
Applications of Machine Learning in Phylogenetics

Yu K. Mo1, Matthew W. Hahn1,2, and Megan L. Smith2,3,∗

1Department of Computer Science and 2Department of Biology, Indiana University,
Bloomington, IN 47405
3Department of Biological Sciences, Mississippi State University, Starkville, MS 39762
∗Corresponding Author: msmith@biology.msstate.edu

Abstract

Machine learning has increasingly been applied to a wide range of questions in phylogenetic
inference. Supervised machine learning approaches that rely on simulated training data have been
used to infer tree topologies and branch lengths, to select substitution models, and to perform
downstream inferences of introgression and diversification. Here, we review how researchers have
used several promising machine learning approaches to make phylogenetic inferences. Despite
the promise of these methods, several barriers prevent supervised machine learning from reaching
its full potential in phylogenetics. We discuss these barriers and potential paths forward. In the
future, we expect that the application of careful network designs and data encodings will allow
supervised machine learning to accommodate the complex processes that continue to confound
traditional phylogenetic methods.

1 Introduction1

Phylogenetics aims to elucidate the evolutionary relationships among species. In recent decades,2

owing to rapid growth in the availability of genomic data, phylogenetic analysis has been able to3

use hundreds to thousands of loci (Delsuc et al., 2005). Using whole genomes, or even near-whole4

genomes, may allow for a more comprehensive view of the evolutionary events shaping species5

(Scornavacca et al., 2020). However, the accuracy of inference may be compromised when using6

such large datasets, as even small biases can be magnified many-fold. Biases in phylogenetics are7

often due to unmodeled heterogeneity in the evolutionary process, including heterogeneity across8

time, sites, genes, or lineages (Kapli et al., 2020). These processes may arise either individually or9

in combination, presenting challenges in subsequent analyses.10

Recently, machine learning techniques have been used across fields, demonstrating impressive11

power in uncovering intricate relationships from data that contains extensive heterogeneity. Notable12

examples include successful applications in image classification (Krizhevsky et al., 2017), language13

models (Devlin et al., 2019), protein structure prediction (Jumper et al., 2021), and population14
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genetics (Schrider & Kern, 2018). Machine learning is comprised of two fundamental paradigms—15

supervised and unsupervised approaches. Supervised learning relies on the availability of labeled16

training data, where the true underlying state or value of the data is known. In phylogenetics and17

related fields, large amounts of labeled training data are generally unavailable, so simulations are18

often used to generate such data. The primary objective of supervised machine learning is to learn19

a function that can map input data to appropriate outputs. Within supervised learning, there20

are two primary tasks: classification and regression. While classification aims to predict discrete21

labels or categories, regression predicts continuous-valued outputs. In contrast, unsupervised22

learning operates without the need for labeled data, focusing instead on discerning underlying23

structures or patterns in the input data. Unsupervised approaches include tasks such as clustering24

and dimensionality reduction. Notably, deep learning is a specialized subset of machine learning25

that leverages neural networks (NNs) with many layers (hence "deep"). Some NN architectures26

are adept at automatically extracting hierarchical features from raw data, obviating the need for27

manual feature engineering—a significant advantage over traditional machine learning methods.28

In the context of phylogenetics, machine learning algorithms are extremely flexible, both with29

regards to the structuring of input data, and the data used for training. Furthermore, machine30

learning approaches can learn complex relationships from input data without calculating likelihoods.31

This facilitates the application of machine learning to complex models, especially scenarios in32

which standard likelihood and Bayesian inference may be intractable. Given the lack of analytical33

phylogenetic solutions that can be reasonably applied to large genomic datasets, machine learning34

offers the promise of moving beyond conventional methods.35

Despite the promise that machine learning in general has for addressing many biological prob-36

lems, there is uncertainty about its superiority over conventional approaches in many applications37

to phylogenetics. While a growing number of papers have applied machine learning to multiple38

problems in the field, researchers have not yet seen a clear advantage to such approaches. Here,39

we review recent applications of machine learning to different tasks in phylogenetics (Table 1),40

examining their limitations and strengths. We attempt to provide a general overview of the types41

of machine learning approaches that have been used—and those that could be used—in the hope42

that future work will bring the promise of machine learning to fruition.43

2 Tree Reconstruction44

Reconstructing evolutionary relationships among taxa is a central goal in evolutionary biology.45

A phylogenetic tree is composed of two primary components: a topology and a set of branch46

lengths. The topology serves as a representation of the hierarchical evolutionary relationships47

among species. The branch lengths represent evolutionary change, measured either in absolute48

time, in the number of nucleotide substitutions, or in other units. This section reviews machine49

learning approaches for inferring both components of phylogenetic trees.50

2.1 Topology inference51

Perhaps the most natural framing of the problem of topology inference is to use supervised52

machine learning approaches for classification, since the goal is to predict a discrete output53

