensive analysis, we include a third variation of this mating trait, lacking a biological example. Similar to the

second, the gamete can increase its apparent volume by filling the cell with cheap cytoplasm and extending its membrane correspondingly,

but there is also a requirement to generate a cellular function (or structure) for which the cost scales with the radius of the cell. In this

third scenario, we assume the cost of both the cytoplasm and membrane to be negligible compared to this cellular function, and cF gives

the cost of this cellular function associated with increasing the cell radius by one unit of length. Hence, the gamete’s total radius is given

by R̂ = R+ (1/cF)mr/(1− r). Using the volume-radius relationships of a sphere, we express the total volume of the gamete as

m̂ = m

(
1 + αrm

2/3 r

1− r

)3
[S10]

where αr = (4π/3)1/3/cF encompasses the constant.

We assume, in turn, that this cellular function is cheap to produce in comparison to the vital gamete volume. For the minimum cell

volume of m = 1, the radius per unit of volume is [3/(4π)]1/3 ≈ 0.62 (this drops quickly, to 0.13 at m = 10, and 0.003 at m = 100), and

the cost of this cellular function cF must be much smaller than 1/0.62 for the membrane to have a negligible cost compared to vital cell

mass. This corresponds to αr >> 1.

Combining all three cost-size relationships. The three variations of physical traits increasing the collision target of the gamete, expressed

in Eqs. S8, S9 and S10, can be summarized by the following single equation where the volume of the collision target of a gamete of mating

type i is given by

m̂i(mi, ri) = mi

(
1 + αrm

(3−αd)/3
i

ri

1− ri

)3/αd
. [S11]

Here, the parameter αd gives the dimensionality at which the mating trait scales with energy investment, where for a jelly coat the energy

investment scales with the increased volume (αd = 3), for the membrane with the increased surface area (αd = 2) and for the last case

with the increased radius (αd = 1). As motivated above, we assume that αr, giving how efficient the mating trait is, should be greater

than 1 for all these three trait variations. We investigate the model for αr = 10.

Chemoattraction. As an alternative to the scenario above, where the gamete uses physical structures to increase its collision target, we

also consider a scenario where gametes can use chemoattraction to attract a fusion partner. In this case, the gametes of both mating types

produce and release chemoattractants, which gametes of the other mating type can detect at a certain threshold concentration Cd (being

equal for both mating types). At detection, fertilization ensues at probability p.

Chemicals in still water spread through diffusion. We model all chemical releases as point sources at the centre of the gametes. A point

source releasing chemicals at a steady rate J will reach a diffusion equilibrium with the concentration C at distance Rc given by

C =
J

4πDR
, [S12]

where D is the diffusion constant of water. For the chemoattraction scenario, we assume low gamete speed (small v0) such that the
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equilibrium concentration in Eq. S12 is reached quickly around a gamete, in comparison to their slow movement. At the same time, we

assume a correspondingly longer mating period (tmax), such that the relevant parameter δ ∝ v0tmax is unaffected.

A gamete has a natural constant release rate Jn of the chemoattractant, resulting in the detectable concentration level Cd at their

surface such that the fertilization behaviour activates on contact. Eq. S12 then gives Jn = 4πDRCd. The gamete can spend extra energy

to increase the release rate of the chemoattractant by Ja over the mating period, and thereby enlarging the radius of detection. The

increased release rate is proportional to the energy spent: Ja = (1/ca)mr/(1− r), where ca gives the cost of increasing the release rate by

one unit. The concentration of the attractant Ca at distance Ra from the centre point of the gamete is then given by

Ca = Cd +m
r

1− r
1

4πDRaca
.

The gamete can be detected at the distance where Ca = Cd, and the extended radius of detection gained from the chemoattractant equals

∆R = (1/cc)mr/(1− r), where cc = 4πDCdca encompasses the constants. In contrast to the physical traits presented above, the benefits

of chemoattractant does not add between the two mating types: as soon as the gamete with the larger chemoattractant zone triggers

fertilization, the smaller chemoattractant zone of the other gamete is redundant. This means that the radius of a gamete’s effective

collision target (including the increase from the chemoattractant) is simply given by Ri (no increase) for the mating type with the smaller

chemoattractant zone and Ri + ∆Ri = Ri + (1/cc)mr/(1− r) for the mating type with the larger chemoattractant zone (which happens

to be the same expression as for the cellular functions scaling with the radius, αd = 1, above).

Using the volume-radius relationships of a sphere, the apparent volume of the gamete with the larger chemoattractant zone is given by

m̂L(mi, ri) = mi

(
1 + αrm

2/3
i

ri

1− ri

)3
[S13]

where αr = 1/[(48π2)1/3DCdca] encompasses the constant (note that this equation equals Eq. S11 for α = 1). And simply m̂i(mi) = mj

if it is the mating type with the smaller chemoattractant zone (i.e., the mating trait investment rj has no effect).

