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Abstract

Machine learning has increasingly been applied to a wide range of questions in phylogenetic
inference. Supervised machine learning approaches that rely on simulated training data have been
used to infer tree topologies and branch lengths, to select substitution models, and to perform
downstream inferences of introgression and diversification. Here, we review how researchers have
used several promising machine learning approaches to make phylogenetic inferences. Despite
the promise of these methods, several barriers prevent supervised machine learning from reaching
its full potential in phylogenetics. We discuss these barriers and potential paths forward. In the
future, we expect that the application of careful network designs and data encodings will allow
supervised machine learning to accommodate the complex processes that continue to confound
traditional phylogenetic methods.

1 Introduction1

Phylogenetics aims to elucidate the evolutionary relationships among species. In recent decades,2

owing to rapid growth in the availability of genomic data, phylogenetic analysis has been able to3

use hundreds to thousands of loci (Delsuc et al., 2005). Using whole genomes, or even near-whole4

genomes, may allow for a more comprehensive view of the evolutionary events shaping species5

(Scornavacca et al., 2020). However, the accuracy of inference may be compromised when using6

such large datasets, as even small biases can be magnified many-fold. Biases in phylogenetics are7

often due to unmodeled heterogeneity in the evolutionary process, including heterogeneity across8

time, sites, genes, or lineages (Kapli et al., 2020). These processes may arise either individually or9

in combination, presenting challenges in subsequent analyses.10

Recently, machine learning techniques have been used across fields, demonstrating impressive11

power in uncovering intricate relationships from data that contains extensive heterogeneity. Notable12

examples include successful applications in image classification (Krizhevsky et al., 2017), language13

models (Devlin et al., 2019), protein structure prediction (Jumper et al., 2021), and population14
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genetics (Schrider & Kern, 2018). Machine learning is comprised of two fundamental paradigms—15

supervised and unsupervised approaches. Supervised learning relies on the availability of labeled16

training data, where the true underlying state or value of the data is known. In phylogenetics and17

related fields, large amounts of labeled training data are generally unavailable, so simulations are18

often used to generate such data. The primary objective of supervised machine learning is to learn19

a function that can map input data to appropriate outputs. Within supervised learning, there20

are two primary tasks: classification and regression. While classification aims to predict discrete21

labels or categories, regression predicts continuous-valued outputs. In contrast, unsupervised22

learning operates without the need for labeled data, focusing instead on discerning underlying23

structures or patterns in the input data. Unsupervised approaches include tasks such as clustering24

and dimensionality reduction. Notably, deep learning is a specialized subset of machine learning25

that leverages neural networks (NNs) with many layers (hence "deep"). Some NN architectures26

are adept at automatically extracting hierarchical features from raw data, obviating the need for27

manual feature engineering—a significant advantage over traditional machine learning methods.28

In the context of phylogenetics, machine learning algorithms are extremely flexible, both29

with regards to the structuring of input data, and the data used for training. Further, machine30

learning approaches can learn complex relationships from input implicitly, without the need for an31

explicit model. This facilitates the application of machine learning to complex models, especially32

scenarios in which standard likelihood and Bayesian inference may be intractable. Given the lack33

of analytical phylogenetic solutions that can be reasonably applied to large genomic datasets,34

machine learning offers the promise of moving beyond conventional methods.35

Despite the promise that machine learning in general has for addressing many biological prob-36

lems, there is uncertainty about its superiority over conventional approaches in many applications37

to phylogenetics. While a growing number of papers have applied machine learning to multiple38

problems in the field, researchers have not yet seen a clear advantage to such approaches. Here,39

we review recent applications of machine learning to different tasks in phylogenetics, examining40

their limitations and strengths. We attempt to provide a general overview of the types of machine41

learning approaches that have been used—and those that could be used—in the hope that future42

work will bring the promise of machine learning to fruition.43

2 Tree Reconstruction44

Reconstructing evolutionary relationships among taxa is a central goal in evolutionary biology.45

A phylogenetic tree is composed of two primary components: a topology and a set of branch46

lengths. The topology serves as a representation of the hierarchical evolutionary relationships47

among species. The branch lengths represent evolutionary change, measured either in absolute48

time, in the number of nucleotide substitutions, or in other units. This section reviews machine49

learning approaches for inferring both components of phylogenetic trees.50

2.1 Topology inference51

Perhaps the most natural framing of the problem of topology inference is to use supervised52

machine learning approaches for classification, since the goal is to predict a discrete output53

