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Abstract 17	

The current status of the Sino-Himalayan region as a biodiversity hotspot, particularly for flora, 18	
has often been linked to the uplift of the Sino-Tibetan Plateau and Himalayan and Hengduan 19	
Mountains. However, the relationship between the topological development of the region and 20	
the onset of diversification is yet to be confirmed. Here, we apply Bayesian phylodynamic 21	
methods to a large phylogeny of angiosperm species from the Sino-Himalayas, to infer changes 22	
in their evolutionary rates through time. We find strong evidence for high diversification rates in 23	
the Paleocene, late Miocene and Pliocene, and for negative diversification rates in the 24	
Quaternary, driven by an increase in extinction rates. Our analyses suggest that changes in 25	
global palaeotemperatures are unlikely to be a driving force for these rate shifts. Instead, 26	
recovery after the end-Cretaceous mass extinction, the collision of the Indian continent with 27	
Eurasia and coeval topographic change in the Sino-Himalayans, and the impact of Pleistocene 28	
glaciations on this altitudinally-variable region may shape these rates. We also demonstrate the 29	
strong influence of change time choice on piecewise-constant trajectories in Bayesian 30	
phylodynamics, and advocate for the use of prior information when making this decision. 31	

  32	



Introduction 33	

The Sino-Himalayan region is likely the world’s oldest and most biodiverse truly cold region, and 34	
is therefore probably also the place of origin of many clades of cold-adapted plants (Hagen et al. 35	
2019; Ding et al. 2020). In particular, the Hengduan Mountains to the southeast of the region 36	
are home to a floral biodiversity hotspot (Sherman et al. 2008; Xing and Ree 2017; Ding et al. 37	
2020). The region has a particularly large number of endemic plant species, and beta diversity 38	
is high, meaning that the taxonomic constituents of floral communities are highly variable across 39	
space (Sherman et al. 2008). Despite its age as a cold region, the Sino-Himalayas also contains 40	
angiosperm clades which have diverged more recently on average than the rest of China, with 41	
lower phylogenetic diversity (Lu et al. 2018). Collectively, this suggests that high diversification 42	
rates have likely been maintained across most of the Cenozoic here. 43	

The accrual of so much plant diversity in the Sino-Himalayas has previously been attributed to 44	
the region’s extreme altitudinal heterogeneity (Sherman et al. 2008; Liu et al. 2013; Favre et al. 45	
2015). Geological dynamism is increasingly being recognised as a key driver behind many of 46	
the world’s biodiversity hotspots (Hoorn et al. 2013; Antonelli et al. 2018; Pellissier et al. 2018; 47	
Chang et al. 2023), with the process of mountain uplift being linked to plant diversification 48	
around the world (Hughes and Atchison 2015; Steinbauer et al. 2016; Antonelli et al. 2018). 49	
Complex topography increases abiotic variability, which can result in rapid speciation as existing 50	
biotas adapt to these newly arising habitats (Hoorn et al. 2013; Hughes and Atchison 2015; 51	
Huang et al. 2019). Isolated mountain tops and poor connectivity between similar habitats limits 52	
dispersal and facilitates local adaptation, further promoting allopatric speciation and endemism 53	
(Hoorn et al. 2013; Steinbauer et al. 2016; Dool et al. 2022). The existence of strong 54	
environmental gradients with altitude, across a relatively small area, may also allow migration to 55	
track suitable habitat in the face of climate change (Hoorn et al. 2013; Huang et al. 2019). 56	
During glacial activity in the Quaternary, many plants were driven into refugia, which separated 57	
populations and thereby contributed to genetic divergence and allopatric speciation, as well as 58	
extinction (Liu et al. 2013; Hughes and Atchison 2015; Steinbauer et al. 2016). However, the 59	
Sino-Himalayas is one of the lesser-studied and least understood mountainous regions of the 60	
world, with the relationship between uplift and biodiversity yet to be clearly demonstrated (Favre 61	
et al. 2015; Xing and Ree 2017). 62	

