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Comparing the effects of internal stem damage on aboveground biomass 
estimates from terrestrial laser scanning and allometric scaling models
Running head: Internal stem damage and tree aboveground biomass 

Abstract

1. Forests  and  woodlands  are  critical  carbon  stores,  and  methods  for  quantifying  forest

aboveground biomass  (AGB) are  increasingly  relied  upon for  determining  sequestered

CO2 traded in carbon markets. AGB is traditionally measured using allometric models, yet

terrestrial  laser  scanning  (TLS)  is  emerging  as  a  highly  accurate  remote  sensing

alternative. However, internal tree stem damage from biotic decay is an unresolved source

of error for both TLS and allometries, with implications for accurate carbon assessment.

2. We destructively harvested 63 TLS-scanned trees in an Australian savanna to understand

the impact of internal damage on AGB estimation at individual tree- and plot-levels. We

tested the performance of TLS versus five allometries in measuring AGB, applying both

database and field-measured wood specific  gravity.  We recorded how internal  damage

changed  throughout  the  tree  and tested  if  tree  size  and  internal  stem damage  amount

contributed to AGB under or over predictions.

3. We asked four questions: 1) How accurately does TLS measure AGB in comparison to

allometries  at  both tree-  and plot-levels?  2) Does applying field-measured or database

wood specific gravity values affect TLS and allometry AGB estimate accuracy? 3) How

does internal stem damage vary throughout trees? 4) Does tree size or amount of internal

stem damage predict AGB overestimation? 

4. TLS provided closest estimates to aggregated AGB at the plot-level. At the tree-level, all

methods were strong at predicting field-measured AGB (R2>0.84), however we found TLS

using  field-measured  wood  specific  gravity  to  be  most  accurate  (R2=0.99).  Although

allometric models were unaffected by internal damage, TLS tended to overpredict AGB of
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Internal stem damage and tree aboveground biomass

large,  damaged trees.  Roughly half  of the trees in the study sustained 1-10% damage,

which was most extensive at the base and main trunk, decreasing into the crown. 

5. Synthesis and applications: For plot-level forest  carbon estimation where internal  stem

damage is low (<10%), we recommend TLS to accurately estimate AGB, as well as in

situations where precision is required at the individual tree-level. When quantifying AGB

using TLS in more damaged wooded ecosystems (>10%), internal stem damage should be

quantified  to  avoid overestimation  and maintain  high  standards  of  precision  in  carbon

markets.

Keywords

Allometric models, forest carbon credits, internal tree stem damage, terrestrial laser scanning, tree 

aboveground biomass 

Introduction

Forests and woodlands are critical global carbon (C) stores, absorbing atmospheric carbon dioxide

(CO2) which is sequestered as tree biomass or passed into detrital and soil C pools  (Pan et al.,

2011; Pörtner et  al.,  2022). As the Earth’s climate warms due to excess C in the atmosphere,

natural C sinks such as trees are potential,  yet debated, resources for mitigation  (Bastin et al.,

2019), but see (Veldman, 2019). Globally, forest C stocks are estimated to store 861 ± 66 Pg C,

more than half of which is in tropical forests (Pan et al., 2011). These global estimates of tree C

are derived from scaling up local plot biomass inventories, so it is critical to accurately quantify

individual tree C stored as aboveground biomass (AGB). 

Accuracy of  AGB estimates  at  the plot  level  is  important  for understanding terrestrial

carbon stocks,  and precise  measurement  of  individual  trees  is  also  necessary  for  determining

critical questions in forest ecology such as tree allocation patterns. For example, AGB distribution

among species, crown to stem ratios and tree sizes rely on accurate measurements from individual

trees  (Burt  et  al.,  2021;  Xing et  al.,  2019).  Similarly,  comprehensive  characterization  of  the
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Internal stem damage and tree aboveground biomass

structural distribution of tree AGB is a fundamental indicator of ecological condition (Eyre et al.,

2015).  It  is  therefore  important  that  sources  of  error  in  calculating  AGB are  identified  and

addressed. Without an understanding of estimation errors, we risk making misinformed decisions

in the management of natural C storage processes.

Internal stem damage alters the C stored in trees and is especially prevalent in savanna

ecosystems where termites, wood-decomposing fungi and fire interact, leading to high proportions

of ‘missing’ biomass in living trees (Adkins, 2006; Flores-Moreno et al., 2023; N’Dri et al., 2011;

Perry et al., 1985; Werner & Prior, 2007). Internal stem damage, here defined as decomposition of

tree heartwood and sapwood, is hypothesized to be a natural part of some species’ life history

(Janzen, 1976; Ruxton, 2014). Previous studies identified internal stem damage from single points

or cross-sections near the base of trees (I. F. Brown et al., 1995; Eleuterio et al., 2020; Werner &

Prior, 2007; Zeps et al., 2017). The few studies that tested for implications of internal damage on

AGB and C storage found that internal stem damage ranged between 7% and 42% in tropical

ecosystems around the globe  (Flores-Moreno et al., 2023; Heineman et al., 2015; Monda et al.,

2015). However, for most forest and woodland ecosystems there is limited information about the

extent of internal damage; further, widely used biomass and C models largely do not explicitly

quantify this source of error. If trees are assumed to be solid structures, it is expected that high

levels of internal stem damage would lead to overestimated forest C.

To assess  the  amount  of  biomass  in  trees,  traditional  research  methods use  allometric

scaling models (ASMs) that define relationships between tree attributes such as diameter at breast

height (DBH), crown height, and wood specific gravity (oven dry mass/green volume (g cm-3)) to

predict AGB. Wood specific gravity can be measured in the field from the same population of

trees as measured for DBH and height, or sourced from reference databases such as Zanne et al.

(2009). Wood specific gravity values can be variable within and among species and at different

spatial scales, so field-measured values from a specific site are likely to be most accurate (Sæbø et

al., 2022). Additionally, reference database wood specific gravity values are often associated with

millable  lumber  in  forestry,  and  tend  to  be  biased  toward  heartwood  at  the  tree  base  where
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sampling  is  more accessible  (Wassenberg et  al.,  2015).  Ultimately,  ASMs and wood specific

gravity are used to estimate AGB and can then be converted to C content for C accounting, as

wood is generally ~50% C by dry weight (Martin et al., 2018). 

The equations underlying ASMs are informed by destructive-harvest studies  (S. Brown,

1997; Ketterings et al., 2001), and while ASMs are widely used to estimate forest AGB, they have

several limitations. First, the models are not universally applicable as they are usually specific to

geographic or climatic regions, or to specific tree species (Henry et al., 2013; Pillsbury & Kirkley,

1984). Although efforts have been made to develop universally applicable ASMs, which have

been widely adopted  (Chave et al., 2014), the destructive harvest data underlying them are not

replicated for all species and ecosystems. Importantly, ASMs can capture internal stem damage if

underlying destructive harvest data include damaged trees (Monda et al., 2015), but ASMs used in

ecosystems  with  different  amounts  of  damage  may  produce  inaccurate  AGB  estimates.