(topology) from sequence data. Recall that supervised machine learning approaches require54
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labeled training data, which are generally unavailable in phylogenetics. Because of this, in55

most phylogenetic applications simulations are performed under each model of interest prior to56

inference, and these simulated data are used to train the machine learning network. When the57

goal is topology inference, the model space includes, at a minimum, the number of possible tree58

topologies. With as few as ten taxa, there are more than two million unrooted topologies, making59

it infeasible to use such approaches to infer tree topologies for even moderate numbers of taxa.60

The challenges associated with a large state-space of topologies are not unique to machine learning61

approaches: even conventional methods have difficulties in inferring trees for large numbers of62

species (Felsenstein, 1978b; Roch, 2006). To circumvent this problem, researchers have used three63

different types of approaches in order to apply machine learning to phylogenetic inference (Figure64

1). Here we review these approaches and the specific models that have been used.65

2.1.1 Quartet-based methods66

The first machine learning approaches in phylogenetics used quartet-based methods. In general,67

quartet-based methods involve extracting sets of four taxa from the full dataset, building trees68

for each set of four taxa, and then constructing a phylogeny from these quartet trees using one69

of several quartet amalgamation approaches, such as quartet puzzling (Bryant & Steel, 2001;70

Reaz et al., 2014; Snir & Satish, 2012). Because there are only three possible topologies for an71

unrooted quartet, such approaches are not plagued by the need to consider a very large state-space72

of topologies. Quartet-based methods therefore provide efficient inference algorithms that are73

scalable to very large datasets.74

Several supervised learning approaches have been used to infer quartet trees. Suvorov et75

al. (2020) used a convolutional neural network (CNN) that takes integer-encoded nucleotide76

alignments as input. Machine learning algorithms generally require that input data are numerical,77

and integer-encoding can be used to represent categorical variables. In this application, each78

nucleotide was encoded as an integer between 0 and 3, with gaps encoded as 4, and each alignment79

was represented as a matrix in which rows correspond to sequences and columns correspond to80

sites in the alignment. The topology associated with each alignment was an integer-encoded class81

label. Training data were simulated under a wide range of branch lengths, several substitution82

models, with site heterogeneity, and with or without gaps. In the absence of gaps, the CNN83

generally performed as well as or better than traditional approaches. On datasets that included84

gaps, the CNN substantially outperformed traditional approaches, likely because it better utilized85

this significant source of phylogenetic signal. The CNN initially exhibited reduced accuracy in86

some zones of branch length space (e.g., the Felsentstein zone; (Felsenstein, 1978a)). However,87

when more training data were included from these regions the CNN was able to outperform other88

approaches, highlighting the importance of carefully considering where to put effort in training89

such models.90

In a similar approach, Zou et al. (2020) used a residual neural network, which takes as input91

one-hot encoded amino acid sequences. One-hot encoding is an alternative to integer-encoding for92

representing categorical variables as numeric input. In this application, each site was represented93

by twenty channels, with each channel corresponding to an amino acid. For an individual site,94

the channel corresponding to the amino acid present in the position is set to one, while all other95

channels are set to zero. One-hot encoding may be more appropriate than integer-encoding, since96
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it avoids implicit ordered relationships among states. In Zou et al.’s approach, models were trained97

on amino acid sequences simulated on large, random trees, which were then pruned to subsets98

of four taxa. Both site and time heterogeneity were included in the simulations; additionally,99

the training data intentionally included a sizable proportion of trees susceptible to long-branch100

attraction, to ensure that a large number of difficult examples were included. When benchmarked101

against existing inference approaches, the residual network predictors consistently delivered better102

results with less computational time (not including training time), especially when dealing with103

several cases that confound existing methods—such as long branch attraction and heterotachy. By104

combining their approach with a quartet amalgamation approach, these authors were able to infer105

larger species trees with moderate accuracy.106

Both of the methods described above treat alignments as images. While this approach to107

representing data has been found to be powerful in population genetics (Flagel et al., 2019), there108

are several limitations in the context of phylogenetics. For example, when inferring relationships109

among taxa, we would like the order in which sequences are included in the model to be irrelevant110

(a property referred to as "permutation equivariant”). However, most network architectures do not111

perform in this way. Zou et al. (2020) accommodated this behavior by including all permutations of112

the alignment when training, but such an approach increases the compute time and memory needed113

to train a neural network. Solís-Lemus et al. (2023) address this issue using a symmetry-preserving114

long short-term memory (LSTM) recurrent neural network (RNN). By avoiding the need to include115

permutations of the training alignments, they substantially improved compute times and memory116

usage compared to Zou et al. (2020). These approaches have also been limited in the ease with117

which they can be applied to empirical datasets both due to limitations in the lengths of alignments118

than can be considered and the lack of a user-friendly pipeline. Fusang (Wang et al., 2023)119

addresses these issues by using a sliding window approach to accommodate variable alignment120

lengths and developing an easy-to-use pipeline. Fusang takes as input an alignment including no121

more than 40 sequences, infers quartet topologies, and then uses a stepwise addition algorithm122

with beam search to infer larger trees from quartet trees.123

Even though NNs can be very efficient for inferring quartet trees, considering larger trees124

remains prohibitive—the approaches described above still must rely on quartet-amalgamation125

approaches to build larger trees. Additionally, as with all supervised machine learning, accuracy126

is likely limited in cases where the training data is not reflective of real data. Zaharias et al.127

