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Highlights 28 

Meta-analyses are often used in ecology but originated in the medical and social sciences, 29 

whereas phylogenetic comparative analyses stemmed from evolutionary biology.  30 

  31 

We show that these two methods can be mathematically equivalent although their current use 32 

in ecology and evolution has different strengths and limitations.   33 

   34 

We advocate that integrating their strengths will improve the accuracy, robustness, and 35 

transparency of ecological and evolutionary syntheses, resolving issues such as missing data 36 

and publication bias and opening new avenues of research.  37 

 38 

We highlight future opportunities, such as exploring complex (non-linear) trends, testing 39 

hypotheses across multiple scales and levels of organization, and calling for big-team science 40 

collaboration to conduct ‘prospective’ and ‘living’ comparative and meta-analyses.  41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 
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Abstract 52 

Comparative analyses and meta-analyses are key tools to elucidate broad biological 53 

principles, yet the two approaches often appear different in purpose. We propose an 54 

integrated approach that can generate deeper insights into eco-evolutionary processes. 55 

Marrying comparative and meta-analytic approaches will allow for 1) a more accurate 56 

investigation of drivers of biological variation; 2) a greater ability to account for sources of 57 

non-independence in experimental data; 3) more effective control of publication bias; and 4) 58 

improved transparency and reproducibility. Stronger integration of meta-analytic and 59 

comparative studies can also broaden the scope from species-centric investigations to 60 

community-level responses and function-valued traits (e.g., reaction norms). We illuminate 61 

commonalities, differences, and the transformative potential of combining these 62 

methodologies for advancing ecology and evolutionary biology. 63 

 64 

Keywords: multilevel modelling, multivariate analysis, phylogenetic generalized linear 65 

mixed model, sampling variance, phylogenetic signal 66 

 67 

 68 

 69 

 70 

 71 

 72 
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History and purpose of comparative studies and meta-analyses 73 

Differences between species have inspired biological research from antiquity to recent 74 

analyses of biodiversity [1,2]. Darwin contributed to the foundation of modern biology 75 

through his comparisons between species and explanations of the origins of species 76 

divergence [3]. Comparisons between species became a focus for uncovering biological 77 

patterns and processes. Well known examples include Bergman's rule stating that animal size 78 

increases with increasing latitude [4], or the mouse-to-elephant curve of metabolic rates as a 79 

function of animal mass [5]. The common approach of these and other comparative studies 80 

was to analyse species-level traits to uncover evolutionary principles that explain trait 81 

variation at the tips of phylogenies (i.e., present day). 82 

Increasing sophistication of phylogenetic comparative methods and the construction 83 

of phylogenetic trees in the 20th century led to a greater appreciation of the ancestral 84 

connectivity between species in deep time [6]. It became clear that species are connected to 85 

varying degrees by their common ancestry, which can potentially confound (uncorrected) 86 

species comparisons. The comparative method now explicitly addresses the problem of 87 

phylogenetic non-independence (see Glossary), using statistical approaches to account for 88 

species relatedness in phylogenetic comparative analyses (see Glossary) [7–11]. Modern 89 

phylogenetic comparative analyses thereby incorporate ancestral state/trait reconstruction 90 

(see Glossary) and even time calibrations (see Glossary) of divergence between lineages with 91 

the goal to understand the evolutionary processes that gave rise to trait differences [12–14]. 92 

Similar to comparative analyses, biological meta-analyses (see Glossary) typically 93 

compare traits across taxa. Phylogenetic correction is therefore essential here too. However, 94 

unlike comparative analyses, meta-analyses typically do not ask explicit questions about 95 

evolutionary processes and are primarily focussed on present-day phenotypes [15]. Meta-96 
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analysis was developed in medicine and social sciences in parallel with evolutionary 97 

comparative analyses [16,17]. The purpose of early meta-analyses was to synthesize results 98 

across similar studies to detect the overall magnitude of treatment effects in a single species 99 