The region has experienced considerable topographic change over the Cenozoic, mostly linked 63	
to the convergence and eventual collision of the Indian and Eurasian continents (e.g. Yin and 64	
Harrison 2000; Royden et al. 2008; Kapp and Decelles 2019; Spicer et al. 2021; Ding et al. 65	
2022). Uplift has also had a fundamental role in the development of the East Asian monsoon, a 66	
major component of the local climate regime (Farnsworth et al. 2019). The exact nature of the 67	
geological processes involved, and the timing of these events, remain unresolved (Royden et al. 68	
2008; Kapp and Decelles 2019; Spicer et al. 2021; Ding et al. 2022). While stable isotope 69	
palaeoaltimetry is the most commonly used method for reconstructing palaeoaltitude, there are 70	
many other factors that can affect these isotope ratios which may dilute or obscure the 71	
altitudinal signal (Huang et al. 2019; Spicer et al. 2021). 72	

Uncertainty in the topographical and climatic history of the region is a major barrier to directly 73	
linking biodiversification to mountain building (Hughes and Atchison 2015; Favre et al. 2015; 74	
Xing and Ree 2017; Antonelli et al. 2018). Relating mountain building to biodiversity often 75	
requires considering thresholds, such as the point at which mountains became high enough to 76	
interact with climate systems (Huang et al. 2019), or extend above the tree line (Ding et al. 77	
2020), but our knowledge of the placement of these thresholds is limited, let alone when they 78	
were crossed. In the Sino-Himalayas, the timing of the development of a land bridge between 79	
Eurasia and India likely also had strong impacts on the extent of biotic interchange between the 80	



two regions (Spicer et al. 2021). Many of these phenomena will have been inconsistent across 81	
space, influencing different subregions within the Sino-Himalayas at different times. The scale-82	
dependence of both biotic and abiotic variables also complicates efforts towards comparison 83	
(Antonelli et al. 2018). 84	

There are also complexities in reconstructing biodiversification, i.e. the history of evolutionary 85	
rates, in the region. Occurrence-based information describing plant distributions and richness 86	
are valuable, but likely to be incomplete (Kreft and Jetz 2007), and are difficult to compare 87	
between the present and the fossil record due to contrasting sampling biases. Phylogenetic 88	
approaches aim to infer the evolutionary relationships between species, and can provide insight 89	
into the timing of speciation and extinction events. Such approaches have previously been used 90	
to infer the evolutionary history of Sino-Himalayan plants, but only within individual subclades, 91	
meaning that any results are taxon-specific and often can only encompass fairly shallow 92	
geological time (Favre et al. 2015; Xing and Ree 2017). 93	

Here, we use phylodynamic models implemented in the Bayesian phylogenetics framework 94	
BEAST 2 (Bouckaert et al. 2019) to infer evolutionary rates from a previously constructed 95	
phylogeny of extant Sino-Himalayan angiosperm species (Liu et al. 2021). The high taxonomic 96	
resolution, large size and geographic restriction of the phylogeny makes it ideal for inferring 97	
angiosperm speciation and extinction rates within the region. We use a birth-death skyline 98	
model (Stadler et al. 2012) to infer piecewise-constant rates for set intervals throughout the 99	
Cenozoic. We then compare these rates to contemporaneous global palaeotemperatures, to 100	
examine the extent to which global versus local drivers are likely to have influenced the inferred 101	
rates. 102	

The potential nonidentifiability of evolutionary rates based on extant phylogenies has recently 103	
become a topic of fierce debate (Louca and Pennell 2020; Legried and Terhorst 2022; Morlon et 104	
al. 2022; Kopperud et al. 2023). Louca and Pennell (2020) describe how speciation and 105	
extinction functions are drawn from congruence classes, within which each pair of functions is 106	
equally likely to fit the evolutionary history of a given phylogeny. As a result, it may not be 107	
possible to discern which of these pairs of functions truly generated the observed phylogeny. 108	
Legried and Terhorst (2022) demonstrate that piecewise-constant rates, such as those we infer 109	
here, are identifiable under certain conditions. But regardless, it seems prudent to conduct our 110	
analyses in a way which is mindful of this debate. Here, we implement a number of steps to 111	
thoroughly interrogate our model and our results, including testing the influence of prior choice, 112	
verifying model adequacy, and investigating common trends in the rate functions contained in 113	
the posterior. 114	