Furthermore, large trees are often underrepresented in the datasets used to generate ASMs (Chave

et al., 2014), despite comprising a disproportionate amount of forest biomass (Slik et al., 2013).

ASMs have been shown in one study to overestimate AGB for larger trees  (Burt et al., 2021).

Finally, while crown biomass is estimated as it scales with measurements of height and DBH,

ASMs fail to capture variation in crowns and general canopy structure (Ploton et al., 2016). For

these reasons, two ASMs even when designed for the same location may generate different AGB

estimates (Chave et al., 2005). Due to these limitations, a push for more rapid, size unbiased, and

accurate tree biomass estimates over larger areas has led to a rise in the use of remote sensing

technologies such as Light Detection and Ranging (LiDAR), a method of measuring forests that

has the potential to facilitate more accurate volume estimates which improve in turn AGB and

forest C estimates.

Increasingly, new technologies such as Terrestrial Laser Scanning (TLS) are being used to

measure  forest  AGB.  TLS  is  a  type  of  ground-based  LiDAR  that  generates  mm-resolution

reconstructions of tree volumes, from the individual level  (Burt et al., 2021) up to entire forest

stands (Calders et al., 2015; Momo Takoudjou et al., 2018). Tree AGB can then be estimated by
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multiplying TLS-generated tree volumes by wood specific gravity. The accuracy of TLS has been

tested  using  destructive  harvest  studies  in  which  living  trees  are  scanned  and  destructively

harvested to validate biomass estimates. Demol et al. (2022) reviewed ten TLS destructive harvest

studies,  comprising  391  trees  from  111  species  across  a  global  range  of  ecosystems,  to

demonstrate that TLS is an accurate tool for estimating tree biomass at large scales. However, it

was noted that AGB estimations for smaller trees (<1000 kg) were inflated due to over-modeling

of tree volume (Demol et al., 2022). In contrast, for larger trees (>3,900 kg), Burt et al.  (2021)

found that  TLS error  did  not  increase  with  tree  size.  As  TLS does  not  require  the  regional

calibration as in high-performing ASMs, it has the potential to provide a more unbiased measure

of  forest  AGB at  broad landscape  scales  and can  serve  as  a  substitute  for  calibrating  ASMs

(Momo Takoudjou et al., 2018). However, despite its proven accuracy TLS is unable to detect or

estimate the amount of internal stem damage present in trees (Demol et al., 2022). 

Current lack of clarity around the frequency and severity of internal stem damage in forest

and  woodland  ecosystems  extends  to  our  understanding  of  how  internal  stem  damage  is

distributed throughout a tree and the extent to which the distribution depends on biotic and abiotic

factors. For example, microbes and termites that cause internal decay often enter trees at the base

(Adkins, 2006; Perry et al., 1985), which may lead to the greatest damage near the entry points

relative  to  tree  canopies.  In  some  ecosystems,  including  tropical  rainforests  and  Australian

savannas,  termites  in  the genus  Coptotermes cause extensive internal  stem damage,  removing

large amounts of heartwood to form ‘pipes’ (Apolinário & Martius, 2004; Werner & Prior, 2007)

that extend into the canopy. However, internal damage may not occur consistently across trees;

measurements through the tree are needed to determine the distribution and degree of internal

damage, and how that damage impacts AGB and C estimates.

Here we carry out a destructive harvest study in Far North Queensland (FNQ), Australia in

a savanna woodland ecosystem with a known prevalence of internal stem damage (Flores-Moreno

et  al.,  2023) and  termite  mounds  (Frith  &  Frith,  1993),  adding  a  new  monsoonal  tropical

ecosystem to the growing global database of TLS validation studies. We provide the first dataset
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combining  TLS  and  ASMs  with  field-measured  biomass  and  quantification  of  internal  stem

damage extent and distribution. We sought to answer four main questions:  1) How accurately

does  TLS measure  AGB in  comparison to  allometries  at  both  tree-  and plot-levels?  2)  Does

applying field-measured or database wood specific gravity values affect TLS and allometry AGB

estimate accuracy? 3) How does internal stem damage vary throughout trees? 4) Does tree size or

amount of internal stem damage predict AGB overestimation? We expected TLS to capture AGB

with higher  accuracy than  ASMs,  and application  of  field-measured wood specific  gravity  to

provide AGB estimates with highest accuracy. We also predicted that damage in trees would be

greatest at the tree base, that small trees would contribute disproportionately to TLS overestimates

of AGB, and that high levels of damage at the tree-level would lead to greater AGB overestimates

from TLS.

Materials and Methods

Study site

The study was carried out in October 2022 in the Iron Range (Kutini-Payamu) on Cape York

Peninsula, Far North Queensland (-12.7781, 143.3199). The Iron Range is a hilly coastal region of

the Australian Monsoon Tropics 530 km northwest of Cairns, with a wet–dry tropical climate. The

majority of annual rainfall (mean = 2057 mm, range = 1119−3299 mm  (Australian Bureau of

Meteorology, 2023)) is between December and April, and mean annual temperature = 26°C with a

monthly  average  daily  temperature  range between 20.6 and 30.9 °C.  The site  is  a  pyrogenic

savanna of  Corymbia clarksoniana and  C. tessellaris (Myrtaceae) open forest on metamorphic

coastal ranges, and is surrounded by endemic mesophyll/notophyll vine forest on metamorphic

slopes and plateaus (Queensland Regional Ecosystems 3.11.5 & 3.11.1  (Neldner et al., 2017)).

Other  dominant  species  within  the  savanna  include  Eucalyptus  tetrodonta,  Lophostemon

suaveolens (Myrtaceae)  and  Parinari  nonda (Chrysobalanaceae),  with  a  sparse  subcanopy  of

Planchonia  careya (Lecythidaceae),  Grevillea  parallela (Proteaceae)  and  Acacia  flavescens

(Fabaceae). We capitalized on a pre-planned tree clearance to form a firebreak on two survey
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areas (lower 1.84 ha, upper 0.27 ha) (Fig. 1). These areas had a mean stem density of 326 trees

ha−1 and a TLS-modelled DBH range of 1.3 to 69.7 cm (mean = 17.1 cm, standard deviation (SD)

= 12.1 cm, Supplementary Fig. 5).

Figure 1  Study area. Left: Australian tropical savanna (grey, Köppen-Geiger climate classification Aw,

(Beck et al., 2018) spans the northern tips of the Northern Territory, Western Australia and Queensland,

where the study area is located (denoted with a green square) on Cape York Peninsula. Right: TLS scan

areas in lower (a) and upper (b) survey areas showing destructively harvested trees (red) and all other

trees (white) that were scanned and modelled.