(humans). Eventually, meta-analyses were extended to ecology and evolution to integrate 100 

data from multiple species [18]. Their purpose shifted from simple quantification of effects to 101 

establishing the state-of-knowledge in a field and reassessing established hypotheses with 102 

mixed empirical support (e.g., [19,20]). Contrary to traditional comparative analyses, 103 

biological meta-analyses purposefully use heterogeneous datasets to estimate effect variation 104 

among multiple sources (e.g., different populations, species, geographical areas), while 105 

explicitly accounting for the variation due to sampling effort [17]. Meta-analyses also provide 106 

ways to test for publication biases. Such analyses not only assess the reliability of research 107 

findings but can also illuminate social dimensions in the research and publishing process 108 

[21].  109 

Here, we argue that integrating comparative studies with meta-analyses will 110 

significantly advance progress in ecology and evolution. Attempts to merge these approaches 111 

have been proposed earlier [22–24], yet the two approaches are still rarely considered as 112 

complementary. Even though comparative analyses and meta-analyses appear different in 113 

their purpose, both have similar, if not identical, mathematical foundations (Box 1) and often 114 

address similar questions. It is therefore relatively straightforward to foster a greater synergy 115 

between these approaches. Here, we unify the two approaches conceptually and practically to 116 

analyse biological variation beyond species means (Figure 1). We also demonstrate how the 117 

analysis of function-valued traits and community-level patterns can generate new insights 118 

into eco-evolutionary processes (Figure 2). We show that the integration of comparative 119 

studies and meta-analyses provides better ways to explore biological variation and leads to 120 

greater transparency and reproducibility (see Glossary). 121 
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A unified approach for comparative studies 122 

A multilevel framework to decompose biological and methodological variation 123 

A key similarity between comparative and meta-analyses is the possibility to use a 124 

multilevel framework (see Glossary), which is the gold standard for meta-analyses [23] and 125 

phylogenetic generalized linear mixed models (PGLMM; see Glossary) [25–27]. In fact, 126 

PGLMM that incorporate sampling variance (see Glossary) are statistically identical to 127 

phylogenetic multilevel meta-analyses [23,24] (Box 1). However, comparative analyses often 128 

do not use a multilevel framework, focusing primarily on species mean-trait values, which 129 

are sometimes derived from few specimens [28–30]. This approach neglects within-species 130 

variation, which can bias results [29,30]. A multilevel framework, on the other hand, allows 131 

the partition of variance into different categories based on the natural hierarchical structure of 132 

the dataset (e.g., multiple species, populations, studies), thereby ultimately identifying 133 

biological and methodological drivers of the observed patterns. In fact, quantifying among-134 

species variation can only be achieved when the importance of other contributors of 135 

phenotypic variation are considered explicitly [31]. For instance, the accuracy of estimating a 136 

phylogenetic signal (see Glossary) depends on quantifying the relative contribution of other 137 

sources of variation, such as epigenetics, species ecology and study-specific effects, because 138 

otherwise these sources of variance may be confounded with phylogenetic variance [32]. A 139 

multilevel framework also addresses complex issues of biological and methodological non-140 

independence (see Glossary), allowing one to synthesize data beyond species means by 141 

leveraging complex datasets [33,34]. Accounting for species phylogenetic non-independence 142 

also quantifies variation due to shared ancestry. However, the depth of phylogenetic methods 143 

used in comparative analyses surpasses those generally employed in meta-analyses. Meta-144 

analyses could therefore benefit from using more sophisticated phylogenetic methods such as 145 

ancestral trait reconstructions, and using different models of evolution (e.g., Brownian vs. 146 
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Ornstein-Uhlenbek). Implementing these methods can help decipher the evolutionary 147 

processes that led to present-day phenotypes - sparking new hypotheses and pioneering novel 148 

research avenues.  149 

 150 

Considering sampling variance to improve precision and account for publication bias 151 

