Paying it forward: Crowdsourcing of taxonomic harmonization and linking of biodiversity identifiers

Brandon K. B. Seah (brandon.seah@thuenen.de)

Thünen Institute for Biodiversity, 38116 Braunschweig, Germany

Abstract

Linking records for the same taxa between different databases is an essential step when working with biodiversity data. However, name-matching alone is error-prone, because of issues such as homonyms (unrelated taxa with the same name) and synonyms (same taxon under different names). Therefore, most projects will require some degree of curation to ensure that taxon identifiers are correctly linked. Unfortunately, formal guidance on such curation is uncommon, and these steps are often ad hoc and poorly documented, which hinders transparency and reproducibility, yet the task requires specialist knowledge and cannot be easily automated without careful validation. Here we present a case study on linking identifiers between the GBIF and NCBI taxonomies for a species checklist dataset. This represents a common usage scenario: finding publicly available sequencing data (available from NCBI) for species chosen by their occurrence or geographical distribution (from GBIF). Wikidata, a publicly editable knowledge base of structured data, can serve as an additional information source for identifier linking. We suggest a software toolkit for taxon name matching and data cleaning, describe common issues encountered during curation, and propose concrete steps to address them. For example, about 2.8% of the taxa in our dataset had wrong identifiers linked on Wikidata because of errors in name matching caused by homonyms. By correcting such errors during data cleaning, either directly (through editing Wikidata) or indirectly (by reporting errors in GBIF or NCBI), we crowdsourced the curation and contribute to improvement of community resources, thereby improving the quality of downstream analyses.
Introduction

Biodiversity science has seen a proliferation of databases and checklists (Feng et al. 2022). While it is clear that taxonomic experts are best-placed to curate data for their respective taxa of expertise, there are drawbacks to group-specific specialized databases: they may not be maintained in the long term, may not be interoperable with other databases, and may duplicate efforts when different projects have overlapping coverage or aims (Schellenberger Costa et al. 2023). Similar observations have been made about the software developed for working with them (Grenié et al. 2021). As a result, users face the challenge of integrating different databases by linking or harmonizing taxon names and database-specific identifiers, before they can take advantage of the domain-specific information contained in them.

End-users can match taxa either by their names or taxon identifiers. This task is a subset of data reconciliation or data matching (Christen 2012), a dynamic field with evolving standards (Delpeuch et al. 2023). Some databases, particularly those that themselves aggregate multiple sources (“data aggregators”), may incorporate cross-references to other databases, but end-users are ultimately responsible for curating the data they wish to use, and often have to rely on name matching. The Linnaean system has been in use for almost three centuries, which attests to its utility and robustness, but names are human artefacts and hence inherently prone to variants (e.g. in orthography) and errors (Patterson et al. 2016). Additionally, a given name may also embody different taxon concepts (cf. (International Commission on Zoological Nomenclature 1999) Article 61.3; (Turland et al. 2018) Glossary).

How can we avoid duplicated effort in data curation? Ideally, users of taxonomic data would share in building and improving community resources, as they are often also the subject-matter experts. Building yet another database is clearly not the answer. Nonetheless, large aggregator projects such as WoRMS and ITIS tend to be centrally organized by design, and may not have a formal avenue for handling user contributions. Wikidata (https://www.wikidata.org/) (Vrandečić and Krötzsch 2014) presents an alternative model for how data curation can be crowdsourced. Like Wikipedia, its better-known cousin, Wikidata is freely accessible and editable by online users, and is actually the backend for automatically generated information boxes displayed in Wikipedia articles, e.g. for biological taxa (https://en.wikipedia.org/wiki/Template:Taxonbar). The Wikidata project aims to build a general knowledge graph, comprising items (which may be entities or objects of any kind, including abstract concepts) linked together by statements about how these items are related to each other. Each statement comprises a subject and an object (items) linked by a predicate (a property). For example, the item “*Coffea arabica*” (Q47685) is linked to the item “coffee bean” (Q153697) by the property “this taxon is source of” (P1672). Biological taxa are modeled as instances of (P31) taxon (Q16521), and typically have properties like taxon name (P225), authors (P405), and rank (P105). Taxon
identifiers in other databases can simply be represented through additional statements, e.g. “Coffea arabica” (Q47685) has a property “GBIF taxon ID” (P846) with the value “2895345”.