Methods 115	

Phylogeny 116	

Liu et al. (2021) built a large maximum likelihood phylogeny of extant angiosperms currently 117	
found in the Sino-Himalayas and surrounding regions, excluding recent introductions. Their 118	
phylogeny included 19,313 species, with genetic data available for 8,864 of these tips. They 119	
time-scaled their phylogeny using node calibrations, at 123 calibration points sourced from 120	
previous literature. We chose this as the most appropriate phylogeny to conduct our 121	
phylodynamic analyses on due to (1) its large number of tips, (2) its wide taxonomic breadth, 122	
allowing evolutionary rates to be inferred for all angiosperms collectively and resulting in a root 123	
age in the Early Cretaceous, therefore allowing us to infer rates for the whole of the Cenozoic, 124	
(3) its restriction to our geographic region of interest, and (4) its use of species at the tips, as 125	
this is the taxonomic resolution at which the processes in our model are assumed to operate. 126	



Prior to our analyses, we pruned all tips from the tree which were not associated with any 127	
genetic data, as the phylogenetic placement and associated branching times of these tips are 128	
less reliable. 129	

Birth-death skyline 130	

Bayesian birth-death skyline inference (Meredith et al. 2011; Stadler 2011; Stadler et al. 2012; 131	
Heath et al. 2014) was undertaken based on the 8,864-tip fixed phylogeny using the BDSKY 132	
package in BEAST2 (Bouckaert et al. 2019). The model was parameterised using birth 133	
(speciation, 𝜆) and death (extinction, 𝜇) rates, both quantified per branch per million years and 134	
allowed to change in a piecewise-constant fashion, and an extant sampling probability (𝜌). For 135	
both speciation and extinction rates, an exponential prior with a mean of 1.0 was used, placing 136	
most probability on smaller rates, up to a magnitude observed across species phylogenies of a 137	
wide range of taxa (Henao Diaz et al. 2019). 138	

To account for uncertainty in the true number of extant angiosperm species in the Sino-139	
Himalayas, the extant sampling probability prior was set using two different approaches, both 140	
based on the proportion of tips with genetic data in the Liu et al. (2021) phylogeny (45.9%). 141	
Firstly, the sampling prior was defined using a beta distribution (𝛼 = 4, 𝛽 = 8). Secondly, 142	
separate analyses were run using three fixed sampling levels of 0.5 (high completeness), 0.3 143	
(mid completeness) and 0.1 (low completeness). The change times for the piecewise constant 144	
rates were also defined using two different regimes. Firstly, 14 equally-spaced bins were used, 145	
each 10My in duration. Secondly, change times were placed at the boundaries of recognised 146	
geological intervals, to create 13 temporal bins (Table 1). Eight separate MCMC chains, one for 147	
each combination of the two sets of change times and four sets of sampling priors, were run 148	
until they reached convergence (ESS values for all parameters over 200 after the removal of a 149	
10% burn-in). 150	

Quantifying change 151	

Post-processing of the BDSKY log files was conducted using R (R Core Team 2023). Net 152	
diversification (𝜆! − 𝜇!) rates were calculated post hoc for each iteration of the MCMC chains. 153	
Median values were then calculated for all parameters in each time interval, alongside 95% 154	
highest posterior density (HPD) values using the R package coda (Plummer et al. 2020). We 155	
also calculated the numerical difference in each inferred rate across each pair of adjacent time 156	
bins within an iteration of the MCMC chain. This allowed us to summarise the posterior 157	
distribution of rate trajectories in the posterior, particularly whether rates tended to increase or 158	
decrease consistently across a temporal boundary. 159	

Model adequacy 160	

In order to verify the performance of our model, we simulated phylogenies using the inferred 161	
parameters from the BDSKY analysis and re-analysed them Duchêne et al. (2019). The median 162	
inferred birth and death trajectories were used to generate phylogenies using a birth-death 163	
model in the BEAST2 package ReMASTER (Vaughan 2023). After 140My (at the “present”), 164	
phylogenies which did not reach the number of tips in the total Liu et al. (2021) phylogeny were 165	
discarded, and 8,864 tips were selected at random to constitute the “sampled” phylogeny. The 166	
number of discarded tips (and hence the sampling proportion) was also recorded. This process 167	
was repeated until 100 phylogenies had been generated. Each of these phylogenies was then 168	
analysed using the same BDSKY birth-death skyline model as the original analyses, to 169	
investigate the accuracy with which the true, generative rate functions could be recovered. 170	



