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ABSTRACT 30 

Understanding the characteristics and structure of populations is fundamental to 31 

comprehending ecosystem processes and evolutionary adaptations. While the study 32 

of animal and plant populations has spanned a few centuries, microbial populations 33 

have been under scientific scrutiny for a considerably shorter period. In the ocean, 34 

analyzing the genetic composition of microbial populations and their adaptations to 35 

multiple niches can yield important insights into ecosystem function and the 36 

microbiome's response to global change. However, microbial populations have 37 

remained elusive to the scientific community due to the challenges associated with 38 

isolating microorganisms in the laboratory. Today, advancements in large-scale 39 

metagenomics and metatranscriptomics facilitate the investigation of populations from 40 

many uncultured microbial species directly from their habitats. The knowledge 41 

acquired thus far reveals substantial genetic diversity among various microbial 42 

species, showcasing distinct patterns of population differentiation and adaptations, 43 

and highlighting the significant role of selection in structuring populations. In the 44 

coming years, population genomics is expected to significantly increase our 45 

understanding of the architecture and functioning of the ocean microbiome, providing 46 

insights into its vulnerability or resilience in the face of ongoing global change. 47 

 48 
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MAIN TEXT 51 

Ocean microbes are key for the functioning of the Earth's system 52 

The ocean microbiome is one of the main engines of the biosphere and, to a large 53 

extent, responsible for the conditions we live in [1]. This microbiome is populated by 54 

an astronomical number of cells. Gross estimates indicate that the global ocean 55 

harbors ~1029 prokaryotic cells and ~1030 viruses [2,3], while in one milliliter of open 56 

ocean water, there are typically 103 protists, 106 prokaryotes, and 107 viruses [4]. 57 

Microbes account for ~70% of the biomass in the ocean, representing ~4.2 gigatons 58 

of carbon [5]. This biomass is distributed in at least 1010 species [6] that belong to a 59 

wide array of phylogenetic lineages, several of which have been diversifying in the 60 

ocean for eons [7]. Thus, the ocean microbiome is a large reservoir of taxonomic and 61 

functional diversity. 62 

The ocean microbiome is crucial in global biogeochemical cycles [1,8]. In the 63 

sunlit ocean, the tiniest microbes, the picoplankton, are responsible for an important 64 

fraction of the total atmospheric carbon and nitrogen fixation [9–11], representing 65 

~46% of the global primary productivity [12]. Surface ocean picoplankton plays a 66 

fundamental role in processing organic matter by recycling nutrients and carbon to 67 

support additional production and channeling organic carbon to upper trophic levels in 68 

food webs [11,13,14].  69 

Two key components of the ocean microbiome, prokaryotes (bacteria and 70 

archaea) and unicellular eukaryotes or protists (including marine fungi), have 71 

fundamental differences in cellular structure, feeding habits, metabolic diversity, 72 

growth rates, and behavior [15]. Prokaryotic metabolisms are diverse and have major 73 

roles in global biogeochemical cycles [1,8]. In contrast, protists' metabolisms are less 74 

diverse, but instead, they show major innovations in morphology and behavior [15]. A 75 
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substantial fraction of the ocean microbiome biomass seems to comprise protists (and 76 

fungi) [5], including many heterotrophic groups that transfer carbon from prokaryotes 77 

or other protists to upper trophic levels.  78 

 79 

What is the total diversity of the ocean microbiome? 80 

This is a recurrent question in marine microbial ecology that has been addressed in 81 

multiple works [6,16–21] and that, so far, does not have a definitive answer. Current 82 

estimates of the total prokaryotic diversity on the planet vary significantly, with some 83 

differing by orders of magnitude [6,19–21]. Nevertheless, over the past twenty years, 84 

we have made significant progress in understanding and delimiting the diversity of the 85 

vast array of microorganisms in the ocean. This is, in part, a consequence of the omics 86 

revolution that allowed retrieving microbes directly from the environment. Pioneering 87 

surveys ~20 years ago pointed to a large diversity of microbial genes and taxa in the 88 

ocean [22]. Subsequent large-scale oceanographic campaigns, such as Malaspina 89 

[23], TARA Oceans [24], Bio-GO-SHIP [25], and GEOTRACES cruises [26], 90 

significantly expanded our comprehension of the magnitude of the ocean’s 91 

microbiome diversity. These campaigns indicated ~50,000 - 100,000 protists and 92 

~10,000 - 35,000 bacterial “species” or taxonomic units [16,27,28] in the open ocean 93 

plankton using High Throughput DNA Sequencing (HTS). From the metabolic-function 94 

perspective, TARA Oceans, based on sequencing microbial genome fragments 95 

(hereafter metagenomics), has cataloged ~47 million predominantly prokaryotic genes 96 

[29]  and ~116 million eukaryotic genes [30] at the global-ocean plankton scale. 97 

Similarly, the Malaspina consortium reported ~4 million predominantly prokaryotic 98 

genes from the deep ocean plankton [31].  99 
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The previous estimates show substantial variability, but over the next few years, 100 

they will likely improve, providing us with more accurate estimates of the diversity of 101 

the ocean microbiome. Yet, these estimates are bound to the evolutionary divergence 102 

captured by the rRNA-gene or functional genes, which may miss fine-grained diversity 103 

or could introduce biases. For example, the rRNA gene is a slow-evolving marker that 104 

may not capture differences between microbial species or populations. Similarly, 105 

different microbial species may share large identical regions of their genomes [32], 106 

and if we focus on those areas, species will be indistinguishable. 107 

Microdiversity refers to small-scale genetic variations (e.g., Single Nucleotide 108 