Terrestrial laser scanning and point cloud processing

The study site overlaps with an existing long-term TLS survey area. TLS scanning was carried out

for the two firebreak survey areas on 12 July 2022. One hundred and forty scans (lower survey

area 111; upper survey area 29) in grid layout with 10 m spacing were collected using Riegl VZ-

400i Laser Scanners (RIEGL Laser Measurement Systems, Horn, Austria) on the Pano-40 setting

(Supplementary Fig. 4). TLS maps structures, such as trees, in three dimensions by emitting a

laser  pulse  and measuring  the time taken for  light  to  return once  reflected  by the  surface of

measurement  (Lemmens,  2011).  Distances  are  inferred based on reflectance  time which gives

positional information, known as ‘point clouds’ used to reconstruct the entire structure of trees.
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Internal stem damage and tree aboveground biomass

Point clouds were registered in RiSCAN Pro v2.14 and segmented using treeseg v0.2.2 (Burt et

al.,  2019).  After  segmentation,  the  tree  point  clouds  were  modelled  using  TreeQSM  v2.4.1

(Raumonen et al., 2013) to generate cylinder models and estimate tree volume. Georeferenced

field photos were used to confirm tree models. Desk audits were performed to manually check the

accuracy of cylinder models against the point cloud, and poorly modelled trees were identified

and reprocessed.

Destructive harvest protocol

Sixty-three trees within the firebreak survey area were felled with a chainsaw to compare field-

measured biomass with TLS and ASM biomass estimates; 10 small trees with a mean DBH of 5.5

cm did not model correctly using TreeQSM. Felled trees were cut into main trunk segments and

canopy branches for measuring field AGB using a 3T crane scale (SCS3000, Scintex, Eagle Farm,

QLD, Australia) suspended from a Manitou telehandler (Manitou Group, Ancenis, France). Trunk

segments were supported for mass measurements using slings, and canopy branches were weighed

in a cargo net (2 × 2 m, 200mm mesh).

Cross-section samples

Thirty-nine trees  with signs  of  internal  damage at  the  base and/or  first  branching point  were

subsampled with four to seven cross-sections distributed at heights through the stem, with the

number of sections dependent on tree height to maximize the diversity of diameter size classes

(Supplementary Table 1, Fig. 2) and measure the vertical distribution of internal stem damage. As

trees were of different sizes and architectures, we sampled the main stem segment (cut points C1

at the scarf felling point, C3 at the first main major branching point, and C2 midway between

points  C1 and C3) and then captured  decreasing size classes  into the canopy with ascending

branching orders (C4 to C7). The largest  cross-sections were taken at  the scarf  (C1), and the

smallest at the canopy branches (C7). From individual tree quantitative structural models (QSMs),

we used the diameter of cross sections to determine the relative height (as a percentage) of the

cross section in the tree. 
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Figure 2  Cross-sectional sampling from tree base to canopy to quantify internal stem damage across a 

range of stem size classes (C1 largest, C7 smallest). See Supplementary Table 1 for further detail. Note 

presence of Coptotermes mound at base, which has been linked to occurrences of high internal stem 

damage from field observations. This was the most internally damaged tree in the study.

Cross-sections were placed in airtight plastic bags and stored in shaded areas in the field

before transport back to the laboratory. Cross-sections were measured for green mass (mgreen) and

green volume (Vgreen) to represent field conditions. Vgreen was determined for each cross-section

with the water displacement method on a balance measuring to the nearest 0.01 kg, and converted

to volume assuming a density of water of 1.0 g cm−3.

Each cross-section was photographed to quantify the proportion of damage, measured on

an  area  basis  using  a  shape  area  classifier  in  Adobe  Illustrator

(https://gist.github.com/bryanbuchanan/11387501).  For  each   photo,  total  proportion  damage

(from both microbial and termite damage) was classified as the area of damage divided by the

total area of the cross-sectional sample. Cross-section samples were held for less than one week at

the field station laboratory before being dried at 105 °C to constant mass to determine dry mass
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(mdry) and water content (calculated as the difference between mgreen and mdry). We calculated wood

specific gravity (pwood) for each cross-section as mdry / Vgreen  (Panshin, AJ & De Zeeuw, C, 1980),

which is commonly referred to as wood density in the literature (Zanne, Amy E., 2009; Zobel &

Jett, 1995).

Species-level wood specific gravity 

We examined wood specific gravity in two ways: field-measured and using a reference database.

For field-measured wood specific gravity, we used cross-sectional samples with no internal stem

damage from different positions in the tree (Table 1, Fig. 2). We tested if wood specific gravity

changed throughout the tree using a linear mixed effect model (R package ‘lme4’) with cross

section diameter (in cm) and species as predictors, individual tree as a random effect, and field-

measured wood specific gravity as the response variable. As cross section size had no effect on

wood specific gravity (Supplementary Table 10), field-measured wood specific gravity (pfield) at

the species level was determined as average values across the undamaged cross section dataset for

each species. To compare the performance of reference wood density (pref), we queried the Global

Wood Density Database (Zanne, Amy E., 2009) for values for species in our study. For trees for

which species-level information was not available, we used specific gravities of closest available

relatives based on molecular phylogenies (Supplementary Table 2).

Quantifying internal damage from tree cross-sectional samples

We examined  the  relationship  between  diameter  and  internal  damage  using  single-tree  linear

regression models  for  damaged trees  with  ≥  3  cross-sectional  samples.  We applied  this  tree-

specific relationship of size and damage to the cylinders comprising individual tree QSMs derived

from TLS (Supplementary Fig. 3, Supplementary Table 5). For all cylinders in the model, we

calculated the average internal damage of each cylinder based on its size, and then calculated

overall tree internal damage as: 
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  (where ISDtree is overall tree internal stem damage, Vcyl.prop = Vcyl / Vtree , ISDlm is internal

stem damage given cylinder diameter (from individual tree-level estimate based on linear model

regression predicting internal stem damage from diameter), and C = total number of cylinders in

the tree QSM. 

Calculating AGB from TLS 

We  used  QSMs  generated  from  TLS  scans  to  determine  tree  volume  (L),  which  was  then

multiplied by species-level pref and pfield  to estimate AGB. All measurements in our analysis (for

both TLS and ASMs discussed below) compared dry AGB, where field-measured green AGB was

converted to dry AGB by multiplying mgreen by average tree water content measured from its cross-

sectional samples. We calculated TLS-estimated dry AGB for each tree by multiplying TLS tree

volume (L) by wood specific gravity (for both pref and pfield). We define the comparison of a tree’s

estimated AGB with the individual tree field weight as ‘tree-level’ AGB model accuracy, and the

aggregated,  study-wide  estimated  AGB versus  aggregated  field-weighed  AGB as  ‘plot-level’

AGB model accuracy.