The radius of the effective collisional cross-section between two gametes is given by Ri +Rj + ∆Ri, where i ∈ {x, y} is the mating

type with the larger chemoattractant zone, and under isogamy (or any other trait combination resulting in equal chemoattractant

zone) this equals 2R= + ∆R=, as the chemoattractant zones are of equal size ∆Rx = ∆Ry = ∆R= (even though the same benefit

would be gained from only one using the chemoattractant). The radius of a gamete’s effective collision target is therefore given by

R= + ∆R=/2 = Ri + 1/(2cc)mr/(1− r).

The general equation for the apparent volume, encompassing all three situations (larger, smaller or equal chemoattractant zone), is

then given by

m̂i(mi, ri) =


m̂L(mi, ri), if m̂L(mi, ri) > m̂L(mj , rj)

mi, if m̂L(mi, ri) < m̂L(mj , rj)

m̂L(mi,ri)+mi
2 , if m̂L(mi, ri) = m̂L(mj , rj),

[S14]

where m̂L refers to Eq. S13.

Under isogamic constraint, the apparent volume is always given by the third case of equal sized chemoattractant zones (m̂L(mi, ri) =

m̂L(mj , rj)) which equals

m̂c(mc, rc) = mc

(
1 +

1
2
αrm

2/3
c

rc

1− rc

)3
. [S15]

S5



Supplementary to Siljestam and Martinossi-Allibert | Anisogamy and sex-bias in competition | Am.Nat.

S2. Analysis

S2.1 Symmetries of the invasion fitness function. In our model, the fertilization dynamics of the two mating types x and y are modelled

identically, such that the label x and y have no effect per se. This symmetry means that, for a resident trait vector T = (mi, ri,mj , rj)

and an alternative trait vector Trev = (mj , rj ,mi, ri) where the two mating types are reversed, we have F ′i (m
′, r′, T ) = F ′j(m

′, r′, Trev)

for the mutant (and correspondingly Fi(T ) = Fj(Trev) for the resident). Here i denotes either mating type x or y, and j denotes the other

mating type. We refer in several instances to the work of Van Dooren et al. (2004), where another type of symmetry is considered and

should not be confused with what we present in our model. Van Dooren et al. (2004) consider Fx(m′, r′, T ) = Fy(m′, r′, T ) = F (m′, r′, T ),

meaning that a male and a female of the same phenotype have the same reproductive success. In our model, the reproductive success of

each mating type (or sexes if anisogamy evolves) depends on the fertilisation dynamics. A given phenotype is likely to result in different

reproductive successes in males and females if anisogamy has evolved.

The two types of symmetries result in some similarities between the models. For an isogamic population (without the isogamic

constraint) with the strategy T= = (m, r,m, r), a mutant has the same reproductive success irrespective of its mating type: Fx(m′, r′, T=) =

Fy(m′, r′, T=) = F=(m′, r′, T=), which equals the reproductive success under the isogamic constraint F=(m′, r′, T=) = Fc(m′, r′, Tc),

where Tc = (m, r).

Hence, the partial derivatives with the respect to mutant traits are the same for Fc and F=, and each singular strategy of the constraint

trait space T ∗c is therefore also a singular strategy at its corresponding point in the unconstrained trait space T ∗=. In addition, as the

Hessian (Eq. A15) only takes partial derivatives with respect to the mutant traits, the Hessian of the unconstrained evolution H(T∗=) is

a 4× 4 block diagonal matrix, with the 2× 2 Hessian of the constrained evolution H(T ∗c )/2 at its diagonal, and zero matrices at the

off-diagonal (Van Dooren et al., 2004),

H(T∗=) =
1
2

H(T ∗c ) 0

0 H(T ∗c ).


However, the two types of symmetries found in our model and in Van Dooren et al. (2004) results in different properties of the Jacobian

(and the Q-matrix, Eq. A16) evaluated at an isogamic strategy T=.

In Van Dooren et al. (2004), at a strategy without differentiated mating types (isogamy in our model), both the eigenvalues of the

Hessian Hc and Jacobian Jc for the constrained evolution, divided by two, appear as eigenvalues of the Jacobian for the unconstrained

evolution J=. In our model, only the eigenvalues of Jc, divided by two, appear as eigenvalues of J=.

In summary, for both models, an isogamic singular point that is repelling for the isogamic constrained evolution (Jc having positive

eigenvalues) always coincides with the singular point repelling the unconstrained evolution (J= having positive eigenvalues). However,

only in the model of Van Dooren et al. (2004) is there a link between the singular point repelling (J= having positive eigenvalues) and

invadability of the singular point under the constrained evolution (Hc having positive eigenvalues). This is not the case in our model, and

we can therefore find singular points of the constrained evolution that can only transition into anisogamy, without having the possibility of

transitioning into genetic polymorphism instead (see scenario (2) in the Analysis section).
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S2.2 Stability analysis for chemoattraction. The mating trait of chemoattraction is modelled by a symmetric but non-smooth function

for unconstrained evolution (Eq. S14), as the trait is only effective for the mating type with the larger chemoattraction zone having an

apparent volume given by Eq. S13. The function (Eq. S14) is therefore undifferentiable at any point where chemoattraction zones are

equal for both mating types, which includes all the isogamic points. In contrast, for the isogamic constraint case the function is smooth,

and the apparent volume is always given by the one case of equal sized chemoattractant zones, Eq S15.