Page (2022) has argued that it is ultimately more productive and sustainable to contribute to an existing project already supported by an active community, such as Wikidata, than to start a new domain-specific project, where such a user base would have to be built up from scratch. Wikidata is already used in the life sciences for purposes such as crowdsourcing biological ontologies and data-mining for drug discovery and disease diagnosis (Waagmeester et al. 2020). In biodiversity informatics, it has been proposed as a platform for a “bibliography of life”—a comprehensive linked database of the taxonomic literature (Page 2022), and to disambiguate personal names in collection records (Groom et al. 2022).

Graphs of database identifiers have been used instead of name-matching to link over a hundred thousand entries in Wikidata with the Global Biotic Interactions Database (GloBI) (Thessen et al. 2018). These large numbers are impressive, but rely on the identifiers being up to date and correctly assigned. As a crowdsourced platform, the accuracy of Wikidata depends on smaller, individual contributions. If one is not solely interested in global patterns but also specific cases, then careful curation is necessary. This more modest but ultimately essential “bricklaying” by individual users is the topic of this case study.

Here, we describe how we match taxon names and identifiers between the Global Biodiversity Information Facility (GBIF) Backbone Taxonomy (GBIF Secretariat 2022) and the NCBI Taxonomy (Schoch et al. 2020), integrating Wikidata into the workflow both as a source of linked identifiers to speed up data matching, and as a community resource that we contribute to during data curation. GBIF aggregates biodiversity distribution and occurrence data, whereas the main international repositories for molecular sequence data, the International Nucleotide Sequence Database Collaboration (INSDC) of which NCBI is a member, use the NCBI Taxonomy. This represents a common usage scenario of finding biological sequences that belong to a set of taxa. The dataset used is a checklist of vascular plants from Germany (Bundesamt für Naturschutz 2021). As this is a region well-studied by botanists, we expect that virtually all species have been described and that most are well documented with published occurrence and sequence data.

Our aims are to identify issues commonly encountered during data matching, in particular the actual impact of homonymy and synonymy on name matching, and to make concrete suggestions for how to troubleshoot and improve community resources as part of the data cleaning process, as a form of crowdsourcing.
Workflow to link identifiers and flag cases for curation

The dataset (https://doi.org/10.15468/0fxsox) comprises 7209 taxon names of vascular plants from Germany (5876 at species rank), and their associated GBIF taxon identifiers (taxonIDs) which we wished to link to equivalent NCBI Taxonomy taxonIDs. The file was downloaded from GBIF as a “species list”, which lists taxa in a tab-separated text file, containing the taxon name as supplied by the data provider, the taxonID for that name, the “accepted” taxon in the GBIF Backbone Taxonomy to which it was matched when the dataset was imported, its taxonomic status and taxon rank, and the names and taxonIDs of the higher taxa to which it belongs (kingdom, phylum, etc.).

For reproducibility, we used flatfiles of the latest available versions of the GBIF Backbone Taxonomy (2021-11-26) and the NCBI Taxonomy (2022-12-01) instead of live online queries, so that the analysis could be pinned to a specific version as these databases are continuously updated. For Wikidata, we directly queried the online API instead of downloading a versioned flatfile, because database dump files are large (2023-06-23 over 136 GB) and contain data on all entities, not just biological taxonomy.

GBIF taxonIDs in the dataset were matched against the GBIF Backbone Taxonomy to filter out records that have been marked as “doubtful” or problematic, and to find currently accepted names and taxonIDs within the GBIF Backbone Taxonomy, as the latter may have been updated after the dataset was originally imported. This resulted in a table of taxon names (with authors) and taxonIDs of interest. Only taxa of species rank (5721 names) were retained to simplify the search, as the higher taxa can be derived from the list of species. From the NCBI Taxonomy, scientific names (including authors where available) and taxonIDs at species rank classified to Viridiplantae (NCBI:txid33090) were retrieved, to reduce the number of names to be searched, and to avoid hemihomonyms.