Calculating AGB from ASMs

To assess the performance of TLS against traditional methods of AGB estimation, we compared

field-measured  AGB with  estimates  derived  from  5  published  ASMs  used  in  tropical  forest

biomass  literature  as  well  as  Australian  and global  C markets  (Supplementary  Table  3).  The

ASMs by Paul et al.  (2013), later refined by Paul et al. (2016), to distinguish between eucalypts

and other tree types are widely used across Australia in the Full C Accounting Method (FullCAM

(Richards & Brack, 2004)). Two global tropical ASMs, Brown (1997) and Chave et al. (2014), are

used as gold-standard allometric equations for biomass, tropical C accounting in government and

voluntary C markets, and REDD+ activities (Hirata et al., 2012). Allometries from Williams et al.

(2005), Paul et al. (2016), Paul et al. (2013), and Brown (1997) require tree DBH as an input to

calculate AGB. The model from Chave et al.  (2014) requires pwood and field-measured DBH as

inputs,  which we tested using both pref and pfield as  described above.  The Chave et  al.  (2014)
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equation also includes a bioclimatic stress variable ‘E’, which combines temperature variability,

precipitation variability, and drought intensity for a given location. This value, E for the study site

was determined as 0.3687456 using site latitude and longitude in the R packages ‘raster’  and

‘ncdf4’  as  demonstrated  in  Chave  et  al.  (2014) (chave.ups-tlse.fr/pantropical_allometry.htm).

AGB values were calculated using ASMs following Mascaro et al. (2011), adding standard error

to regression coefficients  sensu Baskerville  (1972): standard error (SE) of the regression to the

power of 2 divided by 2, i.e. =EXP(a + b × LN(DBH) + (SE2)/2).

Correcting TLS and ASM biomass for unmeasured tree stumps

For trees that were felled above ground level (n = 38), we corrected AGB estimates to account for

the stump biomass that remained in the ground. QSMs were cut at the scarf location with a custom

Python script before densities were applied to generate accurate TLS volumes (Supplementary

Data 1). ASMs for trees cut above ground level were corrected by calculating the volume of the

stump  using  Smalian’s  formula  (where  cylindrical  volume  is  calculated  by  multiplying  the

average stump end area by stump height, (Köhl et al., 2006)), multiplying the resulting volume by

pfield for a given tree, and subtracting the resulting weight from the ASM weight estimate.

Analyses

Estimating tree- and plot-level AGB using ASM and TLS

To test how well ASMs and TLS modelled individual tree biomass, we generated linear regression

models with field-measured dry AGB as the predictor and ASM/TLS biomass as the response. We

compared models based on their R2 and residual standard error (RSE) values. We evaluated how

each model (5 ASMs and TLS) predicted total  AGB across the study area by comparing the

percentage deviation from field-measured biomass for each model. 

Internal stem damage throughout the tree 

To assess the relationship between internal stem damage and height within the tree, we used linear

mixed effect models with relative height of cross section (expressed as %) in the tree and as a
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fixed effect, and individual tree as a random effect, and percentage of internal damage as the log-

transformed response. 

Impact of internal stem damage on AGB estimates from TLS and ASMs

To test if TLS and ASMs overestimated the field-measured AGB of internally damaged trees, we

calculated per-tree residuals (for both TLS and the Chave (2014) ASM) as TLS/ASM-predicted

AGB values minus field-measured biomass and divided by field-measured biomass to normalize

for tree size. We ran a linear regression with percentage of internal damage as a predictor with an

interaction with DBH and residuals as the response (for both TLS and the Chave (2014) ASM),

expecting that if TLS and the Chave (2014) ASM overestimated true AGB, residual values would

be positive. We performed all analyses using R v4.2.3 (R Core Team, 2013).

Results

Estimating AGB using ASM and TLS for individual trees

Trees in the study had AGB ranging from 2.9 kg to 3056 kg (mean = 293 kg, SD = 544 kg, N =

63, Fig. 3). All ASMs and TLS gave strong predictions of field-measured AGB (R2 > 0.84, Table

1) but TLS using pfield provided the most accurate estimates (RSE = 49.9 kg, R2 = 0.991,  Fig. 3c,

Table  1,  see  Supplementary  Fig.  1  for  all  ASM comparisons).  The  TLS model  had  an  RSE

approximately one-third of the best performing ASM model by Chave et al.  (2014) using pfield

(RSE = 161.7 kg, R2 = 0.914, Fig. 3b, Table 1). The ASM model from Paul et al. (2016) provided

the next best prediction of field-measured AGB (RSE = 189.2 kg, R2 = 0.843, Fig. 3a, Table 1)

Estimating aggregated AGB using ASMs and TLS

When we compared the sum of dry tree AGB estimates across 63 trees, the estimate closest to the

total field-measured AGB of destructively-harvested trees (18,438 kg) was from TLS using pfield

(18,546 kg, +0.59% over total field-measured AGB, Supplementary Table 8). Accuracy of plot-

level estimates from ASMs ranged from +12.3% over  (Williams et al., 2005) to -27.1% under

(Paul et al., 2013) (Supplementary Table 8, Fig. 3d).  
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Internal stem damage and tree aboveground biomass

Figure 3  Observed AGB from destructive harvest plotted against modelled AGB using the two highest-

performing ASMs (a: Paul (2016), b: Chave (2014)) and AGB estimates derived from TLS (c). Estimates

from the Chave (2014) ASM (b) and TLS modelling (c), both use p field. Grey shaded area represents a 95%

confidence  interval.  Insets  show  trees  <300  kg.  Results  for  all  models  in  Supplementary  Fig.  1.  d)

Percentage deviation from field-measured AGB for all ASMs and TLS models. Red dashed line represents

field-measured AGB (baseline for comparison).
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Internal stem damage and tree aboveground biomass

Table 1  Model performance for tree AGB estimates from ASMs and TLS. Results for the Chave (2014)

ASM and TLS modelling, which both apply pwood, are shown here using values published in the Global

Wood Density Database (Zanne, Amy E., 2009) (pref) as well as with field-measured species mean pfield.

