
One value of science derives from its production of replicable, and thus reliable, results. When we repeat a study
using the original methods we should be able to expect a similar result. However, perfect replicability is not a
reasonable goal. E!ect sizes will vary, and even reverse in sign, by chance alone (Gelman and Weakliem 2009).
Observed patterns can di!er for other reasons as well. It could be that we do not su!iciently understand the
conditions that led to the original result so when we seek to replicate it, the conditions di!er due to some ‘hidden
moderator’. This hidden moderator hypothesis is described by meta-analysts in ecology and evolutionary biology as
‘true biological heterogeneity’ (Senior et al. 2016). This idea of true heterogeneity is popular in ecology and
evolutionary biology, and there are good reasons to expect it in the complex systems in which we work (Shavit and
Ellison 2017). However, despite similar expectations in psychology, recent evidence in that discipline contradicts the
hypothesis that moderators are common obstacles to replicability, as variability in results in a large ‘many labs’
collaboration was mostly unrelated to commonly hypothesized moderators such as the conditions under which the
studies were administered (Klein et al. 2018). Another possible explanation for variation in e!ect sizes is that
researchers o"en present biased samples of results, thus reducing the likelihood that later studies will produce
similar e!ect sizes (Open Science Collaboration 2015; Parker et al. 2016; Forstmeier, Wagenmakers, and Parker 2017;
Fraser et al. 2018; Parker and Yang 2023). It also may be that although researchers did successfully replicate the
conditions, the experiment, and measured variables, analytical decisions di!ered su!iciently among studies to
create divergent results (Simonsohn, Simmons, and Nelson 2015; Silberzahn et al. 2018).

Analytical decisions vary among studies because researchers have many options. Researchers need to decide how to
exclude possibly anomalous or unreliable data, how to construct variables, which variables to include in their
models, and which statistical methods to use. Depending on the dataset, this short list of choices could encompass
thousands or millions of possible alternative specifications (Simonsohn, Simmons, and Nelson 2015). However,
researchers making these decisions presumably do so with the goal of doing the best possible analysis, or at least
the best analysis within their current skill set. Thus it seems likely that some specification options are more probable
than others, possibly because they have previously been shown (or claimed) to be better, or because they are more
well known. Of course, some of these di!erent analyses (maybe many of them) may be equally valid alternatives.
Regardless, on probably any topic in ecology and evolutionary biology, we can encounter di!erences in choices of
data analysis. The extent of these di!erences in analyses and the degree to which these di!erences influence the
outcomes of analyses and therefore studies’ conclusions are important empirical questions. These questions are
especially important given that many papers draw conclusions a"er applying a single method, or even a single
statistical model, to analyze a dataset.

The possibility that di!erent analytical choices could lead to di!erent outcomes has long been recognized (Gelman
and Loken 2013), and various e!orts to address this possibility have been pursued in the literature. For instance, one
common method in ecology and evolutionary biology involves creating a set of candidate models, each consisting of
a di!erent (though o"en similar) set of predictor variables, and then, for the predictor variable of interest, averaging
the slope across all models (i.e. model averaging) (Burnham and Anderson 2002; Grueber et al. 2011). This method
reduces the chance that a conclusion is contingent upon a single model specification, though use and interpretation
of this method is not without challenges (Grueber et al. 2011). Further, the models compared to each other typically
di!er only in the inclusion or exclusion of certain predictor variables and not in other important ways, such as
methods of parameter estimation. More explicit examination of outcomes of di!erences in model structure, model
type, data exclusion, or other analytical choices can be implemented through sensitivity analyses (e.g., Noble et al.
2017). Sensitivity analyses, however, are typically rather narrow in scope, and are designed to assess the sensitivity
of analytical outcomes to a particular analytical choice rather than to a large universe of choices. Recently, however,
analysts in the social sciences have proposed extremely thorough sensitivity analysis, including ‘multiverse analysis’
(Steegen et al. 2016) and the ‘specification curve’ (Simonsohn, Simmons, and Nelson 2015), as a means of increasing
the reliability of results. With these methods, researchers identify relevant decision points encountered during
analysis and conduct the analysis many times to incorporate many plausible decisions made at each of these points.
The study’s conclusions are then based on a broad set of the possible analyses and so allow the analyst to
distinguish between robust conclusions and those that are highly contingent on particular model specifications.
These are useful outcomes, but specifying a universe of possible modelling decisions is not a trivial undertaking.
Further, the analyst’s knowledge and biases will influence decisions about the boundaries of that universe, and so
there will always be room for disagreement among analysts about what to include. Including more specifications is
not necessarily better. Some analytical decisions are better justified than others, and including biologically
implausible specifications may undermine this process. Regardless, these powerful methods have yet to be adopted,
and even more limited forms of sensitivity analyses are not particularly widespread. Most studies publish a small set
of analyses and so the existing literature does not provide much insight into the degree to which published results
are contingent on analytical decisions.

Despite the potential major impacts of analytical decisions on variance in results, the outcomes of di!erent
individuals’ data analysis choices have received limited empirical attention. The only formal exploration of this that
we were aware of when we submitted our Stage 1 manuscript were (1) an analysis in social science that asked
whether male professional football (soccer) players with darker skin tone were more likely to be issued red cards
(ejection from the game for rule violation) than players with lighter skin tone (Silberzahn et al. 2018) and (2) an
analysis in neuroimaging which evaluated nine separate hypotheses involving the neurological responses detected
with fMRI in 108 participants divided between two treatments in a decision making task (Botvinik-Nezer et al. 2020).
Several others have been published since (e.g., Huntington-Klein et al. 2021; Schweinsberg et al. 2021; Breznau et al.
2022; Coretta et al. 2023). In the red card study, twenty-nine teams designed and implemented analyses of a dataset
provided by the study coordinators (Silberzahn et al. 2018). Analyses were peer reviewed (results blind) by at least
two other participating analysts; a level of scrutiny consistent with standard pre-publication peer review. Among the
final 29 analyses, odds-ratios varied from 0.89 to 2.93, meaning point estimates varied from having players with
lighter skin tones receive more red cards (odds ratio < 1) to a strong e!ect of players with darker skin tones receiving
more red cards (odds ratio > 1). Twenty of the 29 teams found a statistically-significant e!ect in the predicted
direction of players with darker skin tones being issued more red cards. This degree of variation in peer-reviewed
analyses from identical data is striking, but the generality of this finding has only just begun to be formally
investigated.

In the neuroimaging study, 70 teams evaluated each of the nine di!erent hypotheses with the available fMRI data
(Botvinik-Nezer et al. 2020). These 70 teams followed a divergent set of workflows that produced a wide range of
results. The rate of reporting of statistically significant support for the nine hypotheses ranged from 21% to 84%, and
for each hypothesis on average, 20% of research teams observed e!ects that di!ered substantially from the majority
of other teams. Some of the variability in results among studies could be explained by analytical decisions such as
choice of so"ware package, smoothing function, and parametric versus non-parametric corrections for multiple
comparisons. However, substantial variability among analyses remained unexplained, and presumably emerged
from the many di!erent decisions each analyst made in their long workflows. Such variability in results among
analyses from this dataset and from the very di!erent red-card dataset suggests that sensitivity of analytical
outcome to analytical choices may characterize many distinct fields, as several more recent many-analyst studies
also suggest (Huntington-Klein et al. 2021; Schweinsberg et al. 2021; Breznau et al. 2022).

To further develop the empirical understanding of the e!ects of analytical decisions on study outcomes, we chose to
estimate the extent to which researchers’ data analysis choices drive di!erences in e!ect sizes, model predictions,
and qualitative conclusions in ecology and evolutionary biology. This is an important extension of the meta-research
agenda of evaluating factors influencing replicability in ecology, evolutionary biology, and beyond (Fidler et al.
2017). To examine the e!ects of analytical decisions, we used two di!erent datasets and recruited researchers to
analyze one or the other of these datasets to answer a question we defined. The first question was “To what extent is
the growth of nestling blue tits (Cyanistes caeruleus) influenced by competition with siblings?” To answer this
question, we provided a dataset that includes brood size manipulations from 332 broods conducted over three years
at Wytham Wood, UK. The second question was “How does grass cover influence Eucalyptus spp. seedling
recruitment?” For this question, analysts used a dataset that includes, among other variables, number of seedlings in
di!erent size classes, percentage cover of di!erent life forms, tree canopy cover, and distance from canopy edge from
351 quadrats spread among 18 sites in Victoria, Australia.

We explored the impacts of data analysts’ choices with descriptive statistics and with a series of tests to attempt to
explain the variation among e!ect sizes and predicted values of the dependent variable produced by the di!erent
analysis teams for both datasets separately. To describe the variability, we present forest plots of the standardized
e!ect sizes and predicted values produced by each of the analysis teams, estimate heterogeneity (both absolute, ,
and proportional, ) in e!ect size and predicted values among the results produced by these di!erent teams, and
calculate a similarity index that quantifies variability among the predictor variables selected for the di!erent
statistical models constructed by the di!erent analysis teams. These descriptive statistics provide the first estimates
of the extent to which explanatory statistical models and their outcomes in ecology and evolutionary biology vary
based on the decisions of di!erent data analysts. We then quantified the degree to which the variability in e!ect size
and predicted values could be explained by (1) variation in the quality of analyses as rated by peer reviewers and (2)
the similarity of the choices of predictor variables between individual analyses.

This project involved a series of steps (1-6) that began with identifying datasets for analyses and continued through
recruiting independent groups of scientists to analyze the data, allowing the scientists to analyze the data as they
saw fit, generating peer review ratings of the analyses (based on methods, not results), evaluating the variation in
e!ects among the di!erent analyses, and producing the final manuscript.

We used two previously unpublished datasets, one from evolutionary ecology and the other from ecology and
conservation.

Evolutionary ecology

Our evolutionary ecology dataset is relevant to a sub-discipline of life-history research which focuses on identifying
costs and trade-o!s associated with di!erent phenotypic conditions. These data were derived from a brood-size
manipulation experiment imposed on wild birds nesting in boxes provided by researchers in an intensively studied
population. Understanding how the growth of nestlings is influenced by the numbers of siblings in the nest can give
researchers insights into factors such as the evolution of clutch size, determination of provisioning rates by parents,
and optimal levels of sibling competition (Vander Werf 1992; DeKogel 1997; Royle et al. 1999; Verhulst, Holveck, and
Riebel 2006; Nicolaus et al. 2009). Data analysts were provided this dataset and instructed to answer the following
question: “To what extent is the growth of nestling blue tits (Cyanistes caeruleus) influenced by competition with
siblings?”

Researchers conducted brood size manipulations and population monitoring of blue tits at Wytham Wood, a 380 ha
woodland in Oxfordshire, U.K (1º 20’W, 51º 47’N). Researchers regularly checked approximately 1100 artificial nest
boxes at the site and monitored the 330 to 450 blue tit pairs occupying those boxes in 2001-2003 during the
experiment. Nearly all birds made only one breeding attempt during the April to June study period in a given year. At
each blue tit nest, researchers recorded the date the first egg appeared, clutch size, and hatching date. For all chicks
alive at age 14 days, researchers measured mass and tarsus length and fitted a uniquely numbered, British Trust for
Ornithology (BTO) aluminium leg ring. Researchers attempted to capture all adults at their nests between day 6 and
day 14 of the chick-rearing period. For these captured adults, researchers measured mass, tarsus length, and wing
length and fitted a uniquely numbered BTO leg ring. During the 2001-2003 breeding seasons, researchers
manipulated brood sizes using cross fostering. They matched broods for hatching date and brood size and moved
chicks between these paired nests one or two days a"er hatching. They sought to either enlarge or reduce all
manipulated broods by approximately one fourth. To control for e!ects of being moved, each reduced brood had a
portion of its brood replaced by chicks from the paired increased brood, and vice versa. Net manipulations varied
from plus or minus four chicks in broods of 12 to 16 to plus or minus one chick in broods of 4 or 5. Researchers le"
approximately one third of all broods unmanipulated. These unmanipulated broods were not selected systematically
to match manipulated broods in clutch size or laying date. We have mass and tarsus length data from 3720 individual
chicks divided among 167 experimentally enlarged broods, 165 experimentally reduced broods, and 120
unmanipulated broods. The full list of variables included in the dataset is publicly available (https://osf.io/hdv8m),
along with the data (https://osf.io/qjzby).

Additional explanation: Shortly a"er beginning to recruit analysts, several analysts noted a small set of related
errors in the blue tit dataset. We corrected the errors, replaced the dataset on our OSF site, and emailed the analysts
on 19 April 2020 to instruct them to use the revised data. The email to analysts is available here (https://osf.io/4h53z).
The errors are explained in that email.

Ecology and conservation

Our ecology and conservation dataset is relevant to a sub-discipline of conservation research which focuses on
investigating how best to revegetate private land in agricultural landscapes. These data were collected on private
land under the Bush Returns program, an incentive system where participants entered into a contract with the
Goulburn Broken Catchment Management Authority and received annual payments if they executed predetermined
restoration activities. This particular dataset is based on a passive regeneration initiative, where livestock grazing
was removed from the property in the hopes that the Eucalyptus spp. overstorey would regenerate without active
(and expensive) planting. Analyses of some related data have been published (Miles 2008; Vesk et al. 2016) but those
analyses do not address the question analysts answered in our study. Data analysts were provided this dataset and
instructed to answer the following question: “How does grass cover influence Eucalyptus spp. seedling
recruitment?”.

Researchers conducted three rounds of surveys at 18 sites across the Goulburn Broken catchment in northern
Victoria, Australia in winter and spring 2006 and autumn 2007. In each survey period, a di!erent set of 15 x 15 m
quadrats were randomly allocated across each site within 60 m of existing tree canopies. The number of quadrats at
each site depended on the size of the site, ranging from four at smaller sites to 11 at larger sites. The total number of
quadrats surveyed across all sites and seasons was 351. The number of Eucalyptus spp. seedlings was recorded in
each quadrat along with information on the GPS location, aspect, tree canopy cover, distance to tree canopy, and
position in the landscape. Ground layer plant species composition was recorded in three 0.5 x 0.5 m sub-quadrats
within each quadrat. Subjective cover estimates of each species as well as bare ground, litter, rock and
moss/lichen/soil crusts were recorded. Subsequently, this was augmented with information about the precipitation
and solar radiation at each GPS location. The full list of variables included in the dataset is publicly available
(https://osf.io/r5gbn), along with the data (https://osf.io/qz5cu).

The lead team (TP, HF, SN, EG, SG, PV, FF) created a publicly available document providing a general description of
the project (https://osf.io/mn5aj/). The project was advertised at conferences, via Twitter, using mailing lists for
ecological societies (including Ecolog, Evoldir, and lists for the Environmental Decisions Group, and Transparency in
Ecology and Evolution), and via word of mouth. The target population was active ecology, conservation, or
evolutionary biology researchers with a graduate degree (or currently studying for a graduate degree) in a relevant
discipline. Researchers could choose to work independently or in a small team. For the sake of simplicity, we refer to
these as ‘analysis teams’ though some comprised one individual. We aimed for a minimum of 12 analysis teams
independently evaluating each dataset (see sample size justification below). We simultaneously recruited volunteers
to peer review the analyses conducted by the other volunteers through the same channels. Our goal was to recruit a
similar number of peer reviewers and analysts, and to ask each peer reviewer to review a minimum of four analyses.
If we were unable to recruit at least half the number of reviewers as analysis teams, we planned to ask analysts to
serve also as reviewers (a"er they had completed their analyses), but this was unnecessary. All analysts and
reviewers were o!ered the opportunity to share co-authorship on this manuscript and we planned to invite them to
participate in the collaborative process of producing the final manuscript. All analysts signed [digitally] a consent
(ethics) document (https://osf.io/xyp68/) approved by the Whitman College Institutional Review Board prior to being
allowed to participate.

Preregistration Deviation:

Due to the large number of recruited analysts and reviewers and the anticipated challenges of receiving and
integrating feedback from so many authors, we limited analyst and reviewer participation in the production of the
final manuscript to an invitation to call attention to serious problems with the manuscript dra".

We identified our minimum number of analysts per dataset by considering the number of e!ects needed in a meta-
analysis to generate an estimate of heterogeneity ( ) with a 95% confidence interval that does not encompass zero.
This minimum sample size is invariant regardless of . This is because the same t-statistic value will be obtained by
the same sample size regardless of variance ( ). We see this by first examining the formula for the standard error, SE
for variance, ( ) or SE( ) assuming normality in an underlying distribution of e!ect sizes (Knight 2000):

and then rearranging the above formula to show how the t-statistic is independent of , as seen below.

We then find a minimum n = 12 according to this formula.

Analysis teams registered and answered a demographic and expertise survey (https://osf.io/seqzy/). We then
provided them with the dataset of their choice and requested that they answer a specific research question. For the
evolutionary ecology dataset that question was “To what extent is the growth of nestling blue tits (Cyanistes
caeruleus) influenced by competition with siblings?” and for the conservation ecology dataset it was “How does
grass cover influence Eucalyptus spp. seedling recruitment?” Once their analysis was complete, they answered a
structured survey (https://osf.io/neyc7/), providing analysis technique, explanations of their analytical choices,
quantitative results, and a statement describing their conclusions. They also were asked to upload their analysis files
(including the dataset as they formatted it for analysis and their analysis code [if applicable]) and a detailed journal-
ready statistical methods section.