Figure 1. Simplified diagram of identifier linking through name matching. (A) Match accepted taxon names in GBIF against names in NCBI Taxonomy using gndiff, then check if the respective identifiers are also linked in Wikidata. (B) If an accepted name had no matches, retrieve synonyms for a second round of name matching.
The GBIF taxon names were matched against the Viridiplantae taxon names from NCBI with Gndiff v0.2.0 (https://github.com/gnames/gndiff) (Figure 1A), which matches taxon names while accounting for common orthographic variants, errors, and other issues specific to taxon names. Gndiff uses the same algorithms as Gnverifier (https://doi.org/10.5281/zenodo.5111542) and Gnpars (Mozzherin, Myltsev, and Patterson 2017) but can be used offline and without an external database. Gndiff reports three types of matches: “Exact”, “PartialExact”, “Fuzzy”. We excluded “PartialExact” matches because they encompass cases where only the genus name matches. “Fuzzy” matches include potential misspellings, and so were retained. Gndiff parses the author field if present but does not take them into account, so we further classified “Exact” matches into three types based on the author names: “exact” – author names or citations identical, “noauthor” – author names absent from one or both entries (typically from the NCBI record), “author_mismatch” – author names do not match exactly, which includes differences in abbreviation or orthography. The result was a table of GBIF taxonIDs linked to NCBI taxonIDs by name matching.

For GBIF names without matches in NCBI Taxonomy, synonyms according to the GBIF Backbone were retrieved, and then used for a second round of name matching (Figure 1B). This was to account for cases where the same taxon has different accepted names in the two databases. The two databases handle synonyms differently. In GBIF, each distinct name has a different taxonID; accepted names vs. synonyms are indicated in the “taxonomicStatus” field, but are maintained as different records. In the NCBI Taxonomy, synonyms are given the same taxonID as the accepted name, and if an existing taxon is deemed to be a synonym then its taxonID is moved to the “merged” list.

We queried Wikidata via its SPARQL API (https://query.wikidata.org/) for taxon items with the GBIF taxonIDs from our dataset (property P846). If they were linked to an NCBI taxonID (property P685), the linked NCBI taxonID was added to our table. If a taxon name was not linked to a Wikidata item via its GBIF taxonID, but the earlier name matching had found an NCBI taxonID, then the NCBI taxonID was used to query Wikidata to find linked Wikidata items and their associated GBIF taxonIDs, if available.

The identifier links on Wikidata were then used to categorize the pairs of matched names for further action (Table 1). The aim was to filter out names with no matches (Table 1, curation action “a, nothing more to be done”) or unambiguous matches (Table 1, curation action “b, automatically accepted”) from cases needing additional curation.

We identified straightforward cases of missing or outdated information in Wikidata where the necessary updates can be executed through batch edits (Table 1, curation actions d and e). The criteria for these were that GBIF and NCBI names had an exact match (including authorship) and the name was accepted in the GBIF Backbone, but Wikidata either did not have one of the taxonIDs or had a different taxonID from the currently accepted one. Commands for executing these edits in batches with the QuickStatements tool (https://quickstatements.toolforge.org/) were generated.
Table 1. Possible outcomes of data linking steps, further curation steps to be taken, and the number of cases identified in this example dataset.

<table>
<thead>
<tr>
<th>Name match type</th>
<th>GBIF ID linked to Wikidata item?</th>
<th>Wikidata links GBIF to NCBI ID?</th>
<th>NCBI ID from name matching same as on Wikidata?</th>
<th>Wikidata links NCBI to GBIF ID?</th>
<th>Taxonomic status of name on GBIF</th>
<th>Curation action to be taken</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>(a) No matches, including synonyms</td>
<td>1310</td>
<td></td>
</tr>
<tr>
<td>none</td>
<td>no</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Other</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>exact</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>-</td>
<td>(b) Match ok, accept automatically</td>
<td>3130</td>
<td></td>
</tr>
<tr>
<td>exact</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>-</td>
<td>(c) Verify and update NCBI taxonID in Wikidata item</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>exact</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>-</td>
<td>(d) Batch-add NCBI taxonID to Wikidata item</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>exact</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>-</td>
<td>(e) Batch-update GBIF taxonID in Wikidata item</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>exact</td>
<td>no</td>
<td>-</td>
<td>-</td>
<td>yes</td>
<td>(f) Verify if synonym listed in GBIF is valid before linking identifiers</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>noauthor</td>
<td>yes</td>
<td>yes</td>
<td>-</td>
<td>-</td>
<td>(g) Verify if authorships match before linking identifiers</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>noauthor</td>
<td>yes</td>
<td>yes/no</td>
<td>no</td>
<td>-</td>
<td>(h) Possible homonym, investigate further</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>author mismatch</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>-</td>
<td>(g) Verify if authorships match before linking identifiers</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>author mismatch</td>
<td>yes</td>
<td>yes/no</td>
<td>no</td>
<td>-</td>
<td>(h) Possible homonym, investigate further</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>fuzzy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Other</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

