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Abstract 23 

Meta-analysis produces a quantitative synthesis of evidence-based knowledge, 24 

shaping not only research trends but also policy and practices in ecology and 25 

evolution. However, two statistical issues, selective reporting and statistical 26 

dependence, can severally distort meta-analytic evidence. Here, we propose a two-27 

step procedure to tackle these challenges concurrently and re-analyse 448 ecological 28 

and evolutionary meta-analyses. First, we employ bias-robust weighting schemes 29 

under the generalized least square estimator to obtain less biased population mean 30 

effect sizes by mitigating selective reporting. Second, we use cluster-robust variance 31 

estimation to account for statistical dependence and reduce bias in estimating standard 32 

errors, ensuring valid statistical inference. Re-analyses of 448 meta-analyses show 33 

that ignoring the two issues tends to overestimate effect sizes by an average of 110% 34 

and underestimate standard errors by 120%. Our approach is effective at mitigating 35 

these biases in meta-analytic evidence. To facilitate the implementation, we have 36 

developed a website showing the step-by-step tutorial available on our website. 37 

Complementing the current meta-analytic practice with the proposed method can 38 

facilitate a transition to a more pluralistic approach in quantitative evidence synthesis 39 

in ecology and evolution.  40 
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Main 41 

Quantitative synthesis of multiple research findings has become increasingly 42 

important for guiding scientific research and informing evidence-based decision-43 

making 1. Meta-analytic modelling is the most commonly used quantitative evidence 44 

synthesis method 2 and has been widely applied in various disciplines, including the 45 

natural and social sciences (e.g., ecology and evolution 3,4, medicine 5,6, environment 7, 46 

education 8, psychology 9, management 10, and economics 11,12). In ecology and 47 

evolution, there are numerous statistical models available, but two basic ones are the 48 

fixed-effect (FE) and random-effects (RE) models 13. The FE model assumes that true 49 

effect sizes are homogeneous across studies 14. In contrast, the RE model assumes that 50 

true effect sizes are heterogeneous across studies 15. Despite their popularity, both FE 51 

and RE models have limitations in dealing with ecological and evolutionary meta-52 

analytic datasets with complex structures, which may result in unreliable parameter 53 

estimation (e.g., the point estimate of model coefficient) and statistical inference (e.g., 54 

null-hypothesis test and confidence intervals, CIs) 3. 55 

One common feature of ecological and evolutionary meta-analytic datasets is 56 

statistical dependence 9,16,17, which arises mainly due to the presence of multiple 57 

effect size estimates from the same study (Figure 1) 18. This issue is also pervasive 58 

across disciplines, as evidenced by the presence of multiple estimates per study (e.g., 59 

a feature of 100% of meta-analyses in environmental sciences 7 and 89% in animal 60 

science 4). The dependence structure can be broadly classified into clustered and 61 

correlated structures (with some cases having a mixture of both) 4,9. Clustered 62 

structures arise when the true effect sizes are clustered within a broader variable (e.g., 63 

the same study and species), while correlated structures arise when the sampling 64 

errors are correlated (e.g., longitudinal studies). Failure to account for statistical 65 
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dependence can lead to underestimated standard errors and high Type I error (false 66 

positive) rates 3,4,19. Fortunately, advanced statistical frameworks such as linear 67 

mixed-effects models 20-22 and structural equation models 23-26 have allowed for the 68 

development of extensions that can model dependent effect sizes. For example, the 69 

multilevel model, incorporating clusters as random effects, can handle the various 70 

sources of dependency 17,27, whereas the multivariate model, incorporating correlated 71 

random effects and errors, can deal with correlated dependency 4,28,29. In some 72 

disciplines, the multilevel meta-analysis (MLMA) model has become a standard 73 

(benchmark) method for dealing with dependent effect sizes due to its flexible 74 

random-effects structure 4,7,17,27. Meanwhile, a new method called cluster-robust 75 

variance estimation (CRVE) is receiving more attention 30,31, which can handle 76 

statistical dependence without knowing the exact nature of both clustered and 77 

correlated dependency structures 32. 78 

Another common feature is selective reporting, which can bias parameter 79 

estimation. A well-known example of selective reporting is publication bias, which 80 

occurs when there is a tendency to publish only statistically significant findings 81 

(Figure 1) 33,34. Publication bias can upwardly bias the point estimate of the 82 

population mean effect 35. Unfortunately, publication bias is pervasive across 83 

scientific disciplines 36-40. Given the high heterogeneity within ecological and 84 

evolutionary meta-analyses 41, RE models (and their MLMA extensions) are sensitive 85 

to publication bias because the typical inverse-variance weighting scheme can give 86 

equal weight to studies. This process results in less powerful / precise studies 87 

contributing more strongly to mean effect estimates, exaggerating the bias driven by 88 

publication bias 42,43. The FE model, despite its tendency to inflate Type I error rates, 89 

has the advantage of being less susceptible to publication bias compared to the 90 
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RE/MLMA models 44,45. In addition to the FE model, three other models that are often 91 

overlooked, but show resistance to publication bias, are unrestricted weighted least 92 

squares (UWLS) 44,46,47, inverse variance heterogeneity (IVhet) model 48, and the 93 

Henmi-Copas model 44. Furthermore, there are post-hoc methods available that 94 

specifically aim to correct publication bias. These methods have pros and cons in 95 

mitigating the overestimation due to selective reporting 49,50. 96 

 97 

Figure 1. Workflow for data compilation, statistical modelling processes, and performance criteria. 98 
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When dealing with complex, yet realistic, ecological and evolutionary data 99 

structures, sophisticated methods, such as multilevel and multivariate models, can 100 

provide better statistical inference for dependent effect sizes. However, such models 101 

may overestimate the population mean effect size when publication bias is present 102 

because they weigh studies roughly equally in the presence of high heterogeneity. On 103 

the other hand, simple methods that are less vulnerable to publication bias, such as FE, 104 

UWLS, IVhet, and Henmi-Copas models 51-53, underestimate the standard error, 105 

inflating Type I error rates. This is because these simple models completely ignore the 106 

dependence structure (or, more precisely, have a mis-specified variance-covariance 107 

structure). Yet, few methods are currently available that can address statistical 108 

dependence and mitigate the impact of publication bias on meta-analyses 109 

simultaneously. 110 

A potential solution to the problem is to separate out weighting schemes for 111 

addressing publication biases from estimating standard errors. To achieve this, we 112 

propose an effective and easy-to-implement two-step procedure (Figure 1). Below we 113 

explain the rationale of the proposed approach. Mathematical details can be found in 114 

the Methods, where we also demonstrate that the proposed approach is a generalized 115 

framework for existing models that can counteract selective reporting. We develop a 116 

helper function in the R package orchaRd 54 that can be used to visualise the 117 

impacts of publication bias on the population mean effect, providing a new graphical 118 

solution for visualising the impact publication bias has on parameter estimation and 119 

inference which can be used as a sensitivity analysis. Furthermore, our tutorial using 120 

the open-source software R, shows how to visualise and implement the proposed 121 

approach (https://yefeng0920.github.io/BiasRobustMA_tutorial/).   122 

https://yefeng0920.github.io/BiasRobustMA_tutorial/
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Results 123 