Model pwood (g cm-3) R2 Slope Intercept RSE (kg)

Williams 2005 n/a 0.841 1.04 23.1 246.0

Paul 2016 n/a 0.843 0.81 26.4 189.2

Paul 2013 n/a 0.844 0.63 28.1 147.6

Brown 1997 n/a 0.842 0.65 24.4 152.8

Chave 2014 Reference 0.954 1.13 1.9 133.7

Chave 2014 Field 0.914 0.97 12.6 161.7

TLS Reference 0.974 1.11 6.5 98.8

TLS Field 0.991 0.94 18.4 49.9

Patterns of internal stem damage by species and position

Of 63 trees  that  were  destructively  harvested  and  modelled  as  QSMs,  32  trees  (50.8%) had

internal stem damage occurring in at least one cross-sectional sample. On average, damaged trees

had 5% internal stem damage (SD = 6.65%), with as much as 30% damaged in some trees while

the majority of trees carried 1-10% damage (94% of damaged trees, 48% of all trees). Eucalyptus

tetrodonta trees were most frequently damaged (100%, n = 4) while C. clarksoniana trees had the

greatest extent of internal stem damage (mean = 7.6%, SD = 8.6%, Supplementary Table 6). In

our mixed effect model with individual tree (variance = 0.55, SD = 0.74) as a random effect,

internal stem damage significantly decreased with increasing height in damaged trees (Fig. 4, beta

= -0.02,  95% CI [-0.03, -0.02], t(154) = -9.48,  conditional R2 = 0.61, marginal R2 = 0.24, p <

0.001). Internal damage was greatest and most frequent between the base of the tree and the first

branching point (Fig. 4, Supplementary Table 4).
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Internal stem damage and tree aboveground biomass

Figure 4  a) Relationship between height in tree (y-axis) and cross-sectional damage (x-axis, expressed as

%) for all damaged trees in the study. Damage and variance are greatest toward the tree base, and less

damage occurs with increasing height toward the canopy. Dots are colored by the position in which cross

sections were taken from the tree.

Impact of internal stem damage and tree size on AGB estimates from TLS and ASMs

We found that percentage internal stem damage (beta = -0.039, p = 0.027) and tree DBH (beta = -

0.014 ,  p = 0.00047) were significant  predictors of TLS residuals,  and there was a weak but

significant interaction between tree DBH and percentage internal stem damage (beta = 0.0012, p =

0.04, Fig.  5a).  TLS-estimated AGB of four large damaged trees was overestimated;  however,

AGB  of  large  undamaged  trees  was  accurately  estimated.  Small  damaged  trees  were

underestimated while small, undamaged trees were overestimated (Supplementary Fig. 6). Greater

tree DBH and internal stem damage did not predict AGB overestimation using ASMs, and none of
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Internal stem damage and tree aboveground biomass

the five tested ASMs had a significant interaction between tree DBH and percentage internal stem

damage (Fig. 5b).

Figure 5  a) Predicted relationship (from linear model) between increasing internal damage (%) and TLS

residuals (TLS-estimated AGB minus field-measured biomass, divided by tree size) for damaged trees. b)

Predicted relationship (from linear model) between increasing internal damage and ASM residuals from

Chave et al.  (2014) (ASM-estimated AGB minus field-measured biomass, divided by tree size, applying

pfield) for damaged trees. Points indicate residuals and % damage for individual trees (point size = DBH).

Points  above  the  red  dashed line  are overestimates of  AGB,  while  points  below are underestimates.

Coloured lines show predicted relationships between internal damage and residuals for three DBH size

classes.

Discussion

In the tropical savanna ecosystem studied here, TLS more accurately quantified AGB compared to

multiple ASMs tested. TLS best captured plot-level AGB estimates, even with low levels (<10%)

of internal stem damage present. These results are concordant with a recent meta-analysis that

found ASMs to be less precise and less accurate than TLS at predicting AGB (Demol et al., 2022)

and provide further support for TLS application in high-accuracy forest AGB and C measurement.
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Internal stem damage and tree aboveground biomass

Using TLS, we estimated the total AGB of all destructively-harvested trees (18.4 t) to be within

0.6% of the field-measured value, a total error of 108 kg. We found that internal damage was

concentrated in the lower region of the tree stem. The AGB of large trees with high internal

damage  was  more  likely  to  be  overestimated  by  TLS  as  we  hypothesized,  however,  AGB

predictions from ASMs were unaffected by increasing amounts of internal stem damage. Together

these results suggest that TLS is a highly accurate tool for estimating AGB at the plot- and tree-

level if levels of internal damage are low. However, in ecosystems with large trees and higher

levels of internal stem damage, C overestimation is likely. We will further discuss our results in

relation to the application of TLS and ASM in broader applied contexts.

Internal stem damage and tree size affected AGB estimation using TLS and ASMs

Internal damage was consistently more frequent and extensive in the lower portion of the main

stem, and we observed that many trees in the study sustained fire damage to the lower trunk,

which  may  create  favorable  conditions  allowing  for  microbial  and  termite  entry.  Due  to  its

typically  larger size,  the main stem of a tree has more biomass to lose compared to the fine

branches of the tree crown (Calders et al., 2015), so internal damage to the main stem has greater

potential to reduce C storage. A noticeable characteristic of internal termite damage was carton

nest material that filled in some hollow regions, which we were unable to fully remove in our field

measurements of whole tree weights. Termite carton nest is likely less dense than the wood it

replaced (R. Clement (personal communication, 2023)), yet this remains a limitation in detecting

the true amount of AGB that termite hollowing removed. 

We  expected  that  tree-level  AGB overestimations  using  TLS  would  result  from high

internal stem damage and over-modelling of small trees. In line with our expectations, we found

that for larger trees, error in TLS-predicted AGB was explained by increasing levels of internal

damage (Fig. 5a). In our study there were only 2 trees with >20% damage (Fig. 5b), and the

majority of the damaged trees that we sampled had <10% internal stem damage with an average

of 5%. Although greater internal stem damage increased TLS error, estimation of AGB at the plot-
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Internal stem damage and tree aboveground biomass

level was not significantly affected (Fig. 3d). Since large trees store a disproportionate amount of

C in forests  (Slik et  al.,  2013), capturing internal  stem damage in large trees is an important

consideration when TLS is used to estimate AGB for accuracy in forest C measurement. 

AGB of small trees with low (<10%) damage tended to be overestimated by TLS (Fig. 5a),

which is congruent with the findings for small trees from Demol et al. (2022) and is a documented

artifact of TLS, which poorly captures very fine branches (Demol et al., 2022; Hackenberg et al.,

2015; Wilkes et al., 2021). To correct for this problem, future work should fine-tune point clouds

to avoid errors that  inflate  small  tree models.  For example,  centroids of beams with multiple

returns  from  small-diameter  branches  can  be  subjected  to  a  calibrating  adjustment  to  more

accurately fit branches after initial modelling (Wilkes et al., 2021). However, although small tree

AGB was less accurately predicted by TLS, the error did not adversely affect plot-level AGB

estimates as small trees (<300 kg) represented only 11% of all AGB on the study plot.

