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Abstract 13 

A metaweb is the regional pool of potential interactions, capturing the gamma diversity of species and 14 

interactions. A metaweb enables the generation of local webs from species occurrence data by subsampling 15 

contained interactions, thereby allowing insights into alpha and beta diversities with minimal data requirements. 16 

Moreover, understanding ecological interactions is critical for a complete ecological perspective and enhancing 17 

knowledge of ecosystem structure and function beyond species diversity alone. However, the Eltonian 18 

Shortfall—limited species interaction data—impedes this holistic view. Thus, predictive approaches utilising 19 

interaction matrices or additional node information (traits, phylogeny) have emerged to address this gap. This 20 

review explores the applications and methodologies in metaweb studies, detailing methods for metaweb 21 

construction, applying metawebs for generating local webs, and analysing both local webs and metawebs across 22 

alpha, beta, and gamma levels. This review further examines existing metaweb studies, uncovering insights into 23 

spatiotemporal network dynamics, the impact of environmental variation and human activity on network 24 

properties, climate change effects, and species interaction turnover. Applications are also discussed in 25 

community assembly processes, conservation planning, keystone species identification, trait-based analyses, and 26 

the usefulness of existing metawebs to reconstruct metawebs from other regions. We highlight future directions, 27 

emphasising expanding geographical coverage, enhancing interaction data collection, integrating conservation, 28 

and improving trait-based approaches through latent trait analysis. This review sets a benchmark for future 29 

research, advancing our understanding of ecological interactions while supporting Sustainable Development 30 

Goals 13 (climate action), 14 (life below water), and 15 (life on land). 31 

Keywords: Metanetwork; ecological network; interaction prediction; interaction diversity; interaction turnover; 32 
biodiversity 33 
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1. Introduction 35 

Ecological interactions play a pivotal role in shaping the structure and functioning of ecosystems by determining 36 

species co-existence (Gravel et al., 2019; Ohlmann et al., 2023; Valladares et al., 2015), regulating population 37 

dynamics, energy flow and nutrient cycling (DeAngelis, 1992), and promoting biodiversity (McIntire and 38 

Fajardo, 2014; Wardle, 2006). Therefore, understanding these interactions is paramount, as it allows the 39 

identification of key species for targeted conservation (Harvey et al., 2017; Jordán, 2009; Martín González et al., 40 

2010; Wu et al., 2020). Furthermore, studying these interactions provides valuable insights into the broader 41 

ecological implications of climate change, habitat loss, and other environmental stressors, aiding in formulating 42 

adaptive and resilient ecosystem management practices (Albouy et al., 2014; Chagaris et al., 2015; Harvey et al., 43 

2017; Hattab et al., 2016; Jackson et al., 2020). 44 

Ecological networks serve as simple yet powerful tools, enabling the integration and analysis of diverse arrays 45 

of interactions within a unified framework, collectively or individually (Kéfi et al., 2015). The study of 46 

ecological networks is greatly influenced by network science (Barabási, 2013; Newman, 2018), which provides 47 

many concepts, models, and tools for investigating ecological questions (Poisot et al., 2016). Graph theory (GT) 48 

aids in analysing the topological properties of ecological networks, providing insights into the eco-evolutionary 49 

mechanisms that shape their structure; different widely used GT-based indices and their ecological implications 50 

can be found in the literature (Dale, 2017; Delmas et al., 2019) and later in this review. Furthermore, adding 51 

weight to nodes (entities interacting with one another) and edges (interactions between nodes) helps to explore 52 

the functional aspects of ecological networks that provide deeper ecological understanding and a more realistic 53 

overview (Wulff et al., 1989). 54 

The initial understanding of ecological networks was largely limited due to data unavailability (Delmas et al., 55 

2019; Morales-Castilla et al., 2015), widely known as the Eltonian shortfall (Hortal et al., 2015). However, an 56 

increasing interest in understanding the dynamic patterns of interactions and the ecological mechanisms driving 57 

them has led to a gradual improvement in data availability (Pilosof et al., 2017; Strydom et al., 2021). Despite 58 

this progress, the static nature of networks remains a major obstacle to studying the dynamic patterns of 59 

ecological interactions (McCann and Rooney, 2009; Poisot et al., 2015). Therefore, to overcome this challenge, 60 

some multilevel hybrid modelling frameworks were developed which are capable of simulating static networks 61 

spatiotemporally, such as Ecopath with Ecosim and Ecospace (EwE) (Christensen and Walters, 2004; Colléter et 62 

al., 2015; Ren et al., 2023), AQUATOX (Park et al., 2008; Zhang et al., 2013; Zhang and Liu, 2014), and 63 

Atlantis (Audzijonyte et al., 2019; Nilsen et al., 2022; Tarnecki et al., 2016). However, applying these models is 64 

constrained by the need for extensive information, limiting their utility to data-rich contexts. For example, the 65 

EwE requires a static mass-balance model of the food web (Ecopath) to be developed using a diet matrix and 66 

three (out of four) basic parameters (biomass of each node, production to biomass ratio, consumption to biomass 67 

ratio and ecotrophic efficiency). Meanwhile, spatiotemporal simulations with EwE additionally demand more 68 

essential inputs, such as a base map, habitat properties, dispersal rate, habitat preference, vulnerabilities, and 69 

migration of each species. Thus, despite focusing on realism and mechanistic understanding, extensive data 70 

requirements restrict its usage in data-poor situations (Walters, 1