A key distinction between traditional comparative studies and meta-analyses is that 152 

meta-analyses have greater accuracy in estimating biological variation [35]. Indeed, meta-153 

analyses give less weight to effect sizes (see Glossary) with higher sampling variance (less 154 

precision). We argue that comparative analyses would achieve more precise conclusions by 155 

removing sampling variance from the total variance. When not accounted for, sampling 156 

variation affects how variance is estimated across the investigated sources (e.g., within-157 

species, among-species, among-population variation, phylogenetic signal). Taxonomic 158 

chauvinism (see Glossary) [36] makes this issue particularly important for comparative 159 

studies. Some species are better studied than others, and the likelihood of detecting false or 160 

imprecise patterns is particularly high when species-level data are derived from few 161 

specimens (i.e., when the sampling variance is large) [37,38]. By extension, accounting for 162 

differences in sampling variance provides the opportunity to assess publication bias (see 163 

Glossary), a critical aspect that has been largely overlooked in traditional comparative 164 

analyses and that can greatly affect conclusions [39]. Investigating publication bias can reveal 165 

societal pressures obstructing the publication of relevant data. For instance, the “file-drawer 166 

problem” [40] is a type of research bias where studies with non-significant results often go 167 

unpublished. Identifying such biases can help more accurate interpretation of the available 168 

literature. Furthermore, recent tools can not only detect but also correct for publication bias, 169 

enabling interpretation of potentially unbiased estimates [41].  170 

 171 
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Integrating different effect size measures for greater flexibility 172 

Meta-analyses and comparative analyses also differ in the effect measures (see 173 

Glossary) used. Effect measures can be categorized into three distinct types: 1) single-group 174 

measures (e.g., species trait mean, rate, proportion); 2) comparative measures for two groups 175 

(e.g., standardized mean difference [42], log response ratio [43], log variability ratio [44], 176 

odds ratio [45]); and 3) association measures between two variables (e.g., correlation 177 

coefficients, standardized slopes [46]). Comparative analyses primarily use the first type 178 

while meta-analyses frequently make use of the latter two [47]. The advantage of using 179 

single-group measures is that results are easy to interpret, but single-group measures are 180 

limited to one type of response variable and unit. On the other hand, the latter two effect 181 

measures are not as straightforward to interpret but are standardized and can be compared 182 

across traits measured in different units. We argue that comparative and meta-analyses can 183 

both make use of all three types of effect measures. Common meta-analytic models are not 184 

restricted to traditional effect sizes and can make use of single-group measures (e.g., trait 185 

means). Similarly, phylogenetic comparative analyses may use association or comparative 186 

measures when these effect measures are more readily available, or when analysing traits 187 

measured in different units. 188 

 189 

Reporting guidelines to promote transparency and reproducibility 190 

Another key distinction between comparative studies and meta-analyses pertains to 191 

the methods and reporting used to ensure reproducibility. The historical connectivity of meta-192 

analysis with medicine and social sciences has generated guidelines and recommendations to 193 

ensure transparency and reproducibility [48,49]. Adopting reporting standards aids in study 194 

design, ensures the inclusion of important methodological details, and ultimately elevates the 195 

reliability of research. In ecology and evolutionary biology, established guidelines for 196 
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systematic reviews and meta-analyses, such as PRISMA-EcoEvo [50], can be adopted with 197 

little adjustments. However, there is a need to conceptualize reporting guidelines tailored 198 

specifically for phylogenetic comparative studies. Comparative studies may also benefit from 199 

using best practices developed for meta-analyses, as both approaches share similar tools and 200 

objectives, as we have argued so far. Ideally, literature-based data syntheses should stem 201 

from a systematic review (see Glossary) with fully documented and reproducible procedures 202 