Palaeotemperature comparison 171	

Scotese et al. (2021) produced estimates of global average temperature for each 1My interval of 172	
the Phanerozoic by combining oxygen isotope data and information from lithological indicators. 173	
We tested for a possible relationship between our inferred rates and these global 174	
palaeotemperatures, to rule out temperature as a major driver of the (local) Sino-Himalayan 175	
diversity trends. We calculated the maximum, minimum and mean temperature estimate across 176	
the 1My intervals included in each time bin (boundary years were included in both bins). We 177	
then used linear regression to test for correlations between the mean global temperature 178	
estimates and evolutionary rate estimates (speciation, extinction, and net diversification) for 179	
each iteration of our MCMC posteriors, and summarised the R" and p-values across these 180	
tests. 181	

Results 182	

Reconstructed patterns of net diversification in Sino-Himalayan angiosperms were highly similar 183	
regardless of the sampling prior used (Figure S1). The different fixed sampling proportion priors 184	
changed the absolute amplitude of speciation and extinction rates, but not the shape of their 185	
trajectories, and hence diversification rate estimates remained comparable regardless of which 186	
sampling prior was used. As a result, the main text figures present the analyses carried out 187	
using the beta sampling proportion prior. The model adequacy analyses also recovered 188	
posteriors with median rate values close to those used to simulate the phylogenies (Figure S2), 189	
despite incorporating a range of sampling proportions. This provides further evidence that the 190	
results obtained here are identifiable (Duchêne et al. 2019). 191	

The overall trends of speciation and extinction were also broadly comparable between the 192	
different change times used (Figure 1). Median estimates of speciation and extinction were 193	
relatively constant throughout the Cenozoic, with speciation rates typically around 0.5 per 194	
branch per million years, and extinction rates around 0.4 per branch per million years. The 195	
analysis using equally-spaced time bins suggests that both rates may have increased over the 196	
last 50My, however this is not seen in the analysis using geological time bins. 197	

In both analyses, net diversification was highest in the Early Cretaceous and gradually fell until 198	
100My ago, since which it has remained relatively constant (Figure 1). The analysis with 199	
equally-spaced time bins does not indicate any strong shifts in diversification rate, with over 200	
95% of the posterior distribution indicating a positive diversification rate between 140 and 201	
120Ma, 50 and 20Ma, and over the last 10Ma. This analysis has relatively wide 95% HPD 202	
intervals throughout, while in contrast, the analysis using geological time bins has generally 203	
narrower 95% HPD intervals, and indicates bigger shifts in diversification rate. For example, 204	
diversification rates are estimated to be near-zero during the latest Cretaceous, but are 205	
considerably higher in the Paleocene, with 99.73% of the posterior indicating a positive 206	
diversification rate at this time. Diversification then falls back to near-zero values in the early 207	
Eocene. Diversification rates are also estimated to be positive during the late Miocene and 208	
Pliocene, with 99.89% and 99.97% of the posterior above 0 respectively. However, during the 209	
Quaternary, a negative diversification rate is recovered in all iterations. 210	

The direction and magnitude of rate shifts across change times in each individual iteration was 211	
also calculated (Figure 2), to quantify the posterior support for observed trends over time. Using 212	
the equally-spaced time bins, most interval transitions resulted in an approximately even 213	
number of increases and decreases in speciation, extinction and net diversification rates across 214	
iterations. An increase in both speciation rates and extinction rates is recovered in the majority 215	
of iterations at the 30Mya (99.65% for speciation, 98.24% for extinction) and 20Mya (97.13% for 216	



speciation, 98.82% for extinction) boundaries, the latter associated with a negative 217	
diversification rate (in 98.56% of iterations). Speciation and extinction rates both fell in 96.71% 218	
of iterations at the 10Mya boundary. The width of the HPDs tended to increase with the age of 219	
the boundary time. Using the geological time bins, the direction of diversification rate shifts 220	
between bins was more consistent across iterations. 97.58% of iterations indicated a fall in 221	
diversification rate between the early Lower and late Lower Cretaceous, and 96.05% recovered 222	
another fall in the middle of the Cretaceous. In 99.73% of iterations, an increase in 223	
diversification rates across the Cretaceous-Paleocene (K-Pg) was estimated, and 95.62% also 224	
recovered a fall in diversification rates into the early Eocene. 96.77% of the iterations showed 225	
an increase in diversification rate from the late Miocene into the Pliocene, and all showed a fall 226	
in diversification rate into the Quaternary, accompanied by a near-universal (99.98%) increase 227	
in extinction rates. 228	