(2022) explored these limitations by comparing the networks from Zou et al. (2020) to standard128

approaches on larger trees and on test datasets with higher rates of nucleotide evolution and/or129

shorter alignment lengths. They found that the neural networks only outperformed traditional130

approaches when the goal was to infer a quartet tree from relatively long amino acid sequences131

simulated under model conditions very similar to those used for training. Furthermore, when larger132

trees were considered, traditional approaches outperformed the combination of neural networks133

and quartet amalgamation. Machine learning approaches are therefore severely limited by their134

inability to directly infer trees from larger numbers of taxa, as well as by the specifics of the data135

used in training.136
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Figure 1: Methods for topology inference using machine learning. A. Quartet-based methods infer
one of the three topologies possible with unrooted quartets. Trees from each quartet are inferred
with NNs; a collection of such trees are then fed into existing quartet amalgamation algorithms
(e.g. Quartet Puzzling) to infer a larger phylogeny. B. Distance-based methods estimate pairwise
distances using NNs (e.g. Phyloformer). Distances are combined using standard methods (e.g.
Neighbor Joining) to reconstruct trees. C. Direct methods infer a tree directly from an alignment
using NNs (e.g. phyloGAN).
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2.1.2 Distance-based methods137

Rather than using machine learning to directly infer trees from sequence alignments, it is possible138

to instead infer evolutionary distances, which can then be used as input to standard distance-based139

approaches. Although often scoffed at by modern phylogeneticists, distance-based approaches140

such as neighbor joining (Saitou & Nei, 1987) are in fact guaranteed to infer the correct tree in141

most of parameter space, as long as distances are accurately inferred. In addition, they are much142

more accurate than maximum likelihood in the presence of high amounts of incomplete lineage143

sorting (Liu & Edwards, 2009; Mendes & Hahn, 2018). Therefore, it makes sense to apply machine144

learning to the task of accurately inferring distances.145

Nesterenko et al.(2022) developed Phyloformer, which uses self-attention networks to infer146

evolutionary distances for up to 100 species. Their model encapsulates alignment in a pairwise way,147

introducing a representation for each pair with the attention mechanism. The process entails an148

iterative sharing of information, first across sites within each pair (referred to as site-level attention)149

and subsequently across pairs within each site (termed pair-level attention). Such an approach is150

permutation-equivariant, and accommodates alignments of varying sizes. After inferring distances,151

these authors used neighbor joining for tree construction. Their approach outperformed traditional152

distance-based approaches, and was competitive with (and much faster than) maximum likelihood153

when training and testing data included similar numbers of species. However, Phyloformer does154

not always compare favorably to standard methods, especially on trees with more than twenty155

leaves.156

In a related approach, Bhattacharjee and Bayzid (2020) used autoencoders and matrix factor-157

ization to impute missing values in distance matrices. Alternatively, Jiang et al. (2023) use a CNN158

for phylogenetic placement—placing sequences from individual genes onto trees that may have159

been inferred using different genomic regions. In this case they inferred evolutionary distances for160

these new sequences, and then used a distance-based algorithm to place the new sequences on the161

tree (Balaban et al., 2022). Inferring evolutionary distances reframes phylogenetic inference as a162

regression problem, rather than as a classification problem. This reframing makes it possible to163

scale machine learning approaches to larger trees.164

2.1.3 Direct methods165

In maximum likelihood and Bayesian approaches to phylogenetic inference, the large number166

of possible topologies is accommodated by using heuristic searches to explore tree space; such167

approaches could also be used for direct inference of tree topologies from sequence data in machine168

learning contexts. Generative adversarial networks (GANs) consist of a generator, which aims to169

produce realistic data, and a discriminator, which aims to distinguish real and fake data (Goodfellow170

et al., 2020). Recently, Smith and Hahn (2023) proposed phyloGAN. phyloGAN consists of a171

generator, which generates topologies and branch lengths, and a CNN-based discriminator, which172

attempts to distinguish alignments simulated under these topologies and branch lengths from173

empirical (real) alignments. Ideally, at the end of training, it should be virtually impossible174

to distinguish simulated and empirical alignments. Once this level of accuracy is achieved, the175

topology that underpins the simulated data is considered to be the inferred topology. phyloGAN176

was tested on up to fifteen species, and a version incorporating gene tree heterogeneity was tested177

on six species. While phyloGAN worked well with small numbers of species (up to ten), it was178
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computationally intensive, and several metrics indicated issues during training. Additionally, since179

phyloGAN performs a heuristic exploration of tree space, it must be trained anew for each empirical180

dataset, and thus many of the potential computational benefits of machine learning approaches181

are not realized. Future work may explore alternative approaches for heuristically exploring model182

spaces using machine learning frameworks, including approaches covered in the next section.183