Variants or SNVs) within a microbial species or population or among closely related 109 

species and can be crucial for comprehending ecosystem function and the 110 

vulnerability or resilience of communities to global change [33,34], contemporary 111 

evolution [35], and ecological interactions [36]. Besides SNVs, horizontal gene transfer 112 

and homologous recombination can also contribute to microdiversity and confer new 113 

traits to different members of the same species [32,37]. 114 

Crossing the boundaries between microbial species and populations, and 115 

comprehending the intra-species vs. the inter-species genetic variation is a current 116 

challenge for microbial ecologists. There has been a tendency in microbial ecology to 117 

specialize either in population-level (e.g., population genetics or genomics) or 118 

community-level studies (e.g., community ecology). One of the main reasons is that 119 

many population-level studies have been performed using cultures, while researchers 120 

focusing on community ecology normally work with uncultured species [38]. Yet, we 121 

will need to get used to moving across the species and population boundaries when 122 

investigating the ocean microbiome, that is, between populations and communities, to 123 
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increase our understanding of its structure, the ecological interactions it contains, and 124 

its links with ecosystem processes.  125 

 126 

Microbial species and populations  127 

How do we define a microbial species? This is perhaps among the oldest questions in 128 

microbial ecology and remains so far partially answered. It has generated much 129 

debate, and abundant literature exists elsewhere [1,39,40]. Therefore, I will not 130 

address this question here. For this piece, I will consider microbial species as coherent 131 

genetic and ecological units composed of individuals that are phenotypically and 132 

ecologically more similar to themselves than to other species [32]. Speciation and 133 

diversification seem to require both divergent selection and gene flow barriers to occur 134 

[38]. Selective diversification and speciation would align with the Ecological Species 135 

Concept, where natural selection drives the process of divergence towards different 136 

niches [41], being the mechanism of speciation envisioned by Darwin. In turn, the 137 

Biological Species Concept [42] emphasizes the restrictions on gene flow as the main 138 

mechanism of diversification and speciation. Even though both concepts emerged 139 

from the study of animals and plants, and their validity in understanding microbial 140 

diversification is still under debate (especially due to Horizontal Gene Transfer or 141 

HGT), it is likely that both processes have a role in the adaptive diversification of 142 

microorganisms. Adaptive diversification is of interest as it is expected to generate 143 

microdiversity that reflects niche adaptations that may not be detected in regular 144 

surveys of the ocean microbiome using rRNA-genes or functional gene markers. 145 

In animals and plants, it is expected that most genes flowing in one species do 146 

not affect those in another. Yet, in prokaryotes and, to some extent, microbial 147 

eukaryotes, the horizontal exchange of genomic information makes it difficult to make 148 
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clear separations between eco-genetic units. The transferred DNA can give new 149 

capabilities to the cells that receive it (for example, antibiotic resistance), and change 150 

its niche dimension, leading to a new differentially adapted population featuring a 151 

specific trait. Overall, despite the potentially leaky boundaries between eco-genetic 152 

units due to HGT, analyses of environmental isolates and metagenomes indicated that 153 

genotypic clusters of closely related organisms display cohesive responses to 154 

environmental heterogeneity, distinguishing them from other coexisting clusters [32].  155 

The interplay of selection (s) and recombination (r) (i.e., horizontal exchange of 156 

DNA between cells) has been proposed as a key mechanism to explain the spread of 157 

new adaptive gene variants among and within eco-genetic units [32]. Here, I will 158 

mention two possible scenarios deriving from models. In the first, recombination within 159 

populations is low, and selection is high for a given gene or locus. Then, individuals 160 

with the advantageous trait (gene) will increase in abundance due to clonal expansion 161 

taking over the entire population leading to a genome-wide selective sweep (GWSS) 162 

[43]. This process purges genetic variation from populations, and different eco-genetic 163 

clusters may form after ecologically different populations experience multiple genome-164 

wide sweeps [32,43]. Alternatively, in the second scenario, high recombination rates 165 

compared to selection are expected to promote the exchange of selectively 166 

advantageous genes among different population members without purging diversity, 167 

leading to gene-specific selective sweeps (GSSS). In this second case, eco-genetic 168 

clusters may take longer to form [32]. In the former process (GWSS), an adaptive gene 169 

or locus will tend to appear in a specific selective background, while in the latter 170 

(GSSS), the selective gene is expected to be present in multiple backgrounds. Even 171 

though the previous models may be oversimplified, they generate hypotheses to 172 

explain some observed characteristics of microbial populations in the ocean. For 173 
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example, the amount of genetic variation in populations and its distribution. In addition, 174 

these models may help predict the reactions of microbial populations to global change 175 

in the ocean by, for example, pointing to changes in the prevalence of GWSS or GSSS. 176 

One challenge when investigating microbial populations is determining what 177 

organisms belong to the same species. One operative approach is to use genome 178 

similarity thresholds (e.g., the 95% threshold in the Average Nucleotide Identity 179 

[44,45]) to delineate species. This is particularly useful in studies without multiple 180 

genomes from cultures to compare, as in marine metagenomic studies. Although 181 

these thresholds are practical and popular, they require an a priori decision on the cut-182 

off level to delineate different Operational Taxonomic Units (OTUs). The chosen 183 

threshold may or may not correspond with natural eco-genetic clusters.  184 

An alternative to using arbitrary thresholds is to search for natural 185 

discontinuities in genomic diversity that could be linked to eco-genetic clusters that 186 

may represent populations or species. This approach has been recently referred to as 187 

reverse ecology [46,47]. One example of its implementation is the methodology that 188 

uses recent gene flow to delineate eco-genetic units, which could be linked to 189 

populations or species [46,47]. Here, gene flow discontinuities are identified and used 190 

to delineate species (“gene flow units”) that can be subdivided into populations 191 

(“adaptively optimized gene flow clusters”) without using any prior environmental 192 

knowledge [47]. The rationale is that recent gene flow will leave a higher number of 193 

identical regions in genomes exchanging genes horizontally compared to what would 194 

be expected if mutations had accumulated without gene transfer [47] (Figure 1). The 195 

reason is that horizontally exchanged DNA would not have had enough time to 196 

accumulate mutations compared to other regions shared by descent or vertically. 197 

Then, pairwise measurements of recent gene flow among genomes can be used to 198 
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construct gene-flow networks to identify gene flow units (species) and gene flow 199 

clusters (populations) within them. A test of this approach produced genome clusters 200 

corresponding to previously identified populations of Vibrio, Sulfolobus, and 201 

Prochlorococcus [47]. Furthermore, results indicated strong discontinuities in the gene 202 

flow between species (gene flow units), aligning with the classic Biological Species 203 