The multilevel meta-analysis (MLMA) model, which is a standard method to handle 124 

statistical dependence 4,7,9,17,27, shows systematic errors in estimating the population 125 

mean effect size in the presence of selective reporting. Our proposed two-step 126 

approach addressed this issue by employing bias-robust models within the cluster-127 

robust variance estimation (CRVE) framework (Figure 1). In the first step, we 128 

employed bias-robust models with bias-robust weighting schemes to obtain less 129 

biased population mean effect size estimates �̂�. Specifically, we incorporated a 130 

within-study variance-covariance matrix into the fixed-effect model (FE + VCV) and 131 

used the unrestricted weighted least square (UWLS) model (for details, see the 132 

Methods). The bias-robust weighting schemes counteracted selective reporting by 133 

considering the underlying mechanisms that contribute to it. For example, using the 134 

inverse sampling VCV weighting scheme can downweigh smaller studies with low 135 

precision, thereby penalizing studies that appear to be “selectively reported”.  136 

Moving to the second step, we treated the fitted bias-robust models as the 137 

“working” model within the CRVE framework (Figure 1). This step helped mitigate 138 

potential biases in the standard error estimates SE(�̂�) that could arise from violating 139 

the assumption of data independence in FE + VCV and UWLS (i.e., model 140 

misspecification). By employing the CRVE, we obtained robust standard error 141 

estimates SE(�̂�) that ensured the validity of subsequent statistical inference, including 142 

null-hypothesis tests and confidence interval (CI) construction. We compared the 143 

performance of the MLMA model with the proposed method. The comparison was 144 

carried out on 448 ecological and evolutionary meta-analyses (Figure 1 and 145 

Supplementary data 1; details see Methods). The differences in the estimated �̂� and 146 

SE(�̂�) between models were used as performance criteria (Figure 1). To quantify the 147 
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overall discrepancies between models across 448 meta-analyses, we employed the 148 

meta-analysis of magnitude technique, which involves comparing absolute values 149 

based on folded distribution 39,55.  150 

 151 

Bias of the population mean effect size estimates �̂� 152 

 153 

Figure 2. Comparison of the population mean effect size estimates �̂� and their standard errors SE(�̂�) 154 

obtained from different meta-analytic models. The dashed diagonal line is 𝑦 =  𝑥, indicating where �̂� 155 

and SE(�̂�) would fall if there were no discrepancies between the models. The benchmark method, 156 

MLMA (multilevel meta-analysis model), is considered a standard method for addressing statistical 157 

dependence. The UWLS (unrestricted weighted least squares) and FE + VCV (fixed-effect model with 158 
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a within-study variance-covariance matrix) models are the first-step procedure of the proposed 159 

approach (i.e., bias-robust models), which employs bias-robust weighting schemes to mitigate the 160 

impact of publication bias (A and B). The publication bias was detected using the multilevel version of 161 

Egger’s test with a significance level of 𝛼 = 0.05. Cluster robust variance estimation (CRVE) is the 162 

second step of our approach, which will address statistical dependence and compute the robust standard 163 

error SE(�̂�) for subsequent statistical inference (C and D). 164 

 165 

When the ecological and evolutionary meta-analyses were identified as having 166 

publication bias at the nominal significance level (𝛼 = 0.05), the mean effect sizes �̂�, 167 

estimated by the benchmark method (MLMA model), consistently exceeded those 168 

obtained from the first step of our proposed method (UWLS and FE + VCV) (Figure 169 

2).  170 

 171 

Figure 3. Paired comparison of the estimated population mean effect size estimates �̂� obtained from the 172 

benchmark method (MLMA) and the first-step procedure of the proposed approach (UWLS and FE 173 

+VCV). For other details, refer to the legend in Figure 2. 174 

 175 

Specifically, out of the 149 meta-analyses with publication bias, 141 exhibited an 176 

overestimated �̂� when using the MLMA model (Figure 1), indicating 95% of meta-177 

analyses exaggerated their mean effects if not employing any correction for the 178 
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publication bias. On average, �̂� derived from the MLMA model was 114.4% (0.763, 179 

95% CI = [0.690,0.835]; Table S1) larger than that from the UWLS model and 155.3% 180 

(0.937, 95% CI = [0.848,1.026]) larger than that from the FE + VCV model (Figure 3). 181 

In contrast, for the meta-analyses without publication bias, there were no systematic 182 

differences in the estimated �̂� among different models. Importantly, the magnitude of 183 

the discrepancy in the �̂� between the models was statistically positively associated 184 

with the severity of publication bias (0.039, 95% CI = [0.001, 0.077]; Table S2; 185 

Figure 4). Similar patterns were observed when considering publication bias at a 186 

significance level of 𝛼 = 0.1 (see Figure S1 – S3). 187 

 188 

Figure 4. The relationship between the difference in the population mean effect size estimates �̂� and the 189 

severity of publication bias. 190 

 191 
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Bias of the standard error estimates 𝐒𝐄(�̂�) 192 

Before applying the second step of the proposed method, UWLS and FE + VCV 193 

consistently underestimated the SE(�̂�) analysing meta-analyses with statistical 194 

dependence (Figure 2C). Among the 448 published meta-analyses analysed, 428 195 

showed underestimation of SE(�̂�) (Figure 2C), indicating that statistical inference of 196 

96% of the published meta-analyses would be distorted if they were based on 197 

underestimated standard errors.  198 

 199 

Figure 5. The relationship between the difference in the estimated standard error of the mean effect 200 

sizes SE(�̂�) and the indicator of degree of statistical dependence. Intraclass correlation coefficient (ICC) 201 

represents the degree of dependence among effect sizes in a meta-analysis. For other details, refer to 202 

the legends in Figures 2 and 4. 203 

 204 
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On average, the SE(�̂�) derived from the UWLS and FE + VCV models were 123.3% 205 

(0.804, 95% CI = [0.736, 0.871]) and 382.3% (1.573, 95% CI = [1.469, 1.678]) 206 

smaller, respectively, than that obtained from the MLMA model when considering 207 

datasets with statistical dependence (Figure 2C and Table S3). After applying the 208 

second step of our proposed method, CRVE, no systematic difference was found in 209 

the estimated SE(�̂�) among different models (Figure 2D). There was no statistically 210 

significant association observed between the magnitude of the discrepancy in the 211 

estimated SE(�̂�) between the UWLS, FE +VCV and the MLMA models and the 212 

degree of statistical dependence (0.152, 95% CI = [-0.067, 0.371] and -0.108, 95% CI 213 

= [-0.445, 0.230], respectively; Figure 5).  214 
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Implementation and visualization: a real example 215 

 216 

Figure 6. The implementation of the proposed two-step meta-analytic modelling approach, along with a 217 

novel visualization, using open-source software. The metafor 56 package is utilized for building two-218 

step models, while the orchaRd 54 package is employed for graphical representation. For a detailed 219 

step-by-step tutorial demonstrating two alternative first-step models, please refer to the webpage 220 

(https://yefeng0920.github.io/BiasRobustMA_tutorial/). The bottom graph provides a visual solution to 221 

Visualization:
orchard_plot() and

pub_bias_plot() 
in orchaRd package

Step one
Employ bias-robust weighting schemes to counteract selective reporting (e.g., inverse sampling 
variance-covariance matrix) to obtain less biased mean effect estimates. 

Responses or measurements (effect sizes)

Complex models bias parameter 
estimation (magnitude and sign) 
when selective reporting occurs

Simple models distort statistical inference 
(hypothesis test and confidence interval) 

if dependence occurs

(e.g., population treatment effect)

and 

Step two
Utilize cluster robust variance estimation (CRVE) to account for statistical dependence and ensure 
the validity of statistical inference on estimated mean effects.