2.1.4 Improving steps in topology inference184

Machine learning approaches have been used to assist standard phylogenetic approaches for185

topology inference. For example, machine learning approaches have been used to improve heuristic186

searches for tree topologies. Azouri et al. (2021) used a random forest (RF) regressor to predict187

likelihood scores for subtree-prune-regraft (SPR) moves, a standard and important step in heuristic188

tree searches. Given a starting topology, their network could accurately predict the change in189

likelihood associated with different SPR moves, which suggests that such an approach could be190

used to limit search space and therefore to reduce the computational requirements for heuristic191

searches. In a follow-up paper, Azouri et al. (2023) used reinforcement learning as an alternative192

to traditional heuristic search algorithms. By allowing for suboptimal moves that, nonetheless,193

improved the final outcome of the search, this approach out-competed greedy search strategies.194

Machine learning approaches have also been used to guide researchers in their decisions about195

which standard approaches to use for topological inference. Leuchtenberger et al. (2020) developed196

a feed-forward neural network to classify alignments as belonging to the Farris (Siddall, 1998) or197

Felstenstein zone (Felsenstein, 1978a; Huelsenbeck & Hillis, 1993). They based their choice to198

use maximum parsimony (in the Farris Zone) or maximum likelihood (in the Felsenstein zone) on199

the predictions of this neural network. Using this approach resulted in higher overall accuracy200

compared to always using either maximum parsimony or maximum likelihood. In a follow-up201

paper, Leuchtenberger and von Haeseler (2024) simplified this neural network to develop a simple,202

more interpretable classifier, illustrating how subsequent investigations into complex networks can203

yield theoretical insights. In a similar application, Haag et al. (2022) developed a random forest204

regressor, Pythia, to predict the difficulty of inferring a tree from a particular alignment. They205

suggested that the predicted level of difficulty be used to guide decisions regarding analysis design,206

including potentially collecting more data prior to analyses for difficult alignments.207

2.2 Branch length inference208

In addition to a tree topology, most researchers are also interested in inferring the branch209

lengths of a tree. However, few studies have successfully inferred branch lengths using machine210

learning. While it may seem that this regression problem should be easier than the classification211

problem of inferring topologies, the size of the output vector depends on the number of edges in212

the tree—there are 2n− 2 branches in a rooted tree with n tips. The dependence on the number213

of tips complicates the use of machine learning approaches.214

Suvorov and Schrider (2022) employed both a CNN and a multilayer perceptron (MLP)215

to infer branch lengths on fixed tree topologies with four or eight taxa. For the CNN-based216

approach, they adapted a previously proposed architecture (Suvorov et al., 2020). Instead of a217

classification task, the model was restructured for regression, aiming to predict all branch lengths218

simultaneously. Meanwhile, the MLP was fed with feature vectors derived from site pattern219
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frequencies present within each alignment. Notably, the predictions generated by their models220

showed slightly superior accuracy compared to maximum likelihood estimates. Despite these221

promising results, there remains a degree of skepticism regarding the scalability of machine learning222

to infer branch lengths, especially when considering more species. Nevertheless, the flexibility223

of machine learning approaches with respect to the types of input data that can be considered224

offers many interesting possibilities. For instance, in the future such methods could facilitate the225

integration of heterogeneous fossil data in estimating time-calibrated trees.226

As with topological inference, machine learning approaches can also be used to guide researchers227

in decisions about which approaches may be most appropriate for inferring branch lengths. For228

example, Tao et al. (2019) used a logistic regression model to predict whether rates of molecular229

evolution are autocorrelated in inferred phylogenies. Their approach, CorrTest, can be used to230

determine whether an independent branch-rate model or an autocorrelated branch-rate model231

should be used to estimate divergence times.232

3 Other kinds of phylogenetic inferences233

In addition to phylogenetic tree inference, machine learning approaches have been applied234

to both upstream and downstream tasks in phylogenetics. Prior to tree inference using many235

approaches (e.g., Bayesian inference, maximum likelihood, neighbor joining) it is necessary to infer236

a sequence substitution model. After tree inference, researchers are often interested in detecting237

and quantifying discordance, testing for introgression, and inferring macroevolutionary parameters.238

