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One value of science derives from its production of replicable, and thus reliable, results. When we repeat a
study using the original methods we should be able to expect a similar result. However, perfect
replicability is not a reasonable goal. Effect sizes will vary, and even reverse in sign, by chance alone
(Gelman and Weakliem 2009). Observed patterns can differ for other reasons as well. It could be that we
do not sufficiently understand the conditions that led to the original result so when we seek to replicate it,
the conditions differ due to some ‘hidden moderator’. This hidden moderator hypothesis is described by
meta-analysts in ecology and evolutionary biology as ‘true biological heterogeneity’ (Senior et al. 2016).
This idea of true heterogeneity is popular in ecology and evolutionary biology, and there are good reasons
to expect it in the complex systems in which we work (Shavit and Ellison 2017). However, despite similar
expectations in psychology, recent evidence in that discipline contradicts the hypothesis that moderators
are common obstacles to replicability, as variability in results in a large ‘many labs’ collaboration was
mostly unrelated to commonly hypothesized moderators such as the conditions under which the studies
were administered (Klein et al. 2018). Another possible explanation for variation in effect sizes is that
researchers often present biased samples of results, thus reducing the likelihood that later studies will
produce similar effect sizes (Open Science Collaboration 2015; Parker et al. 2016; Forstmeier,
Wagenmakers, and Parker 2017; Fraser et al. 2018; Parker and Yang 2023). It also may be that although
researchers did successfully replicate the conditions, the experiment, and measured variables, analytical
decisions differed sufficiently among studies to create divergent results (Simonsohn, Simmons, and
Nelson 2015; Silberzahn et al. 2018).

Analytical decisions vary among studies because researchers have many options. Researchers need to
decide how to exclude possibly anomalous or unreliable data, how to construct variables, which variables
to include in their models, and which statistical methods to use. Depending on the dataset, this short list
of choices could encompass thousands or millions of possible alternative specifications (Simonsohn,
Simmons, and Nelson 2015). However, researchers making these decisions presumably do so with the
goal of doing the best possible analysis, or at least the best analysis within their current skill set. Thus it
seems likely that some specification options are more probable than others, possibly because they have
previously been shown (or claimed) to be better, or because they are more well known. Of course, some of
these different analyses (maybe many of them) may be equally valid alternatives. Regardless, on probably
any topic in ecology and evolutionary biology, we can encounter differences in choices of data analysis.
The extent of these differences in analyses and the degree to which these differences influence the
outcomes of analyses and therefore studies’ conclusions are important empirical questions. These
questions are especially important given that many papers draw conclusions after applying a single
method, or even a single statistical model, to analyze a dataset.

The possibility that different analytical choices could lead to different outcomes has long been recognized
(Gelman and Loken 2013), and various efforts to address this possibility have been pursued in the
literature. For instance, one common method in ecology and evolutionary biology involves creating a set
of candidate models, each consisting of a different (though often similar) set of predictor variables, and
then, for the predictor variable of interest, averaging the slope across all models (i.e. model averaging)
(Burnham and Anderson 2002; Grueber et al. 2011). This method reduces the chance that a conclusion is
contingent upon a single model specification, though use and interpretation of this method is not without
challenges (Grueber et al. 2011). Further, the models compared to each other typically differ only in the
inclusion or exclusion of certain predictor variables and not in other important ways, such as methods of
parameter estimation. More explicit examination of outcomes of differences in model structure, model
type, data exclusion, or other analytical choices can be implemented through sensitivity analyses (e.g.,
Noble et al. 2017). Sensitivity analyses, however, are typically rather narrow in scope, and are designed to
assess the sensitivity of analytical outcomes to a particular analytical choice rather than to a large
universe of choices. Recently, however, analysts in the social sciences have proposed extremely thorough
sensitivity analysis, including ‘multiverse analysis’ (Steegen et al. 2016) and the ‘specification curve’
(Simonsohn, Simmons, and Nelson 2015), as a means of increasing the reliability of results. With these
methods, researchers identify relevant decision points encountered during analysis and conduct the
analysis many times to incorporate many plausible decisions made at each of these points. The study’s
conclusions are then based on a broad set of the possible analyses and so allow the analyst to distinguish
between robust conclusions and those that are highly contingent on particular model specifications.
These are useful outcomes, but specifying a universe of possible modelling decisions is not a trivial
undertaking. Further, the analyst’s knowledge and biases will influence decisions about the boundaries of
that universe, and so there will always be room for disagreement among analysts about what to include.
Including more specifications is not necessarily better. Some analytical decisions are better justified than
others, and including biologically implausible specifications may undermine this process. Regardless,
these powerful methods have yet to be adopted, and even more limited forms of sensitivity analyses are
not particularly widespread. Most studies publish a small set of analyses and so the existing literature
does not provide much insight into the degree to which published results are contingent on analytical
decisions.

Despite the potential major impacts of analytical decisions on variance in results, the outcomes of
different individuals’ data analysis choices have received limited empirical attention. The only formal
exploration of this that we were aware of when we submitted our Stage 1 manuscript were (1) an analysis
in social science that asked whether male professional football (soccer) players with darker skin tone were
more likely to be issued red cards (ejection from the game for rule violation) than players with lighter skin
tone (Silberzahn et al. 2018) and (2) an analysis in neuroimaging which evaluated nine separate
hypotheses involving the neurological responses detected with fMRI in 108 participants divided between
two treatments in a decision making task (Botvinik-Nezer et al. 2020). Several others have been published
since (e.g., Huntington-Klein et al. 2021; Schweinsberg et al. 2021; Breznau et al. 2022; Coretta et al. 2023).
In the red card study, twenty-nine teams designed and implemented analyses of a dataset provided by the
study coordinators (Silberzahn et al. 2018). Analyses were peer reviewed (results blind) by at least two
other participating analysts; a level of scrutiny consistent with standard pre-publication peer review.
Among the final 29 analyses, odds-ratios varied from 0.89 to 2.93, meaning point estimates varied from
having players with lighter skin tones receive more red cards (odds ratio < 1) to a strong effect of players
with darker skin tones receiving more red cards (odds ratio > 1). Twenty of the 29 teams found a
statistically-significant effect in the predicted direction of players with darker skin tones being issued
more red cards. This degree of variation in peer-reviewed analyses from identical data is striking, but the
generality of this finding has only just begun to be formally investigated.

In the neuroimaging study, 70 teams evaluated each of the nine different hypotheses with the available
fMRI data (Botvinik-Nezer et al. 2020). These 70 teams followed a divergent set of workflows that produced
a wide range of results. The rate of reporting of statistically significant support for the nine hypotheses
ranged from 21% to 84%, and for each hypothesis on average, 20% of research teams observed effects
that differed substantially from the majority of other teams. Some of the variability in results among
studies could be explained by analytical decisions such as choice of software package, smoothing
function, and parametric versus non-parametric corrections for multiple comparisons. However,
substantial variability among analyses remained unexplained, and presumably emerged from the many
different decisions each analyst made in their long workflows. Such variability in results among analyses
from this dataset and from the very different red-card dataset suggests that sensitivity of analytical
outcome to analytical choices may characterize many distinct fields, as several more recent many-analyst
studies also suggest (Huntington-Klein et al. 2021; Schweinsberg et al. 2021; Breznau et al. 2022).

To further develop the empirical understanding of the effects of analytical decisions on study outcomes,
we chose to estimate the extent to which researchers’ data analysis choices drive differences in effect
sizes, model predictions, and qualitative conclusions in ecology and evolutionary biology. This is an
important extension of the meta-research agenda of evaluating factors influencing replicability in ecology,
evolutionary biology, and beyond (Fidler et al. 2017). To examine the effects of analytical decisions, we
used two different datasets and recruited researchers to analyze one or the other of these datasets to
answer a question we defined. The first question was “To what extent is the growth of nestling blue tits
(Cyanistes caeruleus) influenced by competition with siblings?” To answer this question, we provided a
dataset that includes brood size manipulations from 332 broods conducted over three years at Wytham
Wood, UK. The second question was “How does grass cover influence Eucalyptus spp. seedling
recruitment?” For this question, analysts used a dataset that includes, among other variables, number of
seedlings in different size classes, percentage cover of different life forms, tree canopy cover, and distance
from canopy edge from 351 quadrats spread among 18 sites in Victoria, Australia.

We explored the impacts of data analysts’ choices with descriptive statistics and with a series of tests to
attempt to explain the variation among effect sizes and predicted values of the dependent variable
produced by the different analysis teams for both datasets separately. To describe the variability, we
present forest plots of the standardized effect sizes and predicted values produced by each of the analysis
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Although variation in effect sizes and predicted values among studies of similar phenomena is inevitable, such
variation far exceeds what might be produced by sampling error alone. One possible explanation for variation
among results is differences among researchers in the decisions they make regarding statistical analyses. A growing
array of studies has explored this analytical variability in different (mostly social science) fields, and has found
substantial variability among results, despite analysts having the same data and research question. We
implemented an analogous study in ecology and evolutionary biology, fields in which there have been no empirical
exploration of the variation in effect sizes or model predictions generated by the analytical decisions of different
researchers. We used two unpublished datasets, one from evolutionary ecology (blue tit, Cyanistes caeruleus, to
compare sibling number and nestling growth) and one from conservation ecology (Eucalyptus, to compare grass
cover and tree seedling recruitment), and the project leaders recruited 174 analyst teams, comprising 246 analysts,
to investigate the answers to prespecified research questions. Analyses conducted by these teams yielded 141
usable effects for the blue tit dataset, and 85 usable effects for the Eucalyptus dataset. We found substantial
heterogeneity among results for both datasets, although the patterns of variation differed between them. For the
blue tit analyses, the average effect was convincingly negative, with less growth for nestlings living with more
siblings, but there was near continuous variation in effect size from large negative effects to effects near zero, and
even effects crossing the traditional threshold of statistical significance in the opposite direction. In contrast, the
average relationship between grass cover and Eucalyptus seedling number was only slightly negative and not
convincingly different from zero, and most effects ranged from weakly negative to weakly positive, with about a third
of effects crossing the traditional threshold of significance in one direction or the other. However, there were also
several striking outliers in the Eucalyptus dataset, with effects far from zero. For both datasets, we found substantial
variation in the variable selection and random effects structures among analyses, as well as in the ratings of the
analytical methods by peer reviewers, but we found no strong relationship between any of these and deviation from
the meta-analytic mean. In other words, analyses with results that were far from the mean were no more or less
likely to have dissimilar variable sets, use random effects in their models, or receive poor peer reviews than those
analyses that found results that were close to the mean. The existence of substantial variability among analysis
outcomes raises important questions about how ecologists and evolutionary biologists should interpret published
results, and how they should conduct analyses in the future.

MODIFIED

ABSTRACT

1 Introduction

https://orcid.org/true
https://orcid.org/0000-0001-5482-242X
https://orcid.org/0000-0003-0460-1420
https://orcid.org/0000-0001-8861-4856
https://orcid.org/0000-0001-9903-8057
https://orcid.org/0000-0003-2106-6597
https://orcid.org/0000-0003-4066-3645
https://orcid.org/0000-0002-9188-9225
https://orcid.org/0000-0003-2398-3671
https://orcid.org/0000-0003-1655-6647
https://orcid.org/0000-0002-5944-0743
https://orcid.org/0000-0002-1724-4293
https://orcid.org/0000-0003-3317-3576
https://orcid.org/0000-0002-9454-7562
https://orcid.org/0000-0003-3968-1280
https://orcid.org/0000-0002-3326-864X
https://orcid.org/0000-0003-1696-4886
https://orcid.org/0000-0001-7882-2467
https://orcid.org/0000-0003-4124-3116
https://orcid.org/0000-0002-1041-5301
https://orcid.org/0000-0002-7473-4301
https://orcid.org/0000-0001-8036-2711
https://orcid.org/0000-0001-5582-9455
https://orcid.org/0000-0001-8820-593X
https://orcid.org/0000-0002-2704-4033
https://orcid.org/0000-0002-5437-0280
https://orcid.org/0000-0002-7568-2507
https://orcid.org/0000-0001-9718-6611
https://orcid.org/0000-0002-2886-0649
https://orcid.org/0000-0003-3308-6552
https://orcid.org/0000-0002-7291-347X
https://orcid.org/0000-0002-5546-5521
https://orcid.org/0000-0003-3234-7335
https://orcid.org/0000-0002-4249-864X
https://orcid.org/0000-0001-5825-6306
https://orcid.org/0000-0002-4136-843X
https://orcid.org/0000-0001-7829-5361
https://orcid.org/0000-0002-6760-9481
https://orcid.org/0000-0003-0361-9522
https://orcid.org/0000-0002-4539-650X
https://orcid.org/0000-0002-7411-5594
https://orcid.org/0000-0001-7886-9302
https://orcid.org/0000-0002-6317-3991
https://orcid.org/0000-0002-3080-3619
https://orcid.org/0000-0003-1991-7102
https://orcid.org/0000-0002-4942-8310
https://orcid.org/0000-0002-1607-2039
https://orcid.org/0000-0002-0815-5037
https://orcid.org/0000-0002-7370-1217
https://orcid.org/0000-0002-2687-6874
https://orcid.org/0000-0003-2405-0945
https://orcid.org/0000-0002-0227-2160
https://orcid.org/0000-0003-1497-7990
https://orcid.org/0000-0003-1268-5513
https://orcid.org/0000-0002-2883-1901
https://orcid.org/0000-0002-0638-1911
https://orcid.org/0000-0001-9826-3076
https://orcid.org/0000-0002-6040-2613
https://orcid.org/true
https://orcid.org/true
https://orcid.org/0000-0003-0336-0450
https://orcid.org/0000-0002-1383-2039
https://orcid.org/0000-0001-9493-9817
https://orcid.org/0000-0001-7692-323X
https://orcid.org/0000-0002-1068-304X
https://orcid.org/0000-0002-5445-9314
https://orcid.org/0000-0002-6441-3598
https://orcid.org/0000-0001-8407-4290
https://orcid.org/0000-0002-0223-7330
https://orcid.org/0000-0002-8471-235X
https://orcid.org/0000-0003-0963-3093
https://orcid.org/0000-0001-9349-4027
https://orcid.org/0000-0002-9670-4920
https://orcid.org/0000-0002-6957-2248
https://orcid.org/0000-0002-4472-5447
https://orcid.org/0000-0002-6957-2248
https://orcid.org/0000-0003-3593-1510
https://orcid.org/0000-0002-7409-2898
https://orcid.org/0000-0002-2448-691X
https://orcid.org/0000-0003-2983-751X
https://orcid.org/0000-0002-4245-3150
https://orcid.org/0000-0002-6160-4735
https://orcid.org/0000-0003-4633-755X
https://orcid.org/0000-0001-7259-6331
https://orcid.org/0000-0003-2862-327X
https://orcid.org/0000-0003-0694-7847
https://orcid.org/0000-0003-1098-9206
https://orcid.org/0000-0001-6863-0824
https://orcid.org/0000-0003-4717-9370
https://orcid.org/0000-0001-7964-923X
https://orcid.org/0000-0001-6343-3311
https://orcid.org/0000-0002-4448-3118
https://orcid.org/0000-0001-8160-2836
https://orcid.org/true
https://orcid.org/0000-0002-1888-1817


present forest plots of the standardized effect sizes and predicted values produced by each of the analysis
teams, estimate heterogeneity (both absolute, , and proportional, ) in effect size and predicted
values among the results produced by these different teams, and calculate a similarity index that
quantifies variability among the predictor variables selected for the different statistical models
constructed by the different analysis teams. These descriptive statistics provide the first estimates of the
extent to which explanatory statistical models and their outcomes in ecology and evolutionary biology
vary based on the decisions of different data analysts. We then quantified the degree to which the
variability in effect size and predicted values could be explained by (1) variation in the quality of analyses
as rated by peer reviewers and (2) the similarity of the choices of predictor variables between individual
analyses.

This project involved a series of steps (1-6) that began with identifying datasets for analyses and
continued through recruiting independent groups of scientists to analyze the data, allowing the scientists
to analyze the data as they saw fit, generating peer review ratings of the analyses (based on methods, not
results), evaluating the variation in effects among the different analyses, and producing the final
manuscript.

We used two previously unpublished datasets, one from evolutionary ecology and the other from ecology
and conservation.

Evolutionary ecology

Our evolutionary ecology dataset is relevant to a sub-discipline of life-history research which focuses on
identifying costs and trade-offs associated with different phenotypic conditions. These data were derived
from a brood-size manipulation experiment imposed on wild birds nesting in boxes provided by
researchers in an intensively studied population. Understanding how the growth of nestlings is influenced
by the numbers of siblings in the nest can give researchers insights into factors such as the evolution of
clutch size, determination of provisioning rates by parents, and optimal levels of sibling competition
(Vander Werf 1992; DeKogel 1997; Royle et al. 1999; Verhulst, Holveck, and Riebel 2006; Nicolaus et al.
2009). Data analysts were provided this dataset and instructed to answer the following question: “To what
extent is the growth of nestling blue tits (Cyanistes caeruleus) influenced by competition with siblings?”