Preregistration Deviation:

We originally planned to have analysts complete a single survey (https://osf.io/neyc7/), but a"er we evaluated the
results of that survey, we realized we would need a second survey (https://osf.io/8w3v5/) to adequately collect the
information we needed to evaluate heterogeneity of results (step 5). We provided a set of detailed instructions with
the follow-up survey, and these instructions are publicly available and can be found within the following files (blue
tit: https://osf.io/kr2g9, Eucalyptus: https://osf.io/dfvym).

At minimum, each analysis was evaluated by four di!erent reviewers, and each volunteer peer reviewer was
randomly assigned methods sections from at least four analyst teams (the exact number varied). Each peer reviewer
registered and answered a demographic and expertise survey identical to that asked of the analysts, except we did
not ask about ‘team name’ since reviewers did not work in teams. Reviewers evaluated the methods of each of their
assigned analyses one at a time in a sequence determined by the project leaders. We systematically assigned the
sequence so that, if possible, each analysis was allocated to each position in the sequence for at least one reviewer.
For instance, if each reviewer were assigned four analyses to review, then each analysis would be the first analysis
assigned to at least one reviewer, the second analysis assigned to another reviewer, the third analysis assigned to yet
another reviewer, and the fourth analysis assigned to a fourth reviewer. Balancing the order in which reviewers saw
the analyses controls for order e!ects, e.g. a reviewer might be less critical of the first methods section they read
than the last.

The process for a single reviewer was as follows. First, the reviewer received a description of the methods of a single
analysis. This included the narrative methods section, the analysis team’s answers to our survey questions regarding
their methods, including analysis code, and the dataset. The reviewer was then asked, in an online survey
(https://osf.io/4t36u/), to rate that analysis on a scale of 0-100 based on this prompt: “Rate the overall
appropriateness of this analysis to answer the research question (one of the two research questions inserted here)
with the available data. To help you calibrate your rating, please consider the following guidelines:

100. A perfect analysis with no conceivable improvements from the reviewer
75. An imperfect analysis but the needed changes are unlikely to dramatically alter outcomes
50. A flawed analysis likely to produce either an unreliable estimate of the relationship or an over-precise

estimate of uncertainty
25. A flawed analysis likely to produce an unreliable estimate of the relationship and an over-precise estimate

of uncertainty
0. A dangerously misleading analysis, certain to produce both an estimate that is wrong and a substantially

over-precise estimate of uncertainty that places undue confidence in the incorrect estimate.

*Please note that these values are meant to calibrate your ratings. We welcome ratings of any number between 0 and
100.”

A"er providing this rating, the reviewer was presented with this prompt, in multiple-choice format: “Would the
analytical methods presented produce an analysis that is (a) publishable as is, (b) publishable with minor revision,
(c) publishable with major revision, (d) deeply flawed and unpublishable?” The reviewer was then provided with a
series of text boxes and the following prompts: “Please explain your ratings of this analysis. Please evaluate the
choice of statistical analysis type. Please evaluate the process of choosing variables for and structuring the statistical
model. Please evaluate the suitability of the variables included in (or excluded from) the statistical model. Please
evaluate the suitability of the structure of the statistical model. Please evaluate choices to exclude or not exclude
subsets of the data. Please evaluate any choices to transform data (or, if there were no transformations, but you think
there should have been, please discuss that choice).” A"er submitting this review, a methods section from a second
analysis was then made available to the reviewer. This same sequence was followed until all analyses allocated to a
given reviewer were provided and reviewed. A"er providing the final review, the reviewer was simultaneously
provided with all four (or more) methods sections the reviewer had just completed reviewing, the option to revise
their original ratings, and a text box to provide an explanation. The invitation to revise the original ratings was as
follows: “If, now that you have seen all the analyses you are reviewing, you wish to revise your ratings of any of these
analyses, you may do so now.” The text box was prefaced with this prompt: “Please explain your choice to revise (or
not to revise) your ratings.”

Additional explanation: Unregistered analysis.
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Although variation in e!ect sizes and predicted values among studies of similar phenomena is inevitable, such variation far
exceeds what might be produced by sampling error alone. One possible explanation for variation among results is di!erences
among researchers in the decisions they make regarding statistical analyses. A growing array of studies has explored this
analytical variability in di!erent (mostly social science) fields, and has found substantial variability among results, despite
analysts having the same data and research question. We implemented an analogous study in ecology and evolutionary
biology, fields in which there have been no empirical exploration of the variation in e!ect sizes or model predictions
generated by the analytical decisions of di!erent researchers. We used two unpublished datasets, one from evolutionary
ecology (blue tit, Cyanistes caeruleus, to compare sibling number and nestling growth) and one from conservation ecology
(Eucalyptus, to compare grass cover and tree seedling recruitment), and the project leaders recruited 174 analyst teams,
comprising 246 analysts, to investigate the answers to prespecified research questions. Analyses conducted by these teams
yielded 141 usable e!ects for the blue tit dataset, and 85 usable e!ects for the Eucalyptus dataset. We found substantial
heterogeneity among results for both datasets, although the patterns of variation di!ered between them. For the blue tit
analyses, the average e!ect was convincingly negative, with less growth for nestlings living with more siblings, but there was
near continuous variation in e!ect size from large negative e!ects to e!ects near zero, and even e!ects crossing the
traditional threshold of statistical significance in the opposite direction. In contrast, the average relationship between grass
cover and Eucalyptus seedling number was only slightly negative and not convincingly di!erent from zero, and most e!ects
ranged from weakly negative to weakly positive, with about a third of e!ects crossing the traditional threshold of significance
in one direction or the other. However, there were also several striking outliers in the Eucalyptus dataset, with e!ects far from
zero. For both datasets, we found substantial variation in the variable selection and random e!ects structures among
analyses, as well as in the ratings of the analytical methods by peer reviewers, but we found no strong relationship between
any of these and deviation from the meta-analytic mean. In other words, analyses with results that were far from the mean
were no more or less likely to have dissimilar variable sets, use random e!ects in their models, or receive poor peer reviews
than those analyses that found results that were close to the mean. The existence of substantial variability among analysis
outcomes raises important questions about how ecologists and evolutionary biologists should interpret published results,
and how they should conduct analyses in the future.

Same data, di!erent analysts: variation in e!ect
sizes due to analytical decisions in ecology and
evolutionary biology.
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To determine how consistent peer reviewers were in their ratings, we assessed inter-rater reliability among reviewers
for both the categorical and quantitative ratings combining blue tit and Eucalyptus data using Krippendor!’s alpha
for ordinal and continuous data respectively. This provides a value that is between -1 (total disagreement between
reviewers) and 1 (total agreement between reviewers).

The lead team conducted the analyses outlined in this section. We described the variation in model specification in
several ways. We calculated summary statistics describing variation among analyses, including mean, SD, and range
of number of variables per model included as fixed e!ects, the number of interaction terms, the number of random
e!ects, and the mean, SD, and range of sample sizes. We also present the number of analyses in which each variable
was included. We summarized the variability in standardized e!ect sizes and predicted values of dependent
variables among the individual analyses using standard random e!ects meta-analytic techniques. First, we derived
standardized e!ect sizes from each individual analysis. We did this for all linear models or generalized linear models
by converting the  value and the degree of freedom ( ) associated with regression coe!icients (e.g. the e!ect of the
number of siblings [predictor] on growth [response] or the e!ect of grass cover [predictor] on seedling recruitment
[response]) to the correlation coe!icient, , using the following:

This formula can only be applied if  and  values originate from linear or generalized linear models [GLMs; Shinichi
Nakagawa and Cuthill (2007)]. If, instead, linear mixed-e!ects models (LMMs) or generalized linear mixed-e!ects
models (GLMMs) were used by a given analysis, the exact  cannot be estimated. However, adjusted  can be
estimated, for example, using the Satterthwaite approximation of , , [note that SAS uses this approximation to
obtain  for LMMs and GLMMs; Luke (2017)]. For analyses using either LMMs or GLMMs that do not produce  we
planned to obtain  by rerunning the same (G)LMMs using the lmer()  or glmer()  function in the lmerTest
package in R (Kuznetsova, Brockho!, and Christensen 2017; R Core Team 2022).

Preregistration Deviation:

Rather than re-run these analyses ourselves, we sent a follow-up survey (referenced above under “Primary data
analyses”) to analysts and asked them to follow our instructions for producing this information. The instructions are
publicly available and can be found within the following files (blue tit: https://osf.io/kr2g9, Eucalyptus:
https://osf.io/dfvym).

We then used the  values and  from the models to obtain  as per the formula above. All  and accompanying 
(or ) were converted to  and its sampling variance;  where . Any analyses from which we
could not derive a signed , for instance one with a quadratic function in which the slope changed sign, were
excluded from the analyses of Fisher’s . We expected such analyses would be rare. In fact, most submitted
analyses excluded from our meta-analysis of  were excluded because of a lack of su!icient information provided
by the analyst team rather than due to the use of e!ects that could not be converted to . Regardless, as we
describe below, we generated a second set of standardized e!ects (predicted values) that could (in principle) be
derived from any explanatory model produced by these data.

Besides , which describes the strength of a relationship based on the amount of variation in a dependent variable
explained by variation in an independent variable, we also examined di!erences in the shape of the relationship
between the independent and dependent variables. To accomplish this, we derived a point estimate (out-of-sample
predicted value) for the dependent variable of interest for each of three values of our primary independent variable.
We originally described these three values as associated with the 25th percentile, median, and 75th percentile of the
independent variable and any covariates.

Preregistration Deviation: The original description of the out-of-sample specifications did not account for the facts
that (a) some variables are not distributed in a way that allowed division in percentiles and that (b) variables could be
either positively or negatively correlated with the dependent variable. We provide a more thorough description here:
We derived three point-estimates (out-of-sample predicted values) for the dependent variable of interest; one for
each of three values of our primary independent variable that we specified. We also specified values for all other
variables that could have been included as independent variables in analysts’ models so that we could derive the
predicted values from a fully specified version of any model produced by analysts. For all potential independent
variables, we selected three values or categories. Of the three we selected, one was associated with small, one with
intermediate, and one with large values of one typical dependent variable (day 14 chick weight for the blue tit data
and total number of seedlings for the Eucalyptus data; analysts could select other variables as their dependent
variable, but the others typically correlated with the two identified here). For continuous variables, this means we
identified the 25th percentile, median, and 75th percentile and, if the slope of the linear relationship between this
variable and the typical dependent variable was positive, we le" the quartiles ordered as is. If, instead, the slope was
negative, we reversed the order of the independent variable quartiles so that the ‘lower’ quartile value was the one
associated with the lower value for the dependent variable. In the case of categorical variables, we identified
categories associated with the 25th percentile, median, and 75th percentile values of the typical dependent variable
a"er averaging the values for each category. However, for some continuous and categorical predictors, we also made
selections based on the principle of internal consistency between certain related variables, and we fixed a few
categorical variables as identical across all three levels where doing so would simplify the modelling process
(specification tables available: blue tit: https://osf.io/86akx; Eucalyptus: https://osf.io/jh7g5).

We used the 25th and 75th percentiles rather than minimum and maximum values to reduce the chance of occupying
unrealistic parameter space. We planned to derive these predicted values from the model information provided by
the individual analysts. All values (predictions) were first transformed to the original scale along with their standard
errors (SE); we used the delta method (Ver Hoef 2012) for the transformation of SE. We used the square of the SE
associated with predicted values as the sampling variance in the meta-analyses described below, and we planned to
analyze these predicted values in exactly the same ways as we analyzed  in the following analyses.

Preregistration Deviation: Because analysts of blue tit data chose di!erent dependent variables on di!erent scales,
a"er transforming out-of-sample values to the original scales, we standardized all values as z scores (‘standard
scores’) to put all dependent variables on the same scale and make them comparable. This involved taking each
relevant value on the original scale (whether a predicted point estimate or a SE associated with that estimate) and
subtracting the value in question from the mean value of that dependent variable derived from the full dataset and
then dividing this di!erence by the standard deviation, SD, corresponding to the mean from the full dataset. Thus, all
our out-of-sample prediction values from the blue tit data are from a distribution with the mean of 0 and SD of 1. We
did not add this step for the Eucalyptus data because (a) all responses were on the same scale (counts of Eucalyptus
stems) and were thus comparable and (b) these data, with many zeros and high skew, are poorly suited for z scores.

We plotted individual e!ect size estimates ( ) and predicted values of the dependent variable ( ) and their
corresponding 95% confidence / credible intervals in forest plots to allow visualization of the range and precision of
e!ect size and predicted values. Further, we included these estimates in random e!ects meta-analyses (Higgins et al.
2003; Borenstein et al. 2017) using the metafor package in R (Viechtbauer 2010; R Core Team 2022):

where  is the predicted value for the dependent variable at the 25th percentile, median, or 75th percentile of the
independent variables. The individual  e!ect sizes were weighted with the inverse of sampling variance for .
The individual predicted values for dependent variable ( ) were weighted by the inverse of the associated 
(original registration omitted “inverse of the” in error). These analyses provided an average  score or an average 
with corresponding 95% confidence interval and allowed us to estimate two heterogeneity indices,  and . The
former, , is the absolute measure of heterogeneity or the between-study variance (in our case, between-e!ect
variance) whereas  is a relative measure of heterogeneity. We obtained the estimate of relative heterogeneity ( )
by dividing the between-e!ect variance by the sum of between-e!ect and within-e!ect variance (sampling error
variance).  is thus, in a standard meta-analysis, the proportion of variance that is due to heterogeneity as opposed
to sampling error. When calculating , within-study variance is amalgamated across studies to create a “typical”
within-study variance which serves as the sampling error variance (Higgins et al. 2003; Borenstein et al. 2017). Our
goal here was to visualize and quantify the degree of variation among analyses in e!ect size estimates (Shinichi
Nakagawa and Cuthill 2007). We did not test for statistical significance.

Additional explanation: Our use of  to quantify heterogeneity violates an important assumption, but this violation
does not invalidate our use of  as a metric of how much heterogeneity can derive from analytical decisions. In
standard meta-analysis, the statistic  quantifies the proportion of variance that is greater than we would expect if
di!erences among estimates were due to sampling error alone (Rosenberg 2013). However, it is clear that this
interpretation does not apply to our value of  because  assumes that each estimate is based on an independent
sample (although these analyses can account for non-independence via hierarchical modelling), whereas all our
e!ects were derived from largely or entirely overlapping subsets of the same dataset. Despite this, we believe that 
remains a useful statistic for our purposes. This is because, in calculating , we are still setting a benchmark of
expected variation due to sampling error based on the variance associated with each separate e!ect size estimate,
and we are assessing how much (if it all) the variability among our e!ect sizes exceeds what would be expected had
our e!ect sizes been based on independent data. In other words, our estimates can tell us how much proportional
heterogeneity is possible from analytical decisions alone when sample sizes (and therefore meta-analytic within-
estimate variance) are similar to the ones in our analyses. Among other implications, our violation of the
independent sample assumption means that we (dramatically) over-estimate the variance expected due to sampling
error, and because  is a proportional estimate, we thus underestimate the actual proportion of variance due to
di!erences among analyses other than sampling error. However, correcting this underestimation would create a
trivial value since we designed the study so that much of the variance would derive from analytic decisions as
opposed to di!erences in sampled data. Instead, retaining the  value as typically calculated provides a useful
comparison to  values from typical meta-analyses.

Interpretation of  also di!ers somewhat from traditional meta-analysis, and we discuss this further in the Results.

Finally, we assessed the extent to which deviations from the meta-analytic mean by individual e!ect sizes ( ) or the
predicted values of the dependent variable ( ) were explained by the peer rating of each analysis team’s method
section, by a measurement of the distinctiveness of the set of predictor variables included in each analysis, and by
the choice of whether or not to include random e!ects in the model. The deviation score, which served as the
dependent variable in these analyses, is the absolute value of the di!erence between the meta-analytic mean  (or

) and the individual  (or ) estimate for each analysis. We used the Box-Cox transformation on the absolute
values of deviation scores to achieve an approximately normal distribution (c.f. Fanelli and Ioannidis 2013; Fanelli,
Costas, and Ioannidis 2017 : supplement). We described variation in this dependent variable with both a series of
univariate analyses and a multivariate analysis. All these analyses were general linear (mixed) models. These
analyses were secondary to our estimation of variation in e!ect sizes described above. We wished to quantify
relationships among variables, but we had no a priori expectation of e!ect size and made no dichotomous decisions
about statistical significance.

When examining the extent to which reviewer ratings (on a scale from 0 to 100) explained deviation from the average
e!ect (or predicted value), each analysis had been rated by multiple peer reviewers, so for each reviewer score to be
included, we include each deviation score in the analysis multiple times. To account for the non-independence of
multiple ratings of the same analysis, we planned to include analysis identity as a random e!ect in our general linear
mixed model in the lme4 package in R (Bates et al. 2015; R Core Team 2022). To account for potential di!erences
among reviewers in their scoring of analyses, we also planned to include reviewer identity as a random e!ect:

Where  is the deviation from the meta-analytic mean for the jth analysis, by the ith
reviewer,  is the random intercept assigned to each i reviewer, and  is the random
intercept assigned to each j analysis, both of which are assumed to be normally distributed with a mean of 0 and a
variance of . Absolute deviation scores were Box-Cox transformed using the step_box_cox()  function from the
timetk package in R (Dancho and Vaughan 2023; R Core Team 2022).