[51]. This practice simplifies updates and replications which helps build more trust in 203 

evidence [52]. However, this is not always feasible, particularly because most data used in 204 

comparative studies are taken from data compendia [53]. Building upon previous data 205 

compilations to incorporate important information (i.e., data provenance, metadata, sampling 206 

variance) could elevate the robustness of future studies and broaden the applicability of data 207 

compendia for comparative- and meta-analyses. 208 

 209 

New opportunities and directions for comparative studies  210 

Community-level responses and eco-evolutionary patterns 211 

Community- and ecosystem-level analyses are routinely used in plant and community 212 

ecology. Yet, use of community-level responses is limited in phylogenetic comparative 213 

analyses. This is perhaps because phylogenetic components cannot be modelled at the 214 

community level, though phylogeny can still be modelled within each community. For 215 

instance, Markovski and colleagues [54] recently investigated global variation in the 216 

relationship between population size and sexual dimorphism. The authors quantified 217 

community-level standardized slopes where a positive relationship between sexual 218 

dimorphism and population size is predicted if sexual selection promotes viability via good 219 

genes [55]. The study yielded 2,592 slopes and error variances from phylogenetically 220 

controlled analyses in each community (grid cell), and then estimated overall slopes for both 221 
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resident and migratory species. Notably, this study controlled for spatial dependence (see 222 

Glossary) across grid cells and decomposed sources of variance. The researchers found the 223 

expected benefits of sexual selection in resident species, but not in migratory. This is an 224 

elegant example of how marrying phylogenetic comparative analysis with spatially-225 

controlled meta-analysis can lead to significant new insights. At the community level, species 226 

assemblages vary greatly, which provides interesting insights into ecological (e.g. spatial 227 

variation) and evolutionary (e.g., phylogenetic signal) processes governing biological 228 

variation at different scales. In addition, studying community-level patterns allow to capture 229 

the influence of species interactions that may be missed in individual- or species-level 230 

analyses. Such interactions (e.g., predator-prey, competition) are integral parts of an 231 

ecosystem and profoundly influence species traits within each community. Community-level 232 

analyses can also illuminate variability in species’ responses to environmental change across 233 

communities. This variability can be key in identifying species and communities more 234 

sensitive to disturbance.  235 

 236 

Function-valued traits and multivariate meta-analyses 237 

Function-valued traits are organismal responses to continuous variables such as 238 

temperature, pH, or age [56,57]. Examples include performance curves, growth trajectories, 239 

reflectance spectra, or sonograms. Function-valued traits can perhaps be seen as a new type 240 

of effect measure that combines a set of parameters. Complex function-valued traits are better 241 

depicted by curves than lines, and such traits can be summarized in various descriptors 242 

(parameters) of the curve (e.g., intercept, slope, peak, asymptote). The best way to model 243 

multi-parameter measures (i.e., function-valued traits) is with phylogenetic multivariate meta-244 

analysis (see Glossary) (PMMA; [23]), which can estimate not only correlations between 245 

parameters of function-valued traits, but also accounts for uncertainty in measurements. 246 
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Notably, PMMA is an extension of phylogenetic comparative multivariate analysis, which is 247 

used to examine, for example, morphometric data where ‘landmarks’ describe complex traits 248 

such as body shapes [58–60].  249 

Trait correlations are important to consider in function-valued traits, as one parameter 250 

(e.g., intercept) may constrain another parameter (e.g., slope). Multivariate models can 251 

quantify correlations between parameters of function-valued traits, which can highlight co-252 

evolution and trade-offs among parameters [61]. For example, Pettersen and colleagues [62] 253 

collected data on temperature-dependent hatching success and estimated embryo optimal 254 

temperature (from a nonlinear function-valued trait). The researchers collected preferred 255 

body temperature of gravid and non-gravid females for >120 squamate species. Using 256 

multivariate models that accounted for sampling error, the authors estimated the phylogenetic 257 

relationships among these variables to understand how conflicts between embryo optimal 258 

temperatures and female preferred body temperatures are alleviated when gravid. The study 259 

shows that behavioural adjustments by gravid females can circumvent different thermal 260 

optima for embryos and mothers, and may help pave the way in explaining why viviparity 261 

evolves so regularly (>115 times) in squamates.  262 

Another major benefit of using multivariate models for the analysis of function-263 

valued traits is their potential to improve precision. When multiple parameters of the 264 

function-valued traits are correlated, precision around parameters can be improved by 265 

explicitly accounting for the covariance among variables (“borrowing of strength” [63]). 266 