Researchers conducted brood size manipulations and population monitoring of blue tits at Wytham
Wood, a 380 ha woodland in Oxfordshire, U.K (1º 20’W, 51º 47’N). Researchers regularly checked
approximately 1100 artificial nest boxes at the site and monitored the 330 to 450 blue tit pairs occupying
those boxes in 2001-2003 during the experiment. Nearly all birds made only one breeding attempt during
the April to June study period in a given year. At each blue tit nest, researchers recorded the date the first
egg appeared, clutch size, and hatching date. For all chicks alive at age 14 days, researchers measured
mass and tarsus length and fitted a uniquely numbered, British Trust for Ornithology (BTO) aluminium leg
ring. Researchers attempted to capture all adults at their nests between day 6 and day 14 of the chick-
rearing period. For these captured adults, researchers measured mass, tarsus length, and wing length and
fitted a uniquely numbered BTO leg ring. During the 2001-2003 breeding seasons, researchers
manipulated brood sizes using cross fostering. They matched broods for hatching date and brood size and
moved chicks between these paired nests one or two days after hatching. They sought to either enlarge or
reduce all manipulated broods by approximately one fourth. To control for effects of being moved, each
reduced brood had a portion of its brood replaced by chicks from the paired increased brood, and vice
versa. Net manipulations varied from plus or minus four chicks in broods of 12 to 16 to plus or minus one
chick in broods of 4 or 5. Researchers left approximately one third of all broods unmanipulated. These
unmanipulated broods were not selected systematically to match manipulated broods in clutch size or
laying date. We have mass and tarsus length data from 3720 individual chicks divided among 167
experimentally enlarged broods, 165 experimentally reduced broods, and 120 unmanipulated broods. The
full list of variables included in the dataset is publicly available (https://osf.io/hdv8m), along with the data
(https://osf.io/qjzby).

Additional explanation: Shortly after beginning to recruit analysts, several analysts noted a small set of
related errors in the blue tit dataset. We corrected the errors, replaced the dataset on our OSF site, and
emailed the analysts on 19 April 2020 to instruct them to use the revised data. The email to analysts is
available here (https://osf.io/4h53z). The errors are explained in that email.

Ecology and conservation

Our ecology and conservation dataset is relevant to a sub-discipline of conservation research which
focuses on investigating how best to revegetate private land in agricultural landscapes. These data were
collected on private land under the Bush Returns program, an incentive system where participants
entered into a contract with the Goulburn Broken Catchment Management Authority and received annual
payments if they executed predetermined restoration activities. This particular dataset is based on a
passive regeneration initiative, where livestock grazing was removed from the property in the hopes that
the Eucalyptus spp. overstorey would regenerate without active (and expensive) planting. Analyses of
some related data have been published (Miles 2008; Vesk et al. 2016) but those analyses do not address
the question analysts answered in our study. Data analysts were provided this dataset and instructed to
answer the following question: “How does grass cover influence Eucalyptus spp. seedling recruitment?”.

Researchers conducted three rounds of surveys at 18 sites across the Goulburn Broken catchment in
northern Victoria, Australia in winter and spring 2006 and autumn 2007. In each survey period, a different
set of 15 x 15 m quadrats were randomly allocated across each site within 60 m of existing tree canopies.
The number of quadrats at each site depended on the size of the site, ranging from four at smaller sites to
11 at larger sites. The total number of quadrats surveyed across all sites and seasons was 351. The number
of Eucalyptus spp. seedlings was recorded in each quadrat along with information on the GPS location,
aspect, tree canopy cover, distance to tree canopy, and position in the landscape. Ground layer plant
species composition was recorded in three 0.5 x 0.5 m sub-quadrats within each quadrat. Subjective cover
estimates of each species as well as bare ground, litter, rock and moss/lichen/soil crusts were recorded.
Subsequently, this was augmented with information about the precipitation and solar radiation at each
GPS location. The full list of variables included in the dataset is publicly available (https://osf.io/r5gbn),
along with the data (https://osf.io/qz5cu).

The lead team (TP, HF, SN, EG, SG, PV, FF) created a publicly available document providing a general
description of the project (https://osf.io/mn5aj/). The project was advertised at conferences, via Twitter,
using mailing lists for ecological societies (including Ecolog, Evoldir, and lists for the Environmental
Decisions Group, and Transparency in Ecology and Evolution), and via word of mouth. The target
population was active ecology, conservation, or evolutionary biology researchers with a graduate degree
(or currently studying for a graduate degree) in a relevant discipline. Researchers could choose to work
independently or in a small team. For the sake of simplicity, we refer to these as ‘analysis teams’ though
some comprised one individual. We aimed for a minimum of 12 analysis teams independently evaluating
each dataset (see sample size justification below). We simultaneously recruited volunteers to peer review
the analyses conducted by the other volunteers through the same channels. Our goal was to recruit a
similar number of peer reviewers and analysts, and to ask each peer reviewer to review a minimum of four
analyses. If we were unable to recruit at least half the number of reviewers as analysis teams, we planned
to ask analysts to serve also as reviewers (after they had completed their analyses), but this was
unnecessary. All analysts and reviewers were offered the opportunity to share co-authorship on this
manuscript and we planned to invite them to participate in the collaborative process of producing the
final manuscript. All analysts signed [digitally] a consent (ethics) document (https://osf.io/xyp68/)
approved by the Whitman College Institutional Review Board prior to being allowed to participate.

Preregistration Deviation:

Due to the large number of recruited analysts and reviewers and the anticipated challenges of receiving and
integrating feedback from so many authors, we limited analyst and reviewer participation in the production
of the final manuscript to an invitation to call attention to serious problems with the manuscript draft.

We identified our minimum number of analysts per dataset by considering the number of effects needed
in a meta-analysis to generate an estimate of heterogeneity ( ) with a 95% confidence interval that does
not encompass zero. This minimum sample size is invariant regardless of . This is because the same t-
statistic value will be obtained by the same sample size regardless of variance ( ). We see this by first
examining the formula for the standard error, SE for variance, ( ) or SE( ) assuming normality in an
underlying distribution of effect sizes (Knight 2000):

and then rearranging the above formula to show how the t-statistic is independent of , as seen below.

We then find a minimum n = 12 according to this formula.

Analysis teams registered and answered a demographic and expertise survey (https://osf.io/seqzy/). We
then provided them with the dataset of their choice and requested that they answer a specific research
question. For the evolutionary ecology dataset that question was “To what extent is the growth of nestling
blue tits (Cyanistes caeruleus) influenced by competition with siblings?” and for the conservation ecology
dataset it was “How does grass cover influence Eucalyptus spp. seedling recruitment?” Once their analysis
was complete, they answered a structured survey (https://osf.io/neyc7/), providing analysis technique,
explanations of their analytical choices, quantitative results, and a statement describing their conclusions.
They also were asked to upload their analysis files (including the dataset as they formatted it for analysis
and their analysis code [if applicable]) and a detailed journal-ready statistical methods section.

Preregistration Deviation:

We originally planned to have analysts complete a single survey (https://osf.io/neyc7/), but after we
evaluated the results of that survey, we realized we would need a second survey (https://osf.io/8w3v5/) to
adequately collect the information we needed to evaluate heterogeneity of results (step 5). We provided a
set of detailed instructions with the follow-up survey, and these instructions are publicly available and can
be found within the following files (blue tit: https://osf.io/kr2g9, Eucalyptus: https://osf.io/dfvym).

At minimum, each analysis was evaluated by four different reviewers, and each volunteer peer reviewer
was randomly assigned methods sections from at least four analyst teams (the exact number varied). Each
peer reviewer registered and answered a demographic and expertise survey identical to that asked of the
analysts, except we did not ask about ‘team name’ since reviewers did not work in teams. Reviewers
evaluated the methods of each of their assigned analyses one at a time in a sequence determined by the
project leaders. We systematically assigned the sequence so that, if possible, each analysis was allocated
to each position in the sequence for at least one reviewer. For instance, if each reviewer were assigned
four analyses to review, then each analysis would be the first analysis assigned to at least one reviewer,
the second analysis assigned to another reviewer, the third analysis assigned to yet another reviewer, and
the fourth analysis assigned to a fourth reviewer. Balancing the order in which reviewers saw the analyses
controls for order effects, e.g. a reviewer might be less critical of the first methods section they read than
the last.

The process for a single reviewer was as follows. First, the reviewer received a description of the methods
of a single analysis. This included the narrative methods section, the analysis team’s answers to our
survey questions regarding their methods, including analysis code, and the dataset. The reviewer was
then asked, in an online survey (https://osf.io/4t36u/), to rate that analysis on a scale of 0-100 based on
this prompt: “Rate the overall appropriateness of this analysis to answer the research question (one of the
two research questions inserted here) with the available data. To help you calibrate your rating, please
consider the following guidelines:

100. A perfect analysis with no conceivable improvements from the reviewer
75. An imperfect analysis but the needed changes are unlikely to dramatically alter outcomes
50. A flawed analysis likely to produce either an unreliable estimate of the relationship or an over-

precise estimate of uncertainty
25. A flawed analysis likely to produce an unreliable estimate of the relationship and an over-precise

estimate of uncertainty
0. A dangerously misleading analysis, certain to produce both an estimate that is wrong and a

substantially over-precise estimate of uncertainty that places undue confidence in the incorrect
estimate.

*Please note that these values are meant to calibrate your ratings. We welcome ratings of any number
between 0 and 100.”

After providing this rating, the reviewer was presented with this prompt, in multiple-choice format:
“Would the analytical methods presented produce an analysis that is (a) publishable as is, (b) publishable
with minor revision, (c) publishable with major revision, (d) deeply flawed and unpublishable?” The
reviewer was then provided with a series of text boxes and the following prompts: “Please explain your
ratings of this analysis. Please evaluate the choice of statistical analysis type. Please evaluate the process
of choosing variables for and structuring the statistical model. Please evaluate the suitability of the
variables included in (or excluded from) the statistical model. Please evaluate the suitability of the
structure of the statistical model. Please evaluate choices to exclude or not exclude subsets of the data.
Please evaluate any choices to transform data (or, if there were no transformations, but you think there
should have been, please discuss that choice).” After submitting this review, a methods section from a
second analysis was then made available to the reviewer. This same sequence was followed until all
analyses allocated to a given reviewer were provided and reviewed. After providing the final review, the
reviewer was simultaneously provided with all four (or more) methods sections the reviewer had just
completed reviewing, the option to revise their original ratings, and a text box to provide an explanation.
The invitation to revise the original ratings was as follows: “If, now that you have seen all the analyses you
are reviewing, you wish to revise your ratings of any of these analyses, you may do so now.” The text box
was prefaced with this prompt: “Please explain your choice to revise (or not to revise) your ratings.”

Additional explanation: Unregistered analysis.

To determine how consistent peer reviewers were in their ratings, we assessed inter-rater reliability among
reviewers for both the categorical and quantitative ratings combining blue tit and Eucalyptus data using
Krippendorff’s alpha for ordinal and continuous data respectively. This provides a value that is between -1
(total disagreement between reviewers) and 1 (total agreement between reviewers).

The lead team conducted the analyses outlined in this section. We described the variation in model
specification in several ways. We calculated summary statistics describing variation among analyses,
including mean, SD, and range of number of variables per model included as fixed effects, the number of
interaction terms, the number of random effects, and the mean, SD, and range of sample sizes. We also
present the number of analyses in which each variable was included. We summarized the variability in
standardized effect sizes and predicted values of dependent variables among the individual analyses
using standard random effects meta-analytic techniques. First, we derived standardized effect sizes from
each individual analysis. We did this for all linear models or generalized linear models by converting the 
value and the degree of freedom ( ) associated with regression coefficients (e.g. the effect of the number
of siblings [predictor] on growth [response] or the effect of grass cover [predictor] on seedling recruitment
[response]) to the correlation coefficient, , using the following:

This formula can only be applied if  and  values originate from linear or generalized linear models
[GLMs; Shinichi Nakagawa and Cuthill (2007)]. If, instead, linear mixed-effects models (LMMs) or
generalized linear mixed-effects models (GLMMs) were used by a given analysis, the exact  cannot be
estimated. However, adjusted  can be estimated, for example, using the Satterthwaite approximation of

, , [note that SAS uses this approximation to obtain  for LMMs and GLMMs; Luke (2017)]. For
analyses using either LMMs or GLMMs that do not produce  we planned to obtain  by rerunning
the same (G)LMMs using the lmer()  or glmer()  function in the lmerTest package in R (Kuznetsova,
Brockhoff, and Christensen 2017; R Core Team 2022).

Preregistration Deviation:

Rather than re-run these analyses ourselves, we sent a follow-up survey (referenced above under “Primary
data analyses”) to analysts and asked them to follow our instructions for producing this information. The
instructions are publicly available and can be found within the following files (blue tit: https://osf.io/kr2g9,
Eucalyptus: https://osf.io/dfvym).

We then used the  values and  from the models to obtain  as per the formula above. All  and
accompanying  (or ) were converted to  and its sampling variance;  where .
Any analyses from which we could not derive a signed , for instance one with a quadratic function in
which the slope changed sign, were excluded from the analyses of Fisher’s . We expected such analyses
would be rare. In fact, most submitted analyses excluded from our meta-analysis of  were excluded
because of a lack of sufficient information provided by the analyst team rather than due to the use of
effects that could not be converted to . Regardless, as we describe below, we generated a second set of
standardized effects (predicted values) that could (in principle) be derived from any explanatory model
produced by these data.

Besides , which describes the strength of a relationship based on the amount of variation in a
dependent variable explained by variation in an independent variable, we also examined differences in
the shape of the relationship between the independent and dependent variables. To accomplish this, we
derived a point estimate (out-of-sample predicted value) for the dependent variable of interest for each of
three values of our primary independent variable. We originally described these three values as
associated with the 25th percentile, median, and 75th percentile of the independent variable and any
covariates.

Preregistration Deviation: The original description of the out-of-sample specifications did not account for
the facts that (a) some variables are not distributed in a way that allowed division in percentiles and that (b)
variables could be either positively or negatively correlated with the dependent variable. We provide a more
thorough description here: We derived three point-estimates (out-of-sample predicted values) for the
dependent variable of interest; one for each of three values of our primary independent variable that we
specified. We also specified values for all other variables that could have been included as independent
variables in analysts’ models so that we could derive the predicted values from a fully specified version of
any model produced by analysts. For all potential independent variables, we selected three values or
categories. Of the three we selected, one was associated with small, one with intermediate, and one with
large values of one typical dependent variable (day 14 chick weight for the blue tit data and total number of
seedlings for the Eucalyptus data; analysts could select other variables as their dependent variable, but the
others typically correlated with the two identified here). For continuous variables, this means we identified
the 25th percentile, median, and 75th percentile and, if the slope of the linear relationship between this
variable and the typical dependent variable was positive, we left the quartiles ordered as is. If, instead, the
slope was negative, we reversed the order of the independent variable quartiles so that the ‘lower’ quartile
value was the one associated with the lower value for the dependent variable. In the case of categorical
variables, we identified categories associated with the 25th percentile, median, and 75th percentile values
of the typical dependent variable after averaging the values for each category. However, for some
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of the typical dependent variable after averaging the values for each category. However, for some
continuous and categorical predictors, we also made selections based on the principle of internal
consistency between certain related variables, and we fixed a few categorical variables as identical across
all three levels where doing so would simplify the modelling process (specification tables available: blue tit:
https://osf.io/86akx; Eucalyptus: https://osf.io/jh7g5).

We used the 25th and 75th percentiles rather than minimum and maximum values to reduce the chance of
occupying unrealistic parameter space. We planned to derive these predicted values from the model
information provided by the individual analysts. All values (predictions) were first transformed to the
original scale along with their standard errors (SE); we used the delta method (Ver Hoef 2012) for the
transformation of SE. We used the square of the SE associated with predicted values as the sampling
variance in the meta-analyses described below, and we planned to analyze these predicted values in
exactly the same ways as we analyzed  in the following analyses.

Preregistration Deviation: Because analysts of blue tit data chose different dependent variables on
different scales, after transforming out-of-sample values to the original scales, we standardized all values as
z scores (‘standard scores’) to put all dependent variables on the same scale and make them comparable.
This involved taking each relevant value on the original scale (whether a predicted point estimate or a SE
associated with that estimate) and subtracting the value in question from the mean value of that dependent
variable derived from the full dataset and then dividing this difference by the standard deviation, SD,
corresponding to the mean from the full dataset. Thus, all our out-of-sample prediction values from the
blue tit data are from a distribution with the mean of 0 and SD of 1. We did not add this step for the
Eucalyptus data because (a) all responses were on the same scale (counts of Eucalyptus stems) and were
thus comparable and (b) these data, with many zeros and high skew, are poorly suited for z scores.

We plotted individual effect size estimates ( ) and predicted values of the dependent variable ( ) and
their corresponding 95% confidence / credible intervals in forest plots to allow visualization of the range
and precision of effect size and predicted values. Further, we included these estimates in random effects
meta-analyses (Higgins et al. 2003; Borenstein et al. 2017) using the metafor package in R (Viechtbauer
2010; R Core Team 2022):

where  is the predicted value for the dependent variable at the 25th percentile, median, or 75th
percentile of the independent variables. The individual  effect sizes were weighted with the inverse of
sampling variance for . The individual predicted values for dependent variable ( ) were weighted by
the inverse of the associated  (original registration omitted “inverse of the” in error). These analyses
provided an average  score or an average  with corresponding 95% confidence interval and allowed
us to estimate two heterogeneity indices,  and . The former, , is the absolute measure of
heterogeneity or the between-study variance (in our case, between-effect variance) whereas  is a
relative measure of heterogeneity. We obtained the estimate of relative heterogeneity ( ) by dividing the
between-effect variance by the sum of between-effect and within-effect variance (sampling error
variance).  is thus, in a standard meta-analysis, the proportion of variance that is due to heterogeneity
as opposed to sampling error. When calculating , within-study variance is amalgamated across studies
to create a “typical” within-study variance which serves as the sampling error variance (Higgins et al. 2003;
Borenstein et al. 2017). Our goal here was to visualize and quantify the degree of variation among analyses
in effect size estimates (Shinichi Nakagawa and Cuthill 2007). We did not test for statistical significance.