We conducted a similar analysis with the four categories of reviewer ratings ((1) deeply flawed and unpublishable, (2)
publishable with major revision, (3) publishable with minor revision, (4) publishable as is) set as ordinal predictors
numbered as shown here. As with the analyses above, we planned for these analyses to also include random e!ects
of analysis identity and reviewer identity. Both of these analyses (1: 1-100 ratings as the fixed e!ect, 2: categorical
ratings as the fixed e!ects) were planned to be conducted eight times for each dataset. Each of the four responses (

, , , ) were to be compared once to the initial ratings provided by the peer reviewers, and again
based on the revised ratings provided by the peer reviewers.

Preregistration Deviation:

1. We planned to include random e!ects of both analysis identity and reviewer identity in these models
comparing reviewer ratings with deviation scores. However, a"er we received the analyses, we discovered that a
subset of analyst teams had either conducted multiple analyses and/or identified multiple e!ects per analysis
as answering the target question. We therefore faced an even more complex potential set of random e!ects. We
decided that including team ID, analysis ID, and e!ect ID along with reviewer ID as random e!ects in the same
model would almost certainly lead to model fit problems, and so we started with simpler models including just
e!ect ID and reviewer ID. However, even with this simpler structure, our dataset was sparse, with reviewers
rating a small number of analyses, resulting in models with singular fit (Section C.2). Removing one of the
random e!ects was necessary for the models to converge. The models that included the categorical quality
rating converged when including reviewer ID, and the models that included the continuous quality rating
converged when including e!ect ID.

2. We conducted analyses only with the final peer ratings a"er the opportunity for revision, not with the initial
ratings. This was because when we recorded the final ratings, they over-wrote the initial ratings, and so we did
not have access to those initial values.

The next set of univariate analyses sought to explain deviations from the mean e!ects based on a measure of the
distinctiveness of the set of variables included in each analysis. As a ‘distinctiveness’ score, we used Sorensen’s
Similarity Index (an index typically used to compare species composition across sites), treating variables as species
and individual analyses as sites. To generate an individual Sorensen’s value for each analysis required calculating the
pairwise Sorensen’s value for all pairs of analyses (of the same dataset), and then taking the average across these
Sorensen’s values for each analysis. We calculated the Sorensen’s index values using the betapart package (Baselga
et al. 2023) in R:

where  is the number of variables common to both analyses,  is the number of variables that occur in the first
analysis but not in the second and  is the number of variables that occur in the second analysis. We then used the
per-model average Sorensen’s index value as an independent variable to predict the deviation score in a general
linear model, and included no random e!ect since each analysis is included only once, in R (R Core Team 2022):

Additional explanation:

When we planned this analysis, we anticipated that analysts would identify a single primary e!ect from each model,
so that each model would appear in the analysis only once. Our expecation was incorrect because some analysts
identified >1 e!ect per analysis, but we still chose to specify our model as registered and not use a random e!ect.
This is because most models produced only one e!ect and so we expected that specifying a random e!ect to account
for the few cases where >1 e!ect was included for a given model would prevent model convergence.

Note that this analysis contrasts with the analyses in which we used reviewer ratings as predictors because in the
analyses with reviewer ratings, each e!ect appeared in the analysis approximately four times due to multiple reviews
of each analysis, and so it was much more important to account for that variance through a random e!ect.

Finally, we conducted a multivariate analysis with the five predictors described above (peer ratings 0-100 and peer
ratings of publishability 1-4; both original and revised and Sorensen’s index, plus a sixth, presence /absence of
random e!ects) with random e!ects of analysis identity and reviewer identity in the lme4 package in R (Bates et al.
2015; R Core Team 2022). We had stated here in the text that we would use only the revised (final) peer ratings in this
analysis, so the absence of the initial ratings is not a deviation from our plan:

We conducted all the analyses described above eight times; for each of the four responses ( , , , )
one time for each of the two datasets.

We have publicly archived all relevant data, code, and materials on the Open Science Framework
(https://osf.io/mn5aj/). Archived data includes the original datasets distributed to all analysts, any edited versions of
the data analyzed by individual groups, and the data we analyzed with our meta-analyses, which include the e!ect
sizes derived from separate analyses, the statistics describing variation in model structure among analyst groups,
and the anonymized answers to our surveys of analysts and peer reviewers. Similarly, we have archived both the
analysis code used for each individual analysis (where available) and the code from our meta-analyses. We have also
archived copies of our survey instruments from analysts and peer reviewers.

Our rules for excluding data from our study were as follows. We excluded from our synthesis any individual analysis
submitted a"er we had completed peer review or those unaccompanied by analysis files that allow us to understand
what the analysts did. We also excluded any individual analysis that did not produce an outcome that could be
interpreted as an answer to our primary question (as posed above) for the respective dataset. For instance, this
means that in the case of the data on blue tit chick growth, we excluded any analysis that did not include something
that can be interpreted as growth or size as a dependent (response) variable, and in the case of the Eucalyptus
establishment data, we excluded any analysis that did not include a measure of grass cover among the independent
(predictor) variables. Also, as described above, any analysis that could not produce an e!ect that could be converted
to a signed  was excluded from analyses of .

Preregistration Deviation:

Some analysts had di!iculty implementing our instructions to derive the out-of-sample predictions, and in some
cases (especially for the Eucalyptus data), they submitted predictions with implausibly extreme values. We believed
these values were incorrect and thus made the conservative decision to exclude out-of-sample predictions where the
estimates were > 3 standard deviations from the mean value from the full dataset.

Additional explanation: We conducted several unregistered analyses.

1. Evaluating model fit.

We evaluated all fitted models using the performance()  function from the performance package (Lüdecke et al.
2021) and the glance()  function from the broom.mixed package (Bolker et al. 2022). For all models, we calculated
the square root of the residual variance (Sigma) and the root mean squared error (RMSE). For GLMMs
performance()  calculates the marginal and conditional  values as well as the contribution of random e!ects
(ICC), based on Nakagawa et al. (2017). The conditional  accounts for both the fixed and random e!ects, while the
marginal  considers only the variance of the fixed e!ects. The contribution of random e!ects is obtained by
subtracting the marginal  from the conditional .

2. Exploring outliers and analysis quality.

A"er seeing the forest plots of  values and noticing the existence of a small number of extreme outliers, especially
from the Eucalyptus analyses, we wanted to understand the degree to which our heterogeneity estimates were
influenced by these outliers. To explore this question, we removed the highest two and lowest two values of  in
each dataset and re-calculated our heterogeneity estimates.

To help understand the possible role of the quality of analyses in driving the heterogeneity we observed among
estimates of , we recalculated our heterogeneity estimates a"er removing all e!ects from analysis teams that had
received at least one rating of “Deeply Flawed and Unpublishable” and then again a"er removing all e!ects from
analysis teams with at least one rating of either “Deeply Flawed and Unpublishable” or “Publishable with Major
Revisions”. We did not do this for out-of-sample estimates because of our smaller sample.

3. Exploring possible impacts of lower quality estimates of degrees of freedom.

Our meta-analyses of variation in  required variance estimates derived from estimates of the degrees of freedom in
original analyses from which  estimates were derived. While processing the estimates of degrees of freedom
submitted by analysts, we identified a subset of these estimates in which we had lower confidence because two or
more e!ects from the same analysis were submitted with identical degrees of freedom. We therefore conducted a
second set of (more conservative) meta-analyses that excluded these  estimates with identical estimates of
degrees of freedom and we present these analyses in the supplement.

We planned for analysts and initiating authors to discuss the limitations, results, and implications of the study and
collaborate on writing the final manuscript for review as a stage-2 Registered Report.

Preregistration Deviation: As described above, due to the large number of recruited analysts and reviewers and the
anticipated challenges of receiving and integrating feedback from so many authors, we limited analyst and reviewer
participation in the production of the final manuscript to an invitation to call attention to serious problems with the
manuscript dra".

All data cleaning and preparation for our analyses was conducted in R (R Core Team 2022) and is publicly archived at
(WE WILL INSERT LINK TO GITHUB REPO / Zenodo when coding complete). Please see Section 4.1 for the full list of
packages and their citations used in our analysis pipeline.

We built an R package, ManyAnalysts to conduct the analyses described in this chapter (WE WILL INSERT LINK TO
GITHUB REPO / Zenodo when coding complete). This same package can be used to reproduce our analyses or
replicate the analyses described here using alternate datasets. The full suite of analyses we conducted is completely
reproducible and can be reproduced and queried using (WE WILL INSERT LINK TO BINDR when coding complete).

We obtained permission to conduct this research from the Whitman College Institutional Review Board (IRB). As part
of this permission, the IRB approved the consent form (https://osf.io/xyp68/) that all participants completed prior to
joining the study. The authors declare that they have no competing interests.

In total, 174 analyst teams, comprising 246 analysts, contributed 182 usable analyses of the two datasets examined
in this study which yielded 215 e!ects. Analysts produced 135 distinct e!ects that met our criteria for inclusion in at
least one of our meta-analyses for the blue tit dataset. Analysts produced 81 distinct e!ects meeting our criteria for
inclusion for the Eucalyptus dataset. Excluded analyses and e!ects either did not answer our specified biological
questions, were submitted with insu!icient information for inclusion in our meta-analyses, or were incompatible
with production of our e!ect size(s). We expected this final scenario (incompatible analyses), for instance we cannot
extract a  from random forest models, which is why we analyzed two distinct types of e!ects,  and out-of-
sample. E!ects included in only a subset of our meta-analyses provided su!icient information for inclusion in only
that subset (see Table A.1). For both datasets, most submitted analyses incorporated mixed e!ects. Submitted
analyses of the blue tit dataset typically specified normal error and analyses of the Eucalyptus dataset typically
specified a non-normal error distribution (Table A.1).

For both datasets, the composition of models varied substantially in regards to the number of fixed and random
e!ects, interaction terms, and the number of data points used, and these patterns di!ered somewhat between the
blue tit and Eucalyptus analyses (See Table A.2). Focussing on the models included in the  analyses (because this
is the larger sample), blue tit models included a similar number of fixed e!ects on average (mean 5.2  2.92 SD) as
Eucalyptus models (mean 5.01  3.83 SD), but the standard deviation in number of fixed e!ects was somewhat
larger in the Eucalyptus models. The average number of interaction terms was much larger for the blue tit models
(mean 0.44  1.11 SD) than for the Eucalyptus models (mean 0.16  0.65 SD), but still under 0.5 for both, indicating
that most models did not contain interaction terms. Blue tit models also contained more random e!ects (mean 3.53

 2.08 SD) than Eucalyptus models (mean 1.41  1.09 SD). The maximum possible sample size in the blue tit dataset
(3720 nestlings) was an order of magnitude larger than the maximum possible in the Eucalyptus dataset (351 plots),
and the means and standard deviations of the sample size used to derive the e!ects eligible for our study were also
an order of magnitude greater for the blue tit dataset (mean 2622.07  939.28 SD) relative to the Eucalyptus models
(mean 298.43  106.25 SD). However, the standard deviation in sample size from the Eucalyptus models was heavily
influenced by a few cases of dramatic sub-setting (described below). Approximately three quarters of Eucalyptus
models used sample sizes within 3% of the maximum. In contrast, fewer than 20% of blue tit models relied on
sample sizes within 3% of the maximum, and approximately 50% of blue tit models relied on sample sizes 29% or
more below the maximum.

Analysts provided qualitative descriptions of the conclusions of their analyses. Each analysis team provided one
conclusion per dataset. These conclusions could take into account the results of any formal analyses completed by
the team as well as exploratory and visual analyses of the data. Here we summarize all qualitative responses,
regardless of whether we had su!icient information to use the corresponding model results in our quantitative
analyses below. We classified these conclusions into the categories summarized below (Table 3.1):

Mixed: some evidence supporting a positive e!ect, some evidence supporting a negative e!ect

Conclusive negative: negative relationship described without caveat

Qualified negative: negative relationship but only in certain circumstances or where analysts express uncertainty in
their result

Conclusive none: analysts interpret the results as conclusive of no e!ect

None qualified: analysts describe finding no evidence of a relationship but they describe the potential for an
undetected e!ect

Qualified positive: positive relationship described but only in certain circumstances or where analysts express
uncertainty in their result

Conclusive positive: positive relationship described without caveat

For the blue tit dataset, most analysts concluded that there was negative relationship between measures of sibling
competition and nestling growth, though half the teams expressed qualifications or described e!ects as mixed or
absent. For the Eucalyptus dataset, there was a broader spread of conclusions with at least one analyst team
providing conclusions consistent with each conclusion category. The most common conclusion for the Eucalyptus
dataset was that there was no relationship between grass cover and Eucalyptus recruitment (either conclusive or
qualified description of no relationship), but more than half the teams concluded that there were e!ects; negative,
positive, or mixed.

Although the majority (111 of 132) of the usable  e!ects from the blue tit dataset found nestling growth decreased
with sibling competition, and the meta-analytic mean  (Fisher’s transformation of the correlation coe!icient) was
convincingly negative (-0.35  0.06 95% CI), there was substantial variability in the strength and the direction of this
e!ect.  ranged approximately continuously from -1.55 to 0.38, ( Figure 3.1 (a) and Table 3.4) and of the 111 e!ects
with negative slopes, 92 had confidence intervals exluding 0. Of the 20 with positive slopes indicating increased
nestling growth in the presence of more siblings, 3 had confidence intervals excluding zero (Figure 3.1 A).

Meta-analysis of the Eucalyptus dataset also showed substantial variability in the strength of e!ects as measured by
, and unlike with the blue tits, a notable lack of consistency in the direction of e!ects (Figure 3.1 (b), Table 3.4). 

ranged from -4.47 (Figure A.2), indicating a strong tendency for reduced Eucalyptus seedling success as grass cover
increased, to 0.39, indicating the opposite. Although the range of reported e!ects skewed strongly negative, this was
due to a small number of substantial outliers. Most values of  were relatively small with values < |0.2| and the
meta-analytic mean e!ect size was close to zero (-0.09  0.12 95% CI). Of the 79 e!ects, fi"y-three had confidence
intervals overlapping zero, approximately a quarter (fi"een) crossed the traditional threshold of statistical
significance indicating a negative relationship between grass cover and seedling success, and eleven crossed the
significance threshold indicating a positive relationship between grass cover and seedling success (Figure 3.1 (b)).

As with the e!ect size , we observed substantial variability in the size of out-of-sample predictions derived from
the analysts’ models. Blue tit predictions (Figure 3.2), which were z-score-standardised to accommodate the use of
di!erent response variables, always ranged far in excess of one standard deviation. In the  scenario, model
predictions ranged from -1.85 to 0.42 (a range of 2.68 standard deviations), in the  they ranged from -0.53 to 1.11
(a range of 1.63 standard deviations), and in the  scenario they ranged from -0.03 to 1.57 (a range of 1.9 standard
deviations). As should be expected given the existence of both negative and positive  values, all three out-of-
sample scenarios produced both negative and positive predictions, although as with the  values, there is a clear
trend for scenarios with more siblings to be associated with smaller nestlings. This is supported by the meta-analytic
means of these three sets of predictions which were -0.66 (95% CI -0.82–0.5) for the , 0.34 (95% CI 0.2-0.48) for the

, and 0.67 (95% CI 0.57-0.77) for the .

Eucalyptus out-of-sample predictions also varied substantially (Figure 3.3), but because they were not z-score-
standardised and are instead on the original count scale, the types of interpretations we can make di!er. The
predicted Eucalyptus seedling counts per 15 x 15 m plot for the  scenario ranged from 0.04 to 33.66, for the 
scenario ranged from 0.03 to 13.02, and for the  scenario they ranged from 0.05 to 21.93. The meta-analytic mean
predictions for these three scenarios were similar; 0.58 (95% CI 0.21-1.37) for the , 0.92 (95% CI 0.36-1.65) for the

, and 1.67 (95% CI 0.8-2.83) for the  scenarios respectively.

We quantified both absolute ( ) and relative ( ) heterogeneity resulting from analytical variation. Both measures
suggest that substantial variability among e!ect sizes was attributable to the analytical decisions of analysts.

The total absolute level of variance beyond what would typically be expected due to sampling error,  (Table 3.2),
among all usable blue tit e!ects was 0.088 and for Eucalyptus e!ects was 0.267. This is similar to or exceeding the
median value (0.105) of  found across 31 recent meta-analyses (calculated from the data in Yang et al. 2023). The
similarity of our observed values to values from meta-analyses of di!erent studies based on di!erent data suggest
the potential for a large portion of heterogeneity to arise from analytical decisions. For further discussion of
interpretation of  in our study, please consult discussion of post hoc analyses below.

In our analyses,  is a plausible index of how much more variability among e!ect sizes we have observed, as a
proportion, than we would have observed if sampling error were driving variability. We discuss our interpretation of

 further in the methods, but in short, it is a useful metric for comparison to values from published meta-analyses
and provides a plausible value for how much heterogeneity could arise in a normal meta-analysis with similar
sample sizes due to analytical variability alone. In our study, total  for the blue tit  estimates was extremely
large, at 97.73%, as was the Eucalyptus estimate (98.59% Table 3.2).