(topology) from sequence data. Recall that supervised machine learning approaches require54
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labeled training data, which are generally unavailable in phylogenetics. Because of this, in55

most phylogenetic applications simulations are performed under each model of interest prior to56

inference, and these simulated data are used to train the machine learning network. When the57

goal is topology inference, the model space includes, at a minimum, the number of possible tree58

topologies. With as few as ten taxa, there are more than two million unrooted topologies, making59

it infeasible to use such approaches to infer tree topologies for even moderate numbers of taxa.60

The challenges associated with a large state-space of topologies are not unique to machine learning61

approaches: even conventional methods have difficulties in inferring trees for large numbers of62

species (Felsenstein, 1978b; Roch, 2006). To circumvent this problem, researchers have used three63

different types of approaches in order to apply machine learning to phylogenetic inference (Figure64

1). Here we review these approaches and the specific models that have been used.65

2.1.1 Quartet-based methods66

The first machine learning approaches in phylogenetics used quartet-based methods. In general,67

quartet-based methods involve extracting sets of four taxa from the full dataset, building trees68

for each set of four taxa, and then constructing a phylogeny from these quartet trees using one69

of several quartet amalgamation approaches, such as quartet puzzling (Bryant & Steel, 2001;70

Reaz et al., 2014; Snir & Satish, 2012). Because there are only three possible topologies for an71

unrooted quartet, such approaches are not plagued by the need to consider a very large state-space72

of topologies. Quartet-based methods therefore provide efficient inference algorithms that are73

scalable to very large datasets.74

Several supervised learning approaches have been used to infer quartet trees. Zou et al. (2020)75

used a residual neural network, which takes as input one-hot encoded amino acid sequences.76

Machine learning algorithms generally require that input data are numerical, and one-hot encoding77

can be used to represent categorical variables. In this application, each site was represented by78

twenty channels, with each channel corresponding to an amino acid. For an individual site, the79

channel corresponding to the amino acid present in the position is set to one, while all other80

channels are set to zero. One-hot encoding may be more appropriate than integer-encoding (in81

which each amino acid would be treated as an integer between 1 and 20), since it avoids implicit82

ordered relationships among states. In Zou et al.’s approach, models were trained on amino acid83

sequences simulated on large, random trees, which were then pruned to subsets of four taxa.84

Both site and time heterogeneity were included in the simulations; additionally, the training data85

intentionally included a sizable proportion of trees susceptible to long-branch attraction, to ensure86

that a large number of difficult examples were included. When benchmarked against existing87

inference approaches, the residual network predictors consistently delivered better results with less88

computational time (not including training time), especially when dealing with several cases that89

confound existing methods—such as long branch attraction and heterotachy. By combining their90

approach with a quartet amalgamation approach, these authors were able to infer larger species91

trees with moderate accuracy.92

In a similar approach, Suvorov et al. (2020) used a convolutional neural network (CNN) that93

takes integer-encoded nucleotide alignments as input. Simulations were carried out in a manner94

similar to Zou et al. (2020), under several substitution models and including site heterogeneity.95

In addition, these authors trained networks both with and without gaps. In the absence of gaps,96
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the CNN generally performed as well as or better than traditional approaches. On datasets that97

included gaps, the CNN substantially outperformed traditional approaches, likely because it better98

utilized this significant source of phylogenetic signal. The CNN initially exhibited reduced accuracy99

in some zones of branch length space (e.g., the Felsentstein zone; (Felsenstein, 1978a)). However,100

when more training data were included from these regions the CNN was able to outperform other101

approaches, highlighting the importance of carefully considering where to put effort in training102

such models.103

Both of the methods described above treat alignments as images. While this approach to104

representing data has been found to be powerful in population genetics (Flagel et al., 2019), there105

are several limitations in the context of phylogenetics. For example, when inferring relationships106

among taxa, we would like the order in which sequences are included in the model to be irrelevant107

(a property referred to as “permutation equivariant”). However, most network architectures do not108

perform in this way. Zou et al. (2020) accommodated this behavior by including all permutations of109

the alignment when training, but such an approach increases the compute time and memory needed110

to train a neural network. Solís-Lemus et al. (2023) address this issue using a symmetry-preserving111

long short-term memory (LSTM) recurrent neural network (RNN). By avoiding the need to include112

permutations of the training alignments, they substantially improved compute times and memory113

usage compared to Zou et al. (2020).114

Even though NNs can be very efficient for inferring quartet trees, considering larger trees115

remains prohibitive—the three approaches described above still must rely on quartet-amalgamation116

approaches to build larger trees. Additionally, as with all supervised machine learning, accuracy117

is likely limited in cases where the training data is not reflective of real data. Zaharias et al.118