The relationships between global average palaeotemperatures and the estimated evolutionary 229	
rates are summarised in Figure 3. For the equally-spaced time bins, both speciation and 230	
extinction rates appear to have a weak, negative correlation with global palaeotemperature, but 231	
no clear patterns arise for any of the other analyses. To investigate this quantitatively, the 232	
relationship between the mean palaeotemperature for each time bin and the rate trajectories for 233	
each iteration in the Bayesian analysis was tested using linear regression, the results of which 234	
are shown in Figure 4. For the equally-spaced time bins, 60.4% and 58.1% of speciation and 235	
extinction rate trajectories respectively had a p-value below 0.05, with median R" values of 236	
0.380 and 0.347. Less than 0.001% of diversification trajectories had a statistically significant 237	
relationship (at the 0.05 level) with palaeotemperature, and the median R" value was 0.004. The 238	
regression analyses showed less evidence of a relationship between evolutionary rates and 239	
palaeotemperature when using the geological time bins (median speciation R" = 0.128, p-240	
values below 0.05 = 26.0%; median extinction R" = 0.100, p-values below 0.05 = 19.0%; 241	
median diversification R" = 0.028, p-values below 0.05 < 0.001%). 242	

Discussion 243	

Our phylodynamic analyses, particularly across geological time intervals, reveal multiple strong 244	
shifts in diversification rates for angiosperms in the Sino-Himalayas (Figure 1, 2). We see high 245	
diversification rates in the early history of the group, during the Early Cretaceous, accompanied 246	
by the greatest uncertainty in speciation and extinction rates; this is commonly observed in 247	
phylogenetic analyses of diversification rates through time (Henao Diaz et al. 2019). Positive 248	
diversification rates are also inferred in the Paleocene, late Miocene and Pliocene. Although 249	
near-zero diversification rates are inferred for several intervals, the only time bin with clearly 250	
negative diversification rates is the Quaternary, driven by an increase in extinction rates. 251	

Our comparison of global palaeotemperatures and evolutionary rates provide some evidence of 252	
a negative correlation between palaeotemperature and speciation and extinction rates in Sino-253	
Himalayan angiosperms when using equally-spaced time intervals. The direction of this 254	
relationship is unusual, as higher temperatures are usually linked to higher speciation and 255	
diversification rates (Allen et al. 2006). However, most of the plants which inhabit the Sino-256	
Himalayas evolved at high altitudes and are adapted to cold conditions; it may be the case that 257	
geological intervals with colder temperatures expanded the area available for these plants to 258	
inhabit, and potentially facilitated their further diversification (Ding et al. 2020). Heightened 259	
extinction rates in colder times are perhaps more expected; in this region, the loss of habitable 260	
area due to glaciation at high altitudes as temperatures fell may also be important. However, 261	
substantially less support was found for a correlation between diversification rates and 262	
palaeotemperature, and this was also the case for all evolutionary rates when using geological 263	



time bins. As a result, the link between global palaeotemperatures and evolutionary rates in 264	
Sino-Himalayan angiosperms appears tenuous. These analyses suggest that the diversification 265	
rate shifts we infer were not driven by global palaeotemperature, but may instead have been 266	
driven by topographic and climatic shifts associated with the progressive uplift of the Sino-267	
Himalayan region over the Cenozoic. High levels of uncertainty about the timing and nature of 268	
uplift across the Sino-Himalayas obstruct our ability to link evolutionary rate shifts with specific 269	
topographic changes, and also limit the accuracy and resolution of local palaeoclimate 270	
reconstructions. However, we discuss below some of the implications and possible drivers, at a 271	
coarse scale, for the key shifts we observed based on the analyses using geological time bins. 272	