Although the overall  values were similar for both Eucalyptus and blue tit analyses, the relative composition of that
heterogeneity di!ered. For both datasets, the majority of heterogeneity in  was driven by di!erences among
e!ects as opposed to di!erences among teams, though this was more prominent for the Eucalyptus dataset, where
nearly all of the total heterogeneity was driven by di!erences among e!ects (91.71%) as opposed to di!erences
among teams (6.88%) (Table 3.2).

We observed substantial heterogeneity among out-of-sample estimates, but the pattern di!ered somewhat from the
 values (Table 3.3). Among the blue tit predictions,  ranged from medium-high for the  scenario (68.2) to low

(27.73) for the  scenario. Among the Eucalyptus predictions,  values were uniformly high (>82%). For both
datasets, most of the existing heterogeneity among predicted values was attributable to among-team di!erences,
with the exception of the  analysis of the Eucalyptus dataset. We are limited in our interpretation of  for these
estimates because, unlike for the  estimates, we have no benchmark for comparison with other meta-analyses.

The outlier Eucalyptus  values were striking and merited special examination. The three negative outliers had very
low sample sizes were based on either small subsets of the dataset or, in one case, extreme aggregation of data. The
outliers associated with small subsets had sample sizes (  117, 90) that were less than half of the total possible
sample size of 351. The case of extreme aggregation involved averaging all values within each of the 18 sites in the
dataset.

Surprisingly, both the largest and smallest e!ect sizes in the blue tit analyses (Figure 3.1 (a)) come from the same
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Figure 3.2: Forest plot of meta-analytic estimated standardized (z-score) blue tit out-of-sample predictions, . Circles
represent individual estimates. Triangles represent the meta-analytic mean for each prediction scenario. Dark-blue points
correspond to  scenario, medium-blue points correspond to the  scenario, while light blue points correspond to the 
scenario. Error bars are 95% confidence intervals.
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Figure 3.3: Forest plot of meta-analytic estimated Eucalyptus out-of-sample predictions, , on the response-scale (stems
counts). Circles represent individual estimates. Triangles represent the meta-analytic mean for each prediction scenario. Dark-
blue points correspond to  scenario, medium-blue points correspond to the  scenario, while light blue points
correspond to the  scenario. Error bars are 95% confidence intervals. Outliers (observations more than 3SD above the
mean) have been removed prior to model fitting and do not appear on this figure. x-axis is truncated to approx. 40, and thus
some error bars are incomplete. See Figure B.4 for full figure.
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3.3 Quantifying Heterogeneity

E!ect Sizes ( )Zr

τ 2 I 2

τ 2

τ 2

τ 2

Table 3.2:
Heterogeneity in the estimated effects Z  for meta-analyses of the full dataset, as well as
from post hoc analyses including the dataset with outliers removed, the dataset excluding

effects from analysis teams with at least one “unpublishable” rating, or the dataset
excluding effects from analysis teams with at least one “major revisions” rating or worse.
τ  is the absolute heterogeneity for the random effect Team , τ  is the absolute
heterogeneity for the random effect EffectID , nested under Team , and τ  is the total

absolute heterogeneity. I  is the proportional heterogeneity; the proportion of the
variance among effects not attributable to sampling error, I  is the subset of the

proportional heterogeneity due to differences among Teams  and I  is subset of
the proportional heterogeneity attributable to among- EffectID  differences.

Dataset N.Obs

All analyses

blue tit 0.09 0.04 0.05 97.732% 40.11% 57.63% 131

Eucalyptus 0.27 0.02 0.25 98.589% 6.88% 91.71% 79

All analyses, Outliers Removed

blue tit 0.07 0.05 0.02 97.030% 66.90% 30.13% 127

Eucalyptus 0.01 0.00 0.01 66.193% 19.27% 46.93% 75

Analyses receiving at least one 'Unpublishable' rating removed

blue tit 0.08 0.03 0.05 97.601% 38.10% 59.50% 109

Eucalyptus 0.01 0.01 0.01 79.741% 28.32% 51.42% 55

Analyses receiving at least one 'Unpublishable' and or 'Major Revisions' rating removed

blue tit 0.14 0.01 0.13 98.718% 5.17% 93.55% 32

Eucalyptus 0.03 0.03 0.00 88.915% 88.91% 0.00% 13
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Table 3.3:
Heterogeneity among the out-of-sample predictions y  for both blue tit and Eucalyptus

datasets. τ  is the absolute heterogeneity for the random effect Team , τ  is the
absolute heterogeneity for the random effect EffectID , nested under Team , and τ  is

the total absolute heterogeneity. I  is the proportional heterogeneity; the proportion of
the variance among effects not attributable to sampling error, I  is the subset of the

proportional heterogeneity due to differences among Teams  and I  is subset of
the proportional heterogeneity attributable to among- EffectID  differences.

Prediction Scenario

blue tit

y25 62 0.14 0.11 0.03 68.20% 51.72% 16.48%

y50 59 0.07 0.06 0.00 49.95% 46.23% 3.71%

y75 62 0.02 0.02 0.00 27.73% 25.95% 1.78%

Eucalyptus

y25 22 3.05 1.95 1.10 88.76% 56.76% 32.00%

y50 24 1.61 0.53 1.08 83.26% 27.52% 55.73%

y75 24 1.69 1.41 0.28 79.76% 66.52% 13.25%
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3.4 Post-hoc Analysis: Exploring outlier characteristics and the
e!ect of outlier removal on heterogeneity

E!ect Sizes ( )Zr

Zr

n =

Table 3.1:
Tallies of analysts’ qualitative answers to the research questions addressed by their analyses.

Dataset Mixed
Negative

Conclusive
Negative
Qualified

None
Conclusive

None
Qualified

Positive
Qualified

Positive
Conclusive

blue tit 5 37 27 4 1 0 0

Eucalyptus 8 6 12 19 12 4 2

Figure 3.1: Forest plots of meta-analytic estimated standardized e!ect sizes ( , blue circles) and their 95% confidence intervals for each
e!ect size included in the meta-analysis model. The meta-analytic mean e!ect size is denoted by a black triangle and a dashed vertical line,
with error bars also representing the 95% confidence interval. The solid black vertical line demarcates e!ect size of 0, indicating no
relationship between the test variable and the response variable. Note that the Eucalyptus plot omits one extreme outlier with the value of
-4.47 (Figure A.2) in order to standardize the x-axes on these two panels.

(a) Blue tit analyses: Points where  are less than 0 indicate analyses that found a negative relationship between sibling number and
nestling growth.

Zr

(b) Eucalyptus analyses: Points where  are less than 0 indicate a negative relationship between grass cover and Eucalyptus seedling
success.

Zr

Zr
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Surprisingly, both the largest and smallest e!ect sizes in the blue tit analyses (Figure 3.1 (a)) come from the same
analyst (anonymous ID: Adelong), with identical models in terms of the explanatory variable structure, but with
di!erent response variables. However, the radical change in e!ect was primarily due to collinearity with covariates.
The primary predictor variable (brood count a"er manipulation) was accompanied by several collinear variables,
including the highly collinear (correlation of approximately 0.9 (Figure D.2)) covariate (brood size at day 14) in both
analyses. In the analysis of nestling weight, brood count a"er manipulation showed a strong positive partial
correlation with weight a"er controlling for brood count at day 14 and treatment category (increased, decreased,
unmanipulated). In that same analysis, the most collinear covariate (the day 14 count) had a negative partial
correlation with weight. In the analysis with tarsus length as the response variable, these partial correlations were
almost identical in absolute magnitude, but reversed in sign and so brood count a"er manipulation was now the
collinear predictor with the negative relationship. The two models were therefore very similar, but the two collinear
predictors simply switched roles, presumably because a subtle di!erence in the distribution of weight and tarsus
length data.

When we dropped the Eucalyptus outliers,  decreased from high (98.59%), using Higgins’ (Higgins et al. 2003)
suggested benchmark, to between moderate and high (66.19%, Table 3.2). However, more notably,  dropped from
0.27 to 0.01, indicating that, once outliers were excluded, the observed variation in e!ects was similar to what we
would expect if sampling error were driving the di!erences among e!ects (since  is the variance in addition to that
driven by sampling error). The interpretation of this value of  in the context of our many-analyst study is somewhat
di!erent than a typical meta-analysis, however, since in our study (especially for Eucalyptus, where most analyses
used almost exactly the same data points), there is almost no role for sampling error in driving the observed
di!erences among the estimates. Thus, rather than concluding that the variability we observed among estimates
(a"er removing outliers) was due only to sampling error (because  became small: 10% of the median from Yang et
al. 2023), we instead conclude that the observed variability, which must be due to the divergent choices of analysts
rather than sampling error, is approximately of the same magnitude as what we would have expected if, instead,
sampling error, and not analytical heterogeneity, were at work. Presumably, if sampling error had actually also been
at work, it would have acted as an additional source of variability and would have led total variability among
estimates to be higher. With total variability higher and thus greater than expected due to sampling error alone, 
would have been noticeably larger. Conversely, dropping outliers from the set of blue tit e!ects did not meaningfully
reduce  , and only modestly reduced  (Table 3.2). Thus, e!ects at the extremes of the distribution were much
stronger contributors to total heterogeneity for e!ects from analyses of the Eucalyptus than for the blue tit dataset.

We did not conduct these post hoc analyses on the out-of-sample predictions as the number of eligible e!ects was
smaller and the pattern of outliers di!ered.

Removing poorly rated analyses had limited impact on the meta-analytic means (Figure B.3). For the Eucalyptus
dataset, the meta-analytic mean shi"ed from -0.09 to -0.02 when e!ects from analyses rated as unpublishable were
removed, and to -0.04 when e!ects from analyses rated, at least once, as unpublishable or requiring major revisions
were removed. Further, the confidence intervals for all of these means overlapped each of the other means
(Table 3.4). We saw similar patterns for the blue tit dataset, with only small shi"s in the meta-analytic mean, and
confidence intervals of all three means overlapping each other mean (Table 3.4). Refitting the meta-analysis with a
fixed e!ect for categorical ratings also showed no indication of di!erences in group meta-analytic means due to peer
ratings (Figure B.1).

For the blue tit dataset, removing poorly-rated analyses led to only negligible changes in  and relatively minor

impacts on  . However, for the Eucalyptus dataset, removing poorly-rated analyses led to notable reductions in
 and substantial reductions in . When including all analyses, the Eucalyptus  was 98.59% and  was

0.27, but eliminating analyses with ratings of “unpublishable” reduced  to 79.74% and  to 0.01, and removing

also those analyses “needing major revisions” le"  at 88.91% and  at 0.03 (Table 3.2). Additionally, the

allocations of  to the team versus individual e!ect were altered for both blue tit and Eucalyptus meta-analyses by
removing poorly rated analyses, but in di!erent ways. For blue tit meta-analysis, between a third and two-thirds of
the total  was attributable to among-team variance in most analyses until both analyses rated “unpublishable”
and analyses rated in need of “major revision” were eliminated, in which case almost all remaining heterogeneity
was attributable to among-e!ect di!erences. In contrast, for Eucalyptus meta-analysis, the among-team component
of  was less than third until both analyses rated “unpublishable” and analyses rated in need of “major revision”
were eliminated, in which case almost 90% of heterogeneity was attributable to di!erences among teams.

We did not conduct these post hoc analyses on the out-of-sample predictions as the number of eligible e!ects was
smaller and our ability to interpret heterogeneity values for these analyses was limited.

As described in our addendum to the methods, we identified a subset of estimates of  in which we had less
confidence because of features of the submitted degrees of freedom. Excluding these e!ects in which we had lower
confidence had minimal impact on the meta-analytic mean and the estimates of total  and  for both blue tit and
Eucalyptus meta-analyses, regardless of whether outliers were also excluded (Table B.1).

None of the pre-registered predictors explained substantial variation in deviation among submitted statistical e!ects
from the meta-analytic mean (Table 3.5, Table 3.6). Note that the extremely high  values from the

analyses of continuous peer ratings as predictors of deviation scores are a function of the random e!ects, not the
fixed e!ect of interest. These high values of the  result from the fact that each e!ect size was included in

the analysis multiple times, to allow comparison with ratings from the multiple peer reviewers who reviewed each
analysis, and therefore when we included e!ect ID as a random e!ect, the observations within each random e!ect
category were identical.

We obtained reviews from 128 reviewers who reviewed analyses for a mean of 3.27 (range 1 - 11) analysis teams.
Analyses of the blue tit dataset received a total of 240 reviews, each was reviewed by a mean of 3.87 (SD 0.71, range
3-5) reviewers. Analyses of the Eucalyptus dataset received a total of 178 reviews, each was reviewed by a mean of
4.24 (SD 0.79, range 3-6) reviewers. We tested for inter-rater-reliability to examine how similarly reviewers reviewed
each analysis and found approximately no agreement among reviewers. When considering continuous ratings, IRR
was 0.01, and for categorical ratings, IRR was -0.14.

Many of the models of deviance as a function of peer ratings faced issues of failure to converge or singularity due to
sparse design matrices with our pre-registered random e!ects ( study_id  and reviewer_ID ) (see supplementary
material C.1). These issues persisted a"er increasing the tolerance and changing the optimizer. For both Eucalyptus
and blue tit datasets, models with continuous ratings as a predictor were singular when both pre-registered random
e!ects were included.

When using only categorical ratings as predictors, models converged only when specifying reviewer ID as a random
e!ect. That model had a  of 0.09 and a  of 0.01. The model using the continuous ratings converged for both

random e!ects (in isolation), but not both. We present results for the model using study ID as a random e!ect
because we expected it would be a more important driver of variation in deviation scores. That model had a  of 1

and a  of 0.01 for the blue tit dataset and a  of 1 and a  of 0.01 for the Eucalyptus dataset. Neither

continuous or categorical reviewer ratings of the analyses meaningfully predicted deviance from the meta-analytic
mean (Table 3.6, Figure 3.4). We re-ran the multi-level meta-analysis with a fixed-e!ect for the categorical
publishability ratings and found no di!erence in mean standardised e!ect sizes among publishability ratings
(Figure B.1).

Some models of the influence of reviewer ratings on out-of-sample predictions ( ) had issues with convergence and
singularity of fit (see Table C.2) and those models that converged and were not singular showed no strong
relationship (Figure C.2, Figure C.3), as with the  analyses.

We employed Sorensen’s index to calculate the distinctiveness of the set of predictor variables used in each model
(Figure 3.5). The mean Sorensen’s score for blue tit analyses was 0.69 (range 0.55-0.98), and for Eucalyptus analyses
was 0.59 (range 0.43-0.86).

We found no meaningful relationship between distinctiveness of variables selected and deviation from the meta-
analytic mean (Table 3.6, Figure 3.5) for either blue tit (mean 0.23, 95% CI -1,1.46) or Eucalyptus e!ects (mean 0.29,
95% CI -2.74,3.32).

Figure 3.5: Fitted model of the Box-Cox-transformed deviation score (deviation in e!ect size from meta-analytic mean) as a
function of the mean Sorensen’s index showing distinctiveness of the set of predictor variables. Grey ribbons on predicted
values are 95% CI’s.

As with the  estimates, we did not observe any convincing relationships between deviation scores of out-of-
sample predictions and Sorensen’s index values. Please see supplementary material C.4.2.

There were only three blue tit analyses that did not include random e!ects, which is below the pre-registered
threshold for fitting a model of the Box-Cox transformed deviation from the meta-analytic mean as a function of
whether the analysis included random-e!ects. However, 17 Eucalyptus analyses included only fixed e!ects, which
crossed our pre-registered threshold. Consequently, we performed this analysis for the Eucalyptus dataset only.
There was no relationship between random-e!ect inclusion and deviation from meta-analytic mean among the
Eucalyptus analyses (Table 3.6, Figure 3.6).

As with the  estimates, we did not examine the possibility of a relationship between the inclusion of random
e!ects and the deviation scores of the blue tit out-of-sample predictions. When we examined the possibility of this
relationship for the Eucalyptus e!ects, we found consistent evidence of somewhat higher Box-Cox-transformed
deviation values for models including a random e!ect, meaning the models including random e!ects averaged
slightly higher deviation from the meta-analytic means (Figure C.5).

Like the univariate models, the multivariate models did a poor job of explaining deviations from the meta-analytic
mean. Because we pre-registered a multivariate model that contained collinear predictors that produce results which
are not readily interpretable, we present these models in the supplement. We also had di!iculty with convergence
and singularity for multivariate models of out-of-sample ( ) result, and had to adjust which random e!ects we
included (Table C.7). However, no multivariate analyses of Eucalyptus out-of-sample results avoided problems of
convergence or singularity, no matter which random e!ects we included (Table C.7). We therefore present no
multivariate Eucalyptus  models. We present parameter estimates from multivariate  models for both datasets
(Table C.5, Table C.6) and from  models from the blue tit dataset (Table C.8, Table C.9). We include interpretation of
the results from these models in the supplement, but the results do not change the interpretations we present above
based on the univariate analyses.