Additional explanation: Our use of  to quantify heterogeneity violates an important assumption, but this
violation does not invalidate our use of  as a metric of how much heterogeneity can derive from analytical
decisions. In standard meta-analysis, the statistic  quantifies the proportion of variance that is greater
than we would expect if differences among estimates were due to sampling error alone (Rosenberg 2013).
However, it is clear that this interpretation does not apply to our value of  because  assumes that each
estimate is based on an independent sample (although these analyses can account for non-independence
via hierarchical modelling), whereas all our effects were derived from largely or entirely overlapping subsets
of the same dataset. Despite this, we believe that  remains a useful statistic for our purposes. This is
because, in calculating , we are still setting a benchmark of expected variation due to sampling error
based on the variance associated with each separate effect size estimate, and we are assessing how much (if
it all) the variability among our effect sizes exceeds what would be expected had our effect sizes been based
on independent data. In other words, our estimates can tell us how much proportional heterogeneity is
possible from analytical decisions alone when sample sizes (and therefore meta-analytic within-estimate
variance) are similar to the ones in our analyses. Among other implications, our violation of the
independent sample assumption means that we (dramatically) over-estimate the variance expected due to
sampling error, and because  is a proportional estimate, we thus underestimate the actual proportion of
variance due to differences among analyses other than sampling error. However, correcting this
underestimation would create a trivial value since we designed the study so that much of the variance
would derive from analytic decisions as opposed to differences in sampled data. Instead, retaining the 
value as typically calculated provides a useful comparison to  values from typical meta-analyses.

Interpretation of  also differs somewhat from traditional meta-analysis, and we discuss this further in the
Results.

Finally, we assessed the extent to which deviations from the meta-analytic mean by individual effect sizes
( ) or the predicted values of the dependent variable ( ) were explained by the peer rating of each
analysis team’s method section, by a measurement of the distinctiveness of the set of predictor variables
included in each analysis, and by the choice of whether or not to include random effects in the model. The
deviation score, which served as the dependent variable in these analyses, is the absolute value of the
difference between the meta-analytic mean  (or ) and the individual  (or ) estimate for each
analysis. We used the Box-Cox transformation on the absolute values of deviation scores to achieve an
approximately normal distribution (c.f. Fanelli and Ioannidis 2013; Fanelli, Costas, and Ioannidis 2017 :
supplement). We described variation in this dependent variable with both a series of univariate analyses
and a multivariate analysis. All these analyses were general linear (mixed) models. These analyses were
secondary to our estimation of variation in effect sizes described above. We wished to quantify
relationships among variables, but we had no a priori expectation of effect size and made no dichotomous
decisions about statistical significance.

When examining the extent to which reviewer ratings (on a scale from 0 to 100) explained deviation from
the average effect (or predicted value), each analysis had been rated by multiple peer reviewers, so for
each reviewer score to be included, we include each deviation score in the analysis multiple times. To
account for the non-independence of multiple ratings of the same analysis, we planned to include
analysis identity as a random effect in our general linear mixed model in the lme4 package in R (Bates et
al. 2015; R Core Team 2022). To account for potential differences among reviewers in their scoring of
analyses, we also planned to include reviewer identity as a random effect:

Where  is the deviation from the meta-analytic mean for the jth analysis, by the
ith reviewer,  is the random intercept assigned to each i reviewer, and  is
the random intercept assigned to each j analysis, both of which are assumed to be normally distributed
with a mean of 0 and a variance of . Absolute deviation scores were Box-Cox transformed using the
step_box_cox()  function from the timetk package in R (Dancho and Vaughan 2023; R Core Team 2022).

We conducted a similar analysis with the four categories of reviewer ratings ((1) deeply flawed and
unpublishable, (2) publishable with major revision, (3) publishable with minor revision, (4) publishable as
is) set as ordinal predictors numbered as shown here. As with the analyses above, we planned for these
analyses to also include random effects of analysis identity and reviewer identity. Both of these analyses
(1: 1-100 ratings as the fixed effect, 2: categorical ratings as the fixed effects) were planned to be
conducted eight times for each dataset. Each of the four responses ( , , , ) were to be
compared once to the initial ratings provided by the peer reviewers, and again based on the revised
ratings provided by the peer reviewers.

Preregistration Deviation:

1. We planned to include random effects of both analysis identity and reviewer identity in these models
comparing reviewer ratings with deviation scores. However, after we received the analyses, we
discovered that a subset of analyst teams had either conducted multiple analyses and/or identified
multiple effects per analysis as answering the target question. We therefore faced an even more
complex potential set of random effects. We decided that including team ID, analysis ID, and effect ID
along with reviewer ID as random effects in the same model would almost certainly lead to model fit
problems, and so we started with simpler models including just effect ID and reviewer ID. However,
even with this simpler structure, our dataset was sparse, with reviewers rating a small number of
analyses, resulting in models with singular fit (Section C.2). Removing one of the random effects was
necessary for the models to converge. The models that included the categorical quality rating
converged when including reviewer ID, and the models that included the continuous quality rating
converged when including effect ID.

2. We conducted analyses only with the final peer ratings after the opportunity for revision, not with the
initial ratings. This was because when we recorded the final ratings, they over-wrote the initial ratings,
and so we did not have access to those initial values.

The next set of univariate analyses sought to explain deviations from the mean effects based on a measure
of the distinctiveness of the set of variables included in each analysis. As a ‘distinctiveness’ score, we used
Sorensen’s Similarity Index (an index typically used to compare species composition across sites), treating
variables as species and individual analyses as sites. To generate an individual Sorensen’s value for each
analysis required calculating the pairwise Sorensen’s value for all pairs of analyses (of the same dataset),
and then taking the average across these Sorensen’s values for each analysis. We calculated the
Sorensen’s index values using the betapart package (Baselga et al. 2023) in R:

where  is the number of variables common to both analyses,  is the number of variables that occur in
the first analysis but not in the second and  is the number of variables that occur in the second analysis.
We then used the per-model average Sorensen’s index value as an independent variable to predict the
deviation score in a general linear model, and included no random effect since each analysis is included
only once, in R (R Core Team 2022):

Additional explanation:

When we planned this analysis, we anticipated that analysts would identify a single primary effect from
each model, so that each model would appear in the analysis only once. Our expecation was incorrect
because some analysts identified >1 effect per analysis, but we still chose to specify our model as registered
and not use a random effect. This is because most models produced only one effect and so we expected
that specifying a random effect to account for the few cases where >1 effect was included for a given model
would prevent model convergence.

Note that this analysis contrasts with the analyses in which we used reviewer ratings as predictors because
in the analyses with reviewer ratings, each effect appeared in the analysis approximately four times due to
multiple reviews of each analysis, and so it was much more important to account for that variance through
a random effect.

Finally, we conducted a multivariate analysis with the five predictors described above (peer ratings 0-100
and peer ratings of publishability 1-4; both original and revised and Sorensen’s index, plus a sixth,
presence /absence of random effects) with random effects of analysis identity and reviewer identity in the
lme4 package in R (Bates et al. 2015; R Core Team 2022). We had stated here in the text that we would use
only the revised (final) peer ratings in this analysis, so the absence of the initial ratings is not a deviation
from our plan:

We conducted all the analyses described above eight times; for each of the four responses ( , ,
, ) one time for each of the two datasets.

We have publicly archived all relevant data, code, and materials on the Open Science Framework
(https://osf.io/mn5aj/). Archived data includes the original datasets distributed to all analysts, any edited
versions of the data analyzed by individual groups, and the data we analyzed with our meta-analyses,
which include the effect sizes derived from separate analyses, the statistics describing variation in model
structure among analyst groups, and the anonymized answers to our surveys of analysts and peer
reviewers. Similarly, we have archived both the analysis code used for each individual analysis (where
available) and the code from our meta-analyses. We have also archived copies of our survey instruments
from analysts and peer reviewers.

Our rules for excluding data from our study were as follows. We excluded from our synthesis any
individual analysis submitted after we had completed peer review or those unaccompanied by analysis
files that allow us to understand what the analysts did. We also excluded any individual analysis that did
not produce an outcome that could be interpreted as an answer to our primary question (as posed above)
for the respective dataset. For instance, this means that in the case of the data on blue tit chick growth, we
excluded any analysis that did not include something that can be interpreted as growth or size as a
dependent (response) variable, and in the case of the Eucalyptus establishment data, we excluded any
analysis that did not include a measure of grass cover among the independent (predictor) variables. Also,
as described above, any analysis that could not produce an effect that could be converted to a signed 
was excluded from analyses of .

Preregistration Deviation:

Some analysts had difficulty implementing our instructions to derive the out-of-sample predictions, and in
some cases (especially for the Eucalyptus data), they submitted predictions with implausibly extreme
values. We believed these values were incorrect and thus made the conservative decision to exclude out-of-
sample predictions where the estimates were > 3 standard deviations from the mean value from the full
dataset.

Additional explanation: We conducted several unregistered analyses.

1. Evaluating model fit.

We evaluated all fitted models using the performance()  function from the performance package (Lüdecke
et al. 2021) and the glance()  function from the broom.mixed package (Bolker et al. 2022). For all models,
we calculated the square root of the residual variance (Sigma) and the root mean squared error (RMSE). For
GLMMs performance()  calculates the marginal and conditional  values as well as the contribution of
random effects (ICC), based on Nakagawa et al. (2017). The conditional  accounts for both the fixed and
random effects, while the marginal  considers only the variance of the fixed effects. The contribution of
random effects is obtained by subtracting the marginal  from the conditional .

2. Exploring outliers and analysis quality.

After seeing the forest plots of  values and noticing the existence of a small number of extreme outliers,
especially from the Eucalyptus analyses, we wanted to understand the degree to which our heterogeneity
estimates were influenced by these outliers. To explore this question, we removed the highest two and
lowest two values of  in each dataset and re-calculated our heterogeneity estimates.

To help understand the possible role of the quality of analyses in driving the heterogeneity we observed
among estimates of , we recalculated our heterogeneity estimates after removing all effects from analysis
teams that had received at least one rating of “Deeply Flawed and Unpublishable” and then again after
removing all effects from analysis teams with at least one rating of either “Deeply Flawed and
Unpublishable” or “Publishable with Major Revisions”. We did not do this for out-of-sample estimates
because of our smaller sample.

3. Exploring possible impacts of lower quality estimates of degrees of freedom.

Our meta-analyses of variation in  required variance estimates derived from estimates of the degrees of
freedom in original analyses from which  estimates were derived. While processing the estimates of
degrees of freedom submitted by analysts, we identified a subset of these estimates in which we had lower
confidence because two or more effects from the same analysis were submitted with identical degrees of
freedom. We therefore conducted a second set of (more conservative) meta-analyses that excluded these

 estimates with identical estimates of degrees of freedom and we present these analyses in the
supplement.

We planned for analysts and initiating authors to discuss the limitations, results, and implications of the
study and collaborate on writing the final manuscript for review as a stage-2 Registered Report.

Preregistration Deviation: As described above, due to the large number of recruited analysts and
reviewers and the anticipated challenges of receiving and integrating feedback from so many authors, we
limited analyst and reviewer participation in the production of the final manuscript to an invitation to call
attention to serious problems with the manuscript draft.

All data cleaning and preparation for our analyses was conducted in R (R Core Team 2022) and is publicly
archived at (We will insert link to GitHub repo / Zenodo when coding complete). Please see Section 4.1 for
the full list of packages and their citations used in our analysis pipeline.

We built an R package, ManyAnalysts to conduct the analyses described in this chapter (We will insert link
to GitHub repo / Zenodo when coding complete). This same package can be used to reproduce our
analyses or replicate the analyses described here using alternate datasets. The full suite of analyses we
conducted is completely reproducible and can be reproduced and queried using (WE WILL INSERT LINK
TO BINDR when coding complete).

We obtained permission to conduct this research from the Whitman College Institutional Review Board
(IRB). As part of this permission, the IRB approved the consent form (https://osf.io/xyp68/) that all
participants completed prior to joining the study. The authors declare that they have no competing
interests.

In total, 174 analyst teams, comprising 246 analysts, contributed 182 usable analyses of the two datasets
examined in this study which yielded 215 effects. Analysts produced 135 distinct effects that met our
criteria for inclusion in at least one of our meta-analyses for the blue tit dataset. Analysts produced 81
distinct effects meeting our criteria for inclusion for the Eucalyptus dataset. Excluded analyses and effects
either did not answer our specified biological questions, were submitted with insufficient information for
inclusion in our meta-analyses, or were incompatible with production of our effect size(s). We expected
this final scenario (incompatible analyses), for instance we cannot extract a  from random forest
models, which is why we analyzed two distinct types of effects,  and out-of-sample. Effects included in
only a subset of our meta-analyses provided sufficient information for inclusion in only that subset (see
Table A.1). For both datasets, most submitted analyses incorporated mixed effects. Submitted analyses of
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Table A.1). For both datasets, most submitted analyses incorporated mixed effects. Submitted analyses of
the blue tit dataset typically specified normal error and analyses of the Eucalyptus dataset typically
specified a non-normal error distribution (Table A.1).

For both datasets, the composition of models varied substantially in regards to the number of fixed and
random effects, interaction terms, and the number of data points used, and these patterns differed
somewhat between the blue tit and Eucalyptus analyses (See Table A.2). Focussing on the models
included in the  analyses (because this is the larger sample), blue tit models included a similar number
of fixed effects on average (mean 5.2  2.92 SD) as Eucalyptus models (mean 5.01  3.83 SD), but the
standard deviation in number of fixed effects was somewhat larger in the Eucalyptus models. The average
number of interaction terms was much larger for the blue tit models (mean 0.44  1.11 SD) than for the
Eucalyptus models (mean 0.16  0.65 SD), but still under 0.5 for both, indicating that most models did not
contain interaction terms. Blue tit models also contained more random effects (mean 3.53  2.08 SD) than
Eucalyptus models (mean 1.41  1.09 SD). The maximum possible sample size in the blue tit dataset (3720
nestlings) was an order of magnitude larger than the maximum possible in the Eucalyptus dataset (351
plots), and the means and standard deviations of the sample size used to derive the effects eligible for our
study were also an order of magnitude greater for the blue tit dataset (mean 2622.07  939.28 SD) relative
to the Eucalyptus models (mean 298.43  106.25 SD). However, the standard deviation in sample size
from the Eucalyptus models was heavily influenced by a few cases of dramatic sub-setting (described
below). Approximately three quarters of Eucalyptus models used sample sizes within 3% of the maximum.
In contrast, fewer than 20% of blue tit models relied on sample sizes within 3% of the maximum, and
approximately 50% of blue tit models relied on sample sizes 29% or more below the maximum.

Analysts provided qualitative descriptions of the conclusions of their analyses. Each analysis team
provided one conclusion per dataset. These conclusions could take into account the results of any formal
analyses completed by the team as well as exploratory and visual analyses of the data. Here we
summarize all qualitative responses, regardless of whether we had sufficient information to use the
corresponding model results in our quantitative analyses below. We classified these conclusions into the
categories summarized below (Table 3.1):

Mixed: some evidence supporting a positive effect, some evidence supporting a negative effect

Conclusive negative: negative relationship described without caveat

Qualified negative: negative relationship but only in certain circumstances or where analysts express
uncertainty in their result

Conclusive none: analysts interpret the results as conclusive of no effect

None qualified: analysts describe finding no evidence of a relationship but they describe the potential for
an undetected effect

Qualified positive: positive relationship described but only in certain circumstances or where analysts
express uncertainty in their result

Conclusive positive: positive relationship described without caveat

For the blue tit dataset, most analysts concluded that there was negative relationship between measures
of sibling competition and nestling growth, though half the teams expressed qualifications or described
effects as mixed or absent. For the Eucalyptus dataset, there was a broader spread of conclusions with at
least one analyst team providing conclusions consistent with each conclusion category. The most
common conclusion for the Eucalyptus dataset was that there was no relationship between grass cover
and Eucalyptus recruitment (either conclusive or qualified description of no relationship), but more than
half the teams concluded that there were effects; negative, positive, or mixed.

Although the majority (111 of 132) of the usable  effects from the blue tit dataset found nestling growth
decreased with sibling competition, and the meta-analytic mean  (Fisher’s transformation of the
correlation coefficient) was convincingly negative (-0.35  0.06 95% CI), there was substantial variability
in the strength and the direction of this effect.  ranged approximately continuously from -1.55 to 0.38, (
Figure 3.1 (a) and Table 3.4) and of the 111 effects with negative slopes, 92 had confidence intervals
exluding 0. Of the 20 with positive slopes indicating increased nestling growth in the presence of more
siblings, 3 had confidence intervals excluding zero (Figure 3.1 A).