Concept [42]. 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

Figure 1. Microbial genomes that recombine (recombinogenic) and, therefore, belong to the same 212 
population or species would share longer identical regions than non-recombinogenic counterparts. 213 
Modified from Arevalo et al. [47] 214 

 215 

From population genetics to population genomics  216 

Population genetics investigate the evolutionary forces that generate, assort, and 217 

remove variation within species using specific marker genes or genomic areas. 218 

Population genomics is basically population genetics but using entire genomes [38]. 219 

While population genetics is an established field, population genomics is still an 220 

emerging field in microbiology, which has been boosted by decreasing DNA 221 

sequencing costs. Population genomics has a huge potential for a deeper 222 

understanding of the ocean microbiome, as it can reveal the fine-grained adaptive 223 

variation among populations and the genotypes that produce disease or dysbiosis 224 

[38,48].  225 
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The main forces determining the genetic composition of populations are 226 

mutation, selection, gene flow, and genetic drift. Mutation is the emergence of new 227 

and random gene variants and is the ultimate source of diversity. Selection changes 228 

allele frequencies due to their fitness impact on the phenotype, while gene flow is 229 

related to the exchange of genes between individuals. Lastly, genetic drift refers to the 230 

random fluctuations in allele frequencies from one generation to the next due to the 231 

stochastic sampling of individuals contributing offspring to the next generation [49]. 232 

Despite microbial population genetics and genomics being growing fields 233 

[38,50,51], our understanding of mutation, selection, gene flow, and genetic drift is still 234 

predominantly based on the study of animals and plants. The previous is especially 235 

true for environmental microbes. Yet, microbes typically differ from multicellular 236 

organisms in at least three fundamental aspects: dispersal, reproductive rates, and 237 

population size [52,53]. Even though the dispersal rate of most microbes is still 238 

unknown, indirect evidence points to high dispersal rates [52,54] that could be 239 

substantially higher than in multicellular organisms. Nevertheless, while it has been 240 

argued that organisms with <1mm of body size have virtually no barriers to dispersal 241 

[55], multiple studies during the last two decades point to dispersal limitation in 242 

microbes [28,52,54,56]. Furthermore, the reproductive rates of multicellular organisms 243 

tend to be lower than those of microbes. For example, generation times in small 244 

mammals can be in the order of months, while in some bacteria, it can be in the order 245 

of minutes/hours. Faster generation time implies that mutation, adaptation, and 246 

divergence can occur faster in microbes than in multicellular organisms. 247 

 248 

 249 

 250 
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Census vs. effective population size 251 

Census population size (N), together with effective population size (Ne), are key 252 

parameters in population genetics that can affect population adaptation, drift, and 253 

dispersal. Census population size refers to the total number of individuals or cells and 254 

can affect random dispersal as more cells increase the chances of arriving at new 255 

locations. In turn, the effective population size Ne represents the number of individuals 256 

in a theoretical population that would experience the same amount of genetic drift as 257 

the population under consideration. Ne plays a pivotal role in population genetics. It 258 

influences the magnitude of genetic drift, the extent of genetic variability within a 259 

population, and the balance between the efficacy of selection and the random effects 260 

of drift [49]. Specifically, a population's neutral genetic diversity, which refers to genetic 261 

variations without fitness effects, is determined by the product of the effective 262 

population size Ne and the mutation rate. Furthermore, Ne is intrinsically tied to the 263 

efficacy of selection. It dictates whether a beneficial mutation proliferates or a 264 

deleterious one is purged, with the outcome governed by the product of Ne and the 265 

intensity of selection [49]. Small Ne can increase genetic drift, which can lead to 266 

reduced genetic diversity over time, increase the likelihood of the fixation of deleterious 267 

alleles, and increase the chances of losing advantageous alleles [57].  268 

While N can be huge in microbes, Ne is usually smaller due to the variance in 269 

reproductive success and potential selective sweeps. Lynch and colleagues 270 

calculated Ne ~105 for vertebrates, ~106 for invertebrates and land plants, ~107 for 271 

unicellular eukaryotes, including fungi, and 108 for free-living prokaryotes [58]. These 272 

estimates imply that drift is about three orders of magnitude higher in large multicellular 273 

eukaryotes than in prokaryotes and that the effective population sizes are far below 274 

the census population sizes. Furthermore, the previous estimates indicate that 275 
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selection will be more efficient in large microbial populations than in animals and plants 276 

[49]. This has been proposed as the basic tenet for the increasing number of genes 277 

(due to retention of duplicates), introns, and mobile genetic elements in larger 278 

eukaryotes, compared to prokaryotes [59]. The rationale is that the increase in 279 

organism size would have led to smaller Ne and, therefore, a higher drift that allowed 280 

the proliferation of the mentioned elements in eukaryotes. This hypothesis was initially 281 

used to explain the genome streamlining (that is, the process by which non-essential 282 

DNA is eliminated from genomes) of specific microbial genomes with crucial 283 

importance in the ocean ecosystem, such as Prochlorococcus. Yet, later studies have 284 

shown that other factors, such as niche complexity, must be considered to explain 285 

streamlining [60]. 286 

Substantial variability in effective population size has been reported for 287 

prokaryotes, ranging between 106 (host-associated) and 1010 (free-living), typically 288 

being > 108 [61,62]. Similarly, the Ne of microbial eukaryotes has been found to range 289 

between 106 (host-associated) and 108 (free-living) [62]. Despite the existing estimates 290 

of Ne, this key variable remains unknown for most marine microbial species [63], 291 

limiting our capability to understand how they may adapt to a changing ocean. 292 

Measuring the Ne of marine microbes could also reveal unexpected results. For 293 

example, the marine Prochlorococcus is one of the planet's most prolific 294 

photosynthetic organisms, playing a pivotal role in global biogeochemical cycles. 295 

Prochlorococcus features an average global abundance of 3 × 1027 cells annually and 296 

contributes to a net primary production of 4 gigatons of carbon each year (~8% of the 297 

ocean net primary production) [64]. The small genome size (~1.6 to ~2.7 Mbp [65]) of 298 