Meta-analytic 
modelling

Use function vcalc() in metafor package to construct a sampling variance-covariance (VCV)
matrix.
Then, use rma.mv() to fit a fixed-effect model with bias-robust weights:
VCV <- vcalc(vi = v, # sampling variance

cluster = study, # cluster variable (study identity in this case)
rho = 0.5, # sampling correlation (see online tutorial for robustness testing)

obs = esid, # identity for effect size
data = dat) # your dataset containing necessary variables

FE_VCV <- rma.mv(y ~ 1, VCV, data = dat,
test = "t") # t-distribution is specified to calculate confidence interval and p-

value  for statistical test of the estimated 

Use robust() in metafor package to calculate robust error and perform statistical inference on .
CRVE <- robust(x = FE_VCV, # fitted bias-robust model from Step one

cluster = study,

clubSandwich = TRUE) #  small-sample correction for the VCV matrix of and  
Satterthwaite adjustment for statistical test and confidence interval construction

https://yefeng0920.github.io/BiasRobustMA_tutorial/
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show publication-bias-robust parameter estimation and inference derived from the proposed two-step 222 

approach, serving as a sensitivity analysis. It also includes essential elements for transparent reporting, 223 

such as 95% confidence intervals (CIs), and 95% prediction intervals (PIs), and precision (inverse 224 

standard error).  225 

 226 

We created a tutorial to allow practitioners to apply the proposed approach. We 227 

selected a published ecological and evolutionary meta-analysis that claimed the 228 

existence of publication bias. This example meta-analysis examined the effect of 229 

herbivore interaction on fitness based on 179 species, 167 studies, and 1640 effect 230 

sizes 57. In line with the publication bias test conducted in the original publication, our 231 

re-analysis also confirmed evidence for publication bias (0.876, 95% CI = [0.623, 232 

1.128], see Figure S5 in tutorial). To address the statistical dependence among effect 233 

sizes (with 10 effect sizes/study), the original publication employed Bayesian 234 

multilevel meta-analytic modelling with phylogenetic relatedness, study, and 235 

observation identities as random effects. 236 

To implement the first step of the proposed method, we first used the vcalc() 237 

function in the metafor package 56 to construct a sampling VCV matrix (Figure 6), 238 

assuming a constant sampling correlation of 0.5 18. Then, we used the rma.mv() 239 

function to fit a fixed-effect model using the constructed VCV matrix (FE + VCV 240 

model), obtaining the publication-bias-robust population mean effect of herbivore 241 

interaction. In the second step, we used the coef_test() in metafor (or 242 

coef_test() in the clubSandwich 58) to address the misspecified dependence 243 

structure in the fitted FE + VCV model. This allowed us to compute robust standard 244 

errors and perform statistical inference on the interaction between herbivores. The 245 

result of the proposed approach indicates a minimal interaction between herbivores (�̂� 246 

= 0.075, SE(�̂�) = 0.054, 95% CI = [-0.034, 0.184], t52 = 1.375, p-value = 0.175; 247 
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Figure 6). In contrast, the original publication reported a statistically significant 248 

interaction between herbivores (�̂� = 0.275, SE(�̂�) = 0.047, 95% CI = [0.181, 0.368], 249 

t166 = 5.783, p-value < 0.001). We developed the pub_bias_plot() function, 250 

which can be used in conjunction with the orchard_plot()function from the 251 

orchaRd package 54. Their combined use provides a new graphical plot for 252 

visualising the impact of publication bias on parameter estimation and inference 253 

(Figure 6), allowing for a visual assessment of the robustness of the meta-analytic 254 

findings and facilitating transparent reporting.   255 
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Discussion 256 

To correctly estimate population mean effect sizes and make inferences when 257 

statistically dependent data 7,9 and selective reporting are present in ecology and 258 

evolution 36,51, we propose a readily implementable two-step approach. When 259 

selective reporting is present, the bias-robust models, used in the first step, 260 

consistently yielded less biased population mean effects compared to the standard 261 

multilevel meta-analysis model (MLMA; Figure 2). Population mean effect sizes 262 

were overestimated by an average of 110% when using the MLMA when publication 263 

bias was present (Figure 3). The severity of publication bias was also positively 264 

associated with the discrepancy in population mean effect estimates between the two 265 

models (Figure 4). Using a fixed-effect (FE) model with an adjusted VCV sampling 266 

matrix is effective at mitigating the impact of publication bias, particularly in cases 267 

where publication bias is more severe. Including cluster-robust variance estimation 268 

(CRVE) as the second step successfully addressed the issue of statistical dependence 269 

and achieved comparable estimates of standard errors across the models (Figure 2). 270 

On average, the CRVE corrected the estimates of standard errors by 120%. If these 271 

underestimated standard errors were to be used for statistical inference, it would lead 272 

to artefactually narrower CIs, increasing Type I error (false positive) rates in 273 

ecological and evolutionary meta-analytic evidence. Below, we discuss the 274 

innovations, extensions, limitations, and future perspectives of the proposed method. 275 

 276 

Extending the tools for ascertaining the impacts of publication bias in ecological 277 

and evolutionary meta-analysis 278 

Despite dedicated methods being available for adjusting selective reporting, 279 

including the fail-safe-N method, trim-and-fill, selection models and p-curve methods, 280 
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these are not easily applied to complex hierarchical data. Failing to address statistical 281 

dependence (see Figure 7 in Nakagawa et al 50) can result in unreliable publication-282 

bias-corrected mean effect size estimates. Recently proposed modified Egger’s 283 

approaches 50 show promise in addressing publication bias with complex hierarchical 284 

data by regressing effect size estimates against their sampling variances (also known 285 

as PEESE 51), while controlling for statistical dependence. The intercept in the PEESE 286 

model can be interpreted as the publication-biased-adjusted mean effect, assuming an 287 

infinitely large study. The publication-biased-adjusted mean effect represents a 288 

marginalized mean in the context of a regression model, after accounting for impacts 289 

from informative predictors under infinite precision (or sample size). Unfortunately, 290 

informative predictors are rarely fully identified in published studies 39. Additionally, 291 

extrapolation involved in marginalizing predictor effects may yield poor estimates of 292 

publication-biased-adjusted effect size and could also affect the magnitude of standard 293 

errors (Figure 6), influencing statistical inference. In contrast, the proposed two-step 294 

method does not rely on extrapolation and relaxes the assumption of infinite precision 295 

and information from predictors. Our proposed approach should be used as an 296 

effective sensitivity analysis to understand the effects of publication bias on the 297 

inferences drawn from a meta-analysis.  298 

 299 

A general framework for incorporating weighting schemes 300 

Our approach offers an effective way of addressing publication biases by 301 

separating out weighting schemes for point estimates from the estimation of robust 302 

standard errors. While the default inverse variance weighting scheme provides the 303 

best linear unbiased estimator of model coefficients only for representative data, it 304 

causes bias to the point estimate of the population mean effect (Equations 12 – 14). In 305 
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contrast, the inverse sampling VCV weighting schemes used in the first step have 306 

prioritized reducing the bias of mean effects when the data is not representative (as in 307 

the case of selective reporting. Technically, the FE + VCV approach borrows from 308 

principles established under multivariate models but does not require one to 309 

parametrize random-effects structures 4, as shown in Equation 14 (for mathematical 310 

details, see the Methods). The CRVE separates the choice of weighting scheme from 311 

the estimation of standard errors and uses the residual distribution (see Equation 15) 312 

to approximate the true error distribution. Statistical inferences relying on robust 313 

standard errors remain valid under any weighting schemes 19,30,31,58,59. This is 314 

particularly relevant when using bias-robust weighting schemes, as in our proposed 315 

approach, where the assumed error distribution deviates from the true distribution. 316 