Meta-analysis of the Eucalyptus dataset also showed substantial variability in the strength of effects as
measured by , and unlike with the blue tits, a notable lack of consistency in the direction of effects
(Figure 3.1 (b), Table 3.4).  ranged from -4.47 (Figure A.2), indicating a strong tendency for reduced
Eucalyptus seedling success as grass cover increased, to 0.39, indicating the opposite. Although the range
of reported effects skewed strongly negative, this was due to a small number of substantial outliers. Most
values of  were relatively small with values < |0.2| and the meta-analytic mean effect size was close to
zero (-0.09  0.12 95% CI). Of the 79 effects, fifty-three had confidence intervals overlapping zero,
approximately a quarter (fifteen) crossed the traditional threshold of statistical significance indicating a
negative relationship between grass cover and seedling success, and eleven crossed the significance
threshold indicating a positive relationship between grass cover and seedling success (Figure 3.1 (b)).

As with the effect size , we observed substantial variability in the size of out-of-sample predictions
derived from the analysts’ models. Blue tit predictions (Figure 3.2), which were z-score-standardised to
accommodate the use of different response variables, always ranged far in excess of one standard
deviation. In the  scenario, model predictions ranged from -1.85 to 0.42 (a range of 2.68 standard
deviations), in the  they ranged from -0.53 to 1.11 (a range of 1.63 standard deviations), and in the 
scenario they ranged from -0.03 to 1.57 (a range of 1.9 standard deviations). As should be expected given
the existence of both negative and positive  values, all three out-of-sample scenarios produced both
negative and positive predictions, although as with the  values, there is a clear trend for scenarios with
more siblings to be associated with smaller nestlings. This is supported by the meta-analytic means of
these three sets of predictions which were -0.66 (95% CI -0.82–0.5) for the , 0.34 (95% CI 0.2-0.48) for
the , and 0.67 (95% CI 0.57-0.77) for the .

Eucalyptus out-of-sample predictions also varied substantially (Figure 3.3), but because they were not z-
score-standardised and are instead on the original count scale, the types of interpretations we can make
differ. The predicted Eucalyptus seedling counts per 15 x 15 m plot for the  scenario ranged from 0.04
to 33.66, for the  scenario ranged from 0.03 to 13.02, and for the  scenario they ranged from 0.05 to
21.93. The meta-analytic mean predictions for these three scenarios were similar; 0.58 (95% CI 0.21-1.37)
for the , 0.92 (95% CI 0.36-1.65) for the , and 1.67 (95% CI 0.8-2.83) for the  scenarios
respectively.

We quantified both absolute ( ) and relative ( ) heterogeneity resulting from analytical variation. Both
measures suggest that substantial variability among effect sizes was attributable to the analytical
decisions of analysts.

The total absolute level of variance beyond what would typically be expected due to sampling error, 
(Table 3.2), among all usable blue tit effects was 0.088 and for Eucalyptus effects was 0.267. This is similar
to or exceeding the median value (0.105) of  found across 31 recent meta-analyses (calculated from the
data in Yang et al. 2023). The similarity of our observed values to values from meta-analyses of different
studies based on different data suggest the potential for a large portion of heterogeneity to arise from
analytical decisions. For further discussion of interpretation of  in our study, please consult discussion
of post hoc analyses below.
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Figure 3.2: Forest plot of meta-analytic estimated standardized (z-score) blue tit out-of-sample predictions, .
Circles represent individual estimates. Triangles represent the meta-analytic mean for each prediction scenario.
Dark-blue points correspond to  scenario, medium-blue points correspond to the  scenario, while light blue
points correspond to the  scenario. Error bars are 95% confidence intervals.
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Figure 3.3: Forest plot of meta-analytic estimated Eucalyptus out-of-sample predictions, , on the response-scale
(stems counts). Circles represent individual estimates. Triangles represent the meta-analytic mean for each
prediction scenario. Dark-blue points correspond to  scenario, medium-blue points correspond to the 
scenario, while light blue points correspond to the  scenario. Error bars are 95% confidence intervals. Outliers
(observations more than 3SD above the mean) have been removed prior to model fitting and do not appear on this
figure. x-axis is truncated to approx. 40, and thus some error bars are incomplete. See Figure B.4 for full figure.
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3.3 Quantifying Heterogeneity
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Table 3.2:
Heterogeneity in the estimated effects Z  for meta-analyses of the full dataset, as well as

from post hoc analyses including the dataset with outliers removed, the dataset excluding
effects from analysis teams with at least one “unpublishable” rating, or the dataset excluding
effects from analysis teams with at least one “major revisions” rating or worse. τ  is the
absolute heterogeneity for the random effect Team , τ  is the absolute heterogeneity

for the random effect EffectID , nested under Team , and τ  is the total absolute
heterogeneity. I  is the proportional heterogeneity; the proportion of the variance among

effects not attributable to sampling error, I  is the subset of the proportional
heterogeneity due to differences among Teams  and I  is subset of the

proportional heterogeneity attributable to among- EffectID  differences.
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Table 3.1:
Tallies of analysts’ qualitative answers to the research questions addressed by their analyses.

Dataset Mixed
Negative

Conclusive
Negative
Qualified

None
Conclusive

None
Qualified

Positive
Qualified

Positive
Conclusive

blue tit 5 37 27 4 1 0 0

Eucalyptus 8 6 12 19 12 4 2

Figure 3.1: Forest plots of meta-analytic estimated standardized effect sizes ( , blue circles) and their 95% confidence
intervals for each effect size included in the meta-analysis model. The meta-analytic mean effect size is denoted by a
black triangle and a dashed vertical line, with error bars also representing the 95% confidence interval. The solid black
vertical line demarcates effect size of 0, indicating no relationship between the test variable and the response variable.
Note that the Eucalyptus plot omits one extreme outlier with the value of -4.47 (Figure A.2) in order to standardize the x-
axes on these two panels.

(a) Blue tit analyses: Points where  are less than 0 indicate analyses that found a negative relationship between sibling
number and nestling growth.
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(b) Eucalyptus analyses: Points where  are less than 0 indicate a negative relationship between grass cover and
Eucalyptus seedling success.
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In our analyses,  is a plausible index of how much more variability among effect sizes we have
observed, as a proportion, than we would have observed if sampling error were driving variability. We
discuss our interpretation of  further in the methods, but in short, it is a useful metric for comparison to
values from published meta-analyses and provides a plausible value for how much heterogeneity could
arise in a normal meta-analysis with similar sample sizes due to analytical variability alone. In our study,
total  for the blue tit  estimates was extremely large, at 97.73%, as was the Eucalyptus estimate
(98.59% Table 3.2).

Although the overall  values were similar for both Eucalyptus and blue tit analyses, the relative
composition of that heterogeneity differed. For both datasets, the majority of heterogeneity in  was
driven by differences among effects as opposed to differences among teams, though this was more
prominent for the Eucalyptus dataset, where nearly all of the total heterogeneity was driven by differences
among effects (91.71%) as opposed to differences among teams (6.88%) (Table 3.2).

We observed substantial heterogeneity among out-of-sample estimates, but the pattern differed
somewhat from the  values (Table 3.3). Among the blue tit predictions,  ranged from medium-high
for the  scenario (68.2) to low (27.73) for the  scenario. Among the Eucalyptus predictions,  values
were uniformly high (>82%). For both datasets, most of the existing heterogeneity among predicted values
was attributable to among-team differences, with the exception of the  analysis of the Eucalyptus
dataset. We are limited in our interpretation of  for these estimates because, unlike for the 
estimates, we have no benchmark for comparison with other meta-analyses.

The outlier Eucalyptus  values were striking and merited special examination. The three negative
outliers had very low sample sizes were based on either small subsets of the dataset or, in one case,
extreme aggregation of data. The outliers associated with small subsets had sample sizes (  117, 90)
that were less than half of the total possible sample size of 351. The case of extreme aggregation involved
averaging all values within each of the 18 sites in the dataset.

Surprisingly, both the largest and smallest effect sizes in the blue tit analyses (Figure 3.1 (a)) come from
the same analyst (anonymous ID: Adelong), with identical models in terms of the explanatory variable
structure, but with different response variables. However, the radical change in effect was primarily due to
collinearity with covariates. The primary predictor variable (brood count after manipulation) was
accompanied by several collinear variables, including the highly collinear (correlation of approximately
0.9 (Figure D.2)) covariate (brood size at day 14) in both analyses. In the analysis of nestling weight, brood
count after manipulation showed a strong positive partial correlation with weight after controlling for
brood count at day 14 and treatment category (increased, decreased, unmanipulated). In that same
analysis, the most collinear covariate (the day 14 count) had a negative partial correlation with weight. In
the analysis with tarsus length as the response variable, these partial correlations were almost identical in
absolute magnitude, but reversed in sign and so brood count after manipulation was now the collinear
predictor with the negative relationship. The two models were therefore very similar, but the two collinear
predictors simply switched roles, presumably because a subtle difference in the distribution of weight and
tarsus length data.

When we dropped the Eucalyptus outliers,  decreased from high (98.59%), using Higgins’ (Higgins et al.
2003) suggested benchmark, to between moderate and high (66.19%, Table 3.2). However, more notably,

 dropped from 0.27 to 0.01, indicating that, once outliers were excluded, the observed variation in
effects was similar to what we would expect if sampling error were driving the differences among effects
(since  is the variance in addition to that driven by sampling error). The interpretation of this value of 
in the context of our many-analyst study is somewhat different than a typical meta-analysis, however,
since in our study (especially for Eucalyptus, where most analyses used almost exactly the same data
points), there is almost no role for sampling error in driving the observed differences among the
estimates. Thus, rather than concluding that the variability we observed among estimates (after removing
outliers) was due only to sampling error (because  became small: 10% of the median from Yang et al.
2023), we instead conclude that the observed variability, which must be due to the divergent choices of
analysts rather than sampling error, is approximately of the same magnitude as what we would have
expected if, instead, sampling error, and not analytical heterogeneity, were at work. Presumably, if
sampling error had actually also been at work, it would have acted as an additional source of variability
and would have led total variability among estimates to be higher. With total variability higher and thus
greater than expected due to sampling error alone,  would have been noticeably larger. Conversely,
dropping outliers from the set of blue tit effects did not meaningfully reduce  , and only modestly
reduced  (Table 3.2). Thus, effects at the extremes of the distribution were much stronger contributors
to total heterogeneity for effects from analyses of the Eucalyptus than for the blue tit dataset.

We did not conduct these post hoc analyses on the out-of-sample predictions as the number of eligible
effects was smaller and the pattern of outliers differed.

Removing poorly rated analyses had limited impact on the meta-analytic means (Figure B.3). For the
Eucalyptus dataset, the meta-analytic mean shifted from -0.09 to -0.02 when effects from analyses rated as
unpublishable were removed, and to -0.04 when effects from analyses rated, at least once, as
unpublishable or requiring major revisions were removed. Further, the confidence intervals for all of these
means overlapped each of the other means (Table 3.4). We saw similar patterns for the blue tit dataset,
with only small shifts in the meta-analytic mean, and confidence intervals of all three means overlapping
each other mean (Table 3.4). Refitting the meta-analysis with a fixed effect for categorical ratings also
showed no indication of differences in group meta-analytic means due to peer ratings (Figure B.1).

For the blue tit dataset, removing poorly-rated analyses led to only negligible changes in  and
relatively minor impacts on  . However, for the Eucalyptus dataset, removing poorly-rated analyses led
to notable reductions in  and substantial reductions in . When including all analyses, the
Eucalyptus  was 98.59% and  was 0.27, but eliminating analyses with ratings of “unpublishable”
reduced  to 79.74% and  to 0.01, and removing also those analyses “needing major revisions” left

 at 88.91% and  at 0.03 (Table 3.2). Additionally, the allocations of  to the team versus individual
effect were altered for both blue tit and Eucalyptus meta-analyses by removing poorly rated analyses, but
in different ways. For blue tit meta-analysis, between a third and two-thirds of the total  was
attributable to among-team variance in most analyses until both analyses rated “unpublishable” and
analyses rated in need of “major revision” were eliminated, in which case almost all remaining
heterogeneity was attributable to among-effect differences. In contrast, for Eucalyptus meta-analysis, the
among-team component of  was less than third until both analyses rated “unpublishable” and analyses
rated in need of “major revision” were eliminated, in which case almost 90% of heterogeneity was
attributable to differences among teams.

We did not conduct these post hoc analyses on the out-of-sample predictions as the number of eligible
effects was smaller and our ability to interpret heterogeneity values for these analyses was limited.

As described in our addendum to the methods, we identified a subset of estimates of  in which we had
less confidence because of features of the submitted degrees of freedom. Excluding these effects in which
we had lower confidence had minimal impact on the meta-analytic mean and the estimates of total 
and  for both blue tit and Eucalyptus meta-analyses, regardless of whether outliers were also excluded
(Table B.1).

None of the pre-registered predictors explained substantial variation in deviation among submitted
statistical effects from the meta-analytic mean (Table 3.5, Table 3.6). Note that the extremely high

 values from the analyses of continuous peer ratings as predictors of deviation scores are a

function of the random effects, not the fixed effect of interest. These high values of the  result

from the fact that each effect size was included in the analysis multiple times, to allow comparison with
ratings from the multiple peer reviewers who reviewed each analysis, and therefore when we included
effect ID as a random effect, the observations within each random effect category were identical.

All analyses

blue tit 0.09 0.04 0.05 97.732% 40.11% 57.63% 131

Eucalyptus 0.27 0.02 0.25 98.589% 6.88% 91.71% 79

All analyses, Outliers Removed

blue tit 0.07 0.05 0.02 97.030% 66.90% 30.13% 127

Eucalyptus 0.01 0.00 0.01 66.193% 19.27% 46.93% 75

Analyses receiving at least one 'Unpublishable' rating removed

blue tit 0.08 0.03 0.05 97.601% 38.10% 59.50% 109

Eucalyptus 0.01 0.01 0.01 79.741% 28.32% 51.42% 55

Analyses receiving at least one 'Unpublishable' and or 'Major Revisions' rating removed

blue tit 0.14 0.01 0.13 98.718% 5.17% 93.55% 32

Eucalyptus 0.03 0.03 0.00 88.915% 88.91% 0.00% 13
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Table 3.3:
Heterogeneity among the out-of-sample predictions y  for both blue tit and Eucalyptus datasets.
τ  is the absolute heterogeneity for the random effect Team , τ  is the absolute
heterogeneity for the random effect EffectID , nested under Team , and τ  is the total

absolute heterogeneity. I  is the proportional heterogeneity; the proportion of the variance
among effects not attributable to sampling error, I  is the subset of the proportional

heterogeneity due to differences among Teams  and I  is subset of the proportional
heterogeneity attributable to among- EffectID  differences.

Prediction Scenario

blue tit

y25 62 0.14 0.11 0.03 68.20% 51.72% 16.48%

y50 59 0.07 0.06 0.00 49.95% 46.23% 3.71%

y75 62 0.02 0.02 0.00 27.73% 25.95% 1.78%

Eucalyptus

y25 22 3.05 1.95 1.10 88.76% 56.76% 32.00%

y50 24 1.61 0.53 1.08 83.26% 27.52% 55.73%

y75 24 1.69 1.41 0.28 79.76% 66.52% 13.25%
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3.4 Post-hoc Analysis: Exploring outlier characteristics
and the effect of outlier removal on heterogeneity
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Table 3.4:
Estimated mean value of the standardised correlation coefficient, Z , along with its standard

error and 95% confidence intervals. We re-computed the meta-analysis for different post-hoc
subsets of the data: All eligible effects, removal of effects from analysis teams that received at

least one peer rating of ‘Deeply Flawed and Unpublishable’, removal of any effects from
analysis teams that received at least one peer rating of either ‘Deeply Flawed and

Unpublishable’ or ‘Publishable with Major Revisions’.

Dataset 95%CI statistic p-value

All analyses -

blue tit −0.35 0.03 [−0.41,−0.28] −10.49 <0.001

Eucalyptus −0.09 0.06 [−0.22,0.03] −1.47 0.14

Analyses receiving at least one 'Unpublishable' rating removed -

blue tit −0.36 0.03 [−0.43,−0.29] −10.49 <0.001

Eucalyptus −0.02 0.02 [−0.07,0.02] −1.15 0.3

Analyses receiving at least one 'Unpublishable' and or 'Major Revisions' rating removed -

blue tit −0.37 0.07 [−0.51,−0.23] −5.34 <0.001

Eucalyptus −0.04 0.05 [−0.15,0.07] −0.77 0.4

All analyses - outliers removed

blue tit −0.35 0.03 [−0.42,−0.29] −10.95 <0.001

Eucalyptus −0.03 0.01 [−0.06,0.00] −2.23 0.026

r

µ̂ SE[µ̂]

Out-of-sample predictions ( )y

i

3.5 Post-hoc analysis: Exploring the effect of removing
analyses with poor peer ratings on heterogeneity
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3.6 Post-hoc analysis: Exploring the effect of excluding
estimates of  in which we had reduced confidenceZ
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3.7 Explaining Variation in Deviation Scores
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Table 3.6:
Parameter estimates from models of Box-Cox transformed deviation scores as a function of continuous and

categorical peer ratings, Sorensen scores, and the inclusion of random effects. Standard Errors (SE), 95%
confidence intervals (95%CI) are reported for all estimates, while t values, degrees of freedom and p-values are

presented for fixed-effects. Note that positive parameter estimates mean that as the predictor variable increases,
so does the absolute value of the deviation from the meta-analytic mean.