When a large pool of ecologists and evolutionary biologists analyzed the same two datasets to answer the
corresponding two research questions, they produced substantially heterogeneous sets of answers. Although the
variability in analytical outcomes was high for both datasets, the patterns of this variability di!ered distinctly
between them. For the blue tit dataset, there was nearly continuous variability across a wide range of  values. In
contrast, for the Eucalyptus dataset, there was less variability across most of the range, but more striking outliers at
the tails. Among out-of-sample predictions, there was again almost continuous variation across a wide range (2 SD)
among blue tit estimates. For Eucalyptus, out-of-sample predictions were also notably variable, with about half the
predicted stem count values at <2 but the other half being much larger, and ranging to nearly 40 stems per 15 m x 15
m plot. We investigated several hypotheses for drivers of this variability within datasets, but found little support for
any of these. Most notably, even when we excluded analyses that had received one or more poor peer reviews, the
heterogeneity in results largely persisted. Regardless of what drives the variability, the existence of such dramatically
heterogeneous results when ecologists and evolutionary biologists seek to answer the same questions with the same
data should trigger conversations about how ecologists and evolutionary biologists analyze data and interpret the
results of their own analyses and those of others in the literature (e.g., Silberzahn et al. 2018; Simonsohn, Simmons,
and Nelson 2020; Auspurg and Brüderl 2021; Breznau et al. 2022).

Our observation of substantial heterogeneity due to analytical decisions is consistent with a growing body of work,
much of it from the quantitative social sciences (e.g., Silberzahn et al. 2018; Botvinik-Nezer et al. 2020; Huntington-
Klein et al. 2021; Schweinsberg et al. 2021; Breznau et al. 2022; Coretta et al. 2023). In all of these studies, when
volunteers from the discipline analyzed the same data, they produced a worryingly diverse set of answers to a pre-
set question. This diversity always included a wide range of e!ect sizes, and in most cases, even involved e!ects in
opposite directions. Thus, our result should not be viewed as an anomalous outcome from two particular datasets,
but instead as evidence from additional disciplines regarding the heterogeneity that can emerge from analyses of
complex datasets to answer questions in probabilistic science. Not only is our major observation consistent with
other studies, it is, itself, robust because it derived primarily from simple forest plots that we produced based on a
small set of decisions that were mostly registered before data gathering and which conform to widely accepted meta-
analytic practices.

Unlike the strong pattern we observed in the forest plots, our other analyses, both registered and post hoc, produced
either inconsistent patterns, weak patterns, or the absence of patterns. Our registered analyses found that deviations
from the meta-analytic mean by individual e!ect sizes ( ) or the predicted values of the dependent variable ( )
were poorly explained by our hypothesized predictors: peer rating of each analysis team’s method section, a
measurement of the distinctiveness of the set of predictor variables included in each analysis, or whether the model
included random e!ects. However, in our post hoc analyses, we found that dropping analyses identified as
unpublishable or in need of major revision by at least one reviewer modestly reduced the observed heterogeneity
among the  outcomes, but only for Eucalyptus analyses, apparently because this led to the dropping of the major
outlier. We wish to be clear, however, that this limited role for peer review in explaining the variability in our results
should not be interpreted to mean that analysis quality had no impact on e!ect size variability since the inter-rater
reliability among peer reviewers was extremely low, and at least some analyses that appeared flawed to us were not
marked as flawed by reviewers. Thus, the role of analysis quality remains unanswered. Not surprisingly, simply
dropping outlier values of  for Eucalyptus analyses, which had more extreme outliers, led to less observable
heterogeneity in the forest plots, and also reductions in our quantitative measures of heterogeneity. We did not
observe a similar e!ect in the blue tit dataset because that dataset had outliers that were much less extreme and
instead had more variability across the core of the distribution.

Our major observations raise two broad questions; why was the variability among results so high, and why did the
pattern of variability di!er between our two datasets. One important and plausible answer to the first question is
that much of the heterogeneity derives from the lack of a precise relationship between the two biological research
questions we posed and the data we provided. This lack of a precise relationship between data and question creates
many opportunities for di!erent model specifications, and so may inevitably lead to varied analytical outcomes
(Auspurg and Brüderl 2021). However, we believe that the research questions we posed are consistent with the kinds
of research question that ecologists and evolutionary biologists typically work from. When designing the two
biological research questions, we deliberately sought to represent the level of specificity we typically see in these
disciplines. This level of specificity is evident when we look at the research questions posed by some recent meta-
analyses in these fields:

“how [does] urbanisation impact mean phenotypic values and phenotypic variation … [in] paired urban and
non-urban comparisons of avian life-history traits” (Capilla-Lasheras et al. 2022)

“[what are] the e!ects of ocean acidification on the crustacean exoskeleton, assessing both exoskeletal ion
content (calcium and magnesium) and functional properties (biomechanical resistance and cuticle thickness)”
(Siegel et al. 2022)

“[what is] the extent to which restoration a!ects both the mean and variability of biodiversity outcomes … [in]
terrestrial restoration” (Atkinson et al. 2022)

“[does] drought stress [have] a negative, positive, or null e!ect on aphid fitness” (Leybourne et al. 2021)

“[what is] the influence of nitrogen-fixing trees on soil nitrous oxide emissions” (Kou-Giesbrecht and Menge
2021)

There is not a single precise answer to any of these questions, nor to the questions we posed to analysts in our study.
And this lack of single clear answers will obviously continue to cause uncertainty since ecologists and evolutionary
biologists conceive of the di!erent answers from the di!erent statistical models as all being answers to the same
general question. A possible response would be a call to avoid these general questions in favor of much more precise
alternatives (Auspurg and Brüderl 2021). However, the research community rewards researchers who pose broad
questions (Simons, Shoda, and Lindsay 2017), and so researchers are unlikely to narrow their scope without a
change in incentives. Further, we suspect that even if individual studies specified narrow research questions, other
scientists would group these more narrow questions into broader categories, for instance in meta-analyses, because
it is these broader and more general questions that o"en interest the research community.

Although variability in statistical outcomes among analysts may be inevitable, our results raise questions about why
this variability di!ered between our two datasets. We are particularly interested in the di!erences in the distribution
of  since the distributions of out-of-sample predictions were on di!erent scales for the two datasets, thus limiting
the value of comparisons. The forest plots of  from our two datasets showed distinct patterns, and these
di!erences are consistent with several alternative hypotheses. The results submitted by analysts of the Eucalyptus
dataset showed a small average (close to zero) with most estimates also close to zero (± 0.2), though about a third far
enough above or below zero to cross the traditional threshold of statistical significance. There were a small number
of striking outliers that were very far from zero. In contrast, the results submitted by analysts of the blue tit dataset
showed an average much further from zero (- 0.35) and a much greater spread in the core distribution of estimates
across the range of  values (± 0.5 from the mean), with few modest outliers. So, why was there more spread in
e!ect sizes (across the estimates that are not outliers) in the blue tit analyses relative to the Eucalyptus analyses?

One possible explanation for the lower heterogeneity among most Eucalyptus  e!ects is that weak relationships
may limit the opportunities for heterogeneity in analytical outcome. Some evidence for this idea comes from two
sets of “many labs” studies in psychology (Klein et al. 2014, 2018). In these studies, many independent lab groups
each replicated a large set of studies, including, for each study, the experiment, data collection, and statistical
analyses. These studies showed that, when the meta-analytic mean across the replications from di!erent labs was
small, there was much less heterogeneity among the outcomes than when the mean e!ect sizes were large (Klein et
al. 2014, 2018). Of course, a weak average e!ect size would not prevent divergent e!ects in all circumstances. As we
saw with the Eucalyptus analyses, taking a radically smaller subset of the data can lead to dramatically divergent
e!ect sizes even when the mean with the full dataset is close to zero.

Our observation that dramatic sub-setting in the Eucalyptus dataset was associated with correspondingly dramatic
divergence in e!ect sizes leads us towards another hypothesis to explain the di!erences in heterogeneity between
the Eucalyptus and blue tit analysis sets. It may be that when analysts o"en divide a dataset into subsets, the result
will be greater heterogeneity in analytical outcome for that dataset. Although we saw sub-setting associated with
dramatic outliers in the Eucalyptus dataset, nearly all other analyses of Eucalyptus data used very close to the same
set of 351 samples, and as we saw, these e!ects did not vary substantially. However, analysts o"en analyzed only a
subset of the blue tit data, and as we observed, sample sizes were much more variable among blue tit e!ects, and
the e!ects themselves were also much more variable. Important to note here is that subsets of data may di!er from
each other for biological reasons, but they may also di!er due to sampling error. Sampling error is a function of
sample size, and sub-samples are, by definition, smaller samples, and so more subject to variability in e!ects due to
sampling error (Jennions et al. 2013).

Other features of datasets are also plausible candidates for driving heterogeneity in analytical outcomes, including
features of covariates. In particular, relationships between covariates and the response variable as well as
relationships between covariates and the primary independent variable (collinearity) can strongly influence the
modeled relationship between the independent variable of interest and the dependent variable (Morrissey and
Ruxton 2018; Dormann et al. 2013). Therefore, inclusion or exclusion of these covariates can drive heterogeneity in
e!ect sizes ( ). Also, as we saw with the two most extreme  values from the blue tit analyses, in multivariate
models with collinear predictors, extreme e!ects can emerge when estimating partial correlation coe!icients due to
high collinearity, and conclusions can di!er dramatically depending on which relationship receives the researcher’s
attention. Therefore, di!erences between datasets in the presence of strong and/or collinear covariates could
influence the di!erences in heterogeneity in results among those datasets.

Although it is too early in the many-analyst research program to conclude which analytical decisions or which
features of datasets are the most important drivers of heterogeneity in analytical outcomes, we must still grapple
with the possibility that analytical outcomes may vary substantially based on the choices we make as analysts. If we
assume that, at least sometimes, di!erent analysts will produce dramatically di!erent statistical outcomes, what
should we do as ecologists and evolutionary biologists? We review some ideas below.

The easiest path forward a"er learning about this analytical heterogeneity would be simply to continue with
“business as usual”, where researchers report results from a small number of statistical models. A case could be
made for this path based on our results. For instance, among the blue tit analyses, the precise values of the
estimated  e!ects varied substantially, but the average e!ect was convincingly di!erent from zero, and a majority
of individual e!ects (84%) were in the same direction. Arguably, many ecologists and evolutionary biologists appear
primarily interested in the direction of a given e!ect and the corresponding p-value (Fidler et al. 2006), and so the
variability we observed when analyzing the blue tit dataset may not worry these researchers. Similarly, most e!ects
from the Eucalyptus analyses were relatively close to zero, and about two-thirds of these e!ects did not cross the
traditional threshold of statistical significance. Therefore, a large proportion of people analyzing these data would
conclude that there was no e!ect, and this is consistent with what we might conclude from the meta-analysis.

However, we find the counter arguments to “business as usual” to be compelling. For blue tits, there were a
substantial minority of calculated e!ects that would be interpreted by many biologists as indicating the absence of
an e!ect (28%), and there were three traditionally ‘significant’ e!ects in the opposite direction to the average. The
qualitative conclusions of analysts also reflected substantial variability, with fully half of teams drawing a conclusion
distinct from the one we draw from the distribution as a whole. These teams with di!erent conclusion were either
uncertain about the negative relationship between competition and nestling growth, or they concluded that e!ects
were mixed or absent. For the Eucalyptus analyses, this issue is more concerning. Around two-thirds of e!ects had
confidence intervals overlapping zero, and of the third of analyses with confidence intervals excluding zero, almost
half were positive, and the rest were negative. Accordingly, the qualitative conclusions of the Eucalyptus teams were
spread across the full range of possibilities. But even these problems are optimistic.

A potentially larger argument against “business as usual” is that it provides the raw material for biasing the
literature. When di!erent model specifications readily lead to di!erent results, analysts may be tempted to report the
result that appears most interesting, or that is most consistent with expectation (Gelman and Loken 2013;
Forstmeier, Wagenmakers, and Parker 2017). There is growing evidence that researchers in ecology and evolutionary
biology o"en report a biased subset of the results they produce (Deressa et al. 2023; Kimmel, Avolio, and Ferraro
2023), and that this bias exaggerates the average size of e!ects in the published literature between 30 and 150%
(Yang et al. 2023; Parker and Yang 2023). The bias then accumulates in meta-analyses, apparently more than
doubling the rate of conclusions of “statistical significance” in published meta-analyses above what would have been
found in the absence of bias (Yang et al. 2023). Thus, “business as usual” does not just create noisy results, it helps
create systematically misleading results.

Overall, our results suggest to us that, where there is a diverse set of plausible analysis options, no single analysis
should be considered a complete or reliable answer to a research question. We contend that ecologists and
evolutionary biologists typically do multiple analyses (as many of our analyst teams did) however, soe of these
analyses dont make it into the published manuscript. Further, because of the evidence that ecologists and
evolutionary biologists o"en present a biased subset of the analyses they conduct (Deressa et al. 2023; Yang et al.
2023; Kimmel, Avolio, and Ferraro 2023), we do not expect that even a collection of di!erent e!ect sizes from
di!erent studies will accurately represent the true distribution of e!ects (Yang et al. 2023). Therefore, we believe that
an increased level of skepticism of the outcomes of single analyses, or even single meta-analyses, is warranted going
forward. We recognize that some researchers have long maintained a healthy level of skepticism of individual studies
as part of sound and practical scientific practice, and it is possible that those researchers will be neither surprised
nor concerned by our results. However, we doubt that many researchers are su!iciently aware of the potential
problems of analytical flexibility to be appropriately skeptical.

If we are skeptical of single analyses, the path forward may be multiple analyses per dataset. One possibility is the
traditional robustness or sensitivity check (e.g., Pei et al. 2020; Briga and Verhulst 2021), in which the researcher
presents several alternative versions of an analysis to demonstrate that the result is ‘robust’ (Lu and White 2014).
Unfortunately, robustness checks are at risk of the same potential biases of reporting found in other studies
(Silberzahn et al. 2018), especially given the relatively few models typically presented. However, these risks could be
minimized by running more models and doing so with pre-registration or registered report. Another option is model
averaging. Averages across models o"en perform well (e.g., Taylor and Taylor 2023), and in some forms this may be a
relatively simple solution. As most o"en practiced in ecology and evolutionary biology, model averaging involves
first identifying a small suite of candidate models (see Burnham and Anderson 2002), then using Akaike weights,
based on Akaike’s Information Criterion (AIC), to calculate weighted averages for parameter estimates from those
models. Again, the small number of models limits the exploration of specification space, but we can examine a larger
number of models. However, there are more concerning limitations. The largest of these limitations is that averaging
regression coe!icients is problematic when models di!er in interaction terms or collinear variables (Cade 2015).
Additionally, weighting by AIC may o"en be inconsistent with our modelling goals. AIC balances the trade-o!
between model complexity and predictive ability, but penalizing models for complexity may not be suited for testing
hypotheses about causation. So, AIC may o"en not o!er the weight we want to use for an average, and we may also
not wish to just generate an average. Instead, if we hope to understand an extensive universe of possible modelling
outcomes, we could conduct a multiverse analysis, possibly with a specification curve (Simonsohn, Simmons, and
Nelson 2015, 2020). This could mean running hundreds or thousands of models (or more!) to examine the
distribution of possible e!ects, and to see how di!erent specification choices map onto these e!ects. However, there
is a trade-o! between e!iciently exploring large areas of specification space and limiting the analyses to biologically
plausible specifications. Instead of simply identifying modelling decisions and creating all possible combinations for
the multiverse, a researcher could attempt to prevent implausible combinations, though the more variables in the
dataset, the more di!icult this becomes. To make this easier, one could recruit many analysts to each designate one
or a few plausible specifications, as with our ‘many analyst’ study (Silberzahn et al. 2018). An alternative that may be
more labor intensive for the primary analyst, but which may lead to a more plausible set of models, could involve
hypothesizing about causal pathways with DAGs [directed acyclic graphs; Arif and MacNeil (2023)] to constrain the
model set. Devoting this e!ort to thoughtful multiverse specifications, possibly combined with pre-registration to
hinder undisclosed data dredging, seems worthy of consideration.

Although we have reviewed a variety of potential responses to the existence of variability in analytical outcomes, we
certainly do not wish to imply that this is a comprehensive set of possible responses. Nor do we wish to imply that
the opinions we have expressed about these options are correct. Determining how the disciplines of ecology and
evolutionary biology should respond to knowledge of the variability in analytical outcome will benefit from the
contribution and discussion of ideas from across these disciplines. We look forward to learning from these
discussions and to seeing how these disciplines ultimately respond.
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Table 3.4:
Estimated mean value of the standardised correlation coefficient, Z , along with its standard
error and 95% confidence intervals. We re-computed the meta-analysis for different post-

hoc subsets of the data: All eligible effects, removal of effects from analysis teams that
received at least one peer rating of ‘Deeply Flawed and Unpublishable’, removal of any

effects from analysis teams that received at least one peer rating of either ‘Deeply Flawed
and Unpublishable’ or ‘Publishable with Major Revisions’.