Remedies can be made to address the issue of the small sample size 31. These include 317 

using adjustment matrices (e.g., CR1, CR2 and CR3; Equation 15), robust-wild 318 

bootstrapping techniques and adapting the degrees of freedom for statistical tests of 319 

model coefficients 31,59,60.  320 

More broadly, our method of tailoring and reconceptualising weighting can be 321 

extended to deal with three major sources of bias pertaining to meta-analytic weights. 322 

The first source of bias stems from questionable research practices. This includes 323 

selective reporting, such as publication bias, which has been addressed in the present 324 

study. Of relevance, poor quality studies or studies with a risk of bias can be 325 

potentially handled by using meta-analytic quality models within the framework 326 

CRVE 61, where study quality information is incorporated into the weighting schemes.  327 

The second type of bias arises from using small sample sizes in primary 328 

studies. The proposed two-step approach can help ameliorate the impacts of small 329 

sample sizes on the estimation of sampling variances for various effect size measures, 330 
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which, in turn, increases the accuracy of the weights converted from sampling 331 

variances. Current formulas used to compute sampling variance for common effect 332 

size measures (e.g., SMD, log response ratio, Fisher’s Zr) are derived under the 333 

assumption of large sample sizes 14. To mitigate this issue, one straightforward 334 

solution is to average the effect size estimates across all included studies and use this 335 

average to calculate the sampling variance (the so-called smooth estimator) 62. As the 336 

number of studies increases, the averaged effect size converges to the true underlying 337 

effect. This improvement in handling small sample sizes also offers two additional 338 

benefits. It allows for the inclusion of primary studies with missing standard 339 

deviations 62 and enables data imputation for those missing standard deviations 63. 340 

The third type of bias originates from the statistical properties of certain effect 341 

size measures, where the point estimate intrinsically correlates with its sampling 342 

variance. This is particularly relevant for effect size measures such as standardized 343 

mean difference (SMD), partial correlation coefficient (PCC), and log odds ratio 50,64. 344 

To address this inherent correlation and mitigate bias, effective-sample-size-based or 345 

unit weighting schemes have been proposed 64. However, these weighting schemes are 346 

not easily extendable to the framework of multilevel models, which are essential for 347 

accounting for statistical dependence and avoiding inflated Type I error rates. 348 

 349 

Limitations and future opportunities 350 

Two potential limitations should be noted about our proposed two-step 351 

approach for dealing with publication biases. The first potential limitation concerns 352 

using small-study effects as indicators of selective reporting or publication bias. 353 

While small-study effects, where studies with small sample sizes and large sampling 354 

errors tend to report large effect sizes 33,34, have been recognized as a typical signal of 355 
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publication bias, we note that it is essentially a statistical representation of the 356 

asymmetry of a funnel plot 50. Of note, Egger’s test has limited statistical power to 357 

identify small-study effects under some circumstances 50. Therefore, we conducted 358 

sensitivity analysis by relaxing the significance level to 0.1. The results from the 359 

significance level of 0.1 aligned with that from the nominal level of 0.05 (Figure S1 – 360 

S3), further supporting the effectiveness of the proposed approach in addressing 361 

selective reporting. 362 

 Second, we did not employ a simulation approach for assessing the empirical 363 

performance of statistical models. The reason for this decision was the limited 364 

quantitative knowledge available regarding the dependence structure and patterns of 365 

publication bias in real-world scenarios 49. Designing simulations that accurately 366 

reflect these characteristics can be challenging. Our study leveraged the richness of 367 

published meta-analyses, which are more likely to capture the diverse range of 368 

dependence structures and publication bias patterns in real-world settings (see Figure 369 

1 and the Methods). An extensive simulation would still be valuable in the future 370 

because our study specifically focused on the intercept-only meta-analysis models. 371 

While meta-regression models with categorical predictors can be transformed into 372 

subgroup intercept-only models, further investigation through simulations is needed to 373 

assess the generalizability of the proposed method to meta-regression models. Such a 374 

simulation study was out of the scope of the current work, as our focus was to 375 

establish a sensitivity analysis, which is robust against selective reporting, for 376 

multilevel meta-analytic models (i.e., estimating an overall effect). 377 

 378 

Conclusion remarks 379 
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The development of meta-analytic models has strived to use sophisticated model 380 

structures to capture the underlying ecological and evolutionary data-generation 381 

process. In contrast, the proposed two-step approach takes a different perspective by 382 

prioritizing the adjustment for selective reporting in the first step and ensuring the 383 

validity of subsequent statistical inference by CRVE in the second step. This shift in 384 

focus emphasizes the development of appropriate weighting strategies to reduce bias 385 

in meta-analytic evidence when the data is not representative, which is often the case 386 

in ecology and evolution. We emphasize that the proposed approach is not intended to 387 

replace standard meta-analytic models (i.e., MLMA) in ecology and evolution. The 388 

performance of different models is contingent upon the true data-generation 389 

mechanisms that are rarely known. Therefore, we expect that the proposed approach 390 

serves as a sensitivity analysis to standard methods when interested in population 391 

mean effect.  392 

In alignment with the move towards “multiverse” analytical workflows 65, we 393 

advocate for the routine use of our two-step method and its associated graphical tool 394 

as a sensitivity analysis (Figure 6). Complex hierarchical dependency structures and 395 

publication biases are typical of ecological and evolutionary meta-analyses. As such, 396 

it is becoming increasingly critical to explore and present multiple plausible analyses 397 

instead of relying solely on a single model (i.e., multiverse meta-analytic modelling) 398 

66. A more detailed assessment of the robustness of meta-analytic models would 399 

improve transparency and could be used to strengthen the meta-analytic evidence that 400 

is necessary to build the quantitative evidence that underpins ecological and 401 

evolutionary research and decision-making.  402 
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2 Methods 403 

2.1 Dataset compilation 404 

The dataset used in our study consisted of 448 ecological and evolutionary meta-405 

analyses that were gathered by Costello and Fox 67 who followed systematic search 406 

principles to identify papers indexed in Web of Science Core Collection. All meta-407 

analyses included claimed adherence to the PRISMA reporting guidelines (Preferred 408 

Reporting Items for Systematic Reviews and Meta-Analyses 68). We further 409 

performed data cleaning to suit our analysis. Specifically, we eliminated cases with 410 

zero sampling variance, classified effect size measures into four categories (SMD 411 

family [i.e., Cohen’s d and Hedge’s g], log response ratio [lnRR], Fisher’s Zr, and 412 

uncommon measures [i.e., mean difference, regression slope, risk ratio, and odds 413 

ratio]) 69. We dropped meta-analysis datasets that had convergence issues in model 414 

fitting, despite adjusting different numerical optimizers and optimization 415 

specifications (i.e., number of iterations, step size and threshold). After the cleaning 416 

process, 448 meta-analysis datasets were included. Studies within meta-analyses 417 

reported eight effect size estimates on average, which indicates effect sizes were often 418 

clustered (ICC = 0.52) and possess substantial statistical dependency. About 33% 419 

(149/448) of the meta-analysis datasets showed evidence of publication bias based on 420 

the recently proposed multilevel version of Egger’s test with a significance level of 421 