Despite  providing  less  accurate  AGB  estimations  in  comparison  to  TLS,  the  error

associated with the ASMs tested here was not impacted by internal stem damage (Fig. 5b). This

seemingly  surprising  finding  can  be  attributed  to  the  fact  that  the  destructive  harvest  data

underlying ASMs would have included internally damaged trees. However, the amount of such

damage in  these  trees  would  not  have  been quantified,  meaning  that  the  generalizability  and

application to ecosystems with different levels of internal stem damage remains unclear. Unless

an ASM is generated specifically to address internal stem damage (e.g. Monda et al. (2015)), the

influence  of  damage  on AGB estimation  remains  unquantified  for  ASMs.  It  is  expected  that

ASMs generated for low damage systems should overestimate biomass in high damage systems

(35% in dry savannas  (Flores-Moreno et  al.,  2023);  Monda et  al.  2015, 42% in peat swamps

(Monda et al., 2015)) without calibration.

Another source of error that could affect measures of AGB, which was not the main focus

of  this  study,  is  biomass  of  foliage.  Although the ASMs included here explicitly  incorporate

foliage, TLS-derived volume models do not. Due to time and logistical constraints we did not

separately quantify the proportional biomass of foliage for all trees in this study; however, for four
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smaller trees (DBH range = 6.3-24.5 cm), we removed and measured canopy leaf mass. From this

small subsample (assuming a leaf relative water content of 78%, (Schmidt et al., 1999)), leaf mass

was  estimated  to  be  1  to  4.9% of  total  AGB,  with  smaller  trees  having  the  highest  foliage

proportions. Other studies similarly reported foliage proportion of total AGB between 3 and 5%

for eucalypt ecosystems (Kuyah et al., 2013; Werner & Murphy, 2001). Further, the ratio between

leaf and total AGB in savanna ecosystems decreases with increasing tree size (Delitti et al., 2006).

We estimate that if 4% biomass were added to TLS-based total AGB estimates to account for

foliage, the plot-level error of this modelling approach would remain under +5% of destructive

harvest tree weights.

Effect of wood specific gravity values on AGB estimates

We found that using field-measured wood specific gravities resulted in AGB estimates

closer to field-measured values. For trees in our study, pref values were generally higher than pfield

values  (Supplementary  Fig.  2),  producing  AGB  overestimates  from  both  TLS  and  ASMs.

Measures  of  pfield better  represented  trees  as  they  were  site  specific,  whereas  wood  density

databases compile values from across the globe and are therefore less representative of any given

site. Database values also target a single point of undamaged heartwood toward the base of the

tree, where it is most dense (Wassenberg et al., 2015). Measuring wood density at one point on the

tree may fail to incorporate changing ratios of heartwood to sapwood with different stem sizes

(Sellin,  1994).  Interestingly,  the  Chave  (2014) ASM  had  lower  error  when  pref was  used

(Supplementary Table 7). This may be due to differences in pwood for  L. suaveolens, among the

largest trees in the study (which strongly influence plot-level AGB,  (Slik et al., 2013)), as this

species and P. nonda were unusual in having higher pfield than pref (Supplementary Fig. 2). Taken

together, for TLS-based AGB modelling, we conclude that the best estimates (in terms of R2 and

RSE) are derived from using pfield; however, pref still generated TLS-derived AGB estimates with a

useful level of accuracy, as sampling trees to obtain pfield values is not always feasible. 
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Applications of TLS and ASMs for estimating AGB in a low-damage ecosystem

TLS provides the most accurate  estimate of AGB for both aggregated plot-level  biomass and

individual tree estimates. The model developed by Chave et al.  (2014), which incorporated an

environmental stress variable (E) and pwood as well as DBH, demonstrated the highest predictive

power for ASMs. It is worth noting that the Chave (2014) ASM was developed using a >4,000-

tree dataset that contained only a small portion of Australian trees, which contrasts with the Paul

(2016) ASM of >15,000 Australian trees, which was tailored to represent Australian ecosystems,

including savannas, and performed more poorly. This underscores how ASMs can be variable in

predicting AGB (Fig. 3d, Table 1). TLS and ASMs may both estimate plot-level AGB with high

accuracy, but application of each method depends on project goals and resources (Table 2). The

considerably lower RSE of TLS AGB estimates is important for accurate monitoring and tracking

tree growth changes over time in forests and woodlands (Sheppard et al., 2016). For situations in

which estimating aggregated AGB is the primary goal, and where high levels of precision and

accuracy are less important, ASMs are a functional option. However, given the high frequency of

disturbance (i.e., cyclones and fires) in tropical regions which can cause considerable damage to

standing AGB  (Zuleta  et  al.,  2023),  the inability  of ASMs to capture variation in tree crown

morphology (e.g.,  snapped or  burned trees)  remains  a  limitation  that  TLS can overcome.  As

governments attempt to stem the tide of ecosystem destruction and rising CO2 emissions with

emerging environmental management strategies such as carbon and biodiversity markets  (CCFI

Act, 2011; NRMA 2023, 2023), the development of accurate, scalable tools for monitoring carbon

in terrestrial ecosystems has become an urgent necessity. 

To broaden the scope of high-accuracy AGB estimation, TLS can also be integrated into

landscape-scale airborne laser scanning (ALS) point clouds, and these LiDAR-based approaches

can be used to train machine learning models to interpret patterns related to vegetation structure in

satellite  imagery  (Francis  & Law,  2022;  Liao  et  al.,  2020).  ASMs,  in  addition  to  being  less

accurate, are also difficult to integrate with landscape-scale remote sensing approaches such as
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ALS. By providing detailed measurements of tree architecture, ecosystem structure, canopy cover,

and other ecologically important structural attributes in a compatible spatial data format, TLS can

translate accurate forest metrics to larger geographical scales with higher accuracy than ASMs.

The deployment of LiDAR presents a new phase in forest science, with opportunities to deepen

our understanding of global forest ecosystems and integrate these insights into effective carbon

and biodiversity markets.

Table 2  Relative advantages and disadvantages of using TLS and ASMs to estimate AGB.

TLS ASM

Advantages

● Accuracy is very high
● Fewer field personnel 

required
● Measurements of canopy 

structure and branching are 
precise and repeatable 

● Stems and canopy are 
geolocated

● Aerial LiDAR can be 
integrated

● Accessible measurement 
technology (DBH tape, 
clinometer)

● Some regional and species-level 
allometries available

Disadvantages

● Initial outlay is higher
● Species ID still requires field

surveys 
● Small tree overestimation 

requires calibration
● Currently more sensitive to 

internal stem damage

● Lower accuracy
● In larger plots with high stem 

density, more field personnel 
required

● Tree structural variation not 
captured

● Destructive harvests required to 
build models 

● Integrates poorly with remote 
sensing data

Carbon  estimation methods  and internal  stem damage in  the  context  of  carbon

markets

Inaccurate estimations of tree AGB, whether due to measurement techniques (via either TLS or

ASMs) or unmeasured biological factors such as internal stem damage, bring a risk of improperly

valuing forest C and issuing carbon credits that fail to reflect reality. The average size of a carbon

estimation area (CEA) in the Australian carbon market is 18,981 ha (mean size of 223 Human-

Induced Regeneration CEAs,  (Clean Energy Regulator,  2023)).  At the rates of C per hectare
22
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observed in this study (63.36 t), using the highest-performing ASM by Chave et al.  (2014) on a

project  of this  size would result  in  an overvaluation  of 16,538 Australian  carbon credit  units

(ACCUs, correspond to 1 tonne CO2) (worth $317,378 USD). Using TLS, 8,340 ACCUs would

be  incorrectly  over  credited,  representing  a  value  of  $160,045  (ACCU  price  July  2023,

www.accus.com.au).  In theory,  if  ASMs for other vegetation types were as inaccurate  as this

pantropical model, using TLS for carbon estimation from AGB could reduce over-allocation of

ACCUs by 50%.