Parameter Effects Group Coefficient SE 95%CI t df p

Deviation explained by inclusion of random effects - Eucalyptus

(Intercept) -2.53 0.27 [-3.06,-1.99] -9.31 77 <0.001

Mixed model 0.00 0.31 [-0.60, 0.60] 0.00 77 >0.9

Deviation explained by Sorensen’s index - Eucalyptus

(Intercept) -2.75 1.07 [-4.85,-0.65] -2.57 70 0.010

Mean Sorensen's index 0.29 1.54 [-2.74, 3.32] 0.19 70 0.9

Deviation explained by Sorensen’s index - blue tit

(Intercept) -1.56 0.38 [-2.30,-0.82] -4.12 122 <0.001

Mean Sorensen's index 0.23 0.63 [-1.00, 1.46] 0.37 122 0.7

Deviation explained by continuous ratings - Eucalyptus

(Intercept) fixed -2.52 0.06 [-2.63,-2.40] -43.10 342 <0.001

RateAnalysis fixed -3e-16 3e-
10

[-5e-10,5e-
10]

-1e-
06 342 >0.9

SD (Intercept) random Effect ID 0.53 0.04 [ 0.45, 0.62]

SD (Observations) random Residual 0.01 4e-
04 [0.01,0.01]

Deviation explained by continuous ratings - blue tit

(Intercept) fixed -1.06 0.03 [-1.12,-1.01] -35.81 469 <0.001

RateAnalysis fixed -8e-16 2e-
10

[-4e-10,4e-
10]

-4e-
06 469 >0.9

SD (Intercept) random Effect ID 0.39 0.02 [ 0.34, 0.44]

SD (Observations) random Residual 3e-06 1e-
07

[ 2e-06,3e-
06]

Deviation explained by categorical ratings - Eucalyptus

(Intercept) fixed -2.66 0.27 [-3.18,-2.13] -9.97 340 <0.001

Publishable with major
revision fixed 0.29 0.29 [-0.27, 0.85] 1.02 340 0.3

Publishable with minor
revision fixed 0.01 0.28 [-0.54, 0.56] 0.04 340 >0.9

Publishable as is fixed 0.05 0.31 [-0.55, 0.66] 0.17 340 0.9

SD (Intercept) random Reviewer
ID 0.39 0.09 [ 0.25, 0.61]

SD (Observations) random Residual 1.06 0.04 [0.98,1.15]

Deviation explained by categorical ratings - blue tit

(Intercept) fixed -1.21 0.15 [-1.50,-0.93] -8.29 467 <0.001

Table 3.5:
Summary metrics for registered models seeking to explain deviation (Box-Cox transformed

absolute deviation scores) from the mean Z  as a function of Sorensen’s Index, categorical peer
ratings, and continuous peer ratings for blue tit and Eucalyptus analyses, and as a function of
the presence or absence of random effects (in the analyst’s models) for Eucalyptus analyses.

We report coefficient of determination, R , for our models including only fixed effects as
predictors of deviation, and we report R , R  and the intra-class correlation (ICC)
from our models that included both fixed and random effects. For all our models, we calculated

the residual standard deviation σ and root mean squared error (RMSE).

Dataset ICC RMSE

Deviation explained by categorical ratings

blue tit 0.0903 6.67e-03 0.0842 6.52e-01 6.32e-01 473

Eucalyptus 0.1319 1.24e-02 0.1209 1.06e+00 1.02e+00 346

Deviation explained by continuous ratings

blue tit 1.0000 1.42e-27 1.0000 2.53e-06 3.86e-14 473

Eucalyptus 0.9997 1.46e-28 0.9997 9.66e-03 1.05e-13 346

Deviation explained by Sorensen's index

blue tit 1.11e-03 6.81e-01 6.76e-01 124

Eucalyptus 5.06e-04 1.14e+00 1.12e+00 72

Deviation explained by inclusion of random effects

blue tit 2.68e-02 6.58e-01 6.53e-01 131

Eucalyptus 8.67e-08 1.12e+00 1.10e+00 79
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We obtained reviews from 128 reviewers who reviewed analyses for a mean of 3.27 (range 1 - 11) analysis
teams. Analyses of the blue tit dataset received a total of 240 reviews, each was reviewed by a mean of
3.87 (SD 0.71, range 3-5) reviewers. Analyses of the Eucalyptus dataset received a total of 178 reviews,
each was reviewed by a mean of 4.24 (SD 0.79, range 3-6) reviewers. We tested for inter-rater-reliability to
examine how similarly reviewers reviewed each analysis and found approximately no agreement among
reviewers. When considering continuous ratings, IRR was 0.01, and for categorical ratings, IRR was -0.14.

Many of the models of deviance as a function of peer ratings faced issues of failure to converge or
singularity due to sparse design matrices with our pre-registered random effects ( study_id  and
reviewer_ID ) (see supplementary material C.1). These issues persisted after increasing the tolerance
and changing the optimizer. For both Eucalyptus and blue tit datasets, models with continuous ratings as
a predictor were singular when both pre-registered random effects were included.

When using only categorical ratings as predictors, models converged only when specifying reviewer ID as a
random effect. That model had a  of 0.09 and a  of 0.01. The model using the continuous ratings

converged for both random effects (in isolation), but not both. We present results for the model using
study ID as a random effect because we expected it would be a more important driver of variation in
deviation scores. That model had a  of 1 and a  of 0.01 for the blue tit dataset and a  of 1 and a

 of 0.01 for the Eucalyptus dataset. Neither continuous or categorical reviewer ratings of the analyses
meaningfully predicted deviance from the meta-analytic mean (Table 3.6, Figure 3.4). We re-ran the multi-
level meta-analysis with a fixed-effect for the categorical publishability ratings and found no difference in
mean standardised effect sizes among publishability ratings (Figure B.1).

Some models of the influence of reviewer ratings on out-of-sample predictions ( ) had issues with
convergence and singularity of fit (see Table C.2) and those models that converged and were not singular
showed no strong relationship (Figure C.2, Figure C.3), as with the  analyses.

We employed Sorensen’s index to calculate the distinctiveness of the set of predictor variables used in
each model (Figure 3.5). The mean Sorensen’s score for blue tit analyses was 0.69 (range 0.55-0.98), and
for Eucalyptus analyses was 0.59 (range 0.43-0.86).

We found no meaningful relationship between distinctiveness of variables selected and deviation from the
meta-analytic mean (Table 3.6, Figure 3.5) for either blue tit (mean 0.23, 95% CI -1,1.46) or Eucalyptus
effects (mean 0.29, 95% CI -2.74,3.32).

Figure 3.5: Fitted model of the Box-Cox-transformed deviation score (deviation in effect size from meta-analytic
mean) as a function of the mean Sorensen’s index showing distinctiveness of the set of predictor variables. Grey
ribbons on predicted values are 95% CI’s.

As with the  estimates, we did not observe any convincing relationships between deviation scores of
out-of-sample predictions and Sorensen’s index values. Please see supplementary material C.4.2.

There were only three blue tit analyses that did not include random effects, which is below the pre-
registered threshold for fitting a model of the Box-Cox transformed deviation from the meta-analytic
mean as a function of whether the analysis included random-effects. However, 17 Eucalyptus analyses
included only fixed effects, which crossed our pre-registered threshold. Consequently, we performed this
analysis for the Eucalyptus dataset only. There was no relationship between random-effect inclusion and
deviation from meta-analytic mean among the Eucalyptus analyses (Table 3.6, Figure 3.6).

As with the  estimates, we did not examine the possibility of a relationship between the inclusion of
random effects and the deviation scores of the blue tit out-of-sample predictions. When we examined the
possibility of this relationship for the Eucalyptus effects, we found consistent evidence of somewhat
higher Box-Cox-transformed deviation values for models including a random effect, meaning the models
including random effects averaged slightly higher deviation from the meta-analytic means (Figure C.5).

Like the univariate models, the multivariate models did a poor job of explaining deviations from the meta-
analytic mean. Because we pre-registered a multivariate model that contained collinear predictors that
produce results which are not readily interpretable, we present these models in the supplement. We also
had difficulty with convergence and singularity for multivariate models of out-of-sample ( ) result, and
had to adjust which random effects we included (Table C.7). However, no multivariate analyses of
Eucalyptus out-of-sample results avoided problems of convergence or singularity, no matter which
random effects we included (Table C.7). We therefore present no multivariate Eucalyptus  models. We
present parameter estimates from multivariate  models for both datasets (Table C.5, Table C.6) and
from  models from the blue tit dataset (Table C.8, Table C.9). We include interpretation of the results
from these models in the supplement, but the results do not change the interpretations we present above
based on the univariate analyses.

When a large pool of ecologists and evolutionary biologists analyzed the same two datasets to answer the
corresponding two research questions, they produced substantially heterogeneous sets of answers.
Although the variability in analytical outcomes was high for both datasets, the patterns of this variability
differed distinctly between them. For the blue tit dataset, there was nearly continuous variability across a
wide range of  values. In contrast, for the Eucalyptus dataset, there was less variability across most of
the range, but more striking outliers at the tails. Among out-of-sample predictions, there was again almost
continuous variation across a wide range (2 SD) among blue tit estimates. For Eucalyptus, out-of-sample
predictions were also notably variable, with about half the predicted stem count values at <2 but the other
half being much larger, and ranging to nearly 40 stems per 15 m x 15 m plot. We investigated several
hypotheses for drivers of this variability within datasets, but found little support for any of these. Most
notably, even when we excluded analyses that had received one or more poor peer reviews, the
heterogeneity in results largely persisted. Regardless of what drives the variability, the existence of such
dramatically heterogeneous results when ecologists and evolutionary biologists seek to answer the same
questions with the same data should trigger conversations about how ecologists and evolutionary
biologists analyze data and interpret the results of their own analyses and those of others in the literature
(e.g., Silberzahn et al. 2018; Simonsohn, Simmons, and Nelson 2020; Auspurg and Brüderl 2021; Breznau
et al. 2022).

Our observation of substantial heterogeneity due to analytical decisions is consistent with a growing body
of work, much of it from the quantitative social sciences (e.g., Silberzahn et al. 2018; Botvinik-Nezer et al.
2020; Huntington-Klein et al. 2021; Schweinsberg et al. 2021; Breznau et al. 2022; Coretta et al. 2023). In all
of these studies, when volunteers from the discipline analyzed the same data, they produced a worryingly
diverse set of answers to a pre-set question. This diversity always included a wide range of effect sizes,
and in most cases, even involved effects in opposite directions. Thus, our result should not be viewed as
an anomalous outcome from two particular datasets, but instead as evidence from additional disciplines
regarding the heterogeneity that can emerge from analyses of complex datasets to answer questions in
probabilistic science. Not only is our major observation consistent with other studies, it is, itself, robust
because it derived primarily from simple forest plots that we produced based on a small set of decisions
that were mostly registered before data gathering and which conform to widely accepted meta-analytic
practices.

Unlike the strong pattern we observed in the forest plots, our other analyses, both registered and post
hoc, produced either inconsistent patterns, weak patterns, or the absence of patterns. Our registered
analyses found that deviations from the meta-analytic mean by individual effect sizes ( ) or the
predicted values of the dependent variable ( ) were poorly explained by our hypothesized predictors:
peer rating of each analysis team’s method section, a measurement of the distinctiveness of the set of
predictor variables included in each analysis, or whether the model included random effects. However, in
our post hoc analyses, we found that dropping analyses identified as unpublishable or in need of major
revision by at least one reviewer modestly reduced the observed heterogeneity among the  outcomes,
but only for Eucalyptus analyses, apparently because this led to the dropping of the major outlier. We wish
to be clear, however, that this limited role for peer review in explaining the variability in our results should
not be interpreted to mean that analysis quality had no impact on effect size variability since the inter-
rater reliability among peer reviewers was extremely low, and at least some analyses that appeared
flawed to us were not marked as flawed by reviewers. Thus, the role of analysis quality remains
unanswered. Not surprisingly, simply dropping outlier values of  for Eucalyptus analyses, which had
more extreme outliers, led to less observable heterogeneity in the forest plots, and also reductions in our
quantitative measures of heterogeneity. We did not observe a similar effect in the blue tit dataset because
that dataset had outliers that were much less extreme and instead had more variability across the core of
the distribution.

Our major observations raise two broad questions; why was the variability among results so high, and why
did the pattern of variability differ between our two datasets. One important and plausible answer to the
first question is that much of the heterogeneity derives from the lack of a precise relationship between the
two biological research questions we posed and the data we provided. This lack of a precise relationship
between data and question creates many opportunities for different model specifications, and so may
inevitably lead to varied analytical outcomes (Auspurg and Brüderl 2021). However, we believe that the
research questions we posed are consistent with the kinds of research question that ecologists and
evolutionary biologists typically work from. When designing the two biological research questions, we
deliberately sought to represent the level of specificity we typically see in these disciplines. This level of
specificity is evident when we look at the research questions posed by some recent meta-analyses in
these fields:

“how [does] urbanisation impact mean phenotypic values and phenotypic variation … [in] paired
urban and non-urban comparisons of avian life-history traits” (Capilla-Lasheras et al. 2022)

“[what are] the effects of ocean acidification on the crustacean exoskeleton, assessing both
exoskeletal ion content (calcium and magnesium) and functional properties (biomechanical
resistance and cuticle thickness)” (Siegel et al. 2022)

“[what is] the extent to which restoration affects both the mean and variability of biodiversity
outcomes … [in] terrestrial restoration” (Atkinson et al. 2022)

“[does] drought stress [have] a negative, positive, or null effect on aphid fitness” (Leybourne et al.
2021)

“[what is] the influence of nitrogen-fixing trees on soil nitrous oxide emissions” (Kou-Giesbrecht and
Menge 2021)

There is not a single precise answer to any of these questions, nor to the questions we posed to analysts in
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Figure 3.4: Violin plot of Box-Cox transformed deviation from meta-analytic mean  as a function of categorical
peer rating. Grey points for each rating group denote model-estimated marginal mean deviation, and error bars
denote 95% CI of the estimate. A Blue tit dataset, B Eucalyptus dataset.
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Figure 3.6: Violin plot of mean Box-Cox transformed deviation from meta-analytic mean as a function of random-
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indicates no random-effects were included. White points for each group of analyses denote model-estimated
marginal mean deviation, and error bars denote 95% CI of the estimate.
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There is not a single precise answer to any of these questions, nor to the questions we posed to analysts in
our study. And this lack of single clear answers will obviously continue to cause uncertainty since
ecologists and evolutionary biologists conceive of the different answers from the different statistical
models as all being answers to the same general question. A possible response would be a call to avoid
these general questions in favor of much more precise alternatives (Auspurg and Brüderl 2021). However,
the research community rewards researchers who pose broad questions (Simons, Shoda, and Lindsay
2017), and so researchers are unlikely to narrow their scope without a change in incentives. Further, we
suspect that even if individual studies specified narrow research questions, other scientists would group
these more narrow questions into broader categories, for instance in meta-analyses, because it is these
broader and more general questions that often interest the research community.

Although variability in statistical outcomes among analysts may be inevitable, our results raise questions
about why this variability differed between our two datasets. We are particularly interested in the
differences in the distribution of  since the distributions of out-of-sample predictions were on different
scales for the two datasets, thus limiting the value of comparisons. The forest plots of  from our two
datasets showed distinct patterns, and these differences are consistent with several alternative
hypotheses. The results submitted by analysts of the Eucalyptus dataset showed a small average (close to
zero) with most estimates also close to zero (± 0.2), though about a third far enough above or below zero
to cross the traditional threshold of statistical significance. There were a small number of striking outliers
that were very far from zero. In contrast, the results submitted by analysts of the blue tit dataset showed
an average much further from zero (- 0.35) and a much greater spread in the core distribution of estimates
across the range of  values (± 0.5 from the mean), with few modest outliers. So, why was there more
spread in effect sizes (across the estimates that are not outliers) in the blue tit analyses relative to the
Eucalyptus analyses?

One possible explanation for the lower heterogeneity among most Eucalyptus  effects is that weak
relationships may limit the opportunities for heterogeneity in analytical outcome. Some evidence for this
idea comes from two sets of “many labs” studies in psychology (Klein et al. 2014, 2018). In these studies,
many independent lab groups each replicated a large set of studies, including, for each study, the
experiment, data collection, and statistical analyses. These studies showed that, when the meta-analytic
mean across the replications from different labs was small, there was much less heterogeneity among the
outcomes than when the mean effect sizes were large (Klein et al. 2014, 2018). Of course, a weak average
effect size would not prevent divergent effects in all circumstances. As we saw with the Eucalyptus
analyses, taking a radically smaller subset of the data can lead to dramatically divergent effect sizes even
when the mean with the full dataset is close to zero.

Our observation that dramatic sub-setting in the Eucalyptus dataset was associated with correspondingly
dramatic divergence in effect sizes leads us towards another hypothesis to explain the differences in
heterogeneity between the Eucalyptus and blue tit analysis sets. It may be that when analysts often divide
a dataset into subsets, the result will be greater heterogeneity in analytical outcome for that dataset.
Although we saw sub-setting associated with dramatic outliers in the Eucalyptus dataset, nearly all other
analyses of Eucalyptus data used very close to the same set of 351 samples, and as we saw, these effects
did not vary substantially. However, analysts often analyzed only a subset of the blue tit data, and as we
observed, sample sizes were much more variable among blue tit effects, and the effects themselves were
also much more variable. Important to note here is that subsets of data may differ from each other for
biological reasons, but they may also differ due to sampling error. Sampling error is a function of sample
size, and sub-samples are, by definition, smaller samples, and so more subject to variability in effects due
to sampling error (Jennions et al. 2013).