The severity of the end-Cretaceous mass extinction for angiosperms has been debated 273	
(McElwain and Punyasena 2007; Vajda and Bercovici 2014; Carvalho et al. 2021; Thompson 274	
and Ramírez-Barahona 2023), and we do not see substantially increased extinction rates in 275	
Sino-Himalayan angiosperms in the latest Cretaceous at this time. However, we do infer high 276	
diversification rates during the Paleocene, immediately following this event. The initial India-277	
Eurasia collision is thought to have taken place in the Paleocene (DeCelles et al. 2014; Hu et al. 278	
2015; Li et al. 2015; Najman et al. 2017), but there was considerable area of high topography 279	
uplifted in an Andean-type orogen that developed prior to collision (e.g. Murphy et al. 1997; 280	
Kapp and Decelles 2019), potentially driving angiosperm diversification. Biotic interchange is 281	
also likely to have commenced prior to the India-Eurasia collision, with increasing numbers of 282	
plant seeds crossing the ever-shortening distance between the two landmasses; this would 283	
create a signal of diversification in our phylogeny, introducing new species to the Sino-284	
Himalayas from India. Many genome duplication events are also thought to have taken place in 285	
angiosperms around the K-Pg boundary (Vanneste et al. 2014; Lohaus and Peer 2016; Clark 286	
and Donoghue 2018); such events create more redundant genetic material, theoretically 287	
facilitating diversification and rapid adaptation to new environmental conditions, although this is 288	
controversial (Soltis et al. 2009; Estep et al. 2014; Vanneste et al. 2014; Lohaus and Peer 2016; 289	
Clark and Donoghue 2018). In this region, it is possible that the onset of drastic topographic 290	
change, coupled with increased genetic lability, drove increased angiosperm speciation rates 291	
during the Paleocene. 292	

We also infer high diversification rates in the late Miocene and Pliocene. The late Miocene is 293	
thought to be when C4 grasses rose to dominance over C3 grasslands, again linked to a series 294	
of genome duplications in the clade (Estep et al. 2014; Lohaus and Peer 2016), and this general 295	
trend across angiosperms may have played a role in driving this Sino-Himalayan diversification. 296	
Recent reassessments of the timing of the uplift of the Hengduan Mountains also indicate that 297	
this may have taken place during the late Miocene to Pliocene (Xing and Ree 2017; Liu-Zeng et 298	
al. 2018). The Hengduan Mountains are the most florally diverse subregion (Sherman et al. 299	
2008; Zhang et al. 2009; Liu et al. 2013), so we might expect that the uplift of this range would 300	
be one of the most influential tectonic events on angiosperm biodiversity. Our analyses also 301	
indicate that Sino-Himalayan angiosperms experienced high extinction rates, and negative 302	
diversification, in the Quaternary. Pleistocene glaciation, which was likely widespread across 303	
this high-altitude region, has previously been highlighted as a major driver of modern 304	
biodiversity patterns (Zhang et al. 2009; Zhan et al. 2011; Renner 2016). 305	

Our phylodynamic analyses were not sensitive to the sampling probability prior. However, our 306	
comparison of using equally-spaced versus geological time bins demonstrates that the shape of 307	
evolutionary rate trajectories, and the subsequent conclusions drawn, can be highly influenced 308	
by change time placement. Equally-spaced time bins can be a reasonable choice in the 309	
absence of prior information about when evolutionary rates may have changed. But geological 310	
intervals are designated based on when we consider the Earth system to have been relatively 311	



stable, with changes in its state in between; geological interval boundaries therefore represent a 312	
logical best guess for when evolutionary rate shifts may have occurred, particularly in clades 313	
which are highly sensitive to their environment. Some facets of our results also point towards 314	
better model fit when using the geological time bins, such as more consistent diversification rate 315	
trajectories between iterations, and narrower HPD intervals. Careful consideration of break 316	
points in piecewise-constant skylines is clearly necessary, but based on our results, geological 317	
time intervals seem the most appropriate choice for macroevolutionary studies, at least in the 318	
absence of alternative prior knowledge specific to the clade of interest. 319	