To understand the underlying causes for these erroneous links, we further investigated the cases where name-matching and Wikidata disagree on the GBIF taxonID (Table 1, curation action e). The current taxonomic status of the GBIF taxonIDs found in Wikidata was looked up in the GBIF Backbone Taxonomy. Of the 245 taxonIDs, two cases represented mismatched ranks (one genus and one subspecies), and another 83 (1.5% of 5721 total) had been removed by GBIF curators and were no longer listed in the GBIF Backbone, but these updates were not yet propagated to Wikidata. Almost all the remaining 162 (2.8%) appear to be names wrongly matched when identifiers were added to Wikidata because of homonymy, because the taxon authors differ.

The remaining cases were then tabulated for manual curation. This requires some knowledge of taxonomy and nomenclature rules to be able to evaluate whether two names are equivalent or not, as well as cross-checking against additional databases.
The above workflow is available from https://github.com/monagrland/taxo-harmo. The software toolchain required is specified in a definition file for the Conda environment manager, using packages distributed via the open-source conda-forge and bioconda channels (Grüning et al. 2018). The code to reformat the input, perform the initial name-matching with Gndiff, query Wikidata for identifiers, and prepare the tables for manual curation is listed and documented in a Jupyter notebook. The workflow can be applied to other GBIF species list datasets simply by updating the filenames and the target taxon group (if not Viridiplantae). Likewise, the pipeline can be re-run when newer versions of the source databases are available.

Guide to manual curation and improving community resources

Here we describe what issues can be found during manual curation, and what concrete action users can take to improve the database resources. In brief: Wikidata can be edited directly to fix errors or add missing information, preferably after creating a user account; issues with the GBIF Backbone Taxonomy can be reported via the website feedback dialog, by email, or via Github; issues with the NCBI Taxonomy should be reported by email.

(A) Errors due to name matching

Error modes in name matching have been extensively discussed before (Patterson et al. 2016; Remsen 2016). In the curation process, homonyms can be quickly recognized by mismatches in authorships; those links can be rejected unless they are simply orthographic differences such as the removal of diacritics (e.g. “Hultén” vs. “Hulten”) or different abbreviation conventions (“Hook.f.” vs. “Hook.fil.”). Typographical errors are to some extent ameliorated by the fuzzy matching in Gndiff.

Example: Name matching errors may also appear in the source databases. The original dataset lists the genus *Ammophila* Kirby, 1798 (GBIF taxonID 1346141), a genus of wasps, instead of the grass genus *Ammophila* Host (GBIF 2703794). Both names are valid under their respective, independent nomenclatural codes, i.e. they are hemihomonyms. Here the error appears to have occurred during import of the data from the original provider into GBIF.

Action: Accept or reject the linked identifiers after verification.

(B) Errors or information gaps in databases

If the results of name matching disagree with database identifiers, it is possible that one or more of the source databases have incomplete or erroneous information.

(1) GBIF taxonID has been deprecated or merged

The GBIF Backbone Taxonomy is continually revised, and taxa may be deleted if they are e.g. doubtful names, orthographic errors, or duplicates. However, the deprecated GBIF taxonIDs may still be linked in Wikidata. In some cases, the accepted taxon in GBIF may also be in error (see point 6 below).
Example: Wikidata record for *Helianthus annuus* (Q171497) was linked to the GBIF taxonID 3119195, which was deleted on 2018-02-01. The currently accepted GBIF record for this species is 9206251.