Other features of datasets are also plausible candidates for driving heterogeneity in analytical outcomes,
including features of covariates. In particular, relationships between covariates and the response variable
as well as relationships between covariates and the primary independent variable (collinearity) can
strongly influence the modeled relationship between the independent variable of interest and the
dependent variable (Morrissey and Ruxton 2018; Dormann et al. 2013). Therefore, inclusion or exclusion of
these covariates can drive heterogeneity in effect sizes ( ). Also, as we saw with the two most extreme

 values from the blue tit analyses, in multivariate models with collinear predictors, extreme effects can
emerge when estimating partial correlation coefficients due to high collinearity, and conclusions can differ
dramatically depending on which relationship receives the researcher’s attention. Therefore, differences
between datasets in the presence of strong and/or collinear covariates could influence the differences in
heterogeneity in results among those datasets.

Although it is too early in the many-analyst research program to conclude which analytical decisions or
which features of datasets are the most important drivers of heterogeneity in analytical outcomes, we
must still grapple with the possibility that analytical outcomes may vary substantially based on the
choices we make as analysts. If we assume that, at least sometimes, different analysts will produce
dramatically different statistical outcomes, what should we do as ecologists and evolutionary biologists?
We review some ideas below.

The easiest path forward after learning about this analytical heterogeneity would be simply to continue
with “business as usual”, where researchers report results from a small number of statistical models. A
case could be made for this path based on our results. For instance, among the blue tit analyses, the
precise values of the estimated  effects varied substantially, but the average effect was convincingly
different from zero, and a majority of individual effects (84%) were in the same direction. Arguably, many
ecologists and evolutionary biologists appear primarily interested in the direction of a given effect and the
corresponding p-value (Fidler et al. 2006), and so the variability we observed when analyzing the blue tit
dataset may not worry these researchers. Similarly, most effects from the Eucalyptus analyses were
relatively close to zero, and about two-thirds of these effects did not cross the traditional threshold of
statistical significance. Therefore, a large proportion of people analyzing these data would conclude that
there was no effect, and this is consistent with what we might conclude from the meta-analysis.

However, we find the counter arguments to “business as usual” to be compelling. For blue tits, there were
a substantial minority of calculated effects that would be interpreted by many biologists as indicating the
absence of an effect (28%), and there were three traditionally ‘significant’ effects in the opposite direction
to the average. The qualitative conclusions of analysts also reflected substantial variability, with fully half
of teams drawing a conclusion distinct from the one we draw from the distribution as a whole. These
teams with different conclusion were either uncertain about the negative relationship between
competition and nestling growth, or they concluded that effects were mixed or absent. For the Eucalyptus
analyses, this issue is more concerning. Around two-thirds of effects had confidence intervals overlapping
zero, and of the third of analyses with confidence intervals excluding zero, almost half were positive, and
the rest were negative. Accordingly, the qualitative conclusions of the Eucalyptus teams were spread
across the full range of possibilities. But even these problems are optimistic.

A potentially larger argument against “business as usual” is that it provides the raw material for biasing
the literature. When different model specifications readily lead to different results, analysts may be
tempted to report the result that appears most interesting, or that is most consistent with expectation
(Gelman and Loken 2013; Forstmeier, Wagenmakers, and Parker 2017). There is growing evidence that
researchers in ecology and evolutionary biology often report a biased subset of the results they produce
(Deressa et al. 2023; Kimmel, Avolio, and Ferraro 2023), and that this bias exaggerates the average size of
effects in the published literature between 30 and 150% (Yang et al. 2023; Parker and Yang 2023). The bias
then accumulates in meta-analyses, apparently more than doubling the rate of conclusions of “statistical
significance” in published meta-analyses above what would have been found in the absence of bias (Yang
et al. 2023). Thus, “business as usual” does not just create noisy results, it helps create systematically
misleading results.

Overall, our results suggest to us that, where there is a diverse set of plausible analysis options, no single
analysis should be considered a complete or reliable answer to a research question. We contend that
ecologists and evolutionary biologists typically do multiple analyses (as many of our analyst teams did)
however, soe of these analyses dont make it into the published manuscript. Further, because of the
evidence that ecologists and evolutionary biologists often present a biased subset of the analyses they
conduct (Deressa et al. 2023; Yang et al. 2023; Kimmel, Avolio, and Ferraro 2023), we do not expect that
even a collection of different effect sizes from different studies will accurately represent the true
distribution of effects (Yang et al. 2023). Therefore, we believe that an increased level of skepticism of the
outcomes of single analyses, or even single meta-analyses, is warranted going forward. We recognize that
some researchers have long maintained a healthy level of skepticism of individual studies as part of sound
and practical scientific practice, and it is possible that those researchers will be neither surprised nor
concerned by our results. However, we doubt that many researchers are sufficiently aware of the potential
problems of analytical flexibility to be appropriately skeptical.

If we are skeptical of single analyses, the path forward may be multiple analyses per dataset. One
possibility is the traditional robustness or sensitivity check (e.g., Pei et al. 2020; Briga and Verhulst 2021),
in which the researcher presents several alternative versions of an analysis to demonstrate that the result
is ‘robust’ (Lu and White 2014). Unfortunately, robustness checks are at risk of the same potential biases of
reporting found in other studies (Silberzahn et al. 2018), especially given the relatively few models
typically presented. However, these risks could be minimized by running more models and doing so with
pre-registration or registered report. Another option is model averaging. Averages across models often
perform well (e.g., Taylor and Taylor 2023), and in some forms this may be a relatively simple solution. As
most often practiced in ecology and evolutionary biology, model averaging involves first identifying a
small suite of candidate models (see Burnham and Anderson 2002), then using Akaike weights, based on
Akaike’s Information Criterion (AIC), to calculate weighted averages for parameter estimates from those
models. Again, the small number of models limits the exploration of specification space, but we can
examine a larger number of models. However, there are more concerning limitations. The largest of these
limitations is that averaging regression coefficients is problematic when models differ in interaction terms
or collinear variables (Cade 2015). Additionally, weighting by AIC may often be inconsistent with our
modelling goals. AIC balances the trade-off between model complexity and predictive ability, but
penalizing models for complexity may not be suited for testing hypotheses about causation. So, AIC may
often not offer the weight we want to use for an average, and we may also not wish to just generate an
average. Instead, if we hope to understand an extensive universe of possible modelling outcomes, we
could conduct a multiverse analysis, possibly with a specification curve (Simonsohn, Simmons, and
Nelson 2015, 2020). This could mean running hundreds or thousands of models (or more!) to examine the
distribution of possible effects, and to see how different specification choices map onto these effects.
However, there is a trade-off between efficiently exploring large areas of specification space and limiting
the analyses to biologically plausible specifications. Instead of simply identifying modelling decisions and
creating all possible combinations for the multiverse, a researcher could attempt to prevent implausible
combinations, though the more variables in the dataset, the more difficult this becomes. To make this
easier, one could recruit many analysts to each designate one or a few plausible specifications, as with our
‘many analyst’ study (Silberzahn et al. 2018). An alternative that may be more labor intensive for the
primary analyst, but which may lead to a more plausible set of models, could involve hypothesizing about
causal pathways with DAGs [directed acyclic graphs; Arif and MacNeil (2023)] to constrain the model set.
Devoting this effort to thoughtful multiverse specifications, possibly combined with pre-registration to
hinder undisclosed data dredging, seems worthy of consideration.

Although we have reviewed a variety of potential responses to the existence of variability in analytical
outcomes, we certainly do not wish to imply that this is a comprehensive set of possible responses. Nor do
we wish to imply that the opinions we have expressed about these options are correct. Determining how
the disciplines of ecology and evolutionary biology should respond to knowledge of the variability in
analytical outcome will benefit from the contribution and discussion of ideas from across these
disciplines. We look forward to learning from these discussions and to seeing how these disciplines
ultimately respond.
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 P prettyunits        1.1.1      2020-01-24 [?] CRAN (R 4.2.0)
 P processx           3.8.1      2023-04-18 [?] CRAN (R 4.2.0)
 P profvis            0.3.8      2023-05-02 [?] CRAN (R 4.2.0)
 P promises           1.2.0.1    2021-02-11 [?] CRAN (R 4.2.0)
 P ps                 1.7.5      2023-04-18 [?] CRAN (R 4.2.0)
 P purrr            * 1.0.2      2023-08-10 [?] CRAN (R 4.2.0)
 P quadprog           1.5-8      2019-11-20 [?] CRAN (R 4.2.0)
 P R6                 2.5.1      2021-08-19 [?] CRAN (R 4.2.0)
 P Rcpp               1.0.10     2023-01-22 [?] CRAN (R 4.2.2)
 P readr            * 2.1.4      2023-02-10 [?] CRAN (R 4.2.0)
 P remotes            2.4.2      2021-11-30 [?] CRAN (R 4.2.0)
 P renv               1.0.2      2023-08-15 [?] CRAN (R 4.2.0)
 P rlang              1.1.1      2023-04-28 [?] CRAN (R 4.2.0)
 P rmarkdown          2.21       2023-03-26 [?] CRAN (R 4.2.2)
   rpart              4.1.19     2022-10-21 [2] CRAN (R 4.2.2)
 P rprojroot          2.0.3      2022-04-02 [?] CRAN (R 4.2.0)
 P rstatix            0.7.2      2023-02-01 [?] CRAN (R 4.2.0)
 P rstudioapi         0.14       2022-08-22 [?] CRAN (R 4.2.0)
 P sae                1.3        2020-03-01 [?] CRAN (R 4.2.0)
   sandwich           3.0-2      2022-06-15 [2] CRAN (R 4.2.0)
 P sass               0.4.6      2023-05-03 [?] CRAN (R 4.2.0)
 P scales             1.2.1      2022-08-20 [?] CRAN (R 4.2.0)
 P see                0.8.0      2023-06-05 [?] CRAN (R 4.2.0)
 P sessioninfo        1.2.2      2021-12-06 [?] CRAN (R 4.2.0)
 P shiny              1.7.4      2022-12-15 [?] CRAN (R 4.2.0)
 P sjlabelled         1.2.0      2022-04-10 [?] CRAN (R 4.2.0)
 P snakecase          0.11.0     2019-05-25 [?] CRAN (R 4.2.0)
 P specr            * 1.0.0      2023-01-20 [?] CRAN (R 4.2.0)
 P stringi            1.7.12     2023-01-11 [?] CRAN (R 4.2.0)
 P stringr          * 1.5.0      2022-12-02 [?] CRAN (R 4.2.0)
   survival           3.5-5      2023-03-12 [2] CRAN (R 4.2.0)
 P targets          * 1.0.0      2023-04-24 [?] CRAN (R 4.2.0)
 P tibble           * 3.2.1      2023-03-20 [?] CRAN (R 4.2.0)
 P tidyr            * 1.3.0      2023-01-24 [?] CRAN (R 4.2.0)
 P tidyselect         1.2.0      2022-10-10 [?] CRAN (R 4.2.0)
 P tidyverse        * 2.0.0      2023-02-22 [?] CRAN (R 4.2.0)
 P timechange         0.2.0      2023-01-11 [?] CRAN (R 4.2.0)
 P tzdb               0.4.0      2023-05-12 [?] CRAN (R 4.2.2)
 P urlchecker         1.0.1      2021-11-30 [?] CRAN (R 4.2.0)
 P usethis            2.1.6      2022-05-25 [?] CRAN (R 4.2.0)
 P utf8               1.2.3      2023-01-31 [?] CRAN (R 4.2.0)
 P V8                 4.3.0      2023-04-08 [?] CRAN (R 4.2.0)
   vctrs              0.6.3      2023-06-14 [1] CRAN (R 4.2.0)
 P vroom              1.6.3      2023-04-28 [?] CRAN (R 4.2.0)
 P withr            * 2.5.0      2022-03-03 [?] CRAN (R 4.2.0)
 P xfun               0.39       2023-04-20 [?] CRAN (R 4.2.0)
 P xml2               1.3.4      2023-04-27 [?] CRAN (R 4.2.0)
 P xtable             1.8-4      2019-04-21 [?] CRAN (R 4.2.0)
 P yaml               2.3.7      2023-01-23 [?] CRAN (R 4.2.0)
 P zoo                1.8-12     2023-04-13 [?] CRAN (R 4.2.0)

 [1] /Users/egould/Library/Caches/org.R-project.R/R/renv/library/ManyAnalysts-08852257/R-4.2/aarch64-apple-darwin20
 [2] /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library

 P ── Loaded and on-disk path mismatch.
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As described in the summary statistics section of the manuscript, 63 teams submitted 132  model estimates and 43
teams submitted 65 out of sample predictions for the blue tit dataset. Similarly, 40 submitted 79  model estimates
and 14 teams submitted 24 out of sample predictions for the Eucalytpus dataset. The majority of the blue tit analyses
specified normal error distributions and were non-Bayesian mixed e!ects models. Analyses of the Eucalyptus
dataset rarely specified normal error distributions, likely because the response variable was in the form of counts.
Mixed e!ects models were also common for Eucalytpus analyses (Table A.1).
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The composition of models varied substantially (Table A.2) in regards to the number of fixed and random e!ects,
interaction terms and the number of data points used. For the blue tit dataset, models used up to 19 fixed e!ects, 12
random e!ects, and 10 interaction terms and had sample sizes ranging from 76 to 3720 For the Eucalyptus dataset
models had up to 13 fixed e!ects, 4 random e!ects, 5 interaction terms and sample sizes ranging from 18 to 351.
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The choice of variables also di!ered substantially among models (Table A.3). Considering all submitted analyses, the
blue tit dataset had 52 candidate variables, which were used in a mean of 20.58  analyses (range 0- 101), the
Eucalyptus dataset had 58 candidate variables which were used in a mean of 9.07  analyses (range 0-55).
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We used a specification curve (Simonsohn, Simmons, and Nelson 2015) to look for relationships between  values
and several modeling decisions, including the choice of independent and dependent variable, transformation of the
dependent variable, and other features of the models that produced those  values (Figure A.1, Figure A.2). Each
e!ect can be matched to the model features that produced it by following a vertical line down the figure.

We observed few clear trends in the blue tit specification curve (Figure A.1). The clearest trend was for the
independent variable ‘contrast: reduced broods vs. unmanipulated broods’ to produce weak or even positive
relationships, but never strongly negative relationships. The biological interpretation of this pattern is that nestlings
in reduced broods averaged similar growth to nestlings in unmanipulated broods, and sometimes the nestlings in
reduced broods even grew less than the nestlings in unmanipulated broods. Therefore, it may be that competition
limits nestling growth primarily when the number of nestlings exceeds the clutch size produced by the parents, and
not in unmanipulated broods. The other relatively clear trend was that the strongest negative relationships were
never based on the independent variable ‘contrast: unmanipulated broods vs. enlarged broods’. These observations
demonstrate the potential value of specification curves.
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In the Eucalyptus specification curve, there are no strong trends (Figure A.2). It is, perhaps, the case that choosing
the dependent variable ‘count of seedlings 0-0.5m high’ corresponds to more positive results and choosing ‘count of
all Eucalytpus seedlings’ might find more negative results. Choosing the independent variable ‘sum of all grass types
(with or without non-grass graminoids)’ might be associated with more results close to zero consistent with the
absence of an e!ect.
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The forest plots in Figure B.3 compare the distributions of  e!ects from our full set of analyses with the
distributions of  e!ects from our post-hoc analyses which removed either analyses that were reviewed at least
once as being ‘unpublishable’ or analyses that were reviewed at least once as being ‘unpublishable’ or requiring
‘major revisions’. Removing these analyses from the blue tit data had little impact on the overall distribution of the
results. For the Eucalytpus analyses, removing ‘unpublishable’ analyses meant dropping the extreme outlier
Brooklyn-2-2-1 which made a substantial di!erence to the amount of observerd deviation from the meta-analytic
mean.


1  Same data, di!erent analysts: variation in e!ect sizes due to analytical decisions in ecology and
evolutionary biology.
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AUTHORS

A.1 Summary Statistics

A.1.1 Number of analyses of di!erent types 
Zr

Zr

Table A.1:
Summary of the number of anaysis teams, total analyses, models with normal

error distributions, mixed effects models, and models developed with
Bayesian statistical methods for effect size analyses only (Z ) and out-of-

sample prediction only (y ).

No. Analyses No. Teams Normal Distribution Mixed Effect Bayesian

blue tit

132 63 125 129 10

65 43 60 64 10

Eucalyptus

79 40 15 62 5

24 14 1 16 3

r
i

Zr

yi

Zr

yi

A.1.2 Model composition

Table A.2:
Mean, standard deviation and range of number of fixed and random variables and interaction terms
used in models and sample size used. Repeated for effect size analyses only (Z ) and out-of-sample

prediction only (y ).