While the low levels of internal stem damage at our study site did not significantly alter

overall  AGB  estimates,  higher  levels  of  internal  stem  damage  could  pose  more  serious

consequences for accuracy of forest carbon measurement. Future work is needed to disentangle

tree traits that predict susceptibility to damage, the consequences of how termite and microbial

decomposition affects carbon storage, and how fire may promote or interact with internal damage.

Less  invasive  tools  such  as  resistograph  drills  or  sonic  tomography  can  be  used  to  estimate

damage in the main stem (Flores-Moreno et al., 2023; Gilbert et al., 2016), where we have shown

it is most acute. Quantifying internal stem damage in this way can determine if it is a significant

source of error that should be considered in a forest carbon project.
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Supporting information

Supplementary Table 1  Sampling of tree cross-sections used in assessing internal stem damage.

Cross-section Description

C1 Scarf cut point - tree felled here (~1m from the ground)

C2 Cut point between C1 and C3, sampled for trees with damage at C1 and C3 

C3 Cut point 50 cm below first branching point

C4 Cut point at branch order 2 - canopy branches (mean = 14.7 cm, SD = 9.2)

C5 Cut point at branch order 3 - canopy branches (mean = 8.9 cm, SD = 4.8)

C6 Cut point at branch order 4 - canopy branches (mean = 6.5 cm, SD = 2.0)

C7 Cut point at branch order 5 - canopy branches (mean = 5.7cm, SD = 2.3)

Supplementary Table 2  Reference wood specific gravities (Global Wood Density Database, Zanne et al.

2009) of  closest  available relatives from published sources for species in this study that did not have

available published wood specific gravity values. Wood specific gravity is in g cm-3.

Species Reference species Reference specific gravity Phylogeny reference

Acacia 
polystachya

A. acuminata 1.008 Murphy et al. 2010

Corymbia 
clarksoniana

C. gummifera 0.869 Parra et al. 2006

Grevillea 
parallela

G. wickhamii 0.680 Mast et al. 2015

Planchonia 
careya

P. papuana 0.645 Prance et al. 2013

24

45

501

502

503

504
505

46



Internal stem damage and tree aboveground biomass

Supplementary Table 3  Allometric scaling models (ASMs) that were compared with TLS-based AGB

estimates. DBH in ASM equations is in cm. Plant functional types from Paul et al.  (2016) are: single-

stemmed  eucalypt  (FEuc);  single-stemmed  non-eucalypt,  high  wood  specific  gravity  (FOther-H);  single-

stemmed non-eucalypt, low wood specific gravity (FOther-L). Wood specific gravity is in g cm-3.

Author Regression dataset Equations

Williams et al. (2005) 220 trees: 14 woodland tree spp., 
mainly eucalypts (Australia) 5a        =EXP(-2.2111 + 2.4831 * LN(DBH))

Paul et al. (2016) 15,054 trees: 5 broad categories of 
plant functional type (Australia)

FEuc      =EXP(2.016 + 2.375 * LN(DBH) 
                          * 1.067)
FOther-H  =EXP(1.693 + 2.220 * LN(DBH) 
                          * 1.044)
FOther-L  =EXP(2.573 + 2.460 * LN(DBH) 
                          * 1.018)

Paul et al. (2013) 3,139 trees: mixed tree and shrub 
communities (Australia)

Universal tree <100 cm  
            =EXP(-1.82 + 2.27 * LN(DBH))

Brown (1997)
5,300 trees: tropical dry forest spp. 
(India)
Revised from Brown et al. (1989)

Equation 3.2.1 
            =EXP(-1.996 + 2.32 * LN(DBH))

Chave et al. (2014) 4,004 trees: range of tropical spp.
(Globally distributed)

Equation 7 
            =EXP(-1.803 - 0.976 * E + 0.976 
                 * LN(wood specific gravity) + 2.673
                 * LN(DBH) - 0.0299 * (LN(DBH)2)

Supplementary Table 4  For damaged trees, damage frequency (%), average damage (%), and standard

deviation of damage for cross sectional samples at different sampled positions across tree height.

Position n Damage frequency (%) Average cross section damage (%) SD

C1 36 97.2 9.97 12.22

C2 15 86.7 8.67 8.78

C3 31 67.7 5.39 10.13

C4 33 57.6 2.64 6.13

C5 31 22.6 1.78 5.73

C6 17 23.5 1.07 2.52

C7 4 0.0 0.0 0
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Supplementary Table 5  For damaged trees, linear regression model parameters describing relationship

between internal stem damage and vertical position in the tree. 