We do know, however, that all the isogamic unconstrained singular point T∗= where rc > 0 are repeller. As soon as the smallest

divergence in the trait of the two mating types occurs, the mating type that happens to get the smaller chemoattraction zone will always

get a negative selection gradient of rj (we arbitrarily label this mating type j). This happens because the investment into the mating trait

gives no benefit for the mating type with the smaller attraction radius, but decreases gamete numbers in Eq. 1 and thus rj will always

evolve to zero. Therefore, only points T∗= where rc = 0 can be attractors.

To overcome the problem of undifferentiability, we model the mating trait of chemoattraction by smooth functions that are asymmetrical

between the mating types, by simply not considering the possibility of mating type j switching from having the small to the larger

chemoattractant zone. This means that m̂i(mi, ri) = m̂L(mi, ri),

m̂j(mj) = mj ,

[S16]

where m̂L is given in Eq. S13 above.

When the model is expressed by this function, the model is no longer symmetric between the mating types, and the result from the

section above that a unconstrained strategy T ∗= corresponding to a singular point in the constrained trait space T ∗c is a singular point in

the unconstrained space as well, does not hold any more.

In practice, some of the isogamic singular points that are repelling for the unconstrained evolution for the original symmetric function

(Eq. S14), will just appear as points with non-zero selection gradient β for the smooth function (Eq. S16, e.g. when rc > 0. However, for

both functions the behaviour is then the same: evolution leads away from T ∗= in the same way, and T ∗= is considered a repeller.

On the other hand, if T ∗= happens to be a singular point with the smooth function, we just use the methods presented in Appendix A5.3

to see if it is an attractor or repeller of the evolutionary dynamics.

S2.3 Numerically solving for the evolutionary path. As a complement to the stability analysis, we numerically solve for the evolutionary

path given by Eq. 6 using the Runge-Kutta method with adaptive step size of order 4 and 5.

First, we solve for the evolutionary path under the isogamic constraint. As there is always a single attracting strategy for the parameter

range we investigate (see Analysis section), the starting point has no particular meaning, and we start evolution from an arbitrary point

chosen to be Tc = (mc = 100, rc = 10−5). We continue the evolutionary path until the evolutionary equilibrium is reached at an attractor

T a
c = (ma

c , r
a
c ). Then, we continue the evolution without the isogamic constraint with a small initial divergence ε in either gamete size

m or mating trait investment r between the two mating types, such that T = (ma
c + ε, ra

c ,m
a
c − ε, ra

c ) or T = (ma
c , r

a
c + ε,ma

c , r
a
c − ε).

If evolution in both cases leads back towards T = (ma
c , r

a
c ,m

a
c , r

a
c ), we conclude that the isogamic attractor T a

c is also an attractor of

the corresponding unconstrained evolution. In this case, there is stabilizing selection preventing the evolution of anisogamy and the

isogamic attractor T a
c is the end-point of evolution. Otherwise, if the trait values of the two mating types diverge away from T a

c , it is a

repeller of the unconstrained evolution and anisogamy evolves. We then continue the numerical solution of the evolutionary path until

anisogamic evolution reaches an attractor, most often it is a fixed point attractor T a = (ma
x, r

a
x,m

a
y , r

a
y) giving an evolutionary endpoint

(see Fig. 4b-c), but for a small subset of the parameter values it reaches a limit cycle attractor, resulting in stable oscillations (see Fig. 4d).
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S2.4 Partial derivatives on fitness. In this part, we connect predictions of the model to partial derivatives of the invasion fitness w (Eq. 4)

with respect to a mutant trait. This complements the verbal arguments made in the main part, giving a better understanding of how

the evolving traits of the model (mx, rx, my and ry) affect the trade-offs between the three fitness components: gamete numbers ni,0,

fertilization success fi and zygote survival sz . The partial derivatives of the invasion fitness w with respect to the four gamete traits make

up β in Eq. 6, where a positive partial derivative means that a mutant with a higher value of that trait can invade, and vice versa. The

partial derivative of the invasion fitness w with respect to the mutant trait of mating type i is proportional to the corresponding partial

derivative of the reproductive success F ′i (i.e., ∂w/∂r′i ∝ ∂F
′
i/∂r

′
i), and as we are only interested in the sign of the expression, we can look

at the derivative of F ′i instead.