Using multivariate models also means that some of the parameters of function-valued traits 267 

can be missing as long as not all trait values are missing for each species [64,65]. Indeed, 268 

phylogenetic multivariate models and related techniques can impute missing data, as missing 269 

trait values are inferred from the available parameters. Data imputation will extend not only 270 

the number of traits but also the number of species that can be examined, although the 271 
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effective use of imputation remains uncommon [62,66]. Taken together, the analysis of 272 

function-valued traits could dramatically increase the number of biological questions that can 273 

be asked, and better capture the intricate shape of biological responses. 274 

 275 

Towards next-generation comparative studies via open synthesis communities 276 

Community-level and function-valued analyses may require much larger datasets than 277 

ordinary analyses. This calls for scientific “community-level” collaboration [67]. Movements 278 

towards big-team science are already happening in the form of global research networks and 279 

globally distributed experiments such as SPI-Birds [68], the Global Urban Evolution Project 280 

[69], the Nutrient Network [70], and large-scale collaborative databases such as BioTIME 281 

[71] or PREDICTS [72].  282 

A rapid spread of global research networks provides a foundation for “open synthesis 283 

communities", where scientists with similar interests can plan and conduct comparative and 284 

meta-analyses together with research synthesis specialists (e.g., librarians and information 285 

scientists [73]). Simultaneously, such communities increasingly adhere to the principles of 286 

open science, embracing open participation, materials, data, and code [74]. An open synthesis 287 

community can carry out prospective meta-analyses as well as living/dynamic meta-analyses 288 

[75,76], and these concepts can be extended to comparative analyses. The former are multi-289 

location experiments/observations designed to enable a subsequent synthesis, while the latter 290 

is a comparative analysis that is continuously updated with new data. Such approaches 291 

provide powerful ways to collect new data globally, expand the phylogenetic diversity of 292 

taxa, and resolve major gaps in knowledge that are vital to address important eco-293 

evolutionary questions and inform conservation.  294 

 295 

 296 
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Concluding remarks 297 

Comparative studies and meta-analyses are essential parts of modern research, 298 

revealing broad patterns in ecology and evolution. We assert that merging these 299 

methodologies into a unified framework will be transformative. Leveraging multilevel 300 

modelling and accounting for variation in sampling have the potential to shift understanding 301 

of biological variation. Testing hypotheses across different levels of organization will also 302 

illuminate variation within and between communities, and the importance of species 303 

interactions in driving trait variation. Moreover, the analysis of function-valued traits will 304 

broaden taxonomic coverage and may shape understanding of reaction norms (see 305 

Outstanding Questions). Assessing how the integration of comparative and meta-analyses 306 

will transform knowledge of macroevolutionary patterns will require large and complex data 307 

sets. Open science communities can expand current data collections (see Outstanding 308 

Questions) and undertake ambitious projects that will unlock the full potential of ecological 309 

and evolutionary syntheses. 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 
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Outstanding questions  322 

• How does multilevel modelling change the relative contribution of evolutionary 323 

history in shaping macroevolutionary patterns? 324 

• What is the magnitude of publication bias in comparative studies and meta-analyses, 325 

and how does this bias affect estimations of macroevolutionary patterns? 326 

• How can sophisticated phylogenetic methods be integrated into meta-analytic models 327 

to enhance understanding of evolutionary history?  328 

• How can reporting guidelines tailored specifically for phylogenetic comparative 329 

studies be developed to ensure robustness and transparency? 330 

• To what extent do macroevolutionary patterns differ between species- and 331 

community-level analyses? 332 

• To what extent can multivariate analysis of function-valued traits capture the shape of 333 

complex reaction norms? 334 

• How effective are multivariate comparative models in estimating population and 335 

species-level traits when data are missing? 336 

• How can open synthesis communities be harnessed to augment data compendia with 337 

information that is appropriate for use in multilevel models? 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 
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BOX 1: Mathematical foundations of comparative and meta-analyses 347 