Prochlorococcus suggested a large Ne, yet a recent study estimated the Ne of 299 

Prochlorococcus to be ~1.7 x 107, being surprisingly smaller than that of other free-300 
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living bacteria and suggesting that drift could be the key driver of evolution in this 301 

lineage [66]. This finding also raises questions about Prochlorococcus's adaptability 302 

to global change. Other marine bacteria with massive census population sizes could 303 

also have smaller Ne than expected. For SAR11, which has a census population size 304 

of 2.4x1028 [60], reports indicate an effective population size that is smaller than that 305 

of Roseobacter [63]. Considering the crucial role of Ne in discerning the adaptive 306 

potential of marine microbial populations to climate change, it is imperative to 307 

determine this parameter, at least for those species with key roles in ocean ecosystem 308 

function. 309 

 310 

Microbial population diversity, structure, and adaptations in the omics era 311 

Characterizing and understanding the genomic diversity within microbial species and 312 

the genomic differences between strains, their phenotypes, and their ecological 313 

relevance is a primary challenge for microbial ecologists [67]. Specifically, 314 

comprehending the ecological differences between strains is highly relevant for 315 

understanding ecosystem function due to the different phenotypes and ecological 316 

roles that strains could have [68]. For example, both commensal and pathogenic 317 

strains can be found in Escherichia coli [69,70], Enterococcus cecorum [71],  and 318 

Bacteroides fragilis [72]. The study of strain-level heterogeneity can also contribute to 319 

characterizing pathogens and their ecosystemic impact [38,48]. Linking the diversity 320 

within species with environmental heterogeneity may also provide insights into short-321 

term evolutionary processes (i.e., occurring before speciation) and the genomic 322 

differences that led to differential adaptation.   323 

Even though our understanding of the genomic diversity and structure of 324 

environmental microbial populations and the genetic basis of strain differentiation is 325 
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limited, multiple studies reflect the fast progress of the field, fueled by the decreasing 326 

sequencing costs [67]. This is particularly evident in studies of the human microbiome 327 

[67]. Fewer studies are available for aquatic microbes. Still, a number of pioneering 328 

works pointed to high genomic diversity within microbial species and correlations 329 

between population genomic differentiation and niche adaptation. For example, 330 

populations adapted to different light intensities [73], and temperatures [74] were found 331 

among Prochlorococcus ecotypes. Further studies indicated that Prochlorococcus 332 

includes an enormous population variation, with potentially hundreds of 333 

subpopulations coexisting in small seawater samples [75]. These subpopulations 334 

displayed a substantial allelic variation in their core genome (including housekeeping 335 

and ecologically relevant genes), delineating different genomic backbones. 336 

Furthermore, each subpopulation genomic backbone was linked to distinct sets of 337 

flexible genes that may reflect different metabolic functions, thus pointing to adaptive 338 

evolution [75]. Another study [32] compared the patterns of population divergence in 339 

marine strains of Vibrio cyclitrophicus [76] as well as in the hot-spring archaeon 340 

Sulfolobus islandicus [77]. Both species displayed substantial diversity, and 341 

populations differentiated by Single Nucleotide Variants (SNVs) in specific areas of 342 

their genomes. While in Vibrio the SNVs were localized in genomic “islands”, in 343 

Sulfolobus they were spread across genomic “continents”. Genomic islands in Vibrio 344 

contain ecologically relevant genes, suggesting that SNVs are likely involved in 345 

ecological adaptation. Outside these islands or continents, populations were not 346 

differentiated [32].  347 

 The majority of the previous studies have used cultured isolates of microbial 348 

strains to investigate population diversity and structure. Yet, most of the microbial 349 

diversity cannot be cultured [78]. Therefore, researchers have started to use culture-350 
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independent approaches to investigate wild microbial populations, such as Single-Cell 351 

Genomics (Figure 2) and Metagenomics [67,75,79,80]. A number of studies have 352 

recently started to leverage the power of Metagenome-Based Population Genomics 353 

[67,80] and the availability of large public datasets to investigate microdiversity in 354 

aquatic microbes (Figure 3). These studies can be divided into two main classes: 1) 355 

those that compare metagenomic information against a collection of genomes or 356 

sequences of interest (e.g., POGENOM [81], MIDAS [82], metaSNV [83], StrainPhlAn 357 

[84], and inStrain [85]; Figure 3) and 2) reference-free approaches that investigate 358 

fine-grained variation among metagenomic reads (e.g., metaVaR [86]). Furthermore, 359 

and linked to the first approach, there are methods that aim at reconstructing strains 360 

or haplotypes from the metagenomic data (e.g., ConStrains [87], DESMAN [88], 361 

STRONG [89], InStrain [85], and Strain-GeMS [90]). Given the space limitations, 362 

below, I will provide a few examples of some of these approaches applied to marine 363 

microbes to convey the central message without aiming for a comprehensive review.  364 

 365 

Figure 2. Single Cell Genomics [79]. In a nutshell, this approach starts with isolating single microbial 366 
cells, typically using Fluorescence Activated Cell Sorting (FACS) or microfluidics. Then, cells are lysed, 367 
and their genomic DNA is amplified, generating Single Amplified Genomes (SAGs). SAGs are 368 
subsequently shotgun sequenced, and the produced reads (DNA sequences) are assembled and 369 
annotated. Those SAGs from the same species can then be used for population genomics analyses 370 
(as in Kashtan et al. [75]). Furthermore, SAGs can be used as genomic templates in metagenome-371 
based population genomics analyses [80] (Figure 3). 372 
 373 
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One pioneering study compared the information present in metagenomes 374 

against a compiled database of ca. 30,000 reference bacterial genomes using a 375 

tailored bioinformatics pipeline (MIDAS) [82]. This approach was used to investigate 376 

the population-level variation in 198 marine metagenomes from TARA Oceans coming 377 

from 66 stations in the global ocean [91]. Not surprisingly, it was found that, in general, 378 

the reference bacterial genomes used in MIDAS had low coverage in the ocean 379 

samples. Nevertheless, sufficient recruitment was evidenced for reference genomes 380 

of the genera Pelagibacter, Alteromonas, Synechococcus, and Marinobacter [82]. 381 