Below, we review some recent machine learning approaches to these upstream and downstream239

tasks.240

3.1 Substitution models241

It is crucial to select a suitable substitution model for accurate phylogenetic inference from242

sequence data, as it has long been known that misspecified models can lead to inaccurate estimates243

of trees (Buckley, 2002; Sanderson, 2002) and branch lengths (Abadi et al., 2019). Existing244

methods for model selection infer the model that provides the best fit to the data, using one of245

several criteria. Popular criteria include likelihood ratio tests (LRTs), Akaike information criteria246

(AIC), corrected AIC (AICc), Bayesian information criteria (BIC), and decision theory (DT).247

However, these criteria rely on assumptions that are often not met in phylogenetics, and there248

is a lack of consensus regarding which criteria are the most appropriate (Abadi et al., 2019).249

Additionally, substitution model choice tends to impact branch length estimates more-so than250

topology inference (Abadi et al., 2019), but no criteria to-date have been designed to select the251

model best-suited for branch length inference. Finally, using these criteria to perform substitution252

model selection is computationally expensive, as it requires computation of the likelihood. Here253

we discuss two recent machine learning approaches that attempt to address these gaps.254

ModelTeller (Abadi et al., 2020) is a machine learning approach that uses an RF regressor to255

rank 24 potential substitution models according to their accuracy in downstream branch length256

inference. Features fed into the model included over 50 summary statistics that can be broadly257

categorized into four primary groups: features inherent to the alignment, features drawn from258

an approximated tree inferred through a distance-based method, parameters inferred under a259

8



parameter-rich substitution model, and sequence similarity within certain subsets. ModelTeller’s260

primary distinction compared to traditional approaches lies in selecting a substitution model that261

improves accuracy in branch length inference. This leads to improved performance in terms of the262

accuracy of branch length estimates under the models selected using ModelTeller compared to263

models selected using more standard approaches, particularly on datasets simulated under realistic264

models. Additionally, ModelTeller was substantially faster than standard methods.265

A later model, ModelRevelator (Burgstaller-Muehlbacher et al., 2023) aims to infer the266

correct generating model of nucleotide substitution using two neural networks. The first network,267

NNmodelfinder, takes as input a set of statistics calculated from pairwise alignments and predicts268

the best substitution model from a set of six possible models. The second network, NNalphafind,269

takes as input base composition profiles and predicts whether a site homogeneous model is270

appropriate or not. If a site homogeneous model is not appropriate, then NNalphafind estimates271

the α parameter of a model with Γ-distributed rate heterogeneity among sites. Used together,272

these networks can predict the best substitution model for a given sequence alignment, whether273

rate heterogeneity should be included, and, when rate heterogeneity is included, the α parameter274

to use in downstream inference. ModelRevelator performed comparably to maximum likelihood275

combined with substitution model selection under BIC as implemented in IQ-TREE (Minh et al.,276

2020), with substantially reduced computation times on large alignments.277

Both ModelTeller and ModelRevelator are designed to select a substitution model that is278

suitable for inference; however, each uses different criteria for assessing suitability. ModelTeller is279

particularly focused on identifying a model that results in the most accurate estimates of branch280

lengths. The primary objective of ModelRevelator is to select the best substitution model and281

estimate the α parameter when the best model includes rate heterogeneity.282

3.2 Levels of discordance283

Gene tree topologies often differ from the species tree topology due to several biological factors,284

including incomplete lineage sorting, introgression, and gene duplication and loss (Maddison, 1997).285

Two recent studies used deep learning to estimate the amount of discordance in phylogenetic286

datasets (Rosenzweig et al., 2022; Zhang et al., 2023). Rosenzweig et al. (2022) used several287

approaches, including a deep neural network (DNN), to estimate the amount of discordance in288

four-taxon datasets using a set of summary statistics calculated from alignments and inferred gene289

trees. Estimates from their DNN were more accurate than relying on inferred gene trees alone to290

estimate discordance, particularly when branch lengths were long. In addition to their network291

for estimating the amount of discordance, they introduced a network for inferring the quartet292

species tree topology from the same set of statistics. Similarly, Zhang et al. (2023) used CNNs to293

estimate the proportion of all different possible topologies for four and five-taxon datasets from294

multiple sequence alignments. Their CNN, called ERICA, was able to accurately infer topology295

proportions. The authors then used these inferred proportions to try to infer introgression and to296

identify potentially introgressed genomic windows. The ability of these approaches to estimate297

the proportions of quartet topologies more accurately than standard pipelines—which rely on298

inferred gene trees alone—offers promise for improving many quartet-based methods for species299

tree inference, as these generally assume that quartet frequencies are accurately estimated from300

input gene trees (Mirarab & Warnow, 2015).301
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3.3 Introgression302