The reproductive success Fi can be expressed as the product of three fitness components: Fi = ni,0fisz , i.e., the number of gametes

entering the mating pool times their fertilization success times their zygote survival probability. The partial derivative of the mutant

fertilization success F ′i with respect to the mating trait investment r′i gives

∂F ′i
∂r′i

=
∂f ′ini′,0s

′
z

∂r′i
= f ′is

′
z

∂ni′,0

∂r′i
+ ni′,0s

′
z

∂f ′i
∂r′i

+ ni′,0f
′
i

∂s′z
∂r′i

.

We know the signs of all these three derivatives, as the investment into the mating trait has only two effects. First, ri increases the mating

trait (gamete motility or apparent gamete size) which, per definition, increases fertilization success fi. Second, investing energy imposes a

traded-off, as spending the proportion ri of energy on the mating trait decreases the gamete numbers accordingly. Finally, ri has no effect

on zygote survival. In conclusion, ∂ni′,0/∂r′i < 0, ∂f ′i/∂r
′
i > 0 and ∂s′z/∂r

′
i = 0, and

∂F ′i
∂r′i

= f ′is
′
z

∂ni′,0

∂r′i
+ ni′,0s

′
z

∂f ′i
∂r′i

,

and the mating trait evolves whenever the increase in fertilization success f ′i outweighs the decrease in gamete numbers n′i,0. Under the

special case of complete absence of gamete limitation (classically referred to as gamete competition), the fertilization success of female

gametes fx = 1 and can not be increased. Therefore, independently of how effective the mating trait is, ∂f ′x/∂r′x = 0 and rx will not

evolve. Otherwise, if fx < 1, both mating types can evolve the mating trait, as seen in the results of our model (Figures 5, S1 and S2).

For gamete size mi, we have

∂F ′i
∂m′i

=
∂f ′ini′,0s

′
z

∂m′i
= f ′is

′
z

∂ni′,0

∂m′i
+ ni′,0s

′
z

∂f ′i
∂m′i

+ ni′,0f
′
i

∂s′z
∂m′i

,

where zygote survival is an increasing function of mi (i.e., ∂sz/∂mi > 0), while for the gamete number ni,0 there is an intermediate

optimum of mi =
√
Kg + 1, and the sign of ∂ni,0/∂mi will depend on whether mi is greater than or smaller than this. The sign of

∂f ′i/∂m
′
i will depend on the mating trait: it is positive for the fusion partner capture trait (increasing apparent size), and for the gamete

motility trait whenever αm > 0. It is negative whenever αm < 0 for the gamete motility trait. The sign of the mixed derivative on

∂2f ′i/∂m
′
i∂r
′
i, telling whether the benefit of the mating trait investment ri increases or decreases with gamete size mi, follows the same

sign as for ∂f ′i/∂m
′
i, and tells whether the trait is more efficient for smaller or larger gametes, and if anisogamy evolves, we can indeed see

that this mixed derivative predicts in most cases which mating type invests more into the mating trait.
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S2.5 Our model in terms of Lehtonen et al 2016 fitness formulation.

S2.5.1 The fitness formulation of Lehtonen et al. In Lehtonen et al. (2016), when analysing the expanded model, absolute fitness (to which

we refer to as reproductive success Fi) is divided up into three fitness components,

Fi = SiciG, [S17]

where Si is the probability of an individual to find a mating pool (in our model we assume Si = 1), G is group-level fecundity (the

mating pool’s total number of successful fertilizations) and ci is the gamete competition function, giving the proportion of the group-level

fecundity resulting from focal fertilizations.

In Lehtonen et al. (2016) a gamete competition function ci is assumed, where individuals can only compete thorough gamete numbers,

and the fitness component ci is therefore unable to generate asymmetries between the sexes (Lehtonen et al. (2016) S2). The authors

also point out that the same holds for the mate searching function Si, and only group-level fecundity G is investigated as a candidate to

generate sex-differential selection. However, for our model G has no effect on selection (see next subsection), while the gamete competition

function ci is alone responsible for the sex-differential selection leading to female- or male-biased competition.

S2.5.2 Invasion fitness in a large group. In this subsection, we show that the evolutionary dynamics of our model is only dependent on the

fitness component of the competition function ci, which is therefore the fitness component responsible for the sex-differential selection in

our model.

By rewriting equation S17, we find that this gamete competition function is given by

ci = Fi/G, [S18]

assuming Si = 1 (which the authors also do when investigating the gamete competition function). For a mating pool with a group size

k and with only the resident strategy we get G = kFi, while if a focal mutant individual is present it is given by G′ = (k − 1)Fi + F ′i ).