(2022) explored these limitations by comparing the networks from Zou et al. (2020) to standard119

approaches on larger trees and on test datasets with higher rates of nucleotide evolution and/or120

shorter alignment lengths. They found that the neural networks only outperformed traditional121

approaches when the goal was to infer a quartet tree from relatively long amino acid sequences122

simulated under model conditions very similar to those used for training. Furthermore, when larger123

trees were considered, traditional approaches outperformed the combination of neural networks124

and quartet amalgamation. Machine learning approaches are therefore severely limited by their125

inability to directly infer trees from larger numbers of taxa, as well as by the specifics of the data126

used in training.127

2.1.2 Distance-based methods128

Rather than using machine learning to directly infer trees from sequence alignments, it is possible129

to instead infer evolutionary distances, which can then be used as input to standard distance-based130

approaches. Although often scoffed at by modern phylogeneticists, distance-based approaches131

such as neighbor joining (Saitou & Nei, 1987) are in fact guaranteed to infer the correct tree in132

most of parameter space, as long as distances are accurately inferred. In addition, they are much133

more accurate than maximum likelihood in the presence of high amounts of incomplete lineage134

sorting (Liu & Edwards, 2009; Mendes & Hahn, 2018). Therefore, it makes sense to apply machine135

learning to the task of accurately inferring distances.136

Nesterenko et al. (2022) used self-attention networks to infer evolutionary distances for up to137

100 species. Their model encapsulates alignment in a pairwise way, introducing a representation138
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Figure 1. Methods for topology inference using machine learning. A. Quartet-based methods
infer one of the three topologies possible with unrooted quartets. Trees from each quartet are
inferred with NNs; a collection of such trees are then fed into existing quartet amalgamation
algorithms (e.g. Quartet Puzzling) to infer a larger phylogeny. B. Distance-based methods
estimate pairwise distances using NNs (e.g. Phylofomer). Distances are combined using
standard methods (e.g. Neighbor Joining) to reconstruct trees. C. Direct methods infer a tree
directly from an alignment using NNs (e.g. phyloGAN).
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for each pair with the attention mechanism. The process entails an iterative sharing of information,139

first across sites within each pair (referred to as site-level attention) and subsequently across pairs140

within each site (termed pair-level attention). Such an approach is permutation-equivariant, and141

accommodates alignments of varying sizes. After inferring distances, these authors used neighbor142

joining for tree construction. Their approach outperformed traditional distance-based approaches,143

and was competitive with (and much faster than) maximum likelihood when training and testing144

data included similar numbers of species.145

In a similar approach, Bhattacharjee and Bayzid (2020) used autoencoders to impute missing146

values in distance matrices. Alternatively, Jiang et al. (2023) use a CNN for phylogenetic147

placement—placing sequences from individual genes onto trees that may have been inferred using148

different genomic regions. In this case they inferred evolutionary distances for these new sequences,149

and then used a distance-based algorithm to place the new sequences on the tree (Balaban et al.,150

2022). Inferring evolutionary distances reframes phylogenetic inference as a regression problem,151

rather than as a classification problem. This reframing makes it possible to scale machine learning152

approaches to larger trees.153

2.1.3 Direct methods154

In maximum likelihood and Bayesian approaches to phylogenetic inference, the large number155

of possible topologies is accommodated by using heuristic searches to explore tree space; such156

approaches could also be used for direct inference of tree topologies from sequence data in machine157

learning contexts. Generative adversarial networks (GANs) consist of a generator, which aims to158

produce realistic data, and a discriminator, which aims to distinguish real and fake data (Goodfellow159

et al., 2020). Recently, Smith and Hahn (2023) proposed phyloGAN. phyloGAN consists of a160

generator, which generates topologies and branch lengths, and a CNN-based discriminator, which161

attempts to distinguish alignments simulated under these topologies and branch lengths from162

empirical (real) alignments. Ideally, at the end of training, it should be virtually impossible163

to distinguish simulated and empirical alignments. Once this level of accuracy is achieved, the164

topology that underpins the simulated data is considered to be the inferred topology. phyloGAN165