Action: When unambiguous, edit the Wikidata entry to add the currently accepted GBIF taxon, after checking that it is not a homonym. Record the access date in the reference with the property “retrieved” (P813), which will help future editors troubleshoot if the GBIF record changes again. See Shafee et al. (2023) for guidance on editing Wikidata.

(2) NCBI taxonID has been deprecated or merged

Unlike GBIF, the NCBI Taxonomy merges synonyms under the same taxonID, which can be problematic if there is disagreement about whether two taxa are truly synonymous.

Example: *Calamagrostis stricta*, formerly NCBI:txid497295, has been merged as a synonym of *Calamagrostis neglecta* NCBI:txid395286 in the NCBI Taxonomy. Furthermore, the GBIF Backbone accepts *C. stricta* (2704899) while designating *C. neglecta* (4104731) as a synonym of *Achnatherum calamagrostis* (4142326).

Action: Searching the NCBI website for a merged taxonID or entering its URL will auto-redirect to the current accepted one. However, the ENA Taxonomy API (https://www.ebi.ac.uk/ena/taxonomy/rest/), which in principle uses the same NCBI Taxonomy, usually returns no result for merged taxonIDs, indicating that merged taxonIDs may cause problems with downstream tools that do not take them into account. The currently accepted NCBI taxonID can be added to the Wikidata entry, but the old taxonID may help disambiguate the record and should not be deleted.

(3) Incorrect species linked on Wikidata

The Wikidata record may be linked to an identifier for a different species. These cases are usually homonyms, which can be recognized by the different taxon author.

Example: The Wikidata record for *Rubus gracilis* C.Presl & J.S.Presl (Q17248013) was previously linked to identifiers for the homonymous *Rubus gracilis* Roxb. in GBIF (2990660) as well as another database, GRIN-Global (32332, explicitly annotated as “non J.S.Presl & C.Presl 1822”).

Action: When unambiguous, edit the Wikidata entry to remove the incorrect statement, or point to the correct identifier, if available. Record the access date using the Wikidata property “retrieved” (P813). Different Wikidata items for homonymous taxa can be disambiguated with the property “different from” (P1889).

(4) Ambiguous entity in Wikidata - conflicting taxon authors

Some cases may require taxonomic/nomenclatural expertise or additional information to resolve.
Example: The Wikidata record for Willemetia stipitata (Q1362051) states that the taxon author (property P405) is Karl Wilhelm von Dalla Torre (Q79155). The linked GBIF entry (5389300) for W. stipitata (Jacq.) Dalla Torre is annotated as “doubtful” in GBIF. Furthermore, the linked NCBI entry (NCBI:txid519273) represents the homonym W. stipitata Cass. Linked records in other Wikis are also inconsistent: German-language Wikipedia – W. stipitata (Jacq.) Dalla Torre (https://de.wikipedia.org/wiki/Kronenlattich); Wikispecies – W. stipitata Cass. (https://species.wikimedia.org/wiki/Willemetia_stipitata).

Action: The Wikidata entity may need to be split into separate entities for each homonym. Start a thread on the corresponding discussion/talk page in Wikidata or Wikispecies to alert other users to the issue. For one’s own research, make a judgement call and document it.

5) Ambiguous entity in Wikidata - no taxon author
Some taxon names on Wikidata may lack the “taxon author” (P405) or “taxon author citation” (P6507) properties.

Action: As above. These should probably be split into separate entities if they are indeed homonyms, but it would then be unclear how the linked identifiers should be distributed between them.

6) Error in accepted taxon in GBIF Backbone Taxonomy
These can often be traced back to errors in the source datasets used to populate the GBIF Backbone. The following example was found because the Wikidata entry was linked to both GBIF and NCBI taxonIDs and agreed with the name-matching with Gndiff, but the author names conflicted.

Example: “Primula matthioli K.Richt.” is an accepted taxon in the GBIF Backbone Taxonomy (5640570); GBIF’s source dataset or this name is “Synonymic checklists of the vascular plants of the world” (Hassler 2022). However, the International Plant Names Index (IPNI), a nomenclatural database for botanical names, only reports “Primula matthioli (L.) V.A.Richt.” (https://www.ipni.org/n/702251-1). Wikidata records the same author as IPNI for Primula matthioli (Q50859720), namely Vincenz Aladár Richter (Q6163148). GBIF annotates “Primula matthioli (L.) V.A.Richt.” (9764749) as a “homotypic synonym”, and additionally has a record for “Primula matthioli (L.) J.A.Richt. 1894” (9781637), also listed as a “homotypic synonym”.