Pan-genome analyses showed a substantial variability of gene content in these 382 

species across the marine metagenomes. When all species were considered, an 383 

average of 19% of the genes differed between metagenomes [82], indicating 384 

substantial variability in gene content between strains across marine stations. Based 385 

on the variability in gene content of each bacterial species, authors found that the 386 

populations of different species were grouped by ocean region. For instance, SAR11 387 

(Pelagibacter) was segregated into three distinct clusters, each aligning with a specific 388 

geographic region: the Mediterranean Sea, the South Atlantic Ocean, and the South 389 

Pacific Ocean. Each cluster encompassed samples from multiple water layers [82]. 390 

Furthermore, geographic distance decay in gene content was detected for most of the 391 

species examined. Hence, there appears to be a correlation between strain gene 392 

content and geographical distribution for several marine bacterial species.  393 

As one of the most abundant lineages in the ocean, SAR11 [60] serves as an 394 

ideal model species for population genomics studies, facilitating the exploration of fine-395 

grained microbial adaptations to the marine environment. SAR11 features sub-clades 396 

with specific ecological preferences and contains a large microdiversity [60,92–94]. 397 

Large amounts of microdiversity and frequent recombination [95] seem to reduce the 398 
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recovery of SAR11 contigs from metagenomes, even when the number of reads is 399 

high, which limits the number of recovered Metagenome-Assembled Genomes 400 

(MAGs) [94,96]. The low recovery of MAGs complicates population genomics 401 

analyses, yet, a number of studies have found ways to leverage the large amounts of 402 

SAR11 information in marine metagenomes. Haro-Moreno and colleagues 403 

investigated the diversity and distribution of SAR11 using a large collection of Single-404 

Amplified Genomes (SAGs), cultures, and MAGs, together with a collection of 620 405 

metagenomes [94]. A large population-level diversity was detected, indicating that this 406 

is a characteristic of Pelagibacterales. Furthermore, population-level diversity was 407 

conserved across a broad horizontal dimension of the ocean, pointing to a limited 408 

influence of horizontal biogeography in the structure of microdiversity for the 409 

investigated lineage. In turn, population-level diversity displayed marked changes 410 

across the water column at single locations, indicating that the vertical dimension of 411 

the ocean has a larger impact on microdiversity than the horizontal, despite their large 412 

differences in geographic scale (a few kilometers vs. hundreds or thousands of 413 

kilometers, respectively). This study also reports many synonymous Single Nucleotide 414 

Variants (SNVs) in the investigated genomes, which aligns with a strong purifying 415 

selection. Only a few genes displayed positive selection, which could be the basis of 416 

strain or population adaptation [94]. Similarly, Delmont and colleagues [96] examined 417 

the population variation of an abundant isolate of SAR11 in the surface global ocean 418 

using metagenomics and found a large amount of variation in terms of Single Amino-419 

Acid Variants (SAAVs). More protein variants were detected in cold than in warm 420 

currents, suggesting different adaptive patterns in populations. By clustering 421 

metagenomes based on the SAAVs they feature (i.e., the populations that 422 

metagenomes represent) revealed two main SAR11 clusters corresponding to warm 423 
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or cold large-scale ocean currents, suggesting two main niches for this SAR11 isolate 424 

[96]. At a finer scale, 6 proteotypes were identified, grouping samples with similar 425 

amino acid variants; these tended to display specific distributions in the global ocean 426 

linked to temperature, basins, and/or currents. Altogether, the correlation between 427 

SAR11 population-level diversity and environmental variables, particularly 428 

temperature, suggests that selection plays a more important role than dispersal in 429 

shaping the population structure of this key marine lineage. Another study has 430 

reported evidence of two subspecies for a SAR11 genome [83]. These subspecies 431 

had specific distributions, with one dominating in the Atlantic, Indian, and North-Pacific 432 

oceans and the other dominating in the South-Pacific Ocean. The correspondence 433 

between these subspecies with previous findings needs further investigation due to 434 

the different levels at which within-species diversity was investigated [67], as well as 435 

the likely use of different reference genomes. 436 

 437 

Figure 3. Metagenome-Based Population Genomics [80]. Metagenome-Assembled Genomes 438 
(MAGs), Single Amplified Genomes (SAGs; Figure 2), or genomes from isolates are generated after 439 
sampling or retrieved from collections. In parallel, marine metagenomes (MetaG) are produced from 440 
community DNA or retrieved from databases. Subsequently, unassembled metagenomes (reads) are 441 
mapped against MAGs, SAGs, or sequenced isolates. After mapping, the abundance and the horizontal 442 
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and vertical coverages of each MAG, SAG, or isolate are calculated, and Single Nucleotide Variants 443 
(SNVs) are called. Based on the SNVs, population-level diversity, and structure (based on the Fst index) 444 
can be assessed. The trajectory of the TARA Oceans sampling campaign is shown as an example. See 445 
an application of this approach in Figure 4. 446 

 447 

Population-level variation correlating with environmental heterogeneity was 448 

also reported in a study of bacterioplankton in the Baltic Sea [81]. Here, Sjöqvist and 449 

colleagues investigated the population-level diversity and structure of 22 MAGs that 450 

were representative of genomic clusters by using metagenomes from a 1700km 451 

transect and a time series. A substantial number of SNVs were detected for the 22 452 

MAGs. Intra-sample mean nucleotide diversity (representing the probability that two 453 

metagenomic reads covering a genomic position differ) displayed specific patterns for 454 

some MAGs in the spatial dimension, while no temporal trends were observed [81]. 455 

Most MAGs displayed a non-random population structure across the Baltic Sea, as 456 

measured by the fixation index (Fst, a measure of population differentiation). Salinity 457 

and temperature emerged as the first and second spatial drivers of population 458 

structure, respectively [81]. In four MAGs, evidence of isolation by distance 459 

(geographic effects) was detected. Temporal temperature variation was a significant 460 

population structuring driver for two MAGs (out of the four that could be analyzed). 461 

Overall, population differentiation was higher across the Baltic Sea than temporally, 462 

suggesting that spatial differences in salinity and temperature are a stronger driver of 463 

population differentiation than seasonal variation of environmental variables. 464 