𝛼 = 0.05 (Supplementary data 2), while 37% (166/448) of the meta-analysis datasets 422 

showed evidence of publication bias at 𝛼 = 0.1 50. 423 

2.2 Generalized least square (GLS) estimation for meta-analytic models 424 

To make our article mathematically rigorous, we provide a brief revisit to the key 425 

statistical framework and estimators in the context of meta-analytic modelling. This 426 
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also serves as a refresher for readers who are already familiar with these theories, 427 

allowing them to skip ahead to the subsequent sections. 428 

2.2.1 Meta-analytic model via linear mixed-effects model framework 429 

Consider a meta-analytic dataset with statistical dependence where 𝐽 primary studies 430 

are included and 𝑛𝑗  effect size estimates y𝑖𝑗 and sampling variances s𝑖𝑗
2  can be derived 431 

from the 𝑗-th primary study (where 𝑖 = 1, … , 𝑛𝑗 and 𝑗 = 1, … , 𝐽). Let 𝐱𝑖𝑗 be a row 432 

vector of 𝑝 predictors (also known as, covariates or moderators) that induce 433 

systematic variations among the effect size parameters (true effects), thus being 434 

treated as fixed effects in the frequentist framework. Likewise, let 𝐳𝑖𝑗 be a row vector 435 

of 𝑞 predictors that lead to random variations among the effect size parameters and 436 

are therefore considered random effects. Using the (generalized) linear mixed-model 437 

framework 21,70, the FE, RE models and their more complex variants can be unified as 438 

a general form with:  439 

y𝑖𝑗 = 𝐱𝑖𝑗𝜷 + 𝐳𝑖𝑗b𝑖𝑗 + e𝑖𝑗, (1) 440 

where 𝜷 denote the vector of model coefficients for fixed-effects predictors 𝐱𝑖𝑗, 441 

representing the change in the (predicted) y𝑖𝑗 resulting from each one-unit change in 442 

𝐱𝑖𝑗; b𝑖𝑗 denote the model coefficients for random-effects predictors 𝐳ij, indicating 443 

(residual) variation in the effect size parameters; e𝑖𝑗 denote the sampling error 444 

corresponding to yij, with E(e𝑖𝑗) = 0, Var(e𝑖𝑗) = s𝑖𝑗
2 , and Cov(e𝑖𝑗, eℎ𝑗) = 𝜌𝑖ℎ𝑗s𝑖𝑗sℎ𝑗 445 

(where 𝜌𝑗 is the sampling correlation or within-study correlation between two paired 446 

effect size estimates yij and yhj). 447 

For the sake of brevity, we stack effect size estimates y𝑖𝑗 for each 𝑗 cluster (in this 448 

case, study) and express Equation 1 in the matrix notation as Equation 2, which is 449 

known as a specification of seemingly unrelated regressions (SURs): 450 
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𝐲j = 𝐗𝑗𝜷 + 𝐙𝑗𝒃𝑗 + 𝐞𝑗 , (2) 451 

If we further stack SUR for all 𝐽 studies, we can obtain a more compact notation: 452 

𝐲 =  𝐗𝜷 + 𝐙𝒃 + 𝐞, (3) 453 

where E(𝒃) = 𝟎, Var(𝒃) = 𝐆 = 𝐈𝐽⨂𝐔 = diag(𝐔, 𝐔, … , 𝐔) (with ⨂ representing 454 

Kronecker product that creates a block-diagonal matrix), with 𝐆 being a 𝐽𝑞 × 𝐽𝑞 455 

block-diagonal matrix with 𝐔 as diagonal elements, 𝐔 being a 𝑞 × 𝑞 random-effects 456 

variance-covariance matrix that can be estimated via common estimators such as 457 

restricted maximum likelihood (REML); Var(𝐞) = 𝐒, with 𝐒 being an 𝐽𝑛𝑗 × 𝐽𝑛𝑗  458 

within-study (sampling) variance-covariance matrix 71. Under the frequentist 459 

framework, Equation 3 can be expressed as a marginal form of 𝐲~𝑀𝑉𝑁(𝐗𝛃, 𝐙𝐆𝐙′ +460 

𝐒). Therefore, the 𝐽𝑛𝑗 × 𝐽𝑛𝑗  matrix 𝚺 = Var(Zb + e) = 𝐙𝐆𝐙′ + 𝐒 defines the 461 

marginal variance-covariance of the effect sizes and explicitly reflects the true 462 

dependence structure. Because the re-analysis dataset (448 meta-analysis) did not 463 

include predictor variables. Therefore, in the present study, our main focus was on the 464 

intercept-only meta-analysis model, where no predictors (𝐗 = 𝟏) are included to 465 

explain the variation in effect size estimates.  466 

2.2.2 The efficient weighting scheme: minimum-variance unbiased estimator 467 

(MVUE) 468 

Let 𝐖 be an 𝐽𝑛𝑗 × 𝐽𝑛𝑗 weighting matrix. We can obtain the GLS estimator of fixed-469 

effects coefficient 𝜷 (i.e., population mean effect) by minimizing the mean squared 470 

error of model coefficient MES(𝜷): 471 

�̂� = (𝐗′𝐖𝑿)−1𝐗′𝐖𝒚 = (∑ 𝐗𝑗
′𝐖𝑗𝐗𝑗

𝐽

𝑗=1

)

−1

∑ 𝐗𝑗
′𝐖𝑗𝐲𝑗

𝐽

𝑗=1

, (4) 472 

The associated sampling variance-covariance matrix of �̂� can be estimated with: 473 
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Var(�̂�) = (𝐗′𝐖𝐗)−1𝐗′𝐖𝚺𝐗(𝐗′𝐖𝐗)−1

= (∑ 𝐗𝑗
′𝐖𝑗𝐗𝑗

𝐽

𝑗=1

)

−1

∑ 𝐗𝑗
′𝐖𝑗

𝐽

𝑗=1

𝚺𝑗𝐖𝑗𝐗𝑗 (∑ 𝐗𝑗
′𝐖𝑗𝐗𝑗

𝐽

𝑗=1

)

−1

, (5)
 474 

Since E(𝐲𝑗|𝐗𝑗) = 𝐗𝑗𝜷, equation 4 provides an unbiased estimator of 𝜷, when there is 475 

no publication bias, regardless of the specifications of the 𝐽𝑛𝑗 × 𝑗𝑛𝑗  weighting matrix 476 

𝐖: 477 

E(�̂�) = (∑ 𝐗𝑗
′𝐖𝑗𝐗𝑗

𝐽

𝑗=1

)

−1

∑ 𝐗𝑗
′𝐖𝑗E(𝐲𝑗)

𝐽

𝑗=1

= (∑ 𝐗𝑗
′𝐖𝑗𝐗𝑗

𝐽

𝑗=1

)

−1

∑ 𝐗𝑗
′𝐖𝑗𝐗𝑗𝜷

𝐽

𝑗=1

= 𝜷, (6) 478 

To obtain a minimum-variance unbiased estimator of 𝜷, we need to pick a weighting 479 

matrix that produces the minimum Var(�̂�) among all unbiased estimators (in this case, 480 

best linear unbiased prediction BLUP). Based on the generalized Gauss-Markov 481 

theorem, setting 𝐖𝑗 = 𝚺−1leads to the unique solution to minimise Var(�̂�): 482 

Var(�̂�) = (∑ 𝐗𝑗
′𝐖𝑗𝐗𝑗

𝐽

𝑗=1

)

−1

∑ 𝐗𝑗
′𝐖𝑗

𝐽

𝑗=1

𝚺𝑗𝚺𝑗
−1𝐗𝑗 (∑ 𝐗𝑗

′𝐖𝑗𝐗𝑗

𝐽

𝑗=1

)