Given the corroboration from IPNI, the author names in GBIF records 5640570 (“K.Richt.”) and 9781637 (“(L.) J.A.Richt.”) are likely to be typographical errors for 9764749 (“(L.) V.A.Richt.”).

Action: Report errors or issues via the feedback system on the GBIF website (must be logged in with a GBIF user account). Feedback reports are handled via the issue tracker on GitHub, and can also be submitted directly there or by email. The issue opened for the above example is here: https://github.com/gbif/portal-feedback/issues/4673. If their data curators can trace the issue to an
upstream data source, the report is passed upwards. Curators can also apply “patches” to the GBIF Backbone Taxonomy, where the upstream source cannot be updated in a timely manner.

(7) Error in accepted taxon in NCBI Taxonomy

Example: *Carex binervis* Sm. (Wikidata [Q160245](https://www.wikidata.org/wiki/Q160245)) is an accepted taxon in the GBIF Taxonomy (2723521), but the NCBI record had different authors “Gren. & Godr.” (NCBI:txid372257).

IPNI lists four homonyms for the name *Carex binervis*, but none with “Gren. & Godr.” as authors. Only *C. binervis* Sm. is validly published (https://www.ipni.org/?q=carex%20binervis). The remainder are either nom. inval., *C. binervis* Wahlenb. ex Kunth, or nom. illeg., *C. binervis* Willd. ex Kunth and *C. binervis* Dewey, the latter according to Plants of the World Online (https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:77237975-1).

“*Carex binervis* Gren. & Godr.” turned out to be a chresonym, where the authors after the binomen are not the authors of the name itself, but a reference to a usage of the name in some other publication. The Tropicos database has an entry for “*C. binervis* Gren. & Godr.” with a citation to the publication *Flore de France* by Grenier & Godron (1855) (http://legacy.tropicos.org/Name/9900008). This allowed us to find a digital copy online (https://bibdigital.rjb.csic.es/idviewer/10272/430) where the name “*C. binervis* Sm.” is listed, showing that this was indeed the intended name.

Where did the NCBI Taxonomy find this chresonym “*Carex binervis* Gren. & Godr.”? The NCBI web interface lists two references: Monocot Checklist (http://www.kew.org/wcsp/home.do, accessed 2010-11-01), and a research paper (Villaverde et al. 2020). However, the former website is defunct and redirects to Plants of the World Online, while cites only *Carex binervis* Sm. (Supplementary Table S10). The incorrect taxon authors were presumably sourced from Tropicos or another database which has since been updated or taken offline. Chresonyms look like legitimate taxon names with authorships, and cannot be easily detected without cross-checking or conferring original sources, so are especially prone to being propagated across aggregators.

Action: Report errors and updates to the NCBI helpdesk by email (Schoch et al. 2020). The example above was reported and has already been corrected.

(8) Disagreements in taxon concepts between databases

The “same” taxon may appear under different names, classifications, or even be split or lumped into different taxa, depending on the source consulted. Which names are accepted as valid, and which as synonyms, are points of legitimate scientific disagreement; one name may represent different taxonomic concepts. When data aggregators designate accepted names or use a particular classification, they gloss over potentially valid taxonomic conflicts (Franz and Sterner 2018).

Example: The species *Rosa inodora* Fr. (GBIF taxonID 3002258, Wikidata [Q15844731](https://www.wikidata.org/wiki/Q15844731)) in our dataset does not have an NCBI taxonID, i.e. no sequence data is available. However, *Rosa elliptica*
Tausch (GBIF taxonID 3003248, Wikidata Q9325795), listed as a synonym of *Rosa inodora* by GBIF, does have an NCBI taxonID (NCBI:txid323240).