A typical phylogenetic comparative model can be formally described as: 348 

𝑡𝑖 = (𝐗𝐛)𝑖 + 𝑝𝑖 + 𝑒𝑖    349 

where 𝑡𝑖  is a trait mean for species 𝑖, 𝐗𝐛 describes a series of ‘fixed’ effects impacting 350 

population level changes in trait means, 𝑝𝑖 is the phylogenetic effect, assumed to be sampled 351 

from a normal distribution with a mean of 0 and covariance matrix proportional to the 352 

phylogenetic correlation matrix among taxa, 𝐂, 𝐩 ~ 𝒩(𝟎, 𝜎𝑝
2𝐂), and 𝑒𝑖 is the residual effect 353 

𝐞 ~ 𝒩(𝟎, 𝜎𝑒
2𝐈). 𝐂 is assumed to be known (estimated from phylogenetic tree) and variances 354 

are estimated. Such analyses ignore within-species variation and sampling error. Different 355 

models of evolution can be used to place restrictions on the 𝐂 matrix to impact 𝑝𝑖.  356 

 357 

In contrast, a typical meta-analytic model in ecology and evolution can be described as: 358 

𝑦𝑖𝑗𝑘 = (𝐗𝐛)𝑖𝑗𝑘 + 𝑢𝑗 + 𝑠𝑖 + 𝑚𝑖𝑗𝑘 + 𝑝𝑖 + 𝑒𝑖𝑗𝑘  359 

where 𝑦𝑖𝑗𝑘 is the k-th standardized effect size from study 𝑗 and species 𝑖, 𝑢𝑗  and 𝑠𝑖 are the 360 

study- and non-phylogenetic species-specific effects, assumed to be sampled from 361 

multivariate normal distribution 𝐮 ~ 𝒩(𝟎, 𝜎𝑢
2𝐈) and 𝐬 ~ 𝒩(𝟎, 𝜎𝑠

2𝐈), respectively, and 𝑚𝑖𝑗𝑘 is 362 

the known sampling error for the effect (calculated using sampling variance equations for 363 

effect sizes). While different models of evolution can be used on 𝑝𝑖, meta-analyses typically 364 

do not investigate these patterns. 365 

 366 

We can now explicitly merge typical comparative and meta-analytic models to provide the 367 

best of both worlds. We may still use trait means and covariates but include the sampling 368 

variance and within-species variation to decompose sources of variance. A phylogenetic 369 

multilevel meta-analysis might look instead as: 370 
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𝑡𝑖𝑗𝑘 = (𝐗𝐛)𝑖𝑗𝑘 + 𝑢𝑗 + 𝑠𝑖 + 𝑚𝑖𝑗𝑘 + 𝑝𝑖 + 𝑒𝑖𝑗𝑘 371 

Such a model allows us to understand how the trait evolves, provides opportunities to 372 

improve precision and decompose variance, thereby informing us about the possible 373 

explanatory factors that may be driving relationships. 374 

 375 

We can then extend these concepts to the analysis of community-level patterns: 376 