Dataset 95%CI statistic p-value

All analyses -

blue tit −0.35 0.03 [−0.41,−0.28] −10.49 <0.001

Eucalyptus −0.09 0.06 [−0.22,0.03] −1.47 0.14

Analyses receiving at least one 'Unpublishable' rating removed -

blue tit −0.36 0.03 [−0.43,−0.29] −10.49 <0.001

Eucalyptus −0.02 0.02 [−0.07,0.02] −1.15 0.3

Analyses receiving at least one 'Unpublishable' and or 'Major Revisions' rating removed -

blue tit −0.37 0.07 [−0.51,−0.23] −5.34 <0.001

Eucalyptus −0.04 0.05 [−0.15,0.07] −0.77 0.4

All analyses - outliers removed

blue tit −0.35 0.03 [−0.42,−0.29] −10.95 <0.001

Eucalyptus −0.03 0.01 [−0.06,0.00] −2.23 0.026

r

µ̂ SE[µ̂]

Out-of-sample predictions ( )yi

3.5 Post-hoc analysis: Exploring the e!ect of removing analyses
with poor peer ratings on heterogeneity

E!ect Sizes ( )Zr
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3.6 Post-hoc analysis: Exploring the e!ect of excluding
estimates of  in which we had reduced confidenceZr

Zr

I 2 τ 2

3.7 Explaining Variation in Deviation Scores

R2
Conditional

R2
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Table 3.6:
Parameter estimates from models of Box-Cox transformed deviation scores as a function of continuous and
categorical peer ratings, Sorensen scores, and the inclusion of random effects. Standard Errors (SE), 95%

confidence intervals (95%CI) are reported for all estimates, while t values, degrees of freedom and p-values are
presented for fixed-effects. Note that positive parameter estimates mean that as the predictor variable

increases, so does the absolute value of the deviation from the meta-analytic mean.

Parameter Effects Group Coefficient SE 95%CI t df p

Deviation explained by inclusion of random effects - Eucalyptus

(Intercept) -2.53 0.27 [-3.06,-1.99] -9.31 77 <0.001

Mixed model 0.00 0.31 [-0.60, 0.60] 0.00 77 >0.9

Deviation explained by Sorensen’s index - Eucalyptus

(Intercept) -2.75 1.07 [-4.85,-0.65] -2.57 70 0.010

Mean Sorensen's index 0.29 1.54 [-2.74, 3.32] 0.19 70 0.9

Deviation explained by Sorensen’s index - blue tit

(Intercept) -1.56 0.38 [-2.30,-0.82] -4.12 122 <0.001

Mean Sorensen's index 0.23 0.63 [-1.00, 1.46] 0.37 122 0.7

Deviation explained by continuous ratings - Eucalyptus

(Intercept) fixed -2.52 0.06 [-2.63,-2.40] -43.10 342 <0.001

RateAnalysis fixed -3e-16 3e-
10

[-5e-10,5e-
10]

-1e-
06 342 >0.9

SD (Intercept) random Effect ID 0.53 0.04 [ 0.45, 0.62]

SD (Observations) random Residual 0.01 4e-
04 [0.01,0.01]

Deviation explained by continuous ratings - blue tit

(Intercept) fixed -1.06 0.03 [-1.12,-1.01] -35.81 469 <0.001

RateAnalysis fixed -8e-16 2e-
10

[-4e-10,4e-
10]

-4e-
06 469 >0.9

SD (Intercept) random Effect ID 0.39 0.02 [ 0.34, 0.44]

SD (Observations) random Residual 3e-06 1e-
07

[ 2e-06,3e-
06]

Deviation explained by categorical ratings - Eucalyptus

(Intercept) fixed -2.66 0.27 [-3.18,-2.13] -9.97 340 <0.001

Publishable with major
revision fixed 0.29 0.29 [-0.27, 0.85] 1.02 340 0.3

Publishable with minor
revision fixed 0.01 0.28 [-0.54, 0.56] 0.04 340 >0.9

Publishable as is fixed 0.05 0.31 [-0.55, 0.66] 0.17 340 0.9

SD (Intercept) random Reviewer
ID 0.39 0.09 [ 0.25, 0.61]

SD (Observations) random Residual 1.06 0.04 [0.98,1.15]

Deviation explained by categorical ratings - blue tit

(Intercept) fixed -1.21 0.15 [-1.50,-0.93] -8.29 467 <0.001

Publishable with major
revision fixed -0.23 0.15 [-0.53, 0.07] -1.50 467 0.13

Publishable with minor
revision fixed -0.23 0.15 [-0.53, 0.07] -1.52 467 0.13

Publishable as is fixed -0.15 0.17 [-0.48, 0.18] -0.89 467 0.4

SD (Intercept) random Reviewer
ID 0.20 0.05 [ 0.13, 0.31]

SD (Observations) random Residual 0.65 0.02 [0.61,0.7]

3.8 Deviation Scores as explained by Reviewer Ratings
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Figure 3.4: Violin plot of Box-Cox transformed deviation from meta-analytic mean  as a function of categorical peer rating.
Grey points for each rating group denote model-estimated marginal mean deviation, and error bars denote 95% CI of the
estimate. A Blue tit dataset, B Eucalyptus dataset.

Zr

Out-of-sample predictions ( )yi

yi

Zr

3.9 Deviation scores as explained by the distinctiveness of
variables in each analysis
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3.10 Deviation scores as explained by the inclusion of random
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Figure 3.6: Violin plot of mean Box-Cox transformed deviation from meta-analytic mean as a function of random-e!ects
inclusion in Eucalyptus analyses. ‘1’ indicates random-e!ects were included in analyst’s model, while 0 indicates no random-
e!ects were included. White points for each group of analyses denote model-estimated marginal mean deviation, and error
bars denote 95% CI of the estimate.
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Table 3.5:
Summary metrics for registered models seeking to explain deviation (Box-Cox

transformed absolute deviation scores) from the mean Z  as a function of Sorensen’s
Index, categorical peer ratings, and continuous peer ratings for blue tit and Eucalyptus

analyses, and as a function of the presence or absence of random effects (in the
analyst’s models) for Eucalyptus analyses. We report coefficient of determination, R , for

our models including only fixed effects as predictors of deviation, and we report
R , R  and the intra-class correlation (ICC) from our models that included

both fixed and random effects. For all our models, we calculated the residual standard
deviation σ and root mean squared error (RMSE).

Dataset ICC RMSE

Deviation explained by categorical ratings

blue tit 0.0903 6.67e-03 0.0842 6.52e-01 6.32e-01 473

Eucalyptus 0.1319 1.24e-02 0.1209 1.06e+00 1.02e+00 346

Deviation explained by continuous ratings

blue tit 1.0000 1.42e-27 1.0000 2.53e-06 3.86e-14 473

Eucalyptus 0.9997 1.46e-28 0.9997 9.66e-03 1.05e-13 346

Deviation explained by Sorensen's index

blue tit 1.11e-03 6.81e-01 6.76e-01 124

Eucalyptus 5.06e-04 1.14e+00 1.12e+00 72

Deviation explained by inclusion of random effects

blue tit 2.68e-02 6.58e-01 6.53e-01 131

Eucalyptus 8.67e-08 1.12e+00 1.10e+00 79
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 P performance        0.10.4     2023-06-02 [?] CRAN (R 4.2.0)
 P pillar             1.9.0      2023-03-22 [?] CRAN (R 4.2.0)
 P pkgbuild           1.4.0      2022-11-27 [?] CRAN (R 4.2.0)
 P pkgconfig          2.0.3      2019-09-22 [?] CRAN (R 4.2.0)
 P pkgload            1.3.2      2022-11-16 [?] CRAN (R 4.2.0)
 P pointblank         0.11.4     2023-04-25 [?] CRAN (R 4.2.0)
 P pracma             2.4.2      2022-09-22 [?] CRAN (R 4.2.0)
 P prettyunits        1.1.1      2020-01-24 [?] CRAN (R 4.2.0)
 P processx           3.8.1      2023-04-18 [?] CRAN (R 4.2.0)
 P profvis            0.3.8      2023-05-02 [?] CRAN (R 4.2.0)
 P promises           1.2.0.1    2021-02-11 [?] CRAN (R 4.2.0)
 P ps                 1.7.5      2023-04-18 [?] CRAN (R 4.2.0)
 P purrr            * 1.0.2      2023-08-10 [?] CRAN (R 4.2.0)
 P quadprog           1.5-8      2019-11-20 [?] CRAN (R 4.2.0)
 P R6                 2.5.1      2021-08-19 [?] CRAN (R 4.2.0)
 P Rcpp               1.0.10     2023-01-22 [?] CRAN (R 4.2.2)
 P readr            * 2.1.4      2023-02-10 [?] CRAN (R 4.2.0)
 P remotes            2.4.2      2021-11-30 [?] CRAN (R 4.2.0)
 P renv               1.0.2      2023-08-15 [?] CRAN (R 4.2.0)
 P rlang              1.1.1      2023-04-28 [?] CRAN (R 4.2.0)
 P rmarkdown          2.21       2023-03-26 [?] CRAN (R 4.2.2)
   rpart              4.1.19     2022-10-21 [2] CRAN (R 4.2.2)
 P rprojroot          2.0.3      2022-04-02 [?] CRAN (R 4.2.0)
 P rstatix            0.7.2      2023-02-01 [?] CRAN (R 4.2.0)
 P rstudioapi         0.14       2022-08-22 [?] CRAN (R 4.2.0)
 P sae                1.3        2020-03-01 [?] CRAN (R 4.2.0)
   sandwich           3.0-2      2022-06-15 [2] CRAN (R 4.2.0)
 P sass               0.4.6      2023-05-03 [?] CRAN (R 4.2.0)
 P scales             1.2.1      2022-08-20 [?] CRAN (R 4.2.0)
 P see                0.8.0      2023-06-05 [?] CRAN (R 4.2.0)
 P sessioninfo        1.2.2      2021-12-06 [?] CRAN (R 4.2.0)
 P shiny              1.7.4      2022-12-15 [?] CRAN (R 4.2.0)
 P sjlabelled         1.2.0      2022-04-10 [?] CRAN (R 4.2.0)
 P snakecase          0.11.0     2019-05-25 [?] CRAN (R 4.2.0)
 P specr            * 1.0.0      2023-01-20 [?] CRAN (R 4.2.0)
 P stringi            1.7.12     2023-01-11 [?] CRAN (R 4.2.0)
 P stringr          * 1.5.0      2022-12-02 [?] CRAN (R 4.2.0)
   survival           3.5-5      2023-03-12 [2] CRAN (R 4.2.0)
 P targets          * 1.0.0      2023-04-24 [?] CRAN (R 4.2.0)
 P tibble           * 3.2.1      2023-03-20 [?] CRAN (R 4.2.0)
 P tidyr            * 1.3.0      2023-01-24 [?] CRAN (R 4.2.0)
 P tidyselect         1.2.0      2022-10-10 [?] CRAN (R 4.2.0)
 P tidyverse        * 2.0.0      2023-02-22 [?] CRAN (R 4.2.0)
 P timechange         0.2.0      2023-01-11 [?] CRAN (R 4.2.0)
 P tzdb               0.4.0      2023-05-12 [?] CRAN (R 4.2.2)
 P urlchecker         1.0.1      2021-11-30 [?] CRAN (R 4.2.0)
 P usethis            2.1.6      2022-05-25 [?] CRAN (R 4.2.0)
 P utf8               1.2.3      2023-01-31 [?] CRAN (R 4.2.0)
 P V8                 4.3.0      2023-04-08 [?] CRAN (R 4.2.0)
   vctrs              0.6.3      2023-06-14 [1] CRAN (R 4.2.0)
 P vroom              1.6.3      2023-04-28 [?] CRAN (R 4.2.0)
 P withr            * 2.5.0      2022-03-03 [?] CRAN (R 4.2.0)
 P xfun               0.39       2023-04-20 [?] CRAN (R 4.2.0)
 P xml2               1.3.4      2023-04-27 [?] CRAN (R 4.2.0)
 P xtable             1.8-4      2019-04-21 [?] CRAN (R 4.2.0)
 P yaml               2.3.7      2023-01-23 [?] CRAN (R 4.2.0)
 P zoo                1.8-12     2023-04-13 [?] CRAN (R 4.2.0)

 [1] /Users/egould/Library/Caches/org.R-project.R/R/renv/library/ManyAnalysts-08852257/R-4.2/aarch64-apple-darwin20
 [2] /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library

 P ── Loaded and on-disk path mismatch.

──────────────────────────────────────────────────────────────────────────────
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As described in the summary statistics section of the manuscript, 63 teams submitted 132  model estimates and 43
teams submitted 65 out of sample predictions for the blue tit dataset. Similarly, 40 submitted 79  model estimates
and 14 teams submitted 24 out of sample predictions for the Eucalytpus dataset. The majority of the blue tit analyses
specified normal error distributions and were non-Bayesian mixed e!ects models. Analyses of the Eucalyptus
dataset rarely specified normal error distributions, likely because the response variable was in the form of counts.
Mixed e!ects models were also common for Eucalytpus analyses (Table A.1).

Code

The composition of models varied substantially (Table A.2) in regards to the number of fixed and random e!ects,
interaction terms and the number of data points used. For the blue tit dataset, models used up to 19 fixed e!ects, 12
random e!ects, and 10 interaction terms and had sample sizes ranging from 76 to 3720 For the Eucalyptus dataset
models had up to 13 fixed e!ects, 4 random e!ects, 5 interaction terms and sample sizes ranging from 18 to 351.
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The choice of variables also di!ered substantially among models (Table A.3). Considering all submitted analyses, the
blue tit dataset had 52 candidate variables, which were used in a mean of 20.58  analyses (range 0- 101), the
Eucalyptus dataset had 58 candidate variables which were used in a mean of 9.07  analyses (range 0-55).
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We used a specification curve (Simonsohn, Simmons, and Nelson 2015) to look for relationships between  values
and several modeling decisions, including the choice of independent and dependent variable, transformation of the
dependent variable, and other features of the models that produced those  values (Figure A.1, Figure A.2). Each
e!ect can be matched to the model features that produced it by following a vertical line down the figure.

We observed few clear trends in the blue tit specification curve (Figure A.1). The clearest trend was for the
independent variable ‘contrast: reduced broods vs. unmanipulated broods’ to produce weak or even positive
relationships, but never strongly negative relationships. The biological interpretation of this pattern is that nestlings
in reduced broods averaged similar growth to nestlings in unmanipulated broods, and sometimes the nestlings in
reduced broods even grew less than the nestlings in unmanipulated broods. Therefore, it may be that competition
limits nestling growth primarily when the number of nestlings exceeds the clutch size produced by the parents, and
not in unmanipulated broods. The other relatively clear trend was that the strongest negative relationships were
never based on the independent variable ‘contrast: unmanipulated broods vs. enlarged broods’. These observations
demonstrate the potential value of specification curves.
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In the Eucalyptus specification curve, there are no strong trends (Figure A.2). It is, perhaps, the case that choosing
the dependent variable ‘count of seedlings 0-0.5m high’ corresponds to more positive results and choosing ‘count of
all Eucalytpus seedlings’ might find more negative results. Choosing the independent variable ‘sum of all grass types
(with or without non-grass graminoids)’ might be associated with more results close to zero consistent with the
absence of an e!ect.
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The forest plots in Figure B.3 compare the distributions of  e!ects from our full set of analyses with the
distributions of  e!ects from our post-hoc analyses which removed either analyses that were reviewed at least
once as being ‘unpublishable’ or analyses that were reviewed at least once as being ‘unpublishable’ or requiring
‘major revisions’. Removing these analyses from the blue tit data had little impact on the overall distribution of the
results. For the Eucalytpus analyses, removing ‘unpublishable’ analyses meant dropping the extreme outlier
Brooklyn-2-2-1 which made a substantial di!erence to the amount of observerd deviation from the meta-analytic
mean.


1  Same data, di!erent analysts: variation in e!ect sizes due to analytical decisions in ecology and
evolutionary biology.

B  E!ect Size
Analysis 

Elliot Gould

Hannah S Fraser

SM A: Summarising Variation Among Analysis
Specifications
AUTHORS

A.1 Summary Statistics

A.1.1 Number of analyses of di!erent types 
Zr

Zr

Table A.1:
Summary of the number of anaysis teams, total analyses, models with normal

error distributions, mixed effects models, and models developed with
Bayesian statistical methods for effect size analyses only (Z ) and out-of-

sample prediction only (y ).

No. Analyses No. Teams Normal Distribution Mixed Effect Bayesian

blue tit

132 63 125 129 10

65 43 60 64 10

Eucalyptus

79 40 15 62 5

24 14 1 16 3

r
i

Zr

yi

Zr

yi

A.1.2 Model composition

Table A.2:
Mean, standard deviation and range of number of fixed and random variables and interaction terms
used in models and sample size used. Repeated for effect size analyses only (Z ) and out-of-sample

prediction only (y ).

Mean SD Min Max

Blue tit Eucalyptus Blue tit Eucalyptus Blue tit Eucalyptus Blue tit Eucalyptus

fixed

5.20 5.01 2.92 3.83 1 1 19 13

4.78 4.67 2.35 3.45 1 1 10 13

interactions

4.40 × 10 1.60 × 10 1.11 6.50 × 10 0 0 10 5

2.80 × 10 1.70 × 10 6.30 × 10 4.80 × 10 0 0 3 2

random

3.53 1.41 2.08 1.09 0 0 10 4

4.42 9.60 × 10 2.78 8.10 × 10 1 0 12 3

samplesize

2.62 × 10 2.98 × 10 9.39 × 10 1.06 × 10 76 18 3720 351

2.84 × 10 3.26 × 10 7.76 × 10 6.42 × 10 396 90 3720 350

r
i

Zr

yi

Zr
−1 −1 −1

yi −1 −1 −1 −1

Zr

yi −1 −1

Zr
3 2 2 2

yi 3 2 2 1

A.1.3 Choice of variables

Zr

Zr

Table A.3:
Mean, SD, minimum and maximum number of analyses in which each variable was used, for effect

size analyses only (Z ), out-of-sample prediction only (y ), using the full dataset.