was tested on up to fifteen species, and a version incorporating gene tree heterogeneity was tested166

on six species. While phyloGAN worked well with small numbers of species (up to ten), it was167

computationally intensive, and several metrics indicated issues during training. Future work may168

explore alternative approaches for heuristically exploring model spaces using machine learning169

frameworks, including approaches covered in the next section here.170

2.1.4 Improving steps in topology inference171

Machine learning approaches have been used to assist standard phylogenetic approaches for172

topology inference. For example, machine learning approaches have been used to improve heuristic173

searches for tree topologies. Azouri et al. (2021) used a random forest (RF) regressor to predict174

likelihood scores for subtree-prune-regraft (SPR) moves, a standard and important step in heuristic175

tree searches. Given a starting topology, their network could accurately predict the change in176

likelihood associated with different SPR moves, which suggests that such an approach could be177

used to limit search space and therefore to reduce the computational requirements for heuristic178

searches. In a follow-up paper, Azouri et al. (2023) used reinforcement learning as an alternative179
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to traditional heuristic search algorithms. By allowing for suboptimal moves that, nonetheless,180

improved the final outcome of the search, this approach out-competed greedy search strategies.181

Machine learning approaches have also been used to guide researchers in their decisions about182

which standard approaches to use for topological inference. Leuchtenberger et al. (2020) developed183

a feed-forward neural network to classify alignments as belonging to the Farris (Siddall, 1998) or184

Felstenstein zone (Felsenstein, 1978a; Huelsenbeck & Hillis, 1993). They based their choice to185

use maximum parsimony (in the Farris Zone) or maximum likelihood (in the Felsenstein zone) on186

the predictions of this neural network. Using this approach resulted in higher overall accuracy187

compared to always using either maximum parsimony or maximum likelihood.188

2.2 Branch length inference189

In addition to a tree topology, most researchers are also interested in inferring the branch190

lengths of a tree. However, few studies have successfully inferred branch lengths using machine191

learning. While it may seem that this regression problem should be easier than the classification192

problem of inferring topologies, the size of the output vector depends on the number of edges in193

the tree—there are 2n− 2 branches in a rooted tree with n tips. The dependence on the number194

of tips complicates the use of machine learning approaches.195

Suvorov and Schrider (2022) employed both a CNN and a multilayer perceptron (MLP)196

to infer branch lengths on fixed tree topologies with four or eight taxa. For the CNN-based197

approach, they adapted a previously proposed architecture (Suvorov et al., 2020). Instead of a198

classification task, the model was restructured for regression, aiming to predict all branch lengths199

simultaneously. Meanwhile, the MLP was fed with feature vectors derived from site pattern200

frequencies present within each alignment. Notably, the predictions generated by their models201

showed slightly superior accuracy compared to maximum likelihood estimates. Despite these202

promising results, there remains a degree of skepticism regarding the scalability of machine learning203

to infer branch lengths, especially when considering more species. Nevertheless, the flexibility204

of machine learning approaches with respect to the types of input data that can be considered205

offers many interesting possibilities. For instance, in the future such methods could facilitate the206

integration of heterogeneous fossil data in estimating time-calibrated trees.207

3 Other kinds of phylogenetic inferences208

In addition to phylogenetic tree inference, machine learning approaches have been applied209

to both upstream and downstream tasks in phylogenetics. Prior to tree inference using many210

approaches (e.g., Bayesian inference, maximum likelihood, neighbor joining) it is necessary to infer211

a sequence substitution model. After tree inference, researchers are often interested in detecting212

and quantifying discordance, testing for introgression, and inferring macroevolutionary parameters.213

Below, we review recent machine learning approaches to these upstream and downstream tasks.214

3.1 Substitution models215

It is crucial to select a suitable substitution model for accurate phylogenetic inference from216

sequence data, as it has long been known that misspecified models can lead to inaccurate estimates217

of trees (Buckley, 2002; Sanderson, 2002) and branch lengths (Abadi et al., 2019). Existing218
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methods for model selection infer the model that provides the best fit to the data, using one of219

several criteria. Popular criteria include likelihood ratio tests (LRTs), Akaike information criteria220

(AIC), corrected AIC (AICc), Bayesian information criteria (BIC), and decision theory (DT).221

However, these criteria rely on assumptions that are often not met in phylogenetics, and there222

is a lack of consensus regarding which criteria are the most appropriate (Abadi et al., 2019).223