−1

= (∑ 𝐗𝑗
′𝐖𝑗𝐗𝑗

𝐽

𝑗=1

)

−1

= (∑ 𝐗𝑗
′𝚺𝑗

−1𝐗𝑗

𝐽

𝑗=1

)

−1

, (7)

 483 

𝐖𝑗 = 𝚺𝑗
−1is the so-called inverse variance-covariance weights, which is the default 484 

weighting scheme used in the typical meta-analytic models. Using 𝐖𝑗 = 𝚺𝑗
−1 as 485 

weights requires the knowledge of dependence structure 𝚺 = 𝐙𝑗𝐆𝑗𝐙𝑗
′ + 𝐒𝑗. Based on 486 

the above equations, efficient estimation of 𝜷 and unbiased Var(�̂�) (thus valid 487 

statistical inference) can be achieved when dependence structure is known, and there 488 

is no selective reporting in the dataset. Unfortunately, the prevalence of publication 489 

bias and statistical dependence can compromise the estimation of the two estimands, 490 

as outlined above. In the subsequent sections, we elaborate on the proposed two-step 491 
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approach that can simultaneously ameliorate the impact of selective reporting and 492 

account for statistical dependence and. 493 

2.3 Step one: GLS with a bias-robust weighting scheme  494 

The first step of the proposed two-step approach is to employ a bias-robust weighting 495 

scheme that can counteract selective reporting. The small-study effect is a common 496 

form of selective reporting, where studies with small sample sizes and large sampling 497 

errors tend to report large effect sizes 33,34. When this form selective reporting occurs, 498 

a criterion to alleviate its impact on the estimation 𝜷 is to assign small studies with 499 

small weights. However, the default inverse variance-covariance weighting scheme 500 

𝐖𝑗 = 𝚺𝑗
−1 is incapable of accomplishing this criterion because it assigns near equal 501 

weight to each study if the heterogeneity is large 13. In contrast, the inverse sampling 502 

variance-covariance 𝐖𝑗 = 𝐒𝑗
−1 is a typical bias-robust weighting scheme that satisfies 503 

the criterion of assigning smaller weights to small studies 44. It turns out that existing 504 

bias-robust meta-analytic models that are more tolerant to publication bias all adhere 505 

to this criterion, albeit with different assumptions about dependence structure 506 

𝚺 = 𝐙𝑗𝐆𝑗𝐙𝑗
′ + 𝐒𝑗. Below we briefly illustrate four special cases of such models. 507 

2.3.1 Fixed-effect (FE) model  508 

It is well known that FE model assumes that the variances of the effect sizes are equal 509 

to the sampling variance, where diagonal elements of matrix 𝐒𝑗 are sampling 510 

variances s𝑖𝑗
2  and off-diagonal elements are sampling covariances 𝜌𝑖ℎ𝑗s𝑖𝑗sℎ𝑗 with 511 

𝜌𝑖ℎ𝑗 = 0, indicating no correlation between the sampling errors 13. FE model assumes 512 

there is no heterogeneity and thus 𝐆 = diag(𝟎, 𝟎, … , 𝟎) (between-study variance 𝜏2 =513 

0). Consider an intercept-only model where 𝐗𝑗 = 𝟏 (no predictors), 𝐙𝑗 = 𝐈 (random 514 
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intercept), and 𝐖𝑗 = 𝚺𝑗
−1 = 𝐒𝑗

−1. Hence, the estimator of 𝜷 (Equation 4) and sampling 515 

variance Var(�̂�) (Equation 5) reduce to  516 

�̂�FE = (∑ 𝟏𝑗
′𝐖𝑗𝟏𝑗

𝐽

𝑗=1

)

−1

∑ 𝟏𝑗
′𝐖𝑗𝟏𝑗𝐘𝑗

𝐽

𝑗=1

, (8) 517 

Var(�̂�FE) = (∑ 𝟏𝑗
′𝐖𝑗𝟏𝑗

𝐽

𝑗=1

)

−1

, (9) 518 

After simple matrix algebra, Equations 8 and 9 can be converted into typical 519 

summation expressions used in meta-analytic literature: 520 

�̂�FE =
∑ ∑ w𝑖𝑗

𝑛𝑗

𝑖=1
y𝑖𝑗

𝐽
𝑗=1

∑ ∑ w𝑖𝑗
𝑛𝑗

𝑖=1
𝐽
𝑗=1

=
∑ ∑ (1/s𝑖𝑗)

𝑛𝑗

𝑖=1
y𝑖𝑗

𝐽
𝑗=1

∑ ∑ (1/s𝑖𝑗)
𝑛𝑗

𝑖=1
𝐽
𝑗=1

, (10) 521 

Var(�̂�FE) =
1

∑ ∑ w𝑖𝑗
𝑛𝑗

𝑖=1
𝐽
𝑗=1

=
1

∑ ∑ (1/s𝑖𝑗)
𝑛𝑗

𝑖=1
𝐽
𝑗=1

, (11) 522 

Note that if there is no statistical dependence (n𝑗 = 1), Equations 10 and 11 will 523 

collapased to normal estimators of FE model. After estimaing �̂�FE and Var(�̂�FE) from 524 

Equations 10 and 11, we need to perform statistical inference on the estiamted �̂�FE. 525 

One common method for this is the Wald-type test. Alternative methods are also 526 

available, such as likelihood ratio test and permutation test 72. The Wald-type test 527 

involves comparing a test statistic 𝑡 against critical values of a known distribution to 528 

test the null hypothesis H0: 𝛽 = 0. The test statistic 𝑡 can be calcualted 529 

as (�̂�FE − 𝛽) SE(�̂�FE)⁄ , where SE(�̂�FE) is the square-root of Var(�̂�FE). Under H0, test 530 

statistic 𝑇 follows (asymptotically) a standard normal distribution or 𝑡 distribution 531 

with 𝑑𝑓 = 𝐽𝑛𝑗 − 1 degrees of freedom (adjustments to 𝑑𝑓 are possible such as 𝑑𝑓 =532 

𝐽 − 1 73-75), which can be used to construct a confidence interval (CI) and calculate a 533 

p-value for the test. However, while Equation 10 can reduce the bias of �̂� with respect 534 
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to publication bias, Equation 11 apparently underestimates Var(�̂�), inflated test 535 

statistic 𝑡, Type I error rate and p-value due to neglection of random-effects (i.e., 536 

misspecified dependence structure 𝚺𝑗
−1 = 𝐙𝑗𝐆𝑗𝐙𝑗

′ + 𝐒𝑗 = 𝐒𝑗). 537 

2.3.2 Unrestricted weighted least squares (UWLS) model  538 

The UWLS model is a weighted linear regression used to address heteroskedasticity 539 

(i.e., an unequal variance of observation) in ordinary least squares regression. The 540 

UWLS was initially conceptualized as a statistical model for meta-analysis in particle 541 

physics 47,76. Stanley and his colleagues subsequently fleshed out its theories in meta-542 

analysis and termed it as unrestricted weighted least squares 46,52,53. Unlike FE model, 543 

UWLS model relaxes the assumption that sampling variance s𝑖𝑗 is precisely known 544 

without uncertainty, instead assuming that s𝑖𝑗 is only known up to a proportionality 545 

constant 𝜎𝑒
2. This results in a weighting scheme of 𝐖𝑗 = 𝚺𝑗

−1 = 𝜎𝑒
2𝐒𝑗

−1 in the UWLS 546 

model. The estimator of �̂� is identical to Equation 10 in FE model, while the estimator 547 

of Var(�̂�) becomes: 548 

Var(�̂�UWLS) =
1

𝜎𝑒
2 ∑ ∑ (1/s𝑖𝑗)