Differentially adapted genes were detected in populations present at different 465 

salinities, suggesting they may be the basis of population adaptation. Unlike the global 466 

ocean, where temperature appears to be the central factor influencing population 467 

structure [96], this study [81] identifies salinity as the primary driver in the Baltic Sea, 468 

a region characterized by substantial salinity gradients. 469 
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Metagenome-based population genomics approaches have also been used to 470 

investigate marine protists. Leconte and colleagues investigated the population 471 

genomics of the picophytoplankton Bathycoccus RCC1105 isolated in January 2006 472 

from the SOLA station (Banyuls-sur-Mer, France) in the Western Mediterranean Sea 473 

at 3m depth [97]. Broad population-level variation patterns were assessed using 474 

surface and deep chlorophyll maximum metagenomes from the TARA Oceans 475 

campaign corresponding to the 0.8-5 μm organismal size fraction. Of the original 162 476 

TARA Oceans metagenomes, only 27 (ca. 17%) from diverse geographic locations 477 

and different ocean basins displayed enough coverage of the reference genome for 478 

downstream analyses [97]. Even though Bathycoccus has a relatively small genome 479 

(~15 Mb [98]) and displays widespread geographic distributions [99], the previous 480 

results evidence the greater difficulties of applying the metagenome-based population 481 

genomics approach to protists compared to prokaryotes [100]. The primary reason is 482 

that marine metagenomes generally encompass more prokaryotic than eukaryotic 483 

information, compounded by the inherently larger size and complexity of eukaryotic 484 

genomes. Nevertheless, when comparing the 27 metagenomes based on the SNVs 485 

they contain, it was found a clear separation between those originating from Arctic and 486 

temperate regions [97]. In addition, Arctic populations displayed a clear separation 487 

from Austral ones. A positive correlation between population and temperature 488 

differences was found [97], indicating, as in the previous example of SAR11, the 489 

relevant role of temperature in structuring the genomic variation of microbial 490 

populations in the ocean. Furthermore, 2742 SNVs and 13 SAAVs were detected that 491 

differentiate temperate from cold populations. The structure of protein variants from 492 

mesophilic and psychrophilic populations was compared, which provided insights into 493 
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the structural changes that may underpin adaptation to different temperature niches 494 

and that are responsible for changes in functional and physical properties [97]. 495 

In another work, Da Silva and colleagues investigated the genomic 496 

differentiation within three species of pico-phytoplankton in the Mediterranean Sea: 497 

Bathycoccus prasinos, Pelagomonas calceolata, and Phaeocystis cordata  [100]. 498 

Here, metagenomic reads from TARA Oceans stations in the Mediterranean Sea were 499 

mapped to either reference genomes (B. prasinos), or transcriptomes (P. calceolata 500 

and P. cordata) retrieved from the Mediterranean Sea or other regions. In general, B. 501 

prasinos displayed a higher population differentiation than P. calceolata and P. cordata 502 

in the Mediterranean Sea. In addition, results indicated that environmental selection 503 

seems to shape the population-level diversity of B. prasinos in the Mediterranean Sea,  504 

while P. cordata populations appear to be shaped by geographic distance (isolation 505 

by distance) [100]. This study demonstrates that populations of different protist species 506 

within the same functional group and with similar morphologies can exhibit varying 507 

degrees of differentiation and be influenced by distinct mechanisms, such as selection 508 

versus dispersal.  509 

 The studies discussed above required reference genomes or transcriptomes to 510 

map against metagenomic reads. This is clearly a limitation, given that, at the moment, 511 

there is no genomic or transcriptomic information for most microbial species. 512 

Therefore, alternative reference-free approaches have been developed, which do not 513 

need an alignment to a reference and can detect variants directly on unassembled 514 

metagenomic reads. One such approach is metaVaR, which introduces the concept 515 

of metavariant, which are variants detected in metagenomic reads [101]. Then, 516 

metavariant species, or MVS, can be defined by clustering metavariants. Thus, an 517 

MVS includes metavariants from the same species. MVSs can then be taxonomically 518 
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assigned by aligning variable loci against sequence databases [101]. Despite the 519 

potential of this approach to investigate the population genomics of species with no 520 

reference sequences, in reality, only a number of species are expected to present 521 

enough metagenomic coverage and the number of metavariants needed to pass the 522 

quality thresholds. For example, this approach was tested in a large dataset derived 523 

from TARA Oceans that included millions of metavariants from 114 geographically 524 

widespread marine samples, and only 113 MVSs were retrieved [101,102]. The 113 525 

MSVs belonging to Metazoa, Chromista, Chlorophyta, Bacteria, and viruses were 526 

analyzed across the North and South Atlantic Oceans, Southern Ocean, and the 527 

Mediterranean Sea [86]. Population differentiation (as measured by the Fst index) was 528 

higher among ocean basins than within basins for the analyzed species, which could 529 

be attributed to higher connectivity within basins. Furthermore, unicellular organisms 530 

(bacteria, unicellular eukaryotes, and viruses) displayed more population structure 531 

than larger multicellular counterparts (zooplankton), which could be linked to different 532 

dispersal capabilities affecting gene flow or different demographic histories (population 533 

size, generation time). The primary drivers of population structure for the studied 534 

species were oceanic currents (Lagrangian travel time), temperature, and salinity [86]. 535 

Yet, in this work, a large fraction of the population genomic differentiation could not be 536 

explained, pointing to other abiotic (e.g., additional inorganic nutrients and pH) and 537 

biotic variables (ecological interactions) that could contribute to population structure 538 