For a mutant individual, equation S18 equals ci = F ′i/[(k − 1)Fi + F ′i ]. In our model, we assume large population size, but also

implicitly large group size k, such that no group effects are needed to be considered. Large k gives G′ = G (i.e., the effect of a rare mutant

on group-level fecundity G′ is negligible when the group is large) and therefore c′i = F ′i/(kFi). Mutant absolute fitness F ′i over population

mean fitness Fi equals mutant relative fitness wi. Therefore, the gamete competition function equals ci = w′i/k and we get that w′i = kc′i

(note that for a resident strategy, we always have ci = 1/k and wi = 1).

In conclusion, assuming large population and large groups, the invasion fitness of a rare mutant strategy T ′ (Shaw and Mohler equation,

equation 4) simplifies to,

w(T ′, T ) = k

(
c′x(m′x, r′x, T ) + c′y(m′y , r′y , , T )

)
2

. [S19]

This is simply the group size k times the expected proportion of the group’s fitness being focal. Thereby, our result is only dependent on

the gamete competition function ci.
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S2.6 Intrasexual cost and intersexual benefit of the mating trait. We assess the competitive nature of a mating trait by measuring its

intrasexual cost. The intrasexual cost represents the relative reduction in reproductive success experienced by a focal individual (as defined

in Eq. A14) when there is an increase in the mating trait investment of other individuals of the same mating type.

In our model, the mating trait can only be produced by allocating a certain proportion ri of the energy budget to it, thereby reducing

the number of gametes produced (as described in Eq. 1). However, in this context, our aim is to examine the effect of the mating trait

on a focal individual when other individuals increase the trait, without considering the cost of this trait to the individuals increasing it.

To accomplish this, we introduce the term ui, which represents the unconstrained investment in the mating trait. This term is added

to the mating trait investment ri of the other individuals of the same mating type (in Eq.2 for the motility trait or Eq.3 for the fusion

partner capture trait). Notably, the introduction of ui does not reduce the number of gametes produced (in Eq. 1), i.e., it increases

the investment in the mating trait without any trade-off. In this specific context, the strategy is given by Tu having this extra trait:

Tu = (mx, rx, ux,my , ry , uy). Hence, the intrasexual cost is given by the relative decrease in reproductive success of a focal individual F ′i ,

as other individuals increases their unconstrained investment of the mating trait,

−
( 1
F ′i (T ′u, Tu)

∂F ′i (T
′
u, Tu)

∂ui

∣∣∣
ui=uj=0

)∣∣∣
T ′u=Tu

, [S20]

where i denotes the mating type of the focal individual, and the minus ensures that the intrasexual cost measures a decrease, rather than

an increase in reproductive success.

We also quantify the intersexual benefit of the mating trait, which is the relative increase in reproductive success experienced by a focal

individual when the mating trait of the individuals of the opposite mating type in the population is increased. This benefit is measured by( 1
F ′i (T ′u, Tu)

∂F ′i (T
′
u, Tu)

∂uj

∣∣∣
ui=uj=0

)∣∣∣
T ′u=Tu

, [S21]

We note that the intrasexual cost and intersexual benefit of the mating trait do not indicate selection directly acting on the trait, since

the fitness effect is not measured on the individuals carrying the trait.
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S3. Step-wise calculations.

S3.1 Solving for gamete fertilization. In the mating pool, the number of gametes per zygote of mating type i at time t decreases as

fertilization events occur according to (Eq. A5)

dni,t
dt

= −crni,t(ni,t + nj,0 − ni,0),

which is a separable differential equation:

dni,t
dt

=− crn2
i,t − cr(nj,0 − ni,0)ni,t ⇐⇒

dni,t
dt

crn2
i,t + cr(nj,0 − ni,0)ni,t

=− 1,

and can thereby be solved by integrating both sides with respect to t using the definite integral from t = 0 to t = τ∫ τ

0

dni,t
dt

crn2
i,t + cr(nj,0 − ni,0)ni,t

dt =−
∫ τ

0
1 dt ⇐⇒∫ ni,τ

ni,0

1

(cr + cr(nj,0−ni,0)
ni,t

)n2
i,t

dni,t =− τ

The left-hand side integral can be solved with the following substitution u(ni,t) = cr + cr(nj,0 − ni,0)/ni,t and

du = −cr(nj,0 − ni,0)/n2
i,tdni,t ⇐⇒ dni,t = −n2

i,t/(cr(nj,0 − ni,0))du, resulting in

−
1

cr(nj,0 − ni,0)

∫ u(ni,τ )

u(ni,0)

1
u

du =− τ ⇐⇒

1
cr(nj,0 − ni,0)

[log(u)]u(ni,τ )
u(ni,0) =τ ⇐⇒

log(u (ni,τ ) /u (ni,0))
cr(nj,0 − ni,0)

=τ.