Most machine learning approaches for studying introgression have focused on population-scale303

data, rather than phylogenetic data. For example, Schrider et al. (2018) used ExtraTrees classifiers304

to detect introgressed regions between closely related species, while Ray et al. (2023) used a CNN305

and image segmentation for a similar task. Similarly, Gower et al. (2021) developed a CNN to306

detect adaptive introgression given data from three closely related populations or species. Several307

recent papers have also addressed introgression from a phylogenetic perspective using machine308

learning.309

Two recent studies used supervised machine learning to determine whether there was evidence310

for reticulation in a dataset. Blischak et al. (2021) used a CNN to detect various types of311

reticulation in four-taxon trees, including hybrid speciation and introgression. Their CNN took312

as input mean and minimum values of dXY (a measure of sequence divergence) between sets313

of populations. They compared HyDe-CNN to an RF classifier trained on several phylogenetic314

statistics for detecting introgression and found that HyDe-CNN had increased power. In a similar315

approach, Burbrink and Gehara (2018) trained a neural network to distinguish a bifurcating species316

tree from models including reticulation between two parent clades and one clade with a putative317

reticulate history. As input, their network takes pairwise distances between all sequences in the318

phylogeny (11 sequences from three clades). Their network had moderate power to distinguish319

among models with and without reticulations. When applied to their empirical data, the model320

supported a reticulate history for a clade in which reticulation was also inferred using SNaQ321

(Solís-Lemus & Ané, 2016). Most recently, Hibbins and Hahn (2022) used supervised machine322

learning to distinguish speciation and introgression histories. Under many regions of parameter323

space, gene trees and site patterns matching the introgression history can become more common324

than those matching the species tree, challenging many traditional approaches to species tree325

inference. By using several summary statistics calculated from gene trees, Hibbins and Hahn326

were able to accurately infer the speciation history for rooted three-taxon trees, even in regions327

of parameter space where traditional approaches fail. While powerful, these approaches have328

primarily focused on four or fewer taxa. Future work may expand machine learning approaches to329

study introgression on larger trees.330

3.4 Diversification rates331

In addition to the kinds of inferences described above, recent studies have attempted to use332

inferred phylogenies for downstream inference of diversification rates. One challenge in any such333

analysis is determining the optimal way to encode phylogenetic trees. To address this issue,334

Voznica et al. (2022) introduced the compact bijective ladderized vector (CBLV), an encoding335

of phylogenetic trees that can be used as input into a CNN. They trained a CNN that took as336

input the CBLV to infer parameters of phylodynamic birth-death models and to perform model337

selection. They compared the performance of this CNN to a feed-forward neural network trained338

on summary statistics calculated from phylogenetic trees. Both networks were able to accurately339

infer parameters and distinguish among phylodynamic models. Lambert et al. (2023) used similar340

networks to infer speciation and turnover rates under a constant rate birth-death (CRBD) model341

and to infer the parameters of a binary state speciation and extinction (BiSSE) model. Lajaaiti342

et al. (2023) compared these networks to several other networks for inferring diversification343
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parameters. They trained an additional CNN and RNN on lineage through time (LTT) plots.344

They also trained a graph neural network (GNN) that took phylogenies encoded as graphs directly345

as input. Under the CRBD model, the RNN and CNN trained on LTT plots outperformed the346

network trained on CBLV encodings. However, these same networks performed poorly under347

the BiSSE model, likely because the LTT plots did not include additional information about tip348

states, which was included in the other networks. Perhaps surprisingly, the GNN performed poorly349

across both models. These approaches highlight the importance of carefully choosing network350

architectures and data encodings for the task at hand.351

4 Discussion352

Recent progress has revealed the promise of machine learning in phylogenetics. However,353

inferences have often been limited to relatively small trees and relatively limited regions of parameter354

space. Moving forward, careful considerations of training datasets, network architectures, and355

data encodings will facilitate the use of machine learning to address fundamental challenges in356

phylogenetic inference.357

Supervised machine learning requires a labeled training set. In the context of phylogenetics,358

however, we do not have labels for many real-world examples—we therefore have to simulate data.359

Despite attempts to simulate realistic data across a wide range of parameter space, biases will360

inevitably creep in. For example, training data generated under one substitution model may not361

generalize to empirical datasets that evolved under a different model. Importantly, this challenge362

is not specific to machine learning, and likelihood-based approaches may also fail due to model363

misspecification. The relative robustness of machine learning approaches and likelihood-based364

approaches to misspecified models remains unclear, with recent work suggesting similar impacts of365

model violations (Thompson et al., 2024). Just as it is important to evaluate the robustness of366

likelihood-based approaches to prevalent model misspecifications, it is important to evaluate the367

robustness of machine learning approaches to misspecifications of the model(s) used to simulate368

training data. Because of the flexibility of machine learning approaches, one approach to avoiding369

such biases would be to generate synthetic training data across increasingly large sets of models and370

parameters. However, this is computationally costly, and even when researchers attempt to consider371

a broad range of relevant parameters, there will inevitably be mismatches between training and372

empirical data, potentially leading to poor generalization to unseen data. To develop more robust373