𝑏1,𝑚 =  (𝐗𝑐𝐛𝑐)𝑚 + 𝑚𝑚 + 𝜀𝑚 377 

where 𝑏1 is estimated for the m-th community from 378 

𝑡𝑖𝑗𝑘 =  𝑏0,𝑚 + 𝑏1,𝑚𝑥 + 𝑢𝑗 + 𝑠𝑖 + 𝑚𝑖𝑗𝑘 + 𝑝𝑖 + 𝑒𝑖𝑗𝑘, and 379 

𝜀𝑚~ 𝑁(𝟎, 𝜎𝜀
2𝐃) 380 

In the above two-level model 𝑏1,𝑚 is the community-level parameter (e.g., slope or curve 381 

parameter) measured in community 𝑚, 𝑏0,𝑚 is the community-level intercept, 𝐃 is the 382 

distance correlation matrix describing spatial autocorrelation between communities, 𝑒𝑗𝑘𝑚 is 383 

the community-level residual sampled from 𝒩(𝟎, 𝜎𝑒
2𝐈) and 𝐗𝑐𝐛𝐜 describes the between-384 

community fixed effects. Sampling variance 𝑚𝑚 is equal to the estimation error of the 385 

derived 𝑏1 parameter. This example is simplified assuming estimation of only two parameters 386 

in each community (𝑏0 and 𝑏1 ), but similar logic can be applied to any coefficient of 𝐛. 387 

 388 

We can also extend these concepts to the analysis of function-valued traits, which take 389 

multiple parameters in a multivariate model. We define function-valued traits as traits that 390 

can be expressed as arbitrary functions (not necessarily linear) of one or multiple covariates. 391 

In the simplest case, a comparative (meta-)analysis of a function-valued trait uses parameters 392 

(e.g., slope, curvature, optima) of the underlying function as responses. An example of a two-393 

parameter model can be described as: 394 
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(
𝑡𝑖𝑗𝑘

(𝑦)

𝑡𝑖𝑗𝑘
(𝑧)) =  (

(𝐗𝐛(𝑦))𝑖𝑗𝑘 + 𝑢𝑗
(𝑦)

+ 𝑠𝑖
(𝑦)

+ 𝑚𝑖𝑗𝑘
(𝑦)

+ 𝑝𝑖
(𝑦)

+ 𝑒𝑖𝑗𝑘
(𝑦)

(𝐗𝐛(𝑧))𝑖𝑗𝑘 + 𝑢𝑗
(𝑧)

+ 𝑠𝑖
(𝑧)

+ 𝑚𝑖𝑗𝑘
(𝑧)

+ 𝑝𝑖
(𝑧)

+ 𝑒𝑖𝑗𝑘
(𝑧) ) 395 

(𝐩(𝑦)′, 𝐩(𝑧)′)~ 𝒩(𝟎, 𝐆𝑝 ⊗ 𝐂) 396 

(𝐦(𝑦)′
, 𝐦(𝑧)′)~ 𝒩(𝟎, 𝐌(𝑦) ⊕ 𝐌(𝑧)) 397 

where 𝑡𝑖𝑗𝑘
(𝑦)

 and 𝑡𝑖𝑗𝑘
(𝑧)

 are parameters defining a function-valued trait, 𝐆𝑝 is the phylogenetic 398 

covariance matrix between traits (y) and (z), and 𝐌(.) is the matrix of sampling covariances 399 

for a given trait. This model can be extended to more than two parameters by following 400 

similar principles. 401 

Examples to implement these approaches can be found at 402 

https://szymekdr.github.io/meta_comparative_analysis/. 403 

 404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

https://szymekdr.github.io/meta_comparative_analysis/
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Glossary 417 

• Ancestral state/trait reconstruction: The process of inferring the characteristics or 418 

traits of ancestors in a phylogenetic tree by analysing the distribution of traits in 419 

extant species and the patterns of trait evolution. 420 

• Effect measure: Statistical metrics used to quantify the magnitude and direction of an 421 

effect or relationship observed in a study (e.g., association between two variables, 422 

comparison between two groups, trait mean), often used in comparative analyses and 423 

meta-analyses. 424 

• Effect size: Standardized effect measure used in meta-analyses. Note that the term 425 