The approach we chose to use here was to analyse a single, extant-only phylogeny. In contrast 320	
with other previous analyses of diversification rates in the Sino-Himalayan region, the size of our 321	
phylogeny allowed us to infer evolutionary rates throughout the whole of the Cenozoic, and 322	
therefore to assess the influence of a greater extent of uplift history on evolutionary rates. 323	
However, this approach also has its limitations. For example, we assume that the phylogeny we 324	
used, constructed by (Liu et al. 2021), is correct, or at least a close approximation. Although the 325	
phylogeny includes a large number of tips, it does not contain fossil tips, which means our 326	
results may be less reliable with increasing age from the present (Favre et al. 2015); this is 327	
already reflected in increased HPD interval widths for our older time bins. Yunnan has a 328	
particularly rich Cenozoic plant fossil record (Huang et al. 2016) which could provide more 329	
insight into the early evolutionary history of the clade. We hope in future to see the development 330	
of methods that combine greater phylogeny size, increased types of data that can be placed on 331	
the tips, and making maximal use of available age information (Stadler et al. 2018; Huang et al. 332	
2019). 333	

Although our analyses provide a clear picture of evolutionary trends across the whole Sino-334	
Himalayan region, some previous studies have inferred rates at a higher biogeographic 335	
resolution, for the Qinghai-Tibetan Plateau, and the Himalayan and Hengduan Mountain ranges 336	
separately (Xing and Ree 2017; Ding et al. 2020). Such analyses with biogeographic structure 337	
can highlight which regions, and therefore which particular tectonic or topographic events, are 338	
likely to have driven specific evolutionary rate shifts (Favre et al. 2015). Given the scale of 339	
uncertainty about the timing of some of these events, it may also be possible that, assuming 340	
topographic change is the major driver of evolutionary rate shifts, such biogeographic analyses 341	
could instead help to improve our understanding of the sequence of tectonic events in the 342	
region (Huang et al. 2019). The aforementioned studies used methodological approaches which 343	
instead compromised on the length of time over which evolutionary rates could be inferred, and 344	
on the incorporation of sampling bias into their models. But frameworks such as the GeoSSE 345	
model (Goldberg et al. 2011) demonstrate how our model could be extended in future to 346	
increase the biogeographic resolution of our analyses. 347	
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Figures 542	

 543	

Fig. 1. Posterior distributions of speciation (top), extinction (middle) and net diversification 544	
(bottom) rates, estimated using the beta extant sampling probability prior. Analyses were 545	
conducted using equal 10My (left) and geological (right) time bins. The black lines show the 546	
median values, with the 95% highest posterior density (HPD) intervals shown in grey. Stars 547	
indicate bins for which at least 95% of the posterior distribution for diversification rate lies on the 548	
same side of the y-axis, showing clear signal for either positive or negative diversification. The 549	
geological time scale was added using the R package deeptime (Gearty 2023). 550	



 551	

Fig. 2. Posterior distributions of change of rates between intervals. This distribution is obtained 552	
by calculating the difference between speciation (top), extinction (middle) and net diversification 553	
(bottom) rates for adjacent time bins in individual MCMC iterations. Analyses were conducted 554	
using equal 10My (left) and geological (right) time bins, with bin boundaries labelled from oldest 555	
to youngest (i.e. the direction of time is the same as Figure 1). The black bars show the median 556	
values, with the highest posterior density (95%) shown in grey. Stars indicate bins for which at 557	
least 95% of the posterior distribution lies on the same side of the y-axis, showing clear signal 558	
for either positive or negative rate change between adjacent time bins. 559	



 560	

Fig. 3. Relationship between palaeotemperature and speciation (top), extinction (middle) and 561	
net diversification (bottom) for equal time bins (left) and geological time bins (right). Horizontal 562	
bars show the minimum and maximum temperatures within each time bin, with the point at the 563	
mean. Vertical bars show the 95% HPD intervals, with the point at the median. 564	

  565	



 566	

Fig. 4. Relationship between palaeotemperature and evolutionary rates for equal time bins (left) 567	
and geological time bins (right). Box plots show regression parameters estimated for 568	
evolutionary trajectory in each iteration (after burn-in) of the MCMC. 569	

  570	



Tables 571	

Table 1. The geological intervals used as time bins in the skyline analyses. 572	

Interval Start age (Mya) 

Early Lower Cretaceous 145.0 

Late Lower Cretaceous 129.4 

Early Upper Cretaceous 100.5 

Late Upper Cretaceous 86.3 

Paleocene 66.0 

Early Eocene 56.0 

Late Eocene 41.2 

Oligocene 33.9 

Early Miocene 23.03 

Middle Miocene 15.97 

Late Miocene 11.63 

Pliocene 5.333 

Quaternary 2.58 

 573	

  574	



Supplementary figures 575	

Fig. S1. Diversification rate estimates for analyses conducted using beta sampling prior 576	
(top left), sampling prior fixed at 0.5 (top right), sampling prior fixed at 0.3 (bottom left), 577	
and sampling prior fixed at 0.1 (bottom right). 578	