Mean SD Min Max

Blue tit Eucalyptus Blue tit Eucalyptus Blue tit Eucalyptus Blue tit Eucalyptus

fixed

5.20 5.01 2.92 3.83 1 1 19 13

4.78 4.67 2.35 3.45 1 1 10 13

interactions

4.40 × 10 1.60 × 10 1.11 6.50 × 10 0 0 10 5

2.80 × 10 1.70 × 10 6.30 × 10 4.80 × 10 0 0 3 2

random

3.53 1.41 2.08 1.09 0 0 10 4

4.42 9.60 × 10 2.78 8.10 × 10 1 0 12 3

samplesize

2.62 × 10 2.98 × 10 9.39 × 10 1.06 × 10 76 18 3720 351

2.84 × 10 3.26 × 10 7.76 × 10 6.42 × 10 396 90 3720 350

r
i

Zr

yi

Zr
−1 −1 −1

yi −1 −1 −1 −1

Zr

yi −1 −1

Zr
3 2 2 2

yi 3 2 2 1

A.1.3 Choice of variables

Zr

Zr

Table A.3:
Mean, SD, minimum and maximum number of analyses in which each variable was used, for effect

size analyses only (Z ), out-of-sample prediction only (y ), using the full dataset.

Mean SD Min Max

Blue tit Eucalyptus Blue tit Eucalyptus Blue tit Eucalyptus Blue tit Eucalyptus

2.06 × 10 9.07 2.71 × 10 1.23 × 10 0 0 101 55

1.09 × 10 2.31 1.41 × 10 3.88 0 0 54 17

r i

Zr
1 1 1

yi 1 1

A.2 E!ect Size Specification Analysis

Zr

Zr

A.2.1 Blue tit

A.2.2 Eucalyptus

A.2.3 Post-hoc analysis: Exploring the e!ect of removing analyses with
poor peer-review ratings on heterogeneity

Zr

Zr

Figure A.1: A. Forest plot for blue tit analyses: standardized e!ect-sizes (circles) and their 95% confidence intervals are displayed for each
analysis included in the meta-analysis model. The meta-analytic mean e!ect-size is denoted by a black diamond, with error bars also
representing the 95% confidence interval. The dashed black line demarcates e!ect sizes of 0, whereby no e!ect of the test variable on the
response variable is found. Blue points where Zr and its associated confidence intervals are greater than 0 indicate analyses that found a
negative e!ect of sibling number on nestling growth. Gray coloured points have confidence intervals crossing 0, indicating no relationship
between the test and response variable. Red points indicate the analysis found a positive relationship between sibling number and nestling
growth. B. Analysis specification plot: for each analysis plotted in A, the corresponding combination of analysis decisions is plotted. Each
decision and its alternative choices is grouped into its own facet, with the decision point described on the right of the panel, and the option
shown on the le". Lines indicate the option chosen used in the corresponding point in plot A. C. Sample sizes of each analysis. Note that
empty bars indicate analyst did not report sample size and sample size could not be derived by lead team.

Figure A.2: A. Forest plot for Eucalyptus analyses: standardized e!ect-sizes (circles) and their 95% confidence intervals are displayed for each
analysis included in the meta-analysis model. The meta-analytic mean e!ect-size is denoted by a black diamond, with error bars also
representing the 95% confidence interval. The dashed black line demarcates e!ect sizes of 0, whereby no e!ect of the test variable on the
response variable is found. Blue points where  and its associated confidence intervals are greater than 0 indicate analyses that found a
positive relationship of grass cover on Eucalyptus seedling success. Gray coloured points have confidence intervals crossing 0, indicating no
relationship between the test and response variable. Red points indicate the analysis found a negative relationship between grass cover and
Eucalyptus seedling success. B. Analysis specification plot: for each analysis plotted in A, the corresponding combination of analysis
decisions is plotted. Each decision and its alternative choices is grouped into its own facet, with the decision point described on the right of
the panel, and the option shown on the le". Lines indicate the option chosen used in the corresponding point in plot A. C. Sample sizes of
each analysis. Note that empty bars indicate analyst did not report sample size and sample size could not be derived by lead team.

Zr

Figure A.3: Forest plots of meta-analytic estimated standardized e!ect sizes ( , blue circles) and their 95% confidence intervals for
each e!ect size included in the meta-analysis model. The meta-analytic mean e!ect size is denoted by a black triangle and a dashed
vertical line, with error bars also representing the 95% confidence interval. The solid black vertical line demarcates e!ect size of 0,
indicating no relationship between the test variable and the response variable. The le" side of each panel shows the analysis team
names (anonymous arbitrary names assigned by us), each followed by three numbers. The first number is the submission ID (some
analyst teams submitted results to us on >1 submission form), the second number is the analysis ID (some analyst teams included
results of >1 analysis in a given submission), and the third number is the e!ect ID (some analysts submitted values for >1 e!ect per
analysis). Thus, each row in each forest plot is uniquely identified, but it is possible to determine which e!ects come from which
analyses and which analysis teams. The plots in the top row depict e!ects from analyses of blue tit data, and the bottom row plots
depict e!ects from analyses of Eucalyptus data. The right-most plots depict all usable e!ect sizes. The plots on the le" side exclude
e!ects from analysis sets that received at least one rating of “unpublishable” from peer reviewers, and the plots in the middle exclude
e!ects from analysis sets that received at least one rating of either “unpublishable” or “major revision” from peer reviewers.

Zr
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The figures below (Figure B.1,Figure B.2) shows the fixed e!ect of categorical review rating on deviation from the
meta-analytic mean. There is very little di!erence in deviation for analyses in any of the review categories. It is worth
noting that each analysis features multiple times in these figures corresponding to the multiple reviewers that
provided ratings.

In Figure B.3 we display the results of our post-hoc analysis, examining the e!ect of removing analyses that were
reviewed at least once as being ‘unpublishable’, ‘unpublishable’ or requiring ‘major revisions’, as compared with
retaining the full set of analyses. Removing these analyses from the blue tit data had little impact on the overall
amount of deviation or the distribution of the results. For the Eucalytpus analyses, removing ‘unpublishable’
analyses meant dropping the outlier Brooklyn-2-2-1 which made a substantial di!erence to the amount of observerd
deviation from the meta-analytic mean.

For each dataset (blue tit, Eucalyptus), we created a second, more conservative version, that excluded e!ects based
on estimates of  that we considered less reliable (Table B.1). We compared the outcomes of analyses of the
primary dataset (constituted according to our registered plan) with the outcomes of analyses of the more
conservative version of the dataset. We also compared results from analyses of both of these versions of the dataset
to versions with our post-hoc removal of outliers described in the main text. Our more conservative exclusions
(based on unreliable estimates of ) had minimal impact on the meta-analytic mean for both blue tit and
Eucalyptus analyses, regardless of whether outliers were excluded (Table B.1).
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Below is the non-truncated version of Figure 3.3 showing a forest plot of the out-of-sample predictions, , on the
response-scale (stems counts), for Eucalyptus analyses, showing the full error bars of all model estimates.
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 A  Summarising Variation Among Analysis Specifications C  Explaining Variation in Deviation Scores

Elliot Gould

Hannah S Fraser

SM B: E!ect Size Analysis
AUTHORS

B.1 Meta-analysis

B.1.1 E!ect Sizes Zr

B.1.1.1 E!ect of categorical review rating

Figure B.1: Orchard plot of meta-analytic model fitted to all eucalyptus analyses with a fixed e!ect for categorical peer-review
ratings, and random e!ects for analyst ID and reviewer ID. Black circles denote coe!icient mean for each categorical
publishability rating. Thick error bars represent 95% confidence intervals and whiskers indicate 95% prediction intervals.
E!ect sizes are represented by circles and their size corresponds to the precision of the estimate.

Figure B.2: Orchard plot of meta-analytic model fitted to all blue tit analyses with a fixed e!ect for categorical peer-review
ratings, and random e!ects for analyst ID and reviewer ID. Black circles denote coe!icient mean for each categorical
publishability rating. Thick error bars represent 95% confidence intervals and whiskers indicate 95% prediction intervals.
E!ect sizes are represented by circles and their size corresponds to the precision of the estimate.

B.1.1.2 Post-hoc analysis: Exploring the e!ect of removing analyses with poor peer-review
ratings on heterogeneity

B.1.1.3 Post-hoc analysis: Exploring the e!ect of excluding estimates in which we had
reduced confidence

df

df

Table B.1:
Estimated meta-analytic mean, standard error, and 95% confidence intervals, from

analyses of the primary data set, the more conservative version of the dataset which
excluded effects based on less reliable estimates of df, and both of these datasets

with outliers removed.

dataset 95%CI statistic p.value publishable_subset

Primary dataset

blue tit −0.35 0.03 [−0.41,−0.28] −10.49 <0.001 All

eucalyptus −0.09 0.06 [−0.22,0.03] −1.47 0.14 All

Conservative exclusions

blue tit −0.36 0.03 [−0.42,−0.29] −10.50 <0.001 All

eucalyptus −0.11 0.07 [−0.24,0.03] −1.55 0.12 All

Primary dataset, outliers removed

blue tit −0.35 0.03 [−0.42,−0.29] −10.95 <0.001 All

eucalyptus −0.03 0.01 [−0.06,0.00] −2.23 0.026 All

Conservative exclusions, outliers removed

blue tit −0.36 0.03 [−0.43,−0.30] −11.09 <0.001 All

eucalyptus −0.04 0.02 [−0.07,−0.01] −2.52 0.012 All

µ̂ SE[µ̂]

B.1.2 Out of sample predictions yi

B.1.2.1 Non-truncated  meta-analysis forest plotyi

yi

Figure B.4: Forest plot of meta-analytic estimated out of sample predictions, , on the response-scale (stems counts), for
Eucalyptus analyses. Circles represent individual analysis estimates. Triangles represent the meta-analytic mean for each
prediction scenario. Navy blue coloured points correspond to  scenario, blue coloured points correspond to the 
scenario, while light blue points correspond to the  scenario. Error bars are 95% confidence intervals. Outliers
(observations more than 3SD above the mean) have been removed prior to model fitting.

yi

y25 y50

y75

Figure B.3: Forest plots of meta-analytic estimated standardized e!ect sizes ( , blue circles) and their 95% confidence intervals for
each e!ect size included in the meta-analysis model. The meta-analytic mean e!ect size is denoted by a black triangle and a dashed
vertical line, with error bars also representing the 95% confidence interval. The solid black vertical line demarcates e!ect size of 0,
indicating no relationship between the test variable and the response variable. The le" side of each panel shows the analysis team
names (anonymous arbitrary names assigned by us), each followed by three numbers. The first number is the submission ID (some
analyst teams submitted results to us on >1 submission form), the second number is the analysis ID (some analyst teams included
results of >1 analysis in a given submission), and the third number is the e!ect ID (some analysts submitted values for >1 e!ect per
analysis). Thus, each row in each forest plot is uniquely identified, but it is possible to determine which e!ects come from which
analyses and which analysis teams. The plots in the top row depict e!ects from analyses of blue tit data, and the bottom row plots
depict e!ects from analyses of Eucalyptus data. The right-most plots depict all usable e!ect sizes. The, plots on the le" side exclude
e!ects from analysis sets that received at least one rating of “unpublishable” from peer reviewers, and the plots in the middle exclude
e!ects from analysis sets that received at least one rating of either “unpublishable” or “major revision” from peer reviewers.

Zr
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To aid in interpreting explanatory models where the response variable has been Box-Cox transformed, we plotted the
transformation relationship for each of our analysis datasets (Figure C.1). Note that timetk::step_box_cox()
directly optimises the estimation of the transformation parameter, , using the “Guerrero” method such that 
minimises the coe!icient of variation for sub series of a numeric vector (see ?timetk::step_box_cox() , for
further details see Dancho and Vaughan (2023)). Consequently, each dataset has its own unique value of the lambda
parameter, and therefore a unique transformation relationship.
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During model fitting, especially during fitting of models with random e!ects using lme4  (Bates et al. 2015), some
models failed to converge while others were accompanied with console warnings of singular fit. However, the
convergence checks from lme4  are known to be too strict (see ?performance::check_convergence()
documentation for a discussion of this issue), consequently we checked for model warnings of convergence failure
using the check_convergence()  function from the performance  package (Lüdecke et al. 2021). For all models
we double-checked that they did not have singular fit by using performance::check_singularity . Despite
passing performance::check_singularity() , parameters::parameters()  was unable to properly
estimate SE and confidence intervals for the random e!ects of some models, which suggests singular fit. For all
models we also checked whether the SE of random e!ects could be calculated, and if not, marked these models as
being singular. Analyses of singularity and convergence are presented throughout this document under the relevant
section-heading for the analysis type and outcome, i.e. e!ect size ( ) or out-of-sample predictions ( ).

For models of deviation explained by categorical peer ratings, including random e!ects for both the e!ect ID and the
reviewer ID resulted in models with singular fit for both blue tit and Eucalyptus datasets (Table C.1). For the
Eucalyptus dataset, when a random e!ect was included for Reviewer ID only, the model passed the check with
performance::check_singularity() , however, the SD and CI could not be estimated by
parameters::model_parameters()  with a warning stating this was likely due to singular fit. When fitting
models of deviation explained by categorical peer ratings, we consequently included a random e!ect for Reviewer ID
only (See Table 3.6).

For models of deviation explained by continuous peer-review ratings, when including both random e!ects for e!ect
ID and Reviewer ID model fits were singular for both datasets (Table C.1). For the Eucalyptus dataset when including
a random e!ect only for Reviewer ID and dropping the random e!ect for e!ect ID, this model passed the
performance::check_singularity()  check, however, however, the SD and CI could not be estimated by
parameters::model_parameters()  with a warning stating this was likely due to singular fit. Consequently, for
both blue tit and Euclayptus datasets, we fitted and analysed models of deviation explained by continuous peer
review ratings with a random e!ect for E!ect ID only (See Table 3.6).
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We fitted the same deviation models on the yi dataset that we fitted for the Zr dataset. However, while all models
converged, models of deviation explained by categorical peer-ratings su!ered from singular fit for the following
datasets and estimate types: blue tit - y25, Eucalyptus - y25, Eucalyptus - y75 (Table C.2). Results are therefore
presented only for models with non-singular fit, converging for the following datasets and estimate types: blue tit -
y50, blue tit - y75, Eucalyptus - y50 (Table C.2).
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Group means and  confidence intervals for di!erent categories of peer-review rating are all overlapping
(Figure C.2). The fixed e!ect of peer review rating also explains virtually no variability in  deviation score
(Table C.2).
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Models of deviation explained by continuous ratinsg all converged, however models for the y25 out-of-sample
predictions were singular for both Eucalyptus and blue tit datasets.

There was a lack of any clear relationships between quantitative review scores and  deviation scores (Table C.10).
Plots of these relationships indicated either no relationship or extremely weak positive relationships (Figure C.3).
Recall that positive relationships mean that as review scores became more favorable, the deviation from the meta-
analytic mean increased, which is surprising. Because almost no variability in  deviation score was explained by
reviewer ratings (Table C.10), this pattern does not appear to merit further consideration.
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Given the convergence and singularity issues encountered with most other analyses, we also checked for
convergence and singularity issues in models of deviation explained by Sorensen’s similarity index for  estimates
(Table C.4). All models fitted without problem.
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There were only three blue tit analyses that did not include random e!ects, which is below the pre-registered
threshold for fitting a model of the Box-Cox transformed deviation from the meta-analytic mean as a function of
whether the analysis included random-e!ects. However, 16 Eucalyptus analyses included in the out-of-sample ( )
results included only fixed e!ects, which crossed our pre-registered threshold.

Consequently, we performed this analysis for the Eucalyptus dataset only, here we present results for the out of
sample prediction  results. There is consistent evidence of somewhat higher Box-Cox-transformed deviation values
for models including a random e!ect, meaning the models including random e!ects averaged slightly higher
deviation from the meta-analytic means. This is most evident for the  predictions which both shows the greatest
di!erence in Box-Cox transformed deviation values (Figure C.5) and explains the most variation in  deviation score
(Table C.10, Table C.10).

Code

Code

Code

The multivariate models did a poor job of explaining how di!erent from the meta-analytic mean each analysis would
be. For the blue tit analyses the  value for the whole model was 0.13 and for the fixed e!ects component was 0.04,
and the residual standard deviation for the model was 0.65. Further, all of the fixed e!ects had 95% confidence
intervals that overlaped 0. This evidence is all consistent with none of the predictor variables in this model
(continuous review rating, categorical review rating, distinctiveness of variables included) having any meaningful
e!ect on how far  estimates fell from the meta-analytic mean for the blue tit analyses. The pattern is largely similar
for the Eucalyptus multivariate analysis, in which  for the whole model was 0.11 and for the fixed e!ects
component was 0.03, and the residual standard deviation for the model was 1.09. There is somewhat more of a hint
of a pattern when examining the paramaeter estimates from the Eucalyptus analysis. In the case of the fixed e!ect of
categorical reviewer ratings, analyses that were reviewed as ‘publishable as is’ and ‘publishable with major revisions’
appeared to produce results more di!erent from the meta-analytic mean than those that were in the reference class
of ‘deeply flawed and unpublishable’. However, the estimates are very uncertain (Eucalyptus fixed e!ect for
‘publishable as is’ 1.17 (95% CI 0.03,2.3), and for ‘publishable with major revision’ 0.14 (95% CI -0.38,0.66). Further,
the collinearity between the categorical and continuous ratings make interpretation of e!ects involving either of
these two variables unclear, and so we recommend against interpreting the pattern observed here. We report this
analysis only for the sake of transparency.
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For the blue tit analyses, models with Reviewer ID as the only random e!ect were the only models that converged,
and that weren’t singular (Table C.7). Conversely, of the di!erent random e!ects structures we trialled for the
Eucalyptus analyses, none successfully fitted, with models either failing to converge due to complete separation
( lme4::  error: Downdated VtV is not positive definite , see https://github.com/lme4/lme4/issues/483).
Consequently we did not fit multivariate models on out-of-sample predictions for the Eucalyptus dataset, and
instead deviated from our intended plan of using random e!ects for both E!ect ID and Reviewer ID, and instead
using a single random e!ect for Reviewer ID (Table C.8, Table C.9).