[86]. All in all, this approach represents a valuable option for metagenome-based 539 

population genomics when no reference genomes are available. Yet, this methodology 540 

does not intend to replace reference-based methods, which according to the authors, 541 

should be used whenever a reference is available [101]. 542 



 23 

Altogether, the previous studies show that a large complexity in terms of 543 

population-level diversity, structure, and fine-grained adaptations can be present 544 

within environmental microbial species. We can now access this underexplored 545 

dimension of diversity thanks to metagenome-based population genomics [80] (or 546 

metatranscriptomics) (Figures 3 & 4). In addition, in multiple studies, selection seems 547 

to be central in structuring microdiversity, pointing to the fine-tuning of the ocean 548 

microbiome to environmental heterogeneity. 549 

 550 
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 551 

Figure 4. Accessing the population-level dimension of diversity in marine microbes using 552 
metagenomics. The figure aims to provide a simple example of the additional information on population 553 
structure that the metagenome-based population genomics approach can produce compared to 16S 554 
rRNA surveys. Here, I use the MAG G4.480 (uncultured Flavobacteriales, ~95% completeness, and 555 
<10% contamination) that we retrieved from the Mediterranean Sea (LTER Blanes Bay Microbial 556 
Observatory; http://bbmo.icm.csic.es/). From this MAG, a fragment of the 16S rRNA gene (770 base 557 
pairs) was extracted and then used to estimate the MAG abundance in the global ocean and the 558 
Mediterranean Sea using the Ocean Barcode Atlas (OBA) [103] (https://oba.mio.osupytheas.fr/ocean-559 
atlas/); results are shown in Panel A. Only two 16S mTag [104] references from the OBA with >99% 560 
sequence similarity with MAG G4.480 were considered (references AACY020490277.719.2228 & 561 

https://oba.mio.osupytheas.fr/ocean-atlas/
https://oba.mio.osupytheas.fr/ocean-atlas/
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EF572435.1.1502; both Flavobacteriales, Flavobacteriaceae, NS5 marine group). Furthermore, only 562 
surface samples originating from two size fractions (0.2-1.6 & 0.2-3.0 µm) from the TARA Oceans cruise 563 
were included. In sum, in Panel A, we observe the distribution of the MAG G4.480 as one single 564 
taxonomic entity. In Panel B, the diversity within this entity is explored using metagenome-based 565 
population genomics (Figure 3), and we notice that additional patterns emerge. In the upper section of 566 
Panel B, the Fst values (measuring population differentiation) among the investigated stations were 567 
clustered, and different clusters, which may correspond to populations, were colored (Fst ~0.2 was 568 
used to delineate clusters). Note that some clusters correspond to geographic regions (Panel B, lower 569 
section), for example, the clusters in the Mediterranean Sea, Red Sea, and Indian Ocean, suggesting 570 
that they could represent geographically delineated populations. These patterns are missed by the 16S 571 
rRNA gene (Panel A). The abundance of the Mediterranean MAG G4.480 across the global ocean and 572 
the Mediterranean Sea based on metagenomic read recruitment is shown in the lower section of Panel 573 
B. MAG abundances are indicated in RPKG (Reads Per Kilobase of MAG and Gigabase of 574 
metagenomic data). To obtain the Fst values and the abundances of the MAG G4.480 (Panel B), we 575 
followed the procedure indicated in Figure 3, which is partially implemented in POGENOM [81]. Only 576 
surface metagenomes from TARA Oceans with enough coverage (horizontal and vertical) of MAG 577 
G4.480 were used in downstream analyses, which explains the different numbers of stations included 578 
in Panels A and B. 579 
 580 

Populations and contemporary evolution 581 

Given the large population sizes of many microbial species, the ocean microbiome 582 

could evolve relatively fast compared to multicellular organisms with smaller 583 

populations [35]. Thus, substantial evolution could be expected at contemporary 584 

timescales (e.g., decades, centuries) [35]. Yet, we do not have a clear estimate of how 585 

fast the ocean microbiome may evolve. Understanding the tempo and mode of 586 

adaptation of marine microbes is essential in the context of global change, as 587 

evolutionary adaptation is one of the expected reactions of microbes to changing 588 

environmental conditions [105].  589 

Evolutionary adaptation occurs by the accumulation of beneficial mutations 590 

over time. Populations of a given species could be depicted as entities that move in 591 

an adaptive landscape [106], which normally resemble mountain ranges, with local or 592 

global peaks that indicate areas of high fitness and valleys between them, which are 593 

areas of lower fitness (Figure 5). Selection tends to push populations uphill in the 594 

adaptive landscape, and as populations climb different peaks, they become adapted 595 

(Figure 5).  596 
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 597 

Figure 5. Adaptive landscape with two peaks. Adapted from © Laurence Loewe, 2016, CC-BY 4.0  598 

 599 

In large microbial populations, many combinations of genotypes are potentially 600 

possible, which could explore adaptive landscapes more thoroughly than larger 601 

organisms with smaller populations (Figure 5). The evolution of specific genotypes is 602 

determined by selection and drift, and the relative role of each process is 603 

predominantly dictated by the effective population size Ne and the selection coefficient 604 

s [107]. As mentioned, in species with large Ne, selection is expected to be more 605 

effective in fixing or removing mutations than in species with smaller Ne [49], potentially 606 

in a shorter amount of time. The estimated time to fixation of a neutral mutation is 607 

proportional to population size, being on average Ne (haploid) or 2Ne (diploid) 608 

generations. Thus, neutral mutations may remain for a long time in large microbial 609 

populations before being fixed or lost through drift, which aligns with results that were 610 

previously discussed [94,97]. While the probability of fixation for a beneficial mutation 611 

is approximately 2s, where s is the selection coefficient, mutations with a slight fitness 612 

advantage may face challenges in increasing frequency, particularly in smaller 613 

populations where genetic drift is more influential [108]. Yet, in species with a large 614 

Ne, the likelihood of such mutations increasing in frequency is enhanced due to the 615 

reduced impact of genetic drift [49]. Even though the effective population sizes of 616 
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marine microbes are largely unknown [63], it is expected that for many species, it is 617 

sufficiently large so that selection drives adaptation. All in all, due to the large Ne, small 618 

or large changes in environmental conditions could facilitate the contemporary 619 

adaptation of different microbial lineages. 620 

Changing environmental conditions challenge the ocean microbiome [105]. 621 

New selective regimes (a changing adaptive landscape, Figure 5) are expected to 622 

select from the available genetic diversity of microbial populations and from emerging 623 

de novo mutations. This process is expected to promote evolution in contemporary 624 

timescales. So far, microbial evolution experiments (in contemporary timescales) have 625 

indicated three major trends: 1) significant phenotypic innovations can emerge (e.g., 626 

new metabolisms, growth rates), 2) high levels of evolutionary parallelism (i.e., 627 

repeated evolutionary changes), and 3) emergence of population structure, such as 628 

genetically differentiated cell sub-groups [109,110].  629 

In contrast to laboratory experiments, relatively little is known about microbial 630 

evolution in the wild, and the interested reader is referred to Brennan & Logares for an 631 

in-depth discussion [35]. Here, I will briefly mention two examples from aquatic (non-632 

marine) environments that illustrate the importance of metagenome-based population 633 

genomics coupled with time-series metagenomics for understanding microbial 634 

evolution in the wild. These studies typically use a DNA archive, including samples 635 

from various time points, to track the evolutionary process. In the first example, Denef 636 

and Banfield investigated the evolution of a natural acidophilic biofilm over 9 years in 637 