Mean SD Min Max

Blue tit Eucalyptus Blue tit Eucalyptus Blue tit Eucalyptus Blue tit Eucalyptus

2.06 × 10 9.07 2.71 × 10 1.23 × 10 0 0 101 55

1.09 × 10 2.31 1.41 × 10 3.88 0 0 54 17

r i

Zr
1 1 1

yi 1 1

A.2 E!ect Size Specification Analysis

Zr

Zr

A.2.1 Blue tit

A.2.2 Eucalyptus

A.2.3 Post-hoc analysis: Exploring the e!ect of removing analyses with
poor peer-review ratings on heterogeneity

Zr

Zr

Figure A.1: A. Forest plot for blue tit analyses: standardized e!ect-sizes (circles) and their 95% confidence intervals are displayed for each
analysis included in the meta-analysis model. The meta-analytic mean e!ect-size is denoted by a black diamond, with error bars also
representing the 95% confidence interval. The dashed black line demarcates e!ect sizes of 0, whereby no e!ect of the test variable on the
response variable is found. Blue points where Zr and its associated confidence intervals are greater than 0 indicate analyses that found a
negative e!ect of sibling number on nestling growth. Gray coloured points have confidence intervals crossing 0, indicating no relationship
between the test and response variable. Red points indicate the analysis found a positive relationship between sibling number and nestling
growth. B. Analysis specification plot: for each analysis plotted in A, the corresponding combination of analysis decisions is plotted. Each
decision and its alternative choices is grouped into its own facet, with the decision point described on the right of the panel, and the option
shown on the le". Lines indicate the option chosen used in the corresponding point in plot A. C. Sample sizes of each analysis. Note that
empty bars indicate analyst did not report sample size and sample size could not be derived by lead team.

Figure A.2: A. Forest plot for Eucalyptus analyses: standardized e!ect-sizes (circles) and their 95% confidence intervals are displayed for each
analysis included in the meta-analysis model. The meta-analytic mean e!ect-size is denoted by a black diamond, with error bars also
representing the 95% confidence interval. The dashed black line demarcates e!ect sizes of 0, whereby no e!ect of the test variable on the
response variable is found. Blue points where  and its associated confidence intervals are greater than 0 indicate analyses that found a
positive relationship of grass cover on Eucalyptus seedling success. Gray coloured points have confidence intervals crossing 0, indicating no
relationship between the test and response variable. Red points indicate the analysis found a negative relationship between grass cover and
Eucalyptus seedling success. B. Analysis specification plot: for each analysis plotted in A, the corresponding combination of analysis
decisions is plotted. Each decision and its alternative choices is grouped into its own facet, with the decision point described on the right of
the panel, and the option shown on the le". Lines indicate the option chosen used in the corresponding point in plot A. C. Sample sizes of
each analysis. Note that empty bars indicate analyst did not report sample size and sample size could not be derived by lead team.

Zr

Figure A.3: Forest plots of meta-analytic estimated standardized e!ect sizes ( , blue circles) and their 95% confidence intervals for
each e!ect size included in the meta-analysis model. The meta-analytic mean e!ect size is denoted by a black triangle and a dashed
vertical line, with error bars also representing the 95% confidence interval. The solid black vertical line demarcates e!ect size of 0,
indicating no relationship between the test variable and the response variable. The le" side of each panel shows the analysis team
names (anonymous arbitrary names assigned by us), each followed by three numbers. The first number is the submission ID (some
analyst teams submitted results to us on >1 submission form), the second number is the analysis ID (some analyst teams included
results of >1 analysis in a given submission), and the third number is the e!ect ID (some analysts submitted values for >1 e!ect per
analysis). Thus, each row in each forest plot is uniquely identified, but it is possible to determine which e!ects come from which
analyses and which analysis teams. The plots in the top row depict e!ects from analyses of blue tit data, and the bottom row plots
depict e!ects from analyses of Eucalyptus data. The right-most plots depict all usable e!ect sizes. The plots on the le" side exclude
e!ects from analysis sets that received at least one rating of “unpublishable” from peer reviewers, and the plots in the middle exclude
e!ects from analysis sets that received at least one rating of either “unpublishable” or “major revision” from peer reviewers.

Zr
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The figures below (Figure B.1,Figure B.2) shows the fixed e!ect of categorical review rating on deviation from the
meta-analytic mean. There is very little di!erence in deviation for analyses in any of the review categories. It is worth
noting that each analysis features multiple times in these figures corresponding to the multiple reviewers that
provided ratings.

In Figure B.3 we display the results of our post-hoc analysis, examining the e!ect of removing analyses that were
reviewed at least once as being ‘unpublishable’, ‘unpublishable’ or requiring ‘major revisions’, as compared with
retaining the full set of analyses. Removing these analyses from the blue tit data had little impact on the overall
amount of deviation or the distribution of the results. For the Eucalytpus analyses, removing ‘unpublishable’
analyses meant dropping the outlier Brooklyn-2-2-1 which made a substantial di!erence to the amount of observerd
deviation from the meta-analytic mean.

For each dataset (blue tit, Eucalyptus), we created a second, more conservative version, that excluded e!ects based
on estimates of  that we considered less reliable (Table B.1). We compared the outcomes of analyses of the
primary dataset (constituted according to our registered plan) with the outcomes of analyses of the more
conservative version of the dataset. We also compared results from analyses of both of these versions of the dataset
to versions with our post-hoc removal of outliers described in the main text. Our more conservative exclusions
(based on unreliable estimates of ) had minimal impact on the meta-analytic mean for both blue tit and
Eucalyptus analyses, regardless of whether outliers were excluded (Table B.1).
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Below is the non-truncated version of Figure 3.3 showing a forest plot of the out-of-sample predictions, , on the
response-scale (stems counts), for Eucalyptus analyses, showing the full error bars of all model estimates.

Code

 A  Summarising Variation Among Analysis Specifications C  Explaining Variation in Deviation Scores

Elliot Gould

Hannah S Fraser

SM B: E!ect Size Analysis
AUTHORS

B.1 Meta-analysis

B.1.1 E!ect Sizes Zr

B.1.1.1 E!ect of categorical review rating

Figure B.1: Orchard plot of meta-analytic model fitted to all eucalyptus analyses with a fixed e!ect for categorical peer-review
ratings, and random e!ects for analyst ID and reviewer ID. Black circles denote coe!icient mean for each categorical
publishability rating. Thick error bars represent 95% confidence intervals and whiskers indicate 95% prediction intervals.
E!ect sizes are represented by circles and their size corresponds to the precision of the estimate.

Figure B.2: Orchard plot of meta-analytic model fitted to all blue tit analyses with a fixed e!ect for categorical peer-review
ratings, and random e!ects for analyst ID and reviewer ID. Black circles denote coe!icient mean for each categorical
publishability rating. Thick error bars represent 95% confidence intervals and whiskers indicate 95% prediction intervals.
E!ect sizes are represented by circles and their size corresponds to the precision of the estimate.

B.1.1.2 Post-hoc analysis: Exploring the e!ect of removing analyses with poor peer-review
ratings on heterogeneity

B.1.1.3 Post-hoc analysis: Exploring the e!ect of excluding estimates in which we had
reduced confidence

df

df

Table B.1:
Estimated meta-analytic mean, standard error, and 95% confidence intervals, from

analyses of the primary data set, the more conservative version of the dataset which
excluded effects based on less reliable estimates of df, and both of these datasets

with outliers removed.

dataset 95%CI statistic p.value publishable_subset

Primary dataset

blue tit −0.35 0.03 [−0.41,−0.28] −10.49 <0.001 All

eucalyptus −0.09 0.06 [−0.22,0.03] −1.47 0.14 All

Conservative exclusions

blue tit −0.36 0.03 [−0.42,−0.29] −10.50 <0.001 All

eucalyptus −0.11 0.07 [−0.24,0.03] −1.55 0.12 All

Primary dataset, outliers removed

blue tit −0.35 0.03 [−0.42,−0.29] −10.95 <0.001 All

eucalyptus −0.03 0.01 [−0.06,0.00] −2.23 0.026 All

Conservative exclusions, outliers removed

blue tit −0.36 0.03 [−0.43,−0.30] −11.09 <0.001 All

eucalyptus −0.04 0.02 [−0.07,−0.01] −2.52 0.012 All

µ̂ SE[µ̂]

B.1.2 Out of sample predictions yi

B.1.2.1 Non-truncated  meta-analysis forest plotyi

yi

Figure B.4: Forest plot of meta-analytic estimated out of sample predictions, , on the response-scale (stems counts), for
Eucalyptus analyses. Circles represent individual analysis estimates. Triangles represent the meta-analytic mean for each
prediction scenario. Navy blue coloured points correspond to  scenario, blue coloured points correspond to the 
scenario, while light blue points correspond to the  scenario. Error bars are 95% confidence intervals. Outliers
(observations more than 3SD above the mean) have been removed prior to model fitting.

yi

y25 y50

y75

Figure B.3: Forest plots of meta-analytic estimated standardized e!ect sizes ( , blue circles) and their 95% confidence intervals for
each e!ect size included in the meta-analysis model. The meta-analytic mean e!ect size is denoted by a black triangle and a dashed
vertical line, with error bars also representing the 95% confidence interval. The solid black vertical line demarcates e!ect size of 0,
indicating no relationship between the test variable and the response variable. The le" side of each panel shows the analysis team
names (anonymous arbitrary names assigned by us), each followed by three numbers. The first number is the submission ID (some
analyst teams submitted results to us on >1 submission form), the second number is the analysis ID (some analyst teams included
results of >1 analysis in a given submission), and the third number is the e!ect ID (some analysts submitted values for >1 e!ect per
analysis). Thus, each row in each forest plot is uniquely identified, but it is possible to determine which e!ects come from which
analyses and which analysis teams. The plots in the top row depict e!ects from analyses of blue tit data, and the bottom row plots
depict e!ects from analyses of Eucalyptus data. The right-most plots depict all usable e!ect sizes. The, plots on the le" side exclude
e!ects from analysis sets that received at least one rating of “unpublishable” from peer reviewers, and the plots in the middle exclude
e!ects from analysis sets that received at least one rating of either “unpublishable” or “major revision” from peer reviewers.

Zr
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To aid in interpreting explanatory models where the response variable has been Box-Cox transformed, we plotted the
transformation relationship for each of our analysis datasets (Figure C.1). Note that timetk::step_box_cox()
directly optimises the estimation of the transformation parameter, , using the “Guerrero” method such that 
minimises the coe!icient of variation for sub series of a numeric vector (see ?timetk::step_box_cox() , for
further details see Dancho and Vaughan (2023)). Consequently, each dataset has its own unique value of the lambda
parameter, and therefore a unique transformation relationship.
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During model fitting, especially during fitting of models with random e!ects using lme4  (Bates et al. 2015), some
models failed to converge while others were accompanied with console warnings of singular fit. However, the
convergence checks from lme4  are known to be too strict (see ?performance::check_convergence()
documentation for a discussion of this issue), consequently we checked for model warnings of convergence failure
using the check_convergence()  function from the performance  package (Lüdecke et al. 2021). For all models
we double-checked that they did not have singular fit by using performance::check_singularity . Despite
passing performance::check_singularity() , parameters::parameters()  was unable to properly
estimate SE and confidence intervals for the random e!ects of some models, which suggests singular fit. For all
models we also checked whether the SE of random e!ects could be calculated, and if not, marked these models as
being singular. Analyses of singularity and convergence are presented throughout this document under the relevant
section-heading for the analysis type and outcome, i.e. e!ect size ( ) or out-of-sample predictions ( ).

For models of deviation explained by categorical peer ratings, including random e!ects for both the e!ect ID and the
reviewer ID resulted in models with singular fit for both blue tit and Eucalyptus datasets (Table C.1). For the
Eucalyptus dataset, when a random e!ect was included for Reviewer ID only, the model passed the check with
performance::check_singularity() , however, the SD and CI could not be estimated by
parameters::model_parameters()  with a warning stating this was likely due to singular fit. When fitting
models of deviation explained by categorical peer ratings, we consequently included a random e!ect for Reviewer ID
only (See Table 3.6).

For models of deviation explained by continuous peer-review ratings, when including both random e!ects for e!ect
ID and Reviewer ID model fits were singular for both datasets (Table C.1). For the Eucalyptus dataset when including
a random e!ect only for Reviewer ID and dropping the random e!ect for e!ect ID, this model passed the
performance::check_singularity()  check, however, however, the SD and CI could not be estimated by
parameters::model_parameters()  with a warning stating this was likely due to singular fit. Consequently, for
both blue tit and Euclayptus datasets, we fitted and analysed models of deviation explained by continuous peer
review ratings with a random e!ect for E!ect ID only (See Table 3.6).
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We fitted the same deviation models on the yi dataset that we fitted for the Zr dataset. However, while all models
converged, models of deviation explained by categorical peer-ratings su!ered from singular fit for the following
datasets and estimate types: blue tit - y25, Eucalyptus - y25, Eucalyptus - y75 (Table C.2). Results are therefore
presented only for models with non-singular fit, converging for the following datasets and estimate types: blue tit -
y50, blue tit - y75, Eucalyptus - y50 (Table C.2).
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Group means and  confidence intervals for di!erent categories of peer-review rating are all overlapping
(Figure C.2). The fixed e!ect of peer review rating also explains virtually no variability in  deviation score
(Table C.2).

Code

Models of deviation explained by continuous ratinsg all converged, however models for the y25 out-of-sample
predictions were singular for both Eucalyptus and blue tit datasets.

There was a lack of any clear relationships between quantitative review scores and  deviation scores (Table C.10).
Plots of these relationships indicated either no relationship or extremely weak positive relationships (Figure C.3).
Recall that positive relationships mean that as review scores became more favorable, the deviation from the meta-
analytic mean increased, which is surprising. Because almost no variability in  deviation score was explained by
reviewer ratings (Table C.10), this pattern does not appear to merit further consideration.
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Given the convergence and singularity issues encountered with most other analyses, we also checked for
convergence and singularity issues in models of deviation explained by Sorensen’s similarity index for  estimates
(Table C.4). All models fitted without problem.
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There were only three blue tit analyses that did not include random e!ects, which is below the pre-registered
threshold for fitting a model of the Box-Cox transformed deviation from the meta-analytic mean as a function of
whether the analysis included random-e!ects. However, 16 Eucalyptus analyses included in the out-of-sample ( )
results included only fixed e!ects, which crossed our pre-registered threshold.

Consequently, we performed this analysis for the Eucalyptus dataset only, here we present results for the out of
sample prediction  results. There is consistent evidence of somewhat higher Box-Cox-transformed deviation values
for models including a random e!ect, meaning the models including random e!ects averaged slightly higher
deviation from the meta-analytic means. This is most evident for the  predictions which both shows the greatest
di!erence in Box-Cox transformed deviation values (Figure C.5) and explains the most variation in  deviation score
(Table C.10, Table C.10).
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The multivariate models did a poor job of explaining how di!erent from the meta-analytic mean each analysis would
be. For the blue tit analyses the  value for the whole model was 0.13 and for the fixed e!ects component was 0.04,
and the residual standard deviation for the model was 0.65. Further, all of the fixed e!ects had 95% confidence
intervals that overlaped 0. This evidence is all consistent with none of the predictor variables in this model
(continuous review rating, categorical review rating, distinctiveness of variables included) having any meaningful
e!ect on how far  estimates fell from the meta-analytic mean for the blue tit analyses. The pattern is largely similar
for the Eucalyptus multivariate analysis, in which  for the whole model was 0.11 and for the fixed e!ects
component was 0.03, and the residual standard deviation for the model was 1.09. There is somewhat more of a hint
of a pattern when examining the paramaeter estimates from the Eucalyptus analysis. In the case of the fixed e!ect of
categorical reviewer ratings, analyses that were reviewed as ‘publishable as is’ and ‘publishable with major revisions’
appeared to produce results more di!erent from the meta-analytic mean than those that were in the reference class
of ‘deeply flawed and unpublishable’. However, the estimates are very uncertain (Eucalyptus fixed e!ect for
‘publishable as is’ 1.17 (95% CI 0.03,2.3), and for ‘publishable with major revision’ 0.14 (95% CI -0.38,0.66). Further,
the collinearity between the categorical and continuous ratings make interpretation of e!ects involving either of
these two variables unclear, and so we recommend against interpreting the pattern observed here. We report this
analysis only for the sake of transparency.
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For the blue tit analyses, models with Reviewer ID as the only random e!ect were the only models that converged,
and that weren’t singular (Table C.7). Conversely, of the di!erent random e!ects structures we trialled for the
Eucalyptus analyses, none successfully fitted, with models either failing to converge due to complete separation
( lme4::  error: Downdated VtV is not positive definite , see https://github.com/lme4/lme4/issues/483).
Consequently we did not fit multivariate models on out-of-sample predictions for the Eucalyptus dataset, and
instead deviated from our intended plan of using random e!ects for both E!ect ID and Reviewer ID, and instead
using a single random e!ect for Reviewer ID (Table C.8, Table C.9).
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Random effect variances not available. Returned R2 does not account for random effects.
Random effect variances not available. Returned R2 does not account for random effects.
Random effect variances not available. Returned R2 does not account for random effects.
Random effect variances not available. Returned R2 does not account for random effects.
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SM C: Explaining Variation in Deviation Scores
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C.1 Transforming response variable for model fitting

λ λ

C.2 Model Convergence and Singularity problems

Zr yi

C.3 Deviation Scores as explained by Reviewer Ratings

C.3.1 E!ect Sizes Zr

Table C.1:
Singularity and convergence checking outcomes for models of deviation in effect-sizes Z  explained by peer-
review ratings for different random effect structures. Problematic checking outcomes are highlighted in red.