Code

Code

Random effect variances not available. Returned R2 does not account for random effects.
Random effect variances not available. Returned R2 does not account for random effects.
Random effect variances not available. Returned R2 does not account for random effects.
Random effect variances not available. Returned R2 does not account for random effects.
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SM C: Explaining Variation in Deviation Scores
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C.1 Transforming response variable for model fitting

λ λ

C.2 Model Convergence and Singularity problems

Zr yi

C.3 Deviation Scores as explained by Reviewer Ratings

C.3.1 E!ect Sizes Zr

Table C.1:
Singularity and convergence checking outcomes for models of deviation in effect-sizes Z  explained by peer-
review ratings for different random effect structures. Problematic checking outcomes are highlighted in red.

Fixed Effect
Random Effects Model

converged?
Singular

Fit?
Can random effect SD be

calculated?

blue tit

Categorical Peer
Rating

Reviewer
ID — yes no yes

Categorical Peer
Rating Study ID Reviewer

ID yes yes no

Categorical Peer
Rating Study ID — yes no yes

Continuous Peer
Rating

Reviewer
ID — yes no yes

Continuous Peer
Rating Study ID Reviewer

ID yes no no

Continuous Peer
Rating Study ID — yes no yes

Eucalyptus

Categorical Peer
Rating

Reviewer
ID — yes no no

Categorical Peer
Rating Study ID Reviewer

ID yes yes no

Categorical Peer
Rating Study ID — yes no yes

Continuous Peer
Rating

Reviewer
ID — yes no no

Continuous Peer
Rating Study ID Reviewer

ID yes yes no

Continuous Peer
Rating Study ID — yes no yes

r

C.3.2 Out of sample predictions yi

Table C.2:
Singularity and convergence checking for models of deviation in out-of-sample-predictions y  explained

by peer-ratings.

Estimate Type Singular Fit? Model converged? Can random effect SE be calculated?

Deviation explained by continuous ratings

blue tit y25 no yes no

y50 no yes yes

y75 no yes yes

Eucalyptus y25 no yes no

y50 no yes yes

y75 no yes yes

Deviation explained by categorical ratings

blue tit y25 yes yes no

y50 no yes yes

y75 no yes yes

Eucalyptus y25 yes yes no

y50 no yes yes

y75 yes yes no

i

95%
yi

yi

yi

Figure C.3: Scatterplots exaining Box-Cox transfored deviation fro the eta-analytic mean for  estimates as a function of
continuous ratings. Note that higher (less negative) values of the deviation score result from greater deviation from the meta-
analytic mean.A: Blue tit, y50, B: Blue tit, y75, C: Eucalyptus, y50, D: Eucalyptus, y75.

yi

C.4 Deviation scores as explained by the distinctiveness of
variables in each analysis

C.4.1 E!ect Sizes Zr

C.4.2 Out of sample predictions yi

yi

Figure C.4: Scatter plots examining Box-Cox transformed deviation from the meta-analytic mean for  estimates as a function
of Sorensen’s similarity index. Note that higher (less negative) values of the deviation score result from greater deviation from
the meta-analytic mean. A: Blue tit, y25, B: Blue tit, y50, C: Blue tit, y75, D: Eucalyptus, y25, E: Eucalyptus, y50, F: Eucalyptus,
y75.

yi

Table C.4:
Singularity and convergence checks for models of deviation

explained by Sorensen’s similarity index and inclusion of
random effects for out-of-sample predictions, y . Models of
Deviation explained by inclusion of random effects are not

presented for blue tit analyses because the number of models
not using random effects was less than our preregistered

threshold.

Estimate Type Singular Fit? Model converged?

Deviation explained by Sorensen's index

blue tit y25 no yes

y50 no yes

y75 no yes

Eucalyptus y25 no yes

y50 no yes

y75 no yes

Deviation explained by inclusion of random effects

Eucalyptus y25 no yes

y50 no yes

y75 no yes

i

C.5 Deviation scores as explained by the inclusion of random
e!ects

C.5.1 Out of sample predictions yi

yi

yi

y50

yi

C.6 Multivariate Analysis

C.6.1 E!ect Sizes Zr

R2

Zr

R2

Table C.6:
Model summary metrics for multivariate models. σ is the

residual standard deviation, ICC is the intra-class
correlation coefficient, and R  and R  are the marginal

and conditional R , respectively.

Dataset ICC RMSE

blue tit 0.13 0.04 0.09 0.63 0.65

Eucalyptus 0.11 0.03 0.08 1.05 1.09

M
2

C
2

2

R2
Conditional

R2
Marginal σ

C.6.2 Out of sample predictions yi

Table C.7:
Singularity and convergence for all random effects structure combinations of multivariate models trialled for all

subsets of out of sample predictions y .

estimate_type
Random Effects Model

converged?
Singular

Fit?
Can random effect SE be

calculated?

blue tit

y25 Reviewer
ID — yes no yes

y50 Reviewer
ID — yes no yes

y75 Reviewer
ID — yes no yes

y25 Study ID Reviewer
ID no yes yes

y50 Study ID Reviewer
ID no yes yes

y75 Study ID Reviewer
ID yes yes no

y25 Study ID — yes no no

y50 Study ID — yes no yes

y75 Study ID — yes no yes

Eucalyptus

y25 Reviewer
ID — yes yes no

y50 Reviewer
ID — yes yes no

y75 Reviewer
ID — yes yes no

y25 Study ID Reviewer
ID yes no no

y50 Study ID Reviewer
ID no yes yes

y75 Study ID Reviewer
ID no yes yes

y25 Study ID — yes no no

y50 Study ID — no yes yes

y75 Study ID — no yes yes

i

Table C.8:
Model summary statistic for non-singular, converging multivariate

models fit to out-of-sample predictions for blue tit dataset

estimate_type RMSE ICC

y25 0.557 2.868 0.005 0.001 234 0.004

y50 0.622 8.135 0.002 0.001 221 0.001

y75 0.561 4.028 0.007 0.002 234 0.005

σ R2
Conditional

R2
Marginal

NObs

Figure C.1: Box-Coxtransformed absolute deviation scores plotted against (untransformed) absolute deviation scores.

Figure C.2: Violin plot of Box-Cox transformed deviation from meta-analytic mean as a function of categorical peer-review rating. Grey points
for each rating group denote model-estimated marginal mean deviation, and error bars denote 95% CI of the estimate. A blue tit dataset, 
B blue tit dataset,  C Eucalyptus dataset, .

y50

y75 y50

Table C.3:
Parameter estimates for univariate models of Box-Cox transformed deviation from the mean y  estimate as a function of

categorical peer-review rating, continuous peer-review rating, and Sorensen’s index for blue tit and Eucalyptus analyses, and
also for the inclusion of random effects for Eucalyptus analyses.

Estimate
Type Parameter Effects Group Coefficient SE 95%CI t df p

Deviation explained by continuous ratings

Eucalyptus y50 (Intercept) fixed -3e-01 0.12 [-5e-01,-9e-02] -3e+00 105 0.007

y50 RateAnalysis fixed 2e-14 7e-
09 [-1e-08, 1e-08] 3e-06 105 >0.9

y50 SD (Intercept) random Effect ID 0.57 0.08 [0.42,0.76]

y50 SD
(Observations) random Residual 3e-05 2e-

06 [ 3e-05, 4e-05]

Eucalyptus y75 (Intercept) fixed -6e-01 0.11 [-8e-01,-4e-01] -6e+00 105 <0.001

y75 RateAnalysis fixed 3e-16 3e-
10 [-6e-10, 6e-10] 9e-07 105 >0.9

y75 SD (Intercept) random Effect ID 0.56 0.08 [0.42,0.74]

y75 SD
(Observations) random Residual 0 1e-

04 [0,0]

blue tit y50 (Intercept) fixed -1e+00 0.05 [-2e+00,-1e+00] -3e+01 217 <0.001

y50 RateAnalysis fixed 2e-16 2e-
10 [-4e-10, 4e-10] 9e-07 217 >0.9

y50 SD (Intercept) random Effect ID 0.37 0.03 [0.3,0.44]

y50 SD
(Observations) random Residual 5e-07 3e-

08 [ 5e-07, 6e-07]

blue tit y75 (Intercept) fixed -1e+00 0.04 [-1e+00,-1e+00] -3e+01 230 <0.001

y75 RateAnalysis fixed 3e-14 6e-
09 [-1e-08, 1e-08] 5e-06 230 >0.9

y75 SD (Intercept) random Effect ID 0.35 0.03 [0.3,0.42]

y75 SD
(Observations) random Residual 1e-05 5e-

07 [ 9e-06, 1e-05]

Deviation explained by categorical ratings

Eucalyptus y50 (Intercept) fixed -1e+00 0.5 [-2e+00,-1e-01] -2e+00 103 0.030

y50 Publishable with
major revision fixed 0.59 0.54 [-5e-01,1.67] 1.08 103 0.3

y50 Publishable with
minor revision fixed 0.73 0.53 [-3e-01,1.78] 1.39 103 0.2

y50 Publishable as is fixed 1.2 0.59 [0.03,2.38] 2.03 103 0.045

y50 SD (Intercept) random Reviewer
ID 0.13 0.56 [ 3e-05,571.22]

y50 SD
(Observations) random Residual 1.28 0.1 [1.09,1.49]

blue tit y50 (Intercept) fixed -1e+00 0.28 [-2e+00,-6e-01] -4e+00 215 <0.001

y50 Publishable with
major revision fixed -2e-01 0.29 [-8e-01,0.35] -8e-01 215 0.4

y50 Publishable with
minor revision fixed -3e-01 0.29 [-8e-01,0.31] -9e-01 215 0.4

y50 Publishable as is fixed -4e-01 0.31 [-1e+00,0.18] -1e+00 215 0.2

y50 SD (Intercept) random Reviewer
ID 0.22 0.08 [0.11,0.46]

y50 SD
(Observations) random Residual 0.69 0.04 [0.62,0.77]

blue tit y75 (Intercept) fixed -1e+00 0.26 [-2e+00,-9e-01] -5e+00 228 <0.001

y75 Publishable with
major revision fixed 0.06 0.27 [-5e-01,0.59] 0.22 228 0.8

y75 Publishable with
minor revision fixed 0.31 0.27 [-2e-01,0.84] 1.15 228 0.2

y75 Publishable as is fixed 0.34 0.28 [-2e-01,0.89] 1.18 228 0.2

y75 SD (Intercept) random Reviewer
ID 0.26 0.06 [0.16,0.42]

y75 SD
(Observations) random Residual 0.61 0.03 [0.55,0.68]

i

Figure C.5: Violin plot of Box-Cox transformed deviation from meta-analytic mean as a function of presence or absence of random e!ects in
the analyst’s model. White points for each rating group denote model-estimated marginal mean deviation, and error bars denote 95% CI of
the estimate. Note that higher (less negative) values of Box-Cox transformed deviation result from greater deviation from the meta-analytic
mean. A: Eucalyptus, y25, B: Eucalyptus, y50, C: Eucalyptus, y75.

Table C.5:
Parameter estimates from models explaining Box-Cox transformed deviation scores from the mean Z  as a function
of continuous and categorical peer-review ratings in multivariate analyses. Standard Errors (SE), 95% Confidence
Intervals (95%CI) are reported for all estimates, while t values, degrees of freedom and p-values are presented for

fixed-effects.

Parameter Effects Group Coefficient SE 95%CI t df p

blue tit

(Intercept) fixed -1.978 0.379 [-2.723,-1.234] -5.222 442 0

RateAnalysis fixed -0.005 0.003 [-0.012,0.001] -1.547 442 0.123

Publishable as is fixed 0.142 0.265 [-0.378,0.662] 0.537 442 0.592

Publishable with major revision fixed -0.121 0.18 [-0.476,0.233] -0.671 442 0.502

Publishable with minor revision fixed -0.005 0.227 [-0.451,0.44] -0.024 442 0.981

Mean Sorensen's index fixed 0.409 0.363 [-0.303,1.122] 1.129 442 0.26

Mixed model fixed 0.734 0.204 [0.333,1.134] 3.599 442 0

SD (Intercept) random Reviewer ID 0.205 0.048 [0.13,0.324]

SD (Observations) random Residual 0.653 0.024 [0.608,0.701]

Eucalyptus

(Intercept) fixed -3.128 0.808 [-4.718,-1.538] -3.872 302 0

RateAnalysis fixed -0.011 0.006 [-0.024,0.001] -1.778 302 0.076

Publishable as is fixed 1.167 0.58 [0.026,2.308] 2.012 302 0.045

Publishable with major revision fixed 0.871 0.4 [0.084,1.658] 2.179 302 0.03

Publishable with minor revision fixed 0.776 0.484 [-0.177,1.728] 1.602 302 0.11

Mean Sorensen's index fixed 0.546 0.958 [-1.339,2.432] 0.57 302 0.569

Mixed model fixed 0.185 0.212 [-0.233,0.603] 0.871 302 0.384

SD (Intercept) random Reviewer ID 0.331 0.105 [0.178,0.616]

SD (Observations) random Residual 1.092 0.049 [1.001,1.192]

r

Table C.9:
Parameter estimates for converging, non-singular multivariate models fitted to blue tit out-of-sample-prediction estimates y .

Parameter Effects Group Coefficient SE 95%CI t df p

y25 (Intercept) fixed -4.16e-01 0.52740 [-1.46e+00, 6.23e-01] -0.7884 225 0.4

Categorical Peer
Ratingpublishable as is fixed -4.27e-01 0.34401 [-1.10e+00, 2.51e-01] -1.2403 225 0.2

Categorical Peer
Ratingpublishable with
major revision

fixed -2.38e-01 0.25660 [-7.44e-01, 2.68e-01] -0.9272 225 0.4

Categorical Peer
Ratingpublishable with
minor revision

fixed -3.73e-01 0.30290 [-9.70e-01, 2.24e-01] -1.2322 225 0.2

Continuous Peer
Rating fixed 2.62e-03 0.00396 [-5.19e-03, 1.04e-02] 0.6620 225 0.5

Sorensen's Index fixed -9.04e-01 0.52497 [-1.94e+00, 1.30e-01] -1.7220 225 0.086

Mixed Model fixed 1.97e-01 0.34881 [-4.91e-01, 8.84e-01] 0.5643 225 0.6

SD (Intercept) random Reviewer
ID 1.76e-01 1.27770 [ 1.18e-07, 2.63e+05]

SD (Observations) random Residual 2.87e+00 0.15398 [ 2.58e+00, 3.19e+00]

y50 (Intercept) fixed 5.70e-01 0.60090 [-6.15e-01, 1.75e+00] 0.9482 212 0.3

Categorical Peer
Ratingpublishable as is fixed -5.62e-01 0.42205 [-1.39e+00, 2.70e-01] -1.3326 212 0.2

Categorical Peer
Ratingpublishable with
major revision

fixed -1.78e-01 0.31330 [-7.96e-01, 4.39e-01] -0.5684 212 0.6

Categorical Peer
Ratingpublishable with
minor revision

fixed -3.79e-01 0.37203 [-1.11e+00, 3.54e-01] -1.0197 212 0.3

Continuous Peer
Rating fixed 2.73e-03 0.00483 [-6.80e-03, 1.23e-02] 0.5655 212 0.6

Sorensen's Index fixed -2.59e+00 0.61534 [-3.81e+00,-1.38e+00] -4.2156 212 <0.001

Mixed Model fixed -3.62e-01 0.37243 [-1.10e+00, 3.72e-01] -0.9729 212 0.3

SD (Intercept) random Reviewer
ID 2.81e-01 6.75584 [ 1.05e-21, 7.57e+19]

SD (Observations) random Residual 8.14e+00 0.45277 [ 7.29e+00, 9.07e+00]

y75 (Intercept) fixed -8.45e-01 0.58983 [-2.01e+00, 3.17e-01] -1.4331 225 0.2

Categorical Peer
Ratingpublishable as is fixed 3.86e-01 0.39603 [-3.94e-01, 1.17e+00] 0.9749 225 0.3

Categorical Peer
Ratingpublishable with
major revision

fixed 9.78e-02 0.29694 [-4.87e-01, 6.83e-01] 0.3294 225 0.7

Categorical Peer
Ratingpublishable with
minor revision

fixed 3.63e-01 0.35324 [-3.33e-01, 1.06e+00] 1.0288 225 0.3

Continuous Peer
Rating fixed 9.75e-05 0.00454 [-8.84e-03, 9.04e-03] 0.0215 225 >0.9

i
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Pairwise-correlation plots for the Eucalyptus and blue tit case-study data provided to analysts are shown in
Figure D.1 and Figure D.2, respectively. Plots were created with R package GGally  (Schloerke et al. 2022).
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Figure D.1: Pairwise correllation plot for all Eucalyptus dataset variables except for Date , Quadrat no , Easting , Northing .



Figure D.2: Pairwise correlation plot of all numeric variables in blue tit case study dataset