‘effect size’ can also refer to the magnitude and direction of an observed effect or 426 

relationship between variables. 427 

• Meta-analysis: Statistical method that combines effect sizes from multiple 428 

independent studies to obtain an overall estimate of an effect or relationship and its 429 

heterogeneity. Effect sizes are typically weighted based on a metric that reflects study 430 

quality (e.g., weighted by sample size or precision). 431 

• Multilevel framework: An analytical approach that accounts for hierarchical structures 432 

in data, particularly when studying nested levels of organization, such as individuals 433 

within populations or species within communities. 434 

• Non-independence: A situation where data points or observations are not statistically 435 

independent, which can lead to biased results if not properly accounted for in the 436 

analysis. 437 

• Phylogenetic comparative analysis: Statistical method that incorporate the 438 

phylogenetic relationships among species to study evolutionary patterns and test 439 

hypotheses related to trait evolution and adaptation. 440 
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• Phylogenetic generalized linear mixed models: A statistical modelling approach that 441 

combines phylogenetic information with generalized linear mixed models to 442 

investigate the relationships between traits and other factors while accounting for 443 

phylogenetic non-independence and other sources of non-independence. 444 

• Phylogenetic multivariate meta-analysis: Meta-analysis that incorporates multiple 445 

effect sizes simultaneously to quantify overall effects and effect sizes’ correlation, 446 

while also accounting for phylogenetic relatedness between species. 447 

• Phylogenetic non-independence: Occurs when species are related through shared 448 

evolutionary history, potentially leading to correlations among data points that need to 449 

be addressed in comparative analyses. 450 

• Phylogenetic signal: A measure indicating the degree to which the variation in traits 451 

among species reflects their phylogenetic relatedness. 452 

• Publication bias: The tendency for published research to be biased towards 453 

statistically significant or positive results, leading to an overestimation of overall 454 

effects. 455 

• Reproducibility: The ability to reproduce research findings using the same data, 456 

methods, and analyses, ensuring the reliability and validity of scientific results. 457 

• Sampling variance: The variation in effect measures that result from variation in 458 

sampling effort, which is intricately linked to sample size. 459 

• Spatial dependence: A condition where data points in space are not independent, 460 

leading to spatial autocorrelation that should be considered in analyses. 461 

• Systematic review: A transparent, reproducible, objective, and rigorous review of the 462 

literature.  463 
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• Taxonomic chauvinism: An attitude or bias favoring certain taxonomic groups over 464 

others, potentially leading to overlooking important ecological or evolutionary 465 

information. 466 

• Time calibration: The process of estimating the age of nodes to infer the timing of 467 

trait divergence and identify patterns of trait evolution.  468 

 469 
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 681 

 682 

Figure 1: Conceptual frameworks used to analyse comparative evolutionary and ecological variation. 683 

A) Comparative analyses typically investigate evolutionary processes giving rise to trait differences at 684 

the tip of the phylogeny, yet these analyses are often limited to species-level (mean) values. B) 685 

Biological multilevel meta-analyses typically use highly heterogeneous datasets and partition the 686 

variance into different components to explain variation in effect sizes. These analyses also often 687 
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incorporate publication bias tests and follow rigorous reporting practices. C) The unified approach we 688 

propose merges the strength of both approaches. This approach improves quantifying and 689 

decomposing ecological, methodological, and evolutionary variation in biological datasets. 690 

 691 

 692 

Figure 2: Conceptual frameworks for community-level and function-valued analyses. A: Multilevel 693 

comparative analyses can be used to investigate questions at broader scales, by combining results 694 

from spatially dependent models performed at the community level. B: Function-valued analyses use 695 

multivariate analyses to investigate patterns from multiple parameters of a continuous trait (e.g., 696 

thermal performance curve, TPC). This approach can leverage datasets with missing data, and 697 

investigate overall effects for each parameter, as well as trait covariation and trade-offs. CTmin: 698 

critical thermal maximum; Topt: thermal optimum; CTmax: critical thermal maximum. 699 
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