𝑛𝑗

𝑖=1
𝐽
𝑗=1

, (12) 549 

The term 𝜎𝑒
2 technically refers to the residual variance or weighted mean squared error. 550 

This parameter can be estimated from data in contrast to the fixed value of 1 in FE 551 

and RE models, which is why the UWLS model is called the “unrestricted” WLS 46. 552 

The term 𝜎𝑒
2 is beneficial to statistical inference on �̂�UWLS at two aspects. On the one 553 

hand, it represents the overdispersion of effect sizes and thus accounts for 554 

heterogeneity in a multiplicative way 46. This is why UWLS is also known as the 555 

“multiplicative” method for meta-analysis. On the other hand, 𝜎𝑒
2 can act as a scaling 556 

factor of Var(�̂�UWLS) to account for the uncertainty in estimating 𝚺𝑗
−1 and improve 557 
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statistical inference 77. The estimator of Var(�̂�UWLS) in UWLS model (Equation 12) is 558 

mathematically equivalent to Hartung-Knapp-Sidik-Jonkman adjustment method 73-75.  559 

2.3.3 Inverse variance heterogeneity (IVhet) model 560 

The IVhet model is a meta-analysis model that assumes no heterogeneity (between-561 

study variance 𝜏 = 0) when estimating �̂�, but accounts for model overdispersion 562 

when estimating Var(�̂�) using a quasi-likelihood-based variance structure 48. It uses 563 

an intra-class correlation (ICC) as a scale parameter to inflate Var(�̂�) derived from 564 

the FE model. This “overdispersion” strategy relaxes distributional assumptions with 565 

variance and purely relies on mean-variance relationship. Interestingly, there is an 566 

unappreciated model called Henmi-Copas model 44 that can counteract publication 567 

bias by using the FE model to estimate �̂� and then centering the 95% CI derived from 568 

the RE model on this estimate. Technically, IVhet model is similar to Henmi-Copas 569 

model because both of them use �̂� from FE model and incorporate estimated 𝜏 into 570 

Var(�̂�) and the corresponding CI. Both models are essentially equivalent to the RE 571 

model with an inverse sampling variance weighting scheme, although they differ in 572 

their theoretical underpinnings and the estimators used to estimate 𝜏2. For the sake of 573 

illustration, consider an intercept-only model where 𝐗𝑗 = 𝟏 (no predictors), 𝐙𝑗 = 𝐈 574 

(random intercept), 𝐖𝑗 = 𝐒𝑗
−1 and 𝚺𝑗 =  𝜏2𝐈𝑗 + 𝐒𝑗. Hence, the estimator of 𝛽 is 575 

identical to that in FE and UWLS models, while the estimator of sampling variance 576 

Var(�̂�) (Equation 5) simplifies to: 577 

Var(�̂�) = (∑ 𝟏𝑗
′𝐒𝑗

−1𝟏𝑗

𝐽

𝑗=1

)

−1

∑ 𝟏𝑗
′𝐒𝑗

−1

𝐽

𝑗=1

(𝜏2𝐈𝑗 + 𝐒𝑗)𝐒𝑗
−1𝟏𝑗 (∑ 𝟏𝑗

′𝐒𝑗
−1𝟏𝑗

𝐽

𝑗=1

)

−1

, (13) 578 

Obtaining the summation expression by evaluating the above matrix expression: 579 
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Var(�̂�IVhet) =

∑ ∑ (
1
s𝑖𝑗

)2(𝜏2 + 𝑠𝑖𝑗
2 )

𝑛𝑗

𝑖=1
𝐽
𝑗=1

(∑ ∑ (1/s𝑖𝑗)
𝑛𝑗

𝑖=1
)𝐽

𝑗=1

2 , (14) 580 

Although, the estimator Var(�̂�IVhet) accounts for heterogeneity, it still underestimates 581 

the true Var(�̂�). Because it assumes that there is no correlation in the random-effects 582 

matrix 𝐆𝑗 and sampling variance-covariance matrix 𝐒𝑗 (zero off-diagonal elements).  583 

2.3.4 FE model with a sampling variance-covariance matrix (FE + VCV) 584 

Imagine that if the 𝑗-th study contributes more effect size estimates than the 𝑘-th study 585 

(𝑛𝑗 > 𝑛𝑘), then FE, UWLS and IVhet models tend to assign more weights to the 𝑗-th 586 

study. In other words, studies reporting more effect size estimates are assigned more 587 

weights, which would bias the estimates of 𝛽 (i.e., pull the estimated 𝛽 towards study 588 

with more effect size estimates) since effect size estimates from the same study do not 589 

represent independent information. Computationally, above models ignore the 590 

correlation between effect size estimates within the same study when estimating 𝛽. To 591 

address this, a straightforward approach is to incorporate this correlation when 592 

estimating 𝛽. This can be achieved by using a sampling variance-covariance matrix 𝐒𝑗 593 

with non-zero correlation 𝜌𝑖ℎ𝑗 between sampling errors e𝑖𝑗 and eℎ𝑗 (see Equation 1). 594 

For example, assume 𝐒𝑗 having a compound symmetry structure given as 𝐕𝐂𝐕𝑗 matrix: 595 

𝐕𝐂𝐕𝑗 = [

𝑠1𝑗
2 ⋯ 𝜌1𝑛𝑗𝑗𝑠1𝑗𝑠𝑛𝑗𝑗

⋮ ⋱ ⋮
𝜌1𝑛𝑗𝑗𝑠1𝑗𝑠𝑛𝑗𝑗 ⋯ 𝑠𝑛𝑗𝑗

2
] , (15) 596 

In Equation 15, the off-diagonal element 𝜌𝑖ℎ𝑗𝑠𝑖𝑗𝑠ℎ𝑗 represents the covariance between 597 

effect size estimates, which can be used to adjust for multiple effect size estimates 598 

derived from the same study. Therefore, we propose using the FE model in 599 

combination with a sampling variance-covariance matrix with non-zero correlation 600 

(FE + VCV). In this way, the weighting scheme becomes 𝐖𝑗 = 𝚺𝑗
−1 = 𝐕𝐂𝐕𝑗

−1 or 601 
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𝐖 =  diag(𝐕𝐂𝐕1
−1, 𝐕𝐂𝐕2

−1, … , 𝐕𝐂𝐕𝐽
−1). According to matrix algebra, the off-diagonal 602 

elements of 𝐕𝐂𝐕𝑗
−1 are negative values, which would de-emphasize the studies 603 

reporting more effect size estimates when estimating 𝛽. However, this approach still 604 

underestimates Var(�̂�) due to the same reason mentioned earlier. The FE model with 605 

a within-study VCV matrix is essentially a simplified version of the multivariate 606 

models that do not involve random effects (e.g., 𝜏2) and distinguish different 607 

outcomes 4.  608 

2.4 Step two: cluster-robust variance estimation (CRVE) 609 

The second step of the proposed two-step approach involves using CRVE to guard 610 

against misspecification in the marginal variance-covariance matrix 𝚺𝑗 =  𝐙𝑗𝐆𝑗𝐙𝑗
′ + 𝐒𝑗 611 