Substituting back u(ni,t) = cr + cr(nj,0 − ni,0)/ni,t gives

log
(

1 + (nj,0 − ni,0)/ni,τ
1 + (nj,0 − ni,0)/ni,0

)
=cr(nj,0 − ni,0)τ ⇐⇒

ni,0 + ni,0(nj,0 − ni,0)/ni,τ
nj,0

= exp
(
cr(nj,0 − ni,0)τ

)
⇐⇒

ni,τ =
ni,0(nj,0 − ni,0)

exp
(
cr(nj,0 − ni,0)τ

)
nj,0 − ni,0

Substituting τ with t gives the explicit expression for the number of gametes of mating type i at time t

ni,t =
ni,0(nj,0 − ni,0)

exp
(
cr(nj,0 − ni,0)t

)
nj,0 − ni,0

. [S22]
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S3.2 Solving for gamete fertilization under isogamy. For the case of the isogamic constraint, the number of gametes per zygote of mating

type i at time t decreases according to (Eq. A7)
dni,t

dt
= −crn2

i,t,

which is a separable differential equation:

dni,t
dt

=− crn2
i,t ⇐⇒

dni,t
dt
n2
i,t

=− cr,

and can thereby be solved by integrating both sides with respect to t using the definite integral from t = 0 to t = τ∫ τ

0

dni,t
dt
n2
i,t

dt =−
∫ τ

0
cr dt ⇐⇒∫ ni,τ

ni,0

1
n2
i,t

dni,t =− crτ ⇐⇒[
1
ni,t

]ni,τ
ni,0

=crτ ⇐⇒

1
ni,τ

=crτ +
1
ni,0

⇐⇒

1
ni,τ

=
crni,0τ + 1

ni,0
⇐⇒

ni,τ =
ni,0

crni,0τ + 1

Substituting τ with t gives the explicit expression for the number of gametes of mating type i at time t under isogamy

ni,t =
ni,0

crni,0t+ 1
. [S23]
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S3.3 Solving for gamete fertilization of a rare mutant strategy. In the mating pool, the number of gametes per zygote with a rare mutant

strategy, of mating type i at time t, decreases according to (Eq. A12)

dni′,t
dt

= −
cmnj,0(ni,0 − nj,0)

exp
(
cr(ni,0 − nj,0)t

)
ni,0 − nj,0

ni′,t,

which is a separable differential equation

dni′,t
dt

=−
cm(ni,0 − nj,0)nj,0

exp(cr(ni,0 − nj,0)t)ni,0 − nj,0
ni′,t ⇐⇒

dni′,t
dt
ni′,t

=−
cm(ni,0 − nj,0)nj,0

exp(cr(ni,0 − nj,0)t)ni,0 − nj,0
,

and can thereby be solved by integrating both sides with respect to t using the definite integral from t = 0 to t = τ∫ τ

0

dni′,t
dt
ni′,t

dt =−
∫ τ

0

cm(ni,0−nj,0)nj,0
exp(cr(ni,0 − nj,0)t)ni,0 − nj,0

dt ⇐⇒∫ ni,τ

ni,0

1
ni′,t

dni′,t =−cm(ni,0−nj,0)nj,0

∫ τ

0

1
exp(cr(ni,0−nj,0)t)ni,0−nj,0

dt⇐⇒[
log(ni′,t)

]ni,τ
ni′,0

= log
(
ni′,t

ni′,0

)
=−cm(ni,0−nj,0)nj,0

∫ τ

0

1
exp(cr(ni,0−nj,0)t)ni,0−nj,0

dt

The right hand side integral can be solved by first applying the following substitution u(t) = cr(ni,0 − nj,0)t where du = cr(ni,0 − nj,0)dt ⇐⇒

dt = 1/cr(ni,0 − nj,0)du, resulting in

log
(
ni′,t

ni′,0

)
=−

cm(ni,0 − nj,0)nj,0
cr(ni,0 − nj,0)

∫ u(τ)

u(0)

1
exp(u)ni,0 − nj,0

du ⇐⇒

log
(
ni′,t

ni′,0

)
=−

cmnj,0

cr

∫ τ

0

1
exp(u)ni,0 − nj,0

du,

and then apply the following substitution v(u) = exp(u) where dv = exp(u)du ⇐⇒ du = (1/v)dv, resulting in

log
(
ni′,t

ni′,0

)
= −

cmnj,0

cr

∫ v[u(τ)]

v[u(0)]

1
v(ni,0v − nj,0)

dv, [S24]

and the right-hand side can be simplified using partial fraction decomposition:

1
v(ni,0v − nj,0)

=
A

v
+

B

ni,0v − nj,0
⇐⇒

1 =A(ni,0v − nj,0) +Bv

where v = nj,0/ni,0 gives the solution B = ni,0/nj,0, and v = 0 gives the solution A = −1/nj,0. Hence,

1
v(ni,0v − nj,0)

=
ni,0

ni,0nj,0v − n2
j,0
−

1
nj,0v

[S25]
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Substituting Eq. S25 into Eq. S24 gives

log
(
ni′,t

ni′,0

)
=−

cmnj,0

cr

(
−
∫ v[u(τ)]

v[u(0)]