networks, widely used techniques such as dropout, regularization, and ensemble methods can be374

employed. Alternatively, noise can be added to training data to improve generalization (as is done375

with image augmentation). In the context of phylogenetics, adding noise could involve masking376

regions of the alignment during training. Alternatively, techniques from domain adaptation377

have emerged as promising solutions. Domain adaptation aims to develop networks that are378

robust to differences between the distribution of training data and the distribution of target or379

empirical data. Mo and Siepel (2024) used domain adaptation to make more accurate inferences of380

recombination rates and selection coefficients in the presence of domain differences. Their approach381

used adversarial domain-invariant feature extraction, which incorporates an additional layer to382

prevent the model from extracting features that differ between the training and target data. Such383

an approach promotes the extraction of domain-invariant features, and could be used to make384

robust inferences in phylogenetics.385
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A major intended advantage of machine learning is that, once trained, models can be applied to386

new datasets with minimal computational expenses. Even though a trained model makes inferences387

almost instantaneously, training remains computationally expensive. Ideally, trained networks388

would be applicable across a wide range of empirical datasets, but this is limited by the details389

of the training data used and the choice of network architectures. Specifically, many network390

architectures (e.g., most CNNs) are not invariant to dataset size. In other words, only datasets with391

the exact dimensions of the training data can be analyzed. However, in phylogenetics, datasets392

may vary in size due to different alignment lengths or different numbers of taxa. This challenge393

has been addressed in population genetics through padding (Flagel et al., 2019), and by designing394

appropriate network architectures that are size invariant (Sanchez et al., 2021). Approaches that395

treat alignments as images in phylogenetics have often not considered alignments of variable sizes.396

However, Suvorov et al. (2020) used padding to accommodate simulated alignments that vary397

in length due to indels; since their model was only applicable to quartets, it did not consider398

variation in the number of taxa. Similarly, Wang et al. (2023) used a sliding window approach399

to accommodate variable alignment lengths. Approaches that rely on summary statistics can400

generally accommodate variable alignment lengths and numbers of taxa, as long as the statistics401

themselves do not change in dimensionality (Abadi et al., 2020; Burgstaller-Muehlbacher et al.,402

2023). Alternatively, Nesterenko et al. (2022) accommodated variable input sizes in Phyloformer403

through a carefully designed network, rather than through any manipulation of the input data.404

Moving forward, designing machine learning approaches that can be applied to alignments varying405

in size should be a central goal. To facilitate the reuse of networks in new empirical systems,406

techniques from transfer learning could also be used. Specifically, supervised transfer learning can407

be useful when limited training data are available from a new domain. For example, a network408

that has already been trained on data from one domain can be reused in a related, but distinct,409

domain. Supervised transfer learning and limited simulations in the new domain can be used to410

generate a robust network with reduced computational expenses compared to training the network411

from scratch. Combined, these approaches may facilitate more efficient uses of supervised machine412

learning in phylogenetic contexts.413

Another major consideration is how to encode input data. Most commonly, encoded alignments414

(Suvorov & Schrider, 2022; Suvorov et al., 2020; Zou et al., 2020), or summary statistics (Abadi415

et al., 2020; Burgstaller-Muehlbacher et al., 2023) have been used as input. When using encoded416

alignments, a primary challenge is scalability to longer alignments or more taxa. This is especially417

pertinent as available genomic data continues to grow. Encoded alignments can also pose challenges418

to network reusability, as discussed above. Alternatively, the input can be represented with summary419

statistics that are explanatory features drawn from alignments and trees for the task at hand.420

However, selecting a good set of features relies on prior knowledge, and the choice of statistics can421

heavily impact inference. Alternative strategies for representing alignments have been proposed,422

using attention mechanisms (Burgstaller-Muehlbacher et al., 2023; Nesterenko et al., 2022; Rao423

et al., 2021) or language models (Lupo et al., 2022). Such approaches can lead to networks that can424

accept variable input sizes, and are capable of incorporating relationships among sites and lineages425

simultaneously. It is also essential to develop a suitable representation for phylogenetic trees.426

Several efforts in this direction have been made, from explanatory summary statistics (Voznica427

et al., 2022), to embeddings such as the CBLV (Voznica et al., 2022), to graphical representations428

in GNNs (Lajaaiti et al., 2023). While early uses are promising, these encodings have only been429
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explored for a small set of inferential tasks, and it is unclear which encodings will prove most430

useful over a wider range of questions.431

The promise of supervised machine learning is to efficiently consider a wide range of the complex432

processes that complicate phylogenetic inference. To date, most machine learning approaches for433

tree inference have largely not addressed heterogeneity introduced by incomplete lineage sorting434