Acid Mine Drainage (AMD) ecosystems [111]. An evolutionary rate of 1.3 x 10-9 638 

substitutions per nucleotide per generation was estimated for one MAG, and further 639 

analyses showed how mutations could emerge and become fixed as a product of 640 

selection and drift. Given the extreme nature of AMD environments and the low 641 
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immigration rates, it can be considered that mutations emerged in-situ. Determining 642 

whether a mutation emerges in one location de novo or has arrived through 643 

immigration is a challenge in these types of studies.  644 

Another study examined 30 bacterial MAGs that were derived from 645 

metagenomic samples collected over a nine-year period in a freshwater lake [112]. A 646 

large SNV heterogeneity was found between and among populations. This suggests 647 

varying mutation rates among species or populations or differences in immigration 648 

history. Newly arrived immigrants may exhibit more homogeneous populations as they 649 

have had less time to undergo diversification. SNVs frequencies showed marked 650 

changes over time in some populations. For example, in one population, most of the 651 

gene and SNV diversity disappeared during the investigated period, suggesting an 652 

ongoing genome-wide selective sweep [43]. In turn, another population displayed 653 

large, SNV-free genomic regions that appear to have swept through the populations 654 

before the investigated period without removing diversity from other genomic areas, 655 

pointing to a gene-specific sweep [112].  656 

The two previous studies exemplify the insights that can be obtained on 657 

contemporary microbial evolution in the wild through metagenome-based population 658 

genomics coupled with time series. As of now, this approach appears to remain 659 

underexplored in the context of oceanic studies. The connectivity of the surface ocean 660 

complicates the application of the approach, as it is difficult to disentangle mutations 661 

that originate in one location from those arriving via immigration. Nonetheless, 662 

temporal trends in SNV frequencies, as well as changes in both gene and SNV 663 

diversity, can offer valuable insights into the effects of shifting selective pressures 664 

induced by climate change on the ocean microbiome. This is of particular relevance in 665 

locations such as the Mediterranean Sea, which has experienced during the last years 666 
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an increase in the frequency and intensity of marine heatwaves [113]. While these 667 

heatwaves have induced mass mortality events among multicellular marine 668 

organisms, their impact on the marine microbiome remains poorly understood. 669 

 670 

Microbial populations in a changing ocean 671 

The ocean microbiome currently faces multiple challenges derived from 672 

anthropogenic-induced climate change, such as sea-surface warming, decreasing O2 673 

and increasing CO2 levels, acidification, changes in water circulation, changes in 674 

nutrient inputs and other biotic factors (such as new parasites or predators) [105]. Thus 675 

far, relatively few studies have investigated the reaction of marine microbes to long-676 

term global change, even though the associated selective changes can have 677 

significant consequences in their community structure, populations, evolution, and 678 

ultimately, in the biogeochemical cycles they mediate [105]. As a response to the 679 

changing oceanic conditions, microbes are anticipated to undergo shifts in their 680 

geographic distributions, alterations in community structure, modifications in gene 681 

expression —including epigenetic changes—, and adaptations to the new 682 

environmental conditions [35,105,114]. However, the relative significance of these 683 

mechanisms in shaping the overall response remains uncertain. Population genomics 684 

has the potential to provide new insights into the relative relevance of these processes 685 

in the reaction of microbes to a changing ocean.  686 

 687 

CONCLUSIONS 688 

Beginning in the 90s with the onset of the “molecular revolution” and continuing into 689 

the 2000s with the advent of High-Throughput Sequencing technologies, omics 690 

approaches have significantly advanced our understanding of the ocean microbiome, 691 
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revealing the various lineages it harbors, their distributions, and metabolisms. Specific 692 

markers, such as the rRNA gene, provided a clearer dimension of the diversity that is 693 

contained in the ocean microbiome. Yet, the rRNA gene normally underestimates or 694 

misses the dimension of diversity that is found within individual species (Figure 4). So 695 

far, only a limited number of studies have delved into the population-level diversity of 696 

environmental microbes.  Understanding the population diversity of microbes is 697 

fundamental for a better comprehension of ecosystem function and the adaptation of 698 

microbes to different niches. Isolating and culturing environmental strain has been one 699 

of the main obstacles in accessing the species-level diversity of microbes. Today, the 700 

use of metagenomics and metatranscriptomics allows us to investigate the diversity 701 

that is present within species, bypassing the need for culturing. Population-level 702 

studies have the potential to open a new chapter in environmental microbiology, 703 

deepening our understanding of the ocean microbiome's composition, configuration, 704 

and intricate relationships with ecosystem functioning. This new knowledge will also 705 

be pivotal in the context of global change as we seek to comprehend the ocean 706 

microbiome’s resilience or vulnerability, as well as its potential impact on broader Earth 707 

system processes. 708 

 709 

LIST OF ABBREVIATIONS 710 

AMD: Acid Mine Drainage  711 

FACS: Fluorescence Activated Cell Sorting 712 

Fst: Fixation index  713 

GSSS: Gene-Specific Selective Sweep  714 

GWSS: Genome-Wide Selective Sweep  715 

HGT: Horizontal Gene Transfer  716 
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HTS: High-Throughput Sequencing  717 

MAG: Metagenome-Assembled Genome 718 

Mb: Megabases 719 

MVS: Metavariant species 720 

N: Census population size 721 

Ne: Effective population size  722 

OTU: Operational Taxonomic Unit 723 

RPKG: Reads Per Kilobase of genome and Gigabase of metagenomic data. 724 

SAAV: Single Amino-Acid Variant  725 

SAG: Single-Amplified Genome 726 

SNV: Single Nucleotide Variant 727 
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