  579	



 580	



Fig. S2. Posterior distributions of speciation (top), extinction (middle) and net 581	
diversification (bottom) rates from simulated phylogenies. 100 phylogenies were 582	
simulated using the median rates inferred from the equal-length time bin analysis (Fig. 583	
1), and the skyline analysis was repeated on each of these; the figure here shows the 584	
posterior distribution based on sampling 200 iterations from each of these analyses. 585	
The black lines show the median values, with the 95% highest posterior density (HPD) 586	
intervals shown in grey. The median values from the original analysis, which were used 587	
to simulate the phylogenies, are shown in red. 588	

  589	



Supplementary tables 590	

Table S1. Summary of key diversification results.  
    
Equal bins    

Interval 
Starting age 
(Mya) 

Proportion of 
diversification 
posterior 
above 0 

Proportion of positive 
diversification shifts into 
subsequent time bin 

1 140 0.9904 0.3030 
2 130 0.9992 0.0814 
3 120 0.9055 0.3801 
4 110 0.8254 0.4199 
5 100 0.7433 0.6654 
6 90 0.9154 0.1961 
7 80 0.5534 0.7872 
8 70 0.9399 0.1975 
9 60 0.6191 0.8170 

10 50 0.9670 0.381 
11 40 0.9539 0.7316 
12 30 0.9998 0.0144 
13 20 0.8819 0.7833 
14 10 0.9999  

    
Geological bins    

Interval 
Starting age 
(Mya) 

Proportion of 
diversification 
posterior 
above 0 

Proportion of positive 
diversification shifts into 
subsequent time bin 

Early Lower Cretaceous 145.0 0.9984 0.0242 
Late Lower Cretaceous 129.4 1.0000 0.0395 
Early Upper Cretaceous 100.5 0.9461 0.1651 
Late Upper Cretaceous 86.3 0.8170 0.9750 
Paleocene 66.0 0.9973 0.0438 
Early Eocene 56.0 0.9102 0.2361 
Late Eocene 41.2 0.4071 0.5769 
Oligocene 33.9 0.4882 0.5379 
Early Miocene 23.03 0.5382 0.8725 
Middle Miocene 15.97 0.9358 0.4467 
Late Miocene 11.63 0.9989 0.9677 



Pliocene 5.33 0.9997 0.0000 
Quaternary 2.58 0.0000  
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Table S2. Summary of speciation and extinction rate 
changes.  
    
Equal bins    

Interval 
Starting age 
(Mya) 

Proportion of 
positive 
speciation shifts 
into subsequent 
time bin 

Proportion of positive 
extinction shifts into 
subsequent time bin 

1 140 0.2948 0.4200 
2 130 0.5128 0.7295 
3 120 0.2763 0.3296 
4 110 0.2837 0.3318 
5 100 0.5032 0.3919 
6 90 0.5887 0.7137 
7 80 0.7966 0.6124 
8 70 0.0699 0.1799 
9 60 0.7280 0.4982 

10 50 0.8316 0.8192 
11 40 0.9965 0.9824 
12 30 0.9713 0.9882 
13 20 0.0329 0.0329 

    
Geological bins    

Interval 
Starting age 
(Mya) 

Proportion of 
positive 
speciation shifts 
into subsequent 
time bin 

Proportion of positive 
extinction shifts into 
subsequent time bin 

Early Lower Cretaceous 145.0 0.1624 0.5142 
Late Lower Cretaceous 129.4 0.7149 0.8354 
Early Upper Cretaceous 100.5 0.3264 0.4159 
Late Upper Cretaceous 86.3 0.7679 0.5227 
Paleocene 66.0 0.6558 0.7752 
Early Eocene 56.0 0.3106 0.3917 
Late Eocene 41.2 0.1885 0.2126 
Oligocene 33.9 0.0560 0.0537 



Early Miocene 23.03 0.9857 0.8430 
Middle Miocene 15.97 0.4176 0.4664 
Late Miocene 11.63 0.9066 0.3354 
Pliocene 5.33 0.4170 0.9998 
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