(ILS), gene duplication and loss, and introgression (though several exceptions have been described435

here). While standard phylogenetic approaches also have trouble modeling this heterogeneity,436

machine learning shows potential to include multiple of these processes at once. For example,437

if machine learning approaches can be used to more accurately infer quartet frequencies in the438

presence of these processes (as demonstrated in the case of ILS by (Rosenzweig et al., 2022; Zhang439

et al., 2023)) then the accuracy of phylogenetic trees could be improved. Moving forward, we440

expect that creative network architectures, data encodings, and task designs will facilitate the use441

of machine learning to improve phylogenetic inferences in the presence of complex processes that442

cannot be accommodated by standard approaches.443
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Table 1: Recent machine learning applications in phylogenetics

Purpose Method type
Algorithm/

architecture
Input/alignment format Encoding Output Reference

classification CNN Nucleotide Integer Suvorov et al., 2020

classification Residual NN Amino acid One-hot
PhyDL 

(Zou et al., 2020)

classification LSTM Amino acid Integer + Embedding Solís-Lemus et al., 2023

classification CNN Nucleotide Integer Tree topology
Fusang 

(Wang et al., 2023)

Matrix Factorization

Autoencoder

Random forest Phylogeny Ranking of possible SPR moves Azouri et al., 2021

Reinforcement 

learning
Nucleotide Tree topology

The Phylogenetic Game 

(Azouri et al., 2023)

classification MLP Nucleotide Site pattern frequencies Classification of alignment as Felsenstein- or Farris-type
F-zoneNN

(Leuchtenberger et al., 2020)

MLP Site pattern frequencies

CNN Integer

classification Logistic regression Phylogeny Summary statistics
Whether an independent branch-rates model should be rejected in favor of an 

autocorrelated model

CorrTest

(Tao et al., 2019)

regression Random forest Nucleotide Summary statistics
Ranking of substitution models based on their predicted performance in branch length 

estimation

ModelTeller

(Abadi et al., 2020)

classification Residual NN Nucleotide Summary statistics Model of sequence evolution
NNmodelfind

(Burgstaller-Muehlbacher et al., 2023)

classification 

and regression
Bidirectional LSTM Nucleotide Summary statistics

Whether rate heterogeneity should be considered, and if so an estimation of the shape 

parameter

NNalphafind

(Burgstaller-Muehlbacher et al., 2023)

Linear regression

Ensemble

MLP

regression CNN Nucleotide One-hot The proportion of each possible topology for four- or five-taxon trees
ERICA

(Zhang et al., 2023)

classification Extra-Trees classifier Nucleotide Summary statistics Classification of a genomic region as introgressed or not
FILET

(Schrider et al., 2018)

classification CNN (U-Net) biallelic SNP matrix Integer Classification of alleles as introgressed or not
IntroUNET

(Ray et al., 2023)

classification CNN biallelic SNP matrix
Counts of minor alleles 

per haplotype per window
Classification of regions experiencing adaptive introgression

Genomatnn

(Gower et al., 2021)

classification CNN Nucleotide Summary statistics Best scenario of hybridization and admixture
HyDe-CNN

(Blishak et al., 2021)

classification MLP Nucleotide Summary statistics Best scenario of hybridization and admixture Burbrink & Gehara, 2018

classification
Various machine 

learning algorithms
Gene trees in coalescent units Summary statistics Distinguishing the speciation history from the introgression history Hibbins & Hahn, 2022

MLP Summary statistics

CNN Vectorized representation

MLP Summary statistics

CNN Vectorized representation

Phylogeny with or without binary 

traits on tips

Lambert et al., 2023

Lajaaiti et al., 2023

Random forest 

Various neural 

networks

Haag et al., 2022

ml4ils

(Rosenzweig et al., 2022)

PhyloDeep

(Voznica et al., 2022)

Nucleotide The amount of biological discordance in a set of gene trees

Nucleotide, amino acid, or 

morphological data
Summary statistics The degree of difficulty of a phylogenetic dataset

Branch lengths

Phyloformer

(Nesterenko et al., 2022)

Bhattacharjee & Bayzid, 2020

Jiang et al., 2023

phyloGAN

(Smith & Hahn, 2023)

Summary statistics

Suvorov & Schrider, 2022
Branch length 

inference

regression Nucleotide

Tree topology

An imputed distance matrix

regression

regression Distances between the query and all backbone sequences

Transformer Amino acid One-hot Pairwise evolutionary distances

CNN
Reference tree and sequences 

from reference and query species
One-hot

Introgression 

detection

Phylogeny

Summary statistics

Distance matrix with missing 

entries
None

GAN Nucleotide Integer

Substitution 

model 

selection

Diversification 

rate inference

regression

regression

Quartet topology

regression

One  of three possible phylodynamic models or estimates of phylodynamic model 

parameters

Summary statistics, 

Vectorized 

representations, Graphs

Improving 

steps in 

topology 

inference

generative

regression

Topology 

inference

regression

regression

classification 

and regression

Estimates of diversification model parameters

Discordance 

detection
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