Fixed Effect
Random Effects Model

converged?
Singular

Fit?
Can random effect SD be

calculated?

blue tit

Categorical Peer
Rating

Reviewer
ID — yes no yes

Categorical Peer
Rating Study ID Reviewer

ID yes yes no

Categorical Peer
Rating Study ID — yes no yes

Continuous Peer
Rating

Reviewer
ID — yes no yes

Continuous Peer
Rating Study ID Reviewer

ID yes no no

Continuous Peer
Rating Study ID — yes no yes

Eucalyptus

Categorical Peer
Rating

Reviewer
ID — yes no no

Categorical Peer
Rating Study ID Reviewer

ID yes yes no

Categorical Peer
Rating Study ID — yes no yes

Continuous Peer
Rating

Reviewer
ID — yes no no

Continuous Peer
Rating Study ID Reviewer

ID yes yes no

Continuous Peer
Rating Study ID — yes no yes

r

C.3.2 Out of sample predictions yi

Table C.2:
Singularity and convergence checking for models of deviation in out-of-sample-predictions y  explained

by peer-ratings.

Estimate Type Singular Fit? Model converged? Can random effect SE be calculated?

Deviation explained by continuous ratings

blue tit y25 no yes no

y50 no yes yes

y75 no yes yes

Eucalyptus y25 no yes no

y50 no yes yes

y75 no yes yes

Deviation explained by categorical ratings

blue tit y25 yes yes no

y50 no yes yes

y75 no yes yes

Eucalyptus y25 yes yes no

y50 no yes yes

y75 yes yes no

i

95%
yi

yi

yi

Figure C.3: Scatterplots exaining Box-Cox transfored deviation fro the eta-analytic mean for  estimates as a function of
continuous ratings. Note that higher (less negative) values of the deviation score result from greater deviation from the meta-
analytic mean.A: Blue tit, y50, B: Blue tit, y75, C: Eucalyptus, y50, D: Eucalyptus, y75.

yi

C.4 Deviation scores as explained by the distinctiveness of
variables in each analysis

C.4.1 E!ect Sizes Zr

C.4.2 Out of sample predictions yi

yi

Figure C.4: Scatter plots examining Box-Cox transformed deviation from the meta-analytic mean for  estimates as a function
of Sorensen’s similarity index. Note that higher (less negative) values of the deviation score result from greater deviation from
the meta-analytic mean. A: Blue tit, y25, B: Blue tit, y50, C: Blue tit, y75, D: Eucalyptus, y25, E: Eucalyptus, y50, F: Eucalyptus,
y75.

yi

Table C.4:
Singularity and convergence checks for models of deviation

explained by Sorensen’s similarity index and inclusion of
random effects for out-of-sample predictions, y . Models of
Deviation explained by inclusion of random effects are not

presented for blue tit analyses because the number of models
not using random effects was less than our preregistered

threshold.

Estimate Type Singular Fit? Model converged?

Deviation explained by Sorensen's index

blue tit y25 no yes

y50 no yes

y75 no yes

Eucalyptus y25 no yes

y50 no yes

y75 no yes

Deviation explained by inclusion of random effects

Eucalyptus y25 no yes

y50 no yes

y75 no yes

i

C.5 Deviation scores as explained by the inclusion of random
e!ects

C.5.1 Out of sample predictions yi

yi

yi

y50

yi

C.6 Multivariate Analysis

C.6.1 E!ect Sizes Zr

R2

Zr

R2

Table C.6:
Model summary metrics for multivariate models. σ is the

residual standard deviation, ICC is the intra-class
correlation coefficient, and R  and R  are the marginal

and conditional R , respectively.

Dataset ICC RMSE

blue tit 0.13 0.04 0.09 0.63 0.65

Eucalyptus 0.11 0.03 0.08 1.05 1.09

M
2

C
2

2

R2
Conditional

R2
Marginal σ

C.6.2 Out of sample predictions yi

Table C.7:
Singularity and convergence for all random effects structure combinations of multivariate models trialled for all

subsets of out of sample predictions y .

estimate_type
Random Effects Model

converged?
Singular

Fit?
Can random effect SE be

calculated?

blue tit

y25 Reviewer
ID — yes no yes

y50 Reviewer
ID — yes no yes

y75 Reviewer
ID — yes no yes

y25 Study ID Reviewer
ID no yes yes

y50 Study ID Reviewer
ID no yes yes

y75 Study ID Reviewer
ID yes yes no

y25 Study ID — yes no no

y50 Study ID — yes no yes

y75 Study ID — yes no yes

Eucalyptus

y25 Reviewer
ID — yes yes no

y50 Reviewer
ID — yes yes no

y75 Reviewer
ID — yes yes no

y25 Study ID Reviewer
ID yes no no

y50 Study ID Reviewer
ID no yes yes

y75 Study ID Reviewer
ID no yes yes

y25 Study ID — yes no no

y50 Study ID — no yes yes

y75 Study ID — no yes yes

i

Table C.8:
Model summary statistic for non-singular, converging multivariate

models fit to out-of-sample predictions for blue tit dataset

estimate_type RMSE ICC

y25 0.557 2.868 0.005 0.001 234 0.004

y50 0.622 8.135 0.002 0.001 221 0.001

y75 0.561 4.028 0.007 0.002 234 0.005

σ R2
Conditional

R2
Marginal

NObs

Figure C.1: Box-Coxtransformed absolute deviation scores plotted against (untransformed) absolute deviation scores.

Figure C.2: Violin plot of Box-Cox transformed deviation from meta-analytic mean as a function of categorical peer-review rating. Grey points
for each rating group denote model-estimated marginal mean deviation, and error bars denote 95% CI of the estimate. A blue tit dataset, 
B blue tit dataset,  C Eucalyptus dataset, .

y50

y75 y50

Table C.3:
Parameter estimates for univariate models of Box-Cox transformed deviation from the mean y  estimate as a function of

categorical peer-review rating, continuous peer-review rating, and Sorensen’s index for blue tit and Eucalyptus analyses, and
also for the inclusion of random effects for Eucalyptus analyses.

Estimate
Type Parameter Effects Group Coefficient SE 95%CI t df p

Deviation explained by continuous ratings

Eucalyptus y50 (Intercept) fixed -3e-01 0.12 [-5e-01,-9e-02] -3e+00 105 0.007

y50 RateAnalysis fixed 2e-14 7e-
09 [-1e-08, 1e-08] 3e-06 105 >0.9

y50 SD (Intercept) random Effect ID 0.57 0.08 [0.42,0.76]

y50 SD
(Observations) random Residual 3e-05 2e-

06 [ 3e-05, 4e-05]

Eucalyptus y75 (Intercept) fixed -6e-01 0.11 [-8e-01,-4e-01] -6e+00 105 <0.001

y75 RateAnalysis fixed 3e-16 3e-
10 [-6e-10, 6e-10] 9e-07 105 >0.9

y75 SD (Intercept) random Effect ID 0.56 0.08 [0.42,0.74]

y75 SD
(Observations) random Residual 0 1e-

04 [0,0]

blue tit y50 (Intercept) fixed -1e+00 0.05 [-2e+00,-1e+00] -3e+01 217 <0.001

y50 RateAnalysis fixed 2e-16 2e-
10 [-4e-10, 4e-10] 9e-07 217 >0.9

y50 SD (Intercept) random Effect ID 0.37 0.03 [0.3,0.44]

y50 SD
(Observations) random Residual 5e-07 3e-

08 [ 5e-07, 6e-07]

blue tit y75 (Intercept) fixed -1e+00 0.04 [-1e+00,-1e+00] -3e+01 230 <0.001

y75 RateAnalysis fixed 3e-14 6e-
09 [-1e-08, 1e-08] 5e-06 230 >0.9

y75 SD (Intercept) random Effect ID 0.35 0.03 [0.3,0.42]

y75 SD
(Observations) random Residual 1e-05 5e-

07 [ 9e-06, 1e-05]

Deviation explained by categorical ratings

Eucalyptus y50 (Intercept) fixed -1e+00 0.5 [-2e+00,-1e-01] -2e+00 103 0.030

y50 Publishable with
major revision fixed 0.59 0.54 [-5e-01,1.67] 1.08 103 0.3

y50 Publishable with
minor revision fixed 0.73 0.53 [-3e-01,1.78] 1.39 103 0.2

y50 Publishable as is fixed 1.2 0.59 [0.03,2.38] 2.03 103 0.045

y50 SD (Intercept) random Reviewer
ID 0.13 0.56 [ 3e-05,571.22]

y50 SD
(Observations) random Residual 1.28 0.1 [1.09,1.49]

blue tit y50 (Intercept) fixed -1e+00 0.28 [-2e+00,-6e-01] -4e+00 215 <0.001

y50 Publishable with
major revision fixed -2e-01 0.29 [-8e-01,0.35] -8e-01 215 0.4

y50 Publishable with
minor revision fixed -3e-01 0.29 [-8e-01,0.31] -9e-01 215 0.4

y50 Publishable as is fixed -4e-01 0.31 [-1e+00,0.18] -1e+00 215 0.2

y50 SD (Intercept) random Reviewer
ID 0.22 0.08 [0.11,0.46]

y50 SD
(Observations) random Residual 0.69 0.04 [0.62,0.77]

blue tit y75 (Intercept) fixed -1e+00 0.26 [-2e+00,-9e-01] -5e+00 228 <0.001

y75 Publishable with
major revision fixed 0.06 0.27 [-5e-01,0.59] 0.22 228 0.8

y75 Publishable with
minor revision fixed 0.31 0.27 [-2e-01,0.84] 1.15 228 0.2

y75 Publishable as is fixed 0.34 0.28 [-2e-01,0.89] 1.18 228 0.2

y75 SD (Intercept) random Reviewer
ID 0.26 0.06 [0.16,0.42]

y75 SD
(Observations) random Residual 0.61 0.03 [0.55,0.68]

i

Figure C.5: Violin plot of Box-Cox transformed deviation from meta-analytic mean as a function of presence or absence of random e!ects in
the analyst’s model. White points for each rating group denote model-estimated marginal mean deviation, and error bars denote 95% CI of
the estimate. Note that higher (less negative) values of Box-Cox transformed deviation result from greater deviation from the meta-analytic
mean. A: Eucalyptus, y25, B: Eucalyptus, y50, C: Eucalyptus, y75.

Table C.5:
Parameter estimates from models explaining Box-Cox transformed deviation scores from the mean Z  as a function
of continuous and categorical peer-review ratings in multivariate analyses. Standard Errors (SE), 95% Confidence
Intervals (95%CI) are reported for all estimates, while t values, degrees of freedom and p-values are presented for

fixed-effects.

Parameter Effects Group Coefficient SE 95%CI t df p

blue tit

(Intercept) fixed -1.978 0.379 [-2.723,-1.234] -5.222 442 0

RateAnalysis fixed -0.005 0.003 [-0.012,0.001] -1.547 442 0.123

Publishable as is fixed 0.142 0.265 [-0.378,0.662] 0.537 442 0.592

Publishable with major revision fixed -0.121 0.18 [-0.476,0.233] -0.671 442 0.502

Publishable with minor revision fixed -0.005 0.227 [-0.451,0.44] -0.024 442 0.981

Mean Sorensen's index fixed 0.409 0.363 [-0.303,1.122] 1.129 442 0.26

Mixed model fixed 0.734 0.204 [0.333,1.134] 3.599 442 0

SD (Intercept) random Reviewer ID 0.205 0.048 [0.13,0.324]

SD (Observations) random Residual 0.653 0.024 [0.608,0.701]

Eucalyptus

(Intercept) fixed -3.128 0.808 [-4.718,-1.538] -3.872 302 0

RateAnalysis fixed -0.011 0.006 [-0.024,0.001] -1.778 302 0.076

Publishable as is fixed 1.167 0.58 [0.026,2.308] 2.012 302 0.045

Publishable with major revision fixed 0.871 0.4 [0.084,1.658] 2.179 302 0.03

Publishable with minor revision fixed 0.776 0.484 [-0.177,1.728] 1.602 302 0.11

Mean Sorensen's index fixed 0.546 0.958 [-1.339,2.432] 0.57 302 0.569

Mixed model fixed 0.185 0.212 [-0.233,0.603] 0.871 302 0.384

SD (Intercept) random Reviewer ID 0.331 0.105 [0.178,0.616]

SD (Observations) random Residual 1.092 0.049 [1.001,1.192]

r

Table C.9:
Parameter estimates for converging, non-singular multivariate models fitted to blue tit out-of-sample-prediction estimates y .

Parameter Effects Group Coefficient SE 95%CI t df p

y25 (Intercept) fixed -4.16e-01 0.52740 [-1.46e+00, 6.23e-01] -0.7884 225 0.4

Categorical Peer
Ratingpublishable as is fixed -4.27e-01 0.34401 [-1.10e+00, 2.51e-01] -1.2403 225 0.2

Categorical Peer
Ratingpublishable with
major revision

fixed -2.38e-01 0.25660 [-7.44e-01, 2.68e-01] -0.9272 225 0.4

Categorical Peer
Ratingpublishable with
minor revision

fixed -3.73e-01 0.30290 [-9.70e-01, 2.24e-01] -1.2322 225 0.2

Continuous Peer
Rating fixed 2.62e-03 0.00396 [-5.19e-03, 1.04e-02] 0.6620 225 0.5

Sorensen's Index fixed -9.04e-01 0.52497 [-1.94e+00, 1.30e-01] -1.7220 225 0.086

Mixed Model fixed 1.97e-01 0.34881 [-4.91e-01, 8.84e-01] 0.5643 225 0.6

SD (Intercept) random Reviewer
ID 1.76e-01 1.27770 [ 1.18e-07, 2.63e+05]

SD (Observations) random Residual 2.87e+00 0.15398 [ 2.58e+00, 3.19e+00]

y50 (Intercept) fixed 5.70e-01 0.60090 [-6.15e-01, 1.75e+00] 0.9482 212 0.3

Categorical Peer
Ratingpublishable as is fixed -5.62e-01 0.42205 [-1.39e+00, 2.70e-01] -1.3326 212 0.2

Categorical Peer
Ratingpublishable with
major revision

fixed -1.78e-01 0.31330 [-7.96e-01, 4.39e-01] -0.5684 212 0.6

Categorical Peer
Ratingpublishable with
minor revision

fixed -3.79e-01 0.37203 [-1.11e+00, 3.54e-01] -1.0197 212 0.3

Continuous Peer
Rating fixed 2.73e-03 0.00483 [-6.80e-03, 1.23e-02] 0.5655 212 0.6

Sorensen's Index fixed -2.59e+00 0.61534 [-3.81e+00,-1.38e+00] -4.2156 212 <0.001

Mixed Model fixed -3.62e-01 0.37243 [-1.10e+00, 3.72e-01] -0.9729 212 0.3

SD (Intercept) random Reviewer
ID 2.81e-01 6.75584 [ 1.05e-21, 7.57e+19]

SD (Observations) random Residual 8.14e+00 0.45277 [ 7.29e+00, 9.07e+00]

y75 (Intercept) fixed -8.45e-01 0.58983 [-2.01e+00, 3.17e-01] -1.4331 225 0.2

Categorical Peer
Ratingpublishable as is fixed 3.86e-01 0.39603 [-3.94e-01, 1.17e+00] 0.9749 225 0.3

Categorical Peer
Ratingpublishable with
major revision

fixed 9.78e-02 0.29694 [-4.87e-01, 6.83e-01] 0.3294 225 0.7

Categorical Peer
Ratingpublishable with
minor revision

fixed 3.63e-01 0.35324 [-3.33e-01, 1.06e+00] 1.0288 225 0.3

Continuous Peer
Rating fixed 9.75e-05 0.00454 [-8.84e-03, 9.04e-03] 0.0215 225 >0.9

i
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Pairwise-correlation plots for the Eucalyptus and blue tit case-study data provided to analysts are shown in
Figure D.1 and Figure D.2, respectively. Plots were created with R package GGally  (Schloerke et al. 2022).
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Figure D.1: Pairwise correllation plot for all Eucalyptus dataset variables except for Date , Quadrat no , Easting , Northing .



Figure D.2: Pairwise correlation plot of all numeric variables in blue tit case study dataset
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