Additionally, substitution model choice tends to impact branch length estimates more-so than224

topology inference (Abadi et al., 2019), but no criteria to-date have been designed to select the225

model best-suited for branch length inference. Finally, using these criteria to perform substitution226

model selection is computationally expensive, as it requires computation of the likelihood. Here227

we discuss two recent machine learning approaches that attempt to address these gaps.228

ModelTeller (Abadi et al., 2020) is a machine learning approach that uses an RF regressor to229

rank 24 potential substitution models according to their accuracy in downstream branch length230

inference. Features fed into the model included over 50 summary statistics that can be broadly231

categorized into four primary groups: features inherent to the alignment, features drawn from232

an approximated tree inferred through a distance-based method, parameters inferred under a233

parameter-rich substitution model, and sequence similarity within certain subsets. ModelTeller’s234

primary distinction compared to traditional approaches lies in selecting a substitution model that235

improves accuracy in branch length inference. This leads to improved performance in terms of the236

accuracy of branch length estimates under the models selected using ModelTeller compared to237

models selected using more standard approaches, particularly on datasets simulated under realistic238

models. Additionally, ModelTeller was substantially faster than standard methods.239

A later model, ModelRevelator (Burgstaller-Muehlbacher et al., 2023) aims to infer the240

correct generating model of nucleotide substitution using two neural networks. The first network,241

NNmodelfinder, takes as input a set of statistics calculated from pairwise alignments and predicts242

the best substitution model from a set of six possible models. The second network, NNalphafind,243

takes as input base composition profiles and predicts whether a site homogeneous model is244

appropriate or not. If a site homogeneous model is not appropriate, then NNalphafind estimates245

the α parameter of a model with Γ-distributed rate heterogeneity among sites. Used together,246

these networks can predict the best substitution model for a given sequence alignment, whether247

rate heterogeneity should be included, and, when rate heterogeneity is included, the α parameter248

to use in downstream inference. ModelRevelator performed comparably to maximum likelihood249

combined with substitution model selection under BIC as implemented in IQ-TREE (Minh et al.,250

2020), with substantially reduced computation times on large alignments.251

Both ModelTeller and ModelRevelator are designed to select a substitution model that is252

suitable for inference; however, each uses different criteria for assessing suitability. ModelTeller is253

particularly focused on identifying a model that results in the most accurate estimates of branch254

lengths. The primary objective of ModelRevelator is to select the best substitution model and255

estimate the α parameter when the best model includes rate heterogeneity. One can therefore use256

both methods together on a single dataset.257

3.2 Levels of discordance258

Gene tree topologies often differ from the species tree topology due to several biological factors,259

including incomplete lineage sorting, introgression, and gene duplication and loss (Maddison, 1997).260

8



Two recent studies used deep learning to estimate the amount of discordance in phylogenetic261

datasets (Rosenzweig et al., 2022; Zhang et al., 2023). Rosenzweig et al. (2022) used several262

approaches, including a deep neural network (DNN), to estimate the amount of discordance in263

four-taxon datasets using a set of summary statistics calculated from alignments and inferred gene264

trees. Estimates from their DNN were more accurate than relying on inferred gene trees alone to265

estimate discordance, particularly when branch lengths were long. In addition to their network266

for estimating the amount of discordance, they introduced a network for inferring the quartet267

species tree topology from the same set of statistics. Similarly, Zhang et al. (2023) used CNNs to268

estimate the proportion of all different possible topologies for four and five-taxon datasets from269

multiple sequence alignments. Their CNN, called ERICA, was able to accurately infer topology270

proportions. The authors then used these inferred proportions to try to infer introgression and to271

identify potentially introgressed genomic windows. The ability of these approaches to estimate272

the proportions of quartet topologies more accurately than standard pipelines—which rely on273

inferred gene trees alone—offers promise for improving many quartet-based methods for species274

tree inference, as these generally assume that quartet frequencies are accurately estimated from275

input gene trees (Mirarab & Warnow, 2015).276

3.3 Introgression277

Most machine learning approaches for studying introgression have focused on population-scale278

data, rather than phylogenetic data. For example, Schrider et al. (2018) used ExtraTrees classifiers279

to detect introgressed regions between closely related species, while Ray et al. (2023) used a CNN280

and image segmentation for a similar task. Similarly, Gower et al. (2021) developed a CNN to281

detect adaptive introgression given data from three closely related populations or species. Several282