1
nj,0v

dv +
∫ v[u(τ)]

v[u(0)]

ni,0

ni,0nj,0v − n2
j,0

dv
)
⇐⇒

log
(
ni′,t

ni′,0

)
=
cm

cr

∫ v[u(τ)]

v[u(0)]

1
v

dv −
cmni,0

cr

∫ v[u(τ)]

v[u(0)]

1
ni,0v − nj,0

dv, [S26]

Solving for the integral on the left in Eq. S26 and then substituting back v = exp(u), and then u = cr(ni,0 − nj,0)t gives∫ v[u(τ)]

v[u(0)]

1
v

dv =
[

log(v)
]v[u(τ)]

v[u(0)]

= log
(
v
(
u(τ)

))
− log

(
v
(
u(0)
))

=u(τ)− u(0)

=cr(ni,0 − nj,0)τ [S27]

The integral on the right in Eq. S26 can be solved with the following substitution w(v) = ni,0v − nj,0 where dw = ni,0dv ⇐⇒

dv = 1/ni,0dw, resulting in ∫ v[u(τ)]

v[u(0)]

1
ni,0v − nj,0

dv =
1
ni,0

∫ w(v[u(τ)])

w(v[u(0)])

1
w

dw

=
1
ni,0

[
log(w)

]w(v[u(τ)])

w(v[u(0)])

=
1
ni,0

log
(
w

(
v
(
u(τ)

)))
− log

(
w

(
v
(
u(0)
)))

=
1
ni,0

log

w

(
v
(
u(τ)

))
w

(
v
(
u(0)
))


Substituting back w = ni,0v − nj,0, and then v = exp(u), and then u = cr(ni,0 − nj,0)t gives

=
1
ni,0

log

w

(
v
(
u(τ)

))
w

(
v
(
u(0)
))


=
1
ni,0

log

(
exp
(
u(τ)

)
ni,0 − nj,0

exp
(
u(0)
)
ni,0 − nj,0

)

=
1
ni,0

log

(
exp
(
cr(ni,0 − nj,0)τ

)
ni,0 − nj,0

ni,0 − nj,0

)
[S28]
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Substituting the left and the right integral in Eq. S26 with Eqs. S27 and S28, respectively, gives

log
(
ni′,t

ni′,0

)
=cm(ni,0 − nj,0)τ −

cm

cr
log

(
exp
(
cr(ni,0 − nj,0)τ

)
ni,0 − nj,0

ni,0 − nj,0

)
⇐⇒

log
(
ni′,t

ni′,0

)
=cm(ni,0 − nj,0)τ +

cm

cr
log

(
ni,0 − nj,0

exp
(
cr(ni,0 − nj,0)τ

)
ni,0 − nj,0

)
⇐⇒

ni′,t

ni′,0
=

exp(cmni,0τ)
exp(cmnj,0τ)

( exp(crnj,0τ)(ni,0 − nj,0)
exp(crni,0τ)ni,0 − exp(crnj,0τ)nj,0

) cm
cr

⇐⇒

ni′,t

ni′,0
=

exp(cmni,0τ)

exp(crnj,0τ)
cm
cr

( exp(crnj,0τ)(ni,0 − nj,0)
exp(crni,0τ)ni,0 − exp(crnj,0τ)nj,0

) cm
cr

⇐⇒

ni′,t =ni′,0 exp(cmni,0τ)
(

ni,0 − nj,0
exp(crni,0τ)ni,0 − exp(crnj,0τ)nj,0

) cm
cr

⇐⇒

Substituting τ with t gives the explicit expression for the number of gametes of the mutant strategy of mating type i at time t

ni′,t = ni′,0 exp(cmni,0t)
(

ni,0 − nj,0
ni,0 exp(crni,0t)− nj,0 exp(crnj,0t)

) cm
cr [S29]
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S3.4 Solving for gamete fertilization of a rare mutant strategy under isogamy. For the case of the isogamic constraint, the number of gametes

per zygote of mating type i with a rare mutant strategy at time t decreases according to (Eq. A12)

dni′,t
dt

= −
cmni,0

crni,0t+ 1
ni′,t,

which is a separable differential equation

dni′,t
dt

= −
cmni,0

crni,0t+ 1
ni′,t ⇐⇒

dni′,t
dt
ni′,t

= −
cmni,0

crni,0t+ 1

and can thereby be solved by integrating both sides with respect of t using the definite integral from t = 0 to t = τ∫ τ

0

dni′,t
dt
ni′,t

dt =−
∫ τ

0

cmni,0

crni,0t+ 1
dt ⇐⇒∫ ni,τ

ni,0

1
ni′,t

dni′,t =− cmni,0

∫ τ

0

1
crni,0t+ 1

dt ⇐⇒

log
(
ni′,t

ni′,0

)
=− cmni,0

∫ τ

0

1
crni,0t+ 1

dt.