Action: For the purposes of our own data analyses, we may choose to accept a taxonomic opinion and link these taxa that are designated as synonyms by GBIF or NCBI. However, it would be inappropriate to link the Wikidata item for *Rosa inodora* to the NCBI taxonID of *Rosa elliptica*, because they are heterotypic synonyms that represent a taxonomic theory which is subject to potential disagreement and future revision. Therefore, the original name of interest, accepted names, and synonyms are kept in separate data columns in our workflow. In Wikidata, synonymous taxa can be represented by the “taxon synonym” property (P1420), whereas homonyms can be disambiguated with the “different from” property (P1889).

Discussion

The state of biodiversity identifier linking is patchy, even across well-resourced, heavily used databases, and for well-studied sets of species like the German vascular plant flora. As expected, naive name matching alone is problematic and can cause linking errors, affecting at least 2.8% of Wikidata entries for the species names in the dataset examined here. Ironically, better studied groups and more comprehensive databases may contain more historical names and homonyms that need to be accounted for. Most of such linking errors are easily caught by using author names and higher taxa to disambiguate taxa, allowing us to focus manual curation efforts on the most challenging cases.

Existing recommendations and workflows for taxon name harmonization (Grenié et al. 2021; Jin and Yang 2020) recognize the same pitfalls of name matching and the limitations of source databases, such as different accepted synonyms, inconsistent classifications, and lack of taxon author citations in some datasets. Dealing with the name matching problem is by no means straightforward, as evidenced by the infrastructure and numerous tools built by the Global Names Architecture (Gnames) project (Pyle 2016; Thessen et al. 2022; Mozzherin, Myltsev, and Patterson 2017), including the Gndiff tool used in this workflow.

Generally, though, databases are presented as resources to be accepted as-is, over which the user has no influence. Apart from simply filtering out problematic records, what more can be done? We therefore suggest the following additional recommendations for users to be active participants and help “pay it forward” in the community:

- Pay attention to potential synonyms and other taxonomic or nomenclatural issues when designing a workflow, and choose software tools that can handle them, e.g. taxadb (Norman, Chamberlain, and Boettiger 2020) or tools from Gnames.
- When publishing your own checklists, do not omit taxon authors and higher classification, even when these details appear to be obvious from context.
• Report errors in source databases, as described in the examples above. Both GBIF and NCBI have workflows for dealing with such reports and have been responsive to constructive feedback, in our experience.

• Publish validated, linked identifiers on Wikidata. Each user will of course need to check for themselves, but it helps subsequent users filter cases during data linking to focus manual curation on the more problematic records. The Wikidata data model is highly extensible so it is possible to perform sophisticated queries and integrate information about taxa with other domains.

Why take the trouble to edit Wikidata and send feedback? Curation of biodiversity data is labor intensive and requires a highly specialized skill set, so updating community resources will reduce duplicated effort and have a positive, compounding effect (“virtue propagation”). Wikidata in particular is increasingly integrated into the biodiversity informatics infrastructure, de facto recognition of its practical usefulness: the database cross-references displayed on species pages on the GBIF website (https://www.gbif.org/species/search) are sourced from Wikidata, and the iNaturalist citizen science app uses Wikidata to link species pages to their respective Wikipedia articles in various languages (Waagmeester et al. 2019). Applications beyond biodiversity show its versatility. Communities can be built on top of Wikidata to curate specific knowledge domains such as gene annotations (Putman et al. 2017); alternatively, existing wiki-type projects can be imported and interlinked with Wikidata to foster data integration (Martens et al. 2021).

The workflow presented here still relies on ad hoc scripting, which is to some extent unavoidable because the point of manual curation is to handle what automation cannot deal with, but it is desirable to minimize this to improve reproducibility as well as the reusability of code. A promising alternative is OpenRefine (https://openrefine.org/), a dedicated tool for data reconciliation, which records all data cleaning steps in a given project, allowing them to be shared and re-run on new data. It also supports querying and editing Wikidata within the software, as well as URL-based queries (e.g. calls to the GBIF name parser API).

Routine sharing of curation workflows by researchers, coupled with the transparent handling of issue reports by database maintainers, will foster more community buy-in and faster adoption of useful practices, improving the quality of downstream analyses.

Acknowledgements

I thank C. Levers and W. Sickel for feedback on a draft of this manuscript, D. Mozzherin for help with gndiff, and GBIF and NCBI Taxonomy curators for their responses to my queries and feedback.

References

https://doi.org/10.1111/nph.18961.