recent papers have also addressed introgression from a phylogenetic perspective using machine283

learning.284

Two recent studies used supervised machine learning to determine whether there was evidence285

for reticulation in a dataset. Blischak et al. (2021) used a CNN to detect various types of286

reticulation in four-taxon trees, including hybrid speciation and introgression. Their CNN took287

as input mean and minimum values of dxy (a measure of sequence divergence) between sets of288

populations. They compared HyDe-CNN to an RF classifier trained on several phylogenetic289

statistics for detecting introgression and found that HyDe-CNN had increased power. In a similar290

approach, Burbrink and Gehara (2018) trained a neural network to distinguish a bifurcating species291

tree from models including reticulation between two parent clades and one clade with a putative292

reticulate history. As input, their network takes pairwise distances between all sequences in the293

phylogeny (55 sequences from three clades). Their network had moderate power to distinguish294

among models with and without reticulations. When applied to their empirical data, the model295

supported a reticulate history for a clade in which reticulation was also inferred using SNaQ296

(Solís-Lemus & Ané, 2016). Most recently, Hibbins and Hahn (2022) used supervised machine297

learning to distinguish speciation and introgression histories. Under many regions of parameter298

space, gene trees and site patterns matching the introgression history can become more common299

than those matching the species tree, challenging many traditional approaches to species tree300

inference. By using several summary statistics calculated from gene trees, Hibbins and Hahn301

were able to accurately infer the speciation history for rooted three-taxon trees, even in regions302
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of parameter space where traditional approaches fail. While powerful, these approaches have303

primarily focused on four or fewer taxa. Future work may expand machine learning approaches to304

study introgression on larger trees.305

3.4 Diversification rates306

In addition to the kinds of inferences described above, recent studies have attempted to use307

inferred phylogenies for downstream inference of diversification rates. One challenge in any such308

analysis is determining the optimal way to encode phylogenetic trees. To address this issue,309

Voznica et al. (2022) introduced the compact bijective ladderized vector (CBLV), an encoding310

of phylogenetic trees that can be used as input into a CNN. They trained a CNN that took as311

input the CBLV to infer parameters of phylodynamic birth-death models and to perform model312

selection. They compared the performance of this CNN to a feed-forward neural network trained313

on summary statistics calculated from phylogenetic trees. Both networks were able to accurately314

infer parameters and distinguish among phylodynamic models. Lambert et al. (2023) used similar315

networks to infer speciation and turnover rates under a constant rate birth-death (CRBD) model316

and to infer the parameters of a binary state speciation and extinction (BiSSE) model. Lajaaiti317

et al. (2023) compared these networks to several other networks for inferring diversification318

parameters. They trained an additional CNN and RNN on lineage through time (LTT) plots.319

They also trained a graph neural network (GNN) that took phylogenies encoded as graphs directly320

as input. Under the CRBD model, the RNN and CNN trained on LTT plots outperformed the321

network trained on CBLV encodings. However, these same networks performed poorly under322

the BiSSE model, likely because the LTT plots did not include additional information about tip323

states, which was included in the other networks. Perhaps surprisingly, the GNN performed poorly324

across both models. These approaches highlight the importance of carefully choosing network325

architectures and data encodings for the task at hand.326

4 Discussion327

Recent progress has revealed the promise of machine learning in phylogenetics. However,328

inferences have often been limited to relatively small trees and relatively limited regions of parameter329

space. Moving forward, careful considerations of training datasets, network architectures, and330

data encodings will facilitate the use of machine learning to address fundamental challenges in331

phylogenetic inference.332

Supervised machine learning requires a labeled training set. In the context of phylogenetics,333

however, we do not have labels for many real-world examples—we therefore have to simulate data.334

Despite attempts to simulate realistic data across a wide range of parameter space, it is inevitable335

that biases will creep in. For example, training data generated under one substitution model may336

not generalize to empirical datasets that were produced under a different model. In order to avoid337

such biases, we could take the computationally costly step of generating synthetic data across338

increasingly large sets of parameters. However, even when researchers attempt to consider a broad339

range of relevant parameters, there will inevitably be mismatches between training and empirical340

data, potentially leading to poor generalization to unseen data. To develop more robust networks,341

widely used techniques such as dropout, regularization, and ensemble methods can be employed.342
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Alternatively, noise can be added to training data to improve generalization (as is done with image343

augmentation). In the context of phylogenetics, adding noise could involve masking regions of the344

alignment during training. Alternatively, techniques from domain adaptation have emerged as345

promising solutions. Domain adaptation aims to develop networks that are robust to differences346

between the distribution of training data and the distribution of target or empirical data. Mo and347