The right hand-side of the integral can be solved with the following substitution u(t) = crni,0t + 1 where du = crni,0dt ⇐⇒

dt = 1/(crni,0)du, resulting in

log
(
ni′,t

ni′,0

)
=−

cmni,0

crni,0

∫ u(τ)

u(0)

1
u

du ⇐⇒

log
(
ni′,t

ni′,0

)
=−

cm

cr
log
(
u(0)
u(τ)

)
⇐⇒

ni′,t =ni′,0
(
u(τ)
u(0)

) cm
cr
.

Substituting back u(v) = crni,0t+ 1 and then τ with t gives the explicit expression for the number of gametes of the mutant strategy of

mating type i at time t under isogamy

ni′,t = ni′,0
1

(crni,0t+ 1)
cm
cr

. [S30]
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S4. Supplementary figures
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Fig. S1. Sexual dimorphism in gamete size (a.) and sex-bias in mating trait investment between the two mating types x and y (b.), male and female
gamete size (c. and d., respectively), intrasexual cost (e.) and intersexual benefit (f.) of the mating trait, for the case of motility. The vertical axis of each
subplot represents the gamete density constant δ and the horizontal axis of each subplot represents the size-dependent investment efficiency αm, which
modulates whether gamete size has a positive or negative effect on the efficiency of energy invested into motility. We present results for three values of
Kz , the size-dependent survival parameter for zygotes, and for three values of Kg , the size-dependent survival parameter for gametes. Contour lines
correspond to derivations of the stability analysis. A black dashed line encapsulates the area where isogamy is the expected evolutionary end-point; in the
remaining area, anisogamy is expected. A grey contour line encapsulates the area where a pseudo-isogamic genetic polymorphism can occur before
anisogamy evolves. The results from solving the evolutionary path are represented by the coloured shading showing the degree of sexual dimorphism in
gamete size (a.) and investment in the mating trait (b.) reached at the evolutionary endpoint, where white represents no dimorphism, and deep colours
represent strong dimorphism. Note that under anisogamy, it is always only one mating type that invests into the mating trait. The gamete sizes for the
male and female mating types are given in c. and d., respectively. The intrasexual cost (and intersexual benefit) of the mating trait is given in e. (and f.),
measured as the relative decrease (increase) in reproductive success of a focal individual (Eq. A14) as the result of increasing the mating trait investment
of other same-mating type (opposite mating type) individuals (details are given in Supplementary information S2.6). For anisogamic parameter region, the
intrasexual cost (intersexual benefit) is evaluated for the mating type that invests (do not invest) into the mating trait.
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Fig. S2. Sexual dimorphism in gamete size (a.) and sex-bias in mating trait investment between the two mating types x and y (b.), male and female
gamete size (c. and d., respectively), intrasexual cost (e.) and intersexual benefit (f.) of the mating trait, for the case of fusion partner capture. The
vertical axis of each subplot represents the gamete density constant δ and the horizontal axis of each subplot represents the dimensionality parameter αd
ranging from 1 to 3, which determines how costly the physical structures are (low αd means low cost). The left part of each plot is reserved for the special
case of chemoattraction, denoted by a c on the plot axis and separated by a gray bar from the physical structure case. We present results for three values
of Kz , the size-dependent survival parameter for zygotes, and for three values of Kg , the size-dependent survival parameter for gametes. Contour lines
correspond to derivations of the stability analysis. A black dashed line encapsulates the area where isogamy is the expected evolutionary end-point; in the
remaining area, anisogamy is expected. A grey contour line encapsulates the area where a pseudo-isogamic genetic polymorphism can occur before
anisogamy evolves. The results from solving the evolutionary path are represented by the coloured shading showing the degree of sexual dimorphism in
gamete size (a.) and investment bias in the mating trait (b.) reached at the evolutionary endpoint, where white represents no dimorphism, and deep
colours represent strong dimorphism. Note that under anisogamy, it is almost always only one mating type that invests into the mating trait. The gamete
sizes for the male and female mating types are given in c. and d., respectively. The intrasexual cost (and intersexual benefit) of the mating trait is given in
e. (and f.), measured as the relative decrease (increase) in reproductive success of a focal individual (Eq. A14) as the result of increasing the mating
trait investment of other same-mating type (opposite mating type) individuals (details are given in Supplementary information S2.6). For anisogamic
parameter region, the intrasexual cost (intersexual benefit) is evaluated for the mating type investing more (less) into the mating trait. Note: for Kz = 104

and Kg = 0.1 and 30, the grey contour line encapsulates one pixel (one parameter combination) in the isogamic region. Genetic polymorphism in the
isogamic region could be an error due to numerical imprecision, or potentially show that a fourth evolutionary outcome is possible for a very restrictive
parameter space, where only genetic polymorphism can evolve.
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