(as seen in Equations 11, 12 and 14). In Section 2.2.2 Minimum-variance unbiased 612 

estimator (MVUE), it was discussed that achieving the MVUE for 𝛽 requires 613 

accurately specifying the matrix configurations of 𝚺𝑗 for each study in the meta-614 

analysis and using the inverse of 𝚺𝑗 as the weighting scheme to minimize Var(�̂�). The 615 

bias-robust weighting scheme reduces the bias of 𝛽 at the expense of sampling 616 

variance Var(�̂�). Fortunately, CRVE can provide consistent estimates of the 617 

population parameters even when the matrix 𝚺𝑗 is misspecified 30. In the context of 618 

meta-analysis, CRVE was introduced by Sidik and Jonkman 32, and Hedges and 619 

colleagues 30 formalized its use to account for misspecification in the marginal 620 

variance-covariance matrix of effect sizes. The challenge in estimating the sampling 621 

variance of the model coefficients 𝛽 arises from the unknown 𝚺𝑗 in Equation 7. In the 622 

framework of CRVE, the outer products of the residual vector �̂�𝑗 = 𝐲j −  𝐗𝑗�̂� for 𝑗-th 623 

study can be used to empirically approximate the marginal variance-covariance matrix: 624 
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�̂�𝑗�̂�𝑗
′ ≈ 𝚺𝑗. Thus, the estimator of the sampling variance Var(�̂�) becomes the so-called 625 

robust sandwich estimator: 626 

Var(�̂�CRVE) = (∑ 𝐗𝑗
′𝐖𝑗𝐗𝑗

𝐽

𝑗=1

)

−1

∑ 𝐗𝑗
′𝐖𝑗

𝐽

𝑗=1

�̂�𝑗�̂�𝑗
′𝐖𝑗𝐗𝑗 (∑ 𝐗𝑗

′𝐖𝑗𝐗𝑗

𝐽

𝑗=1

)

−1

, (16) 627 

When the number of studies 𝐽 is sufficiently large, it is reasonable to assume 628 

E(�̂�𝑗�̂�𝑗
′) ≈ 𝚺𝑗. Therefore, Var(�̂�CRVE) converges to the true sampling variance as 𝐽 →629 

∞ (see proof 30). As a result, statistical inferences on the model coefficients are valid 630 

based on asymptotic inference theory. In cases where 𝐽 is small, correction methods 631 

can be used to reduce the bias of robust standard errors and maintain valid statistical 632 

inferences. These methods include using small-sample adjusting matrices to estimated 633 

residuals �̂�𝑗 31,59 or employing robust-wild bootstrapping techniques 60. 634 

2.5 Standard (benchmark) method: multilevel meta-analytic (MLMA) model  635 

To assess the performance of the proposed two-step approach, we compare it with a 636 

benchmark method commonly used for handling dependent effect sizes, known as the 637 

multilevel meta-analytic (MLMA) model. The basic MLMA model is a three-level 638 

meta-analytic model that includes random-effects at the between-study and within-639 

study levels. It can be expressed as: 640 

Y𝑖𝑗 = 𝛽 + u(𝑏)𝑗 + u(𝑤)𝑖𝑗 + e𝑖𝑗 , (17) 641 

where 𝛽 denotes the model intercept, representing the mean effect size; u(b)𝑗 is a 642 

random-effects at between-study level with Var(u(𝑏)𝑗) = 𝜏𝑏
2, which captures between-643 

study heterogeneity; u(𝑏)𝑗 is a random-effects at within-study level with Var(u(𝑤)𝑗) =644 

𝜏𝑤
2 , which captures within-study heterogeneity; e𝑖𝑗 is the corresponding sampling 645 

error, with Var(e𝑖𝑗) = s𝑖𝑗
2  and Cov(e𝑖𝑗, eℎ𝑗) = 0. The MVUE for 𝛽 and sampling 646 

variance Var(𝛽) can be reached using Equation 4 and 7, with weights equal to inverse 647 
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variance-covariances. The weights for MLMA for each study are written as (as in the 648 

metafor package) 15: 649 

𝐖𝑗MLMA
=  [

�̂�𝑏
2 + �̂�𝑤

2 + 𝑠1𝑗
2 ⋯ �̂�𝑏

2

⋮ ⋱ ⋮
�̂�𝑏

2 ⋯ �̂�𝑏
2 + �̂�𝑤

2 + 𝑠1𝑗
2

]

−1

, (18) 650 

Therefore, 𝐖MLMA =  diag(𝐖1MLMA, 𝐖2MLMA, … , 𝐖𝐽MLMA). The MLMA model 651 

offers several advantages, which have made it a standard benchmark method for 652 

dealing with dependent effect sizes in many disciplines 4,7,17,27. First, its 653 

implementation is straightforward and easy. Second, it does not require the reporting 654 

of sampling correlations, which are often unavailable in the literature. Third, it 655 

performs well in terms of statistical inferences and provides extra insights into 656 

heterogeneity compared to multivariate models and CRVE. However, one 657 

unappreciated limitation of MLMA is that it uses inverse variance-covariance as the 658 

weighting scheme, which can lead to an overestimation of 𝛽 when publication bias is 659 

present. 660 

2.6 Performance criterion  661 

The first criterion focused on the biasedness of the mean effects (�̂�) when no 662 

predictors were included in the models. We applied the MLMA model (benchmark) 663 

and the first step of our proposed method (two alternatives: UWLS and FE + VCV 664 

models) to each of the 448 meta-analysis datasets. The sampling correlation 𝜌𝑖ℎ𝑗 was 665 

set to 0.5 for FE + VCV model 4,18. The sensitivity analysis should be conducted to 666 

examine the extent to which the mean effect is sensitive to the assumption of within-667 

study (sampling) correlation 𝜌𝑖ℎ𝑗values used for constructing VCV matrix (see 668 

tutorial: https://yefeng0920.github.io/BiasRobustMA_tutorial/) 669 

We compared the mean effects �̂� obtained from the MLMA model with those from 670 

the two alternatives by calculating the log transformed ratio of means as the effect 671 

https://yefeng0920.github.io/BiasRobustMA_tutorial/
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size measure. Our expectation was that the magnitudes of �̂� derived from the 672 

benchmark model would consistently be larger than those from our proposed method 673 

when publication bias was present. The second criterion addressed the biasedness of 674 

the standard errors of the mean effects SE(�̂�), represented by the square-root of 675 

Var(�̂�). The robust SE(�̂�) was calculated by the second step of our proposed method, 676 

which involved applying the CRVE to the fitted UWLS, and FE + VCV models. We 677 

calculated the paired log-transformed ratio of SE(�̂�) obtained from the MLMA model 678 

to robust SE(�̂�) 78. Theoretically, we predicted the SE(�̂�) derived from MLMA model 679 

to consistently be larger than those from the UWLS and FE + VCV models, but 680 

similar to robust SE(�̂�). We further computed the folded mean and sampling variance 681 

of the effect size using the folded distribution 39,55. Finally, we used the meta-analysis 682 

of magnitude technique to assess the overall discrepancies between models 55. 683 

  684 
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Data availability  685 

The raw data is available at https://github.com/Yefeng0920/BiasRobustMA_tutorial. 686 

Code availability  687 

The analytical script to reproduce examples presented in the manuscript is archived at 688 

GitHub: https://github.com/Yefeng0920/BiasRobustMA_tutorial. A webpage showing 689 

the implementation of the proposed method in combination with a visualisation tool 690 

can be accessed via https://yefeng0920.github.io/BiasRobustMA_tutorial/.  691 

https://github.com/Yefeng0920/BiasRobustMA_tutorial
https://github.com/Yefeng0920/BiasRobustMA_tutorial
https://yefeng0920.github.io/BiasRobustMA_tutorial/
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