Siepel (2023) used domain adaptation to make more accurate inferences of recombination rates348

and selection coefficients in the presence of domain differences. Their approach used adversarial349

domain-invariant feature extraction, which incorporates an additional layer to prevent the model350

from extracting features that differ between the training and target data. Such an approach351

promotes the extraction of domain-invariant features, and could be used to make robust inferences352

in phylogenetics.353

A major intended advantage of machine learning is that, once trained, models can be applied to354

new datasets with minimal computational expenses. Even though a trained model makes inferences355

almost instantaneously, training remains computationally expensive. Ideally, trained networks356

would be applicable across a wide range of empirical datasets, but this is limited by the details357

of the training data used and the choice of network architectures. Specifically, many network358

architectures (e.g., most CNNs) are not invariant to dataset size. In other words, only datasets with359

the exact dimensions of the training data can be analyzed. However, in phylogenetics, datasets360

may vary in size due to different alignment lengths or different numbers of taxa. This challenge361

has been addressed in population genetics through padding (Flagel et al., 2019), and by designing362

appropriate network architectures that are size invariant (Sanchez et al., 2021). Some network363

architectures employed in phylogenetics have accommodated variable input sizes (Nesterenko et al.,364

2022), and moving forward this should be a central goal. To facilitate the reuse of networks in new365

empirical systems, techniques from transfer learning could also be used. Specifically, supervised366

transfer learning can be useful when limited training data are available from a new domain. For367

example, a network that has already been trained on data from one domain can be reused in a368

related, but distinct, domain. Supervised transfer learning and limited simulations in the new369

domain can be used to generate a robust network with reduced computational expenses compared370

to training the network from scratch. Combined, these approaches may facilitate more efficient371

uses of supervised machine learning in phylogenetic contexts.372

Another major consideration is how to encode input data for neural networks. Most commonly,373

encoded alignments (Suvorov & Schrider, 2022; Suvorov et al., 2020; Zou et al., 2020), or summary374

statistics (Abadi et al., 2020; Burgstaller-Muehlbacher et al., 2023) have been used as input. When375

using encoded alignments, a primary challenge is scalability to longer alignments or more taxa.376

This is especially pertinent as available genomic data continues to grow. Encoded alignments can377

also pose challenges to network reusability, as discussed above. Alternatively, the input can be378

represented with summary statistics that are explanatory features drawn from alignments and trees379

for the task at hand. However, selecting a good set of features relies on prior knowledge, and the380

choice of statistics can heavily impact inference. Alternative strategies for representing alignments381

have been proposed, using attention mechanisms (Burgstaller-Muehlbacher et al., 2023; Nesterenko382

et al., 2022; Rao et al., 2021) or language models (Lupo et al., 2022). Such approaches can lead383

to networks that can accept variable input sizes, and are capable of incorporating relationships384

among sites and lineages simultaneously. It is also essential to develop a suitable representation for385

phylogenetic trees. Several efforts in this direction have been made, from explanatory summary386
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statistics (Voznica et al., 2022), to embeddings such as the CBLV (Voznica et al., 2022), to387

graphical representations in GNNs (Lajaaiti et al., 2023). While early uses are promising, these388

encodings have only been explored for a small set of inferential tasks, and it is unclear which389

encodings will prove most useful over a wider range of questions.390

The promise of supervised machine learning is to efficiently consider a wide range of the complex391

processes that complicate phylogenetic inference. To date, most machine learning approaches for392

tree inference have largely ignored heterogeneity introduced by incomplete lineage sorting (ILS),393

gene duplication and loss, and introgression (though several exceptions have been described here).394

While standard phylogenetic approaches also have trouble modeling this heterogeneity, machine395

learning shows potential to include multiple of these processes at once. For example, if machine396

learning approaches can be used to more accurately infer quartet frequencies in the presence of397

these processes (as demonstrated in the case of ILS by (Rosenzweig et al., 2022; Zhang et al.,398

2023)) then the accuracy of phylogenetic trees could be improved. Moving forward, we expect that399

creative network architectures, data encodings, and task designs will facilitate the use of machine400

learning to improve phylogenetic inferences in the presence of complex processes that cannot be401

accommodated by standard approaches.402
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