Tree Tree ID Species Intercept Slope R2 p

1 Extra2_lower Lophostemon suaveolens 0.1157 -0.0041 0.0739 0.72820

2 9_lower Corymbia clarksoniana -21.5981 3.0176 0.9991 0.00045

3 10_lower Corymbia clarksoniana -2.4442 0.3514 0.4803 0.51254

4 11_lower Corymbia clarksoniana -2.6978 0.4286 0.4707 0.13235

5 15_lower Eucalyptus tetrodonta -2.1015 0.2086 0.4387 0.15177

6 2_lower Corymbia clarksoniana -2.5217 0.2238 0.5610 0.05268

7 Cor1_lower Corymbia clarksoniana -16.6277 2.2180 0.9042 0.04911

8 12_lower Corymbia clarksoniana -10.9190 1.0447 0.5718 0.13912

9 4_lower Corymbia clarksoniana -5.1996 0.4938 0.5272 0.10225

10 19_lower Corymbia clarksoniana -7.2390 0.7081 0.8052 0.01527

11 16_lower Eucalyptus tetrodonta 8.6170 -0.0403 0.0110 0.84297

12 6_lower Corymbia tessellaris -0.3202 0.0367 0.7152 0.03389

13 8_lower Corymbia clarksoniana -0.1454 0.0131 0.2987 0.34050

14 Test Corymbia clarksoniana -5.2317 0.8955 0.4852 0.19125

15 17_lower Corymbia clarksoniana 2.1073 1.9591 0.3968 0.25474

16 Extra7_lower Corymbia clarksoniana -6.5768 0.8492 0.7656 0.02246

17 18_lower Eucalyptus tetrodonta -0.1886 0.1385 0.7151 0.07110

18 Extra3_lower Planchonia careya -3.6337 0.5868 0.7802 0.31064

19 13_lower Lophostemon suaveolens 0.4271 0.0770 0.2135 0.53796

20 3_lower Eucalyptus tetrodonta -6.7954 0.5414 0.7593 0.02375

21 Planch1_lower Planchonia careya -11.6701 1.4462 0.9041 0.04915

22 Planch2_lower Planchonia careya -1.6325 0.3172 0.5903 0.12914

23 Loph1_lower Lophostemon suaveolens -3.4348 0.5498 0.9148 0.18852

24 1_lower Lophostemon suaveolens -0.0939 0.0049 0.7354 0.06313

25 5_lower Planchonia careya 0.2668 0.0938 0.0792 0.71865

26 Cor1_upper Corymbia clarksoniana -0.0195 0.8387 0.2984 0.45376

27 Golden1_upper Deplanchea tetraphylla -4.2921 0.6621 0.6978 0.37056

28 Loph2_upper Lophostemon suaveolens -3.3602 0.7108 0.3361 0.42024

29 6_upper Corymbia clarksoniana -0.6254 0.1454 0.2201 0.34796

26

49

512

513

50



Internal stem damage and tree aboveground biomass

30 3_upper Lophostemon suaveolens -0.1010 0.0147 0.4259 0.16004

31 4_upper Corymbia clarksoniana -5.4423 1.3801 0.8820 0.00545

32 5_upper Parinari nonda 0.1536 0.0073 0.0579 0.69650

Supplementary Table 6   Internal damage frequency (percentage of trees in study) and extent (mean

percentage of total tree AGB and standard deviation).

Species n Damage frequency (%) Damage mean (%) Damage SD 

Eucalyptus tetrodonta 4 100 4.4 2.0

Corymbia clarksoniana 16 94 7.6 8.6

Lophostemon suaveolens 11 55 1.0 1.9

Parinari nonda 2 50 0.1 0.2

Deplanchea tetraphylla 3 33 0.8 1.5

Planchonia careya 20 20 0.4 0.9

Supplementary  Table  7  TLS and  Chave  2014 ASM model  performance  using  reference  and  field-

measured wood specific gravity.

Model pwood R2 Slope Intercept RSE (kg)

Chave 2014 reference 0.9543 1.13 2.43 133.8

field-measured 0.9136 0.97 13.05 161.8

TLS reference 0.9740 1.11 6.49 98.8

field-measured 0.9908 0.94 18.38 49.9
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Supplementary Table 8  Sum of observed dry tree weights, net difference from field-measured biomass

(kg), and percentage difference from field-measured biomass. The ASM of Chave et al. (2014) and TLS

model use pfield.

Total weight 
(kg)

Difference from 
field-measured 
biomass (kg)

Difference from field-
measured biomass (%)

Observed dry ABG 18,438 0.00 0.00

Williams 2005 ASM 20,705 2,266 +12.30

Paul 2016 ASM 16,578 -1,860 -10.10

Paul 2013 ASM 13,435 -5,003 -27.10

Brown 1997 ASM 13,524 -4,914 -26.70

Chave 2014 ASM (pfield) 18,654 216 +1.20

Chave 2014 ASM (pref) 20,881 2,443 +13.20

TLS (pfield) 18,546 108 +0.59

TLS (database pref) 20,940 2,502 +13.60

Supplementary Table 9  Number of individuals for each species in the study

Species n

Acacia polystachya 1

Corymbia clarksoniana 16

Corymbia tessellaris 2

Deplanchea tetraphylla 3

Eucalyptus tetrodonta 4

Grevillea parallela 3

Lophostemon suaveolens 11

Parinari nonda 2

Planchonia careya 20

Timonius timon 1
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Supplementary  Table  10   Output  for  wood density  linear  mixed  model  model  for  undamaged cross

sections. Wood specific gravity is predicted by cross section diameter (in cm) and species, and tree ID is

included as a random effect.

Fixed effects Estimate SE t-value p-value

Intercept 8.136e-05 3.979e-02 20.445 < 0.001

diameter_cm 5.861e-05 7.707e-04 0.076 0.939

speciesCorymbia clarksoniana -2.133e-01 3.881e-02 -5.496 < 0.001

speciesCorymbia tessellaris -1.363e-01 5.625e-02 -2.423 < 0.001

speciesDeplanchea tetraphylla -3.887e-01 5.664e-02 -6.862 < 0.001

speciesEucalyptus tetrodonta -1.836e-01 4.409e-02 -4.164 < 0.001

speciesGrevillea parallela -1.821e-01 5.696e-02 -3.197 0.002

speciesLophostemon suaveolens -2.650e-01 3.873e-02 -6.842 < 0.001

speciesParinari nonda -2.826e-01 5.245e-02 -5.387 < 0.001

speciesPlanchonia careya -3.260e-01 4.025e-02 -8.098 < 0.001
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Supplementary Figure 1  Estimated and observed AGB for all ASM models tested in this study (a-f) and

TLS (g,h). Results for the ASM published by Chave et al. (2014) are presented using both published (c)
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and field-measured (d) wood specific gravities. Results for TLS are also presented using published (g) and

field (h) wood specific gravities. Results for smaller trees (0-300 kg) are also shown in inset plots.

Supplementary Figure 2  Comparison of species mean wood specific gravities collected in this study with

generalized species densities published in the Global Wood Density Database (Zanne et al. 2009).

Supplementary  Figure  3  Quantitative  structural  model  (QSM) of  Corymbia  clarksoniana (green)  with

internal damage modelled from linear regression (grey) for all cylinders in the model. This was the most

internally damaged tree in the dataset (see Fig. 2). 

31

59

527

528

529

530

531

532
533

60



Internal stem damage and tree aboveground biomass

Supplementary Figure 4  Scan plot layouts of Plots A and B. Each point represents a position from which

a single scan was taken.

Supplementary Figure 5 a) DBH size distribution (cm) of all trees (n = 63) in the study and b) DBH size

distribution (cm) of damaged trees in study (n = 32).

32

61

534

535

536

537

62



Internal stem damage and tree aboveground biomass

 

Supplementary Figure 6 Distribution of over/underestimates of field-measured biomass from TLS (a) and

Chave 2014 ASM (b) for undamaged trees, normalized by tree size. Values over y = 0 correspond to an

overestimate of biomass, while those less than y = 0 indicate an AGB underestimation. 

Supplementary  Data  1   Segmented  point  cloud  files  (.PCD)  and  cylinder  models  (.PLY)  for  all

destructively harvested trees; Python script used to cut QSMs at scarf for trees felled above ground level

(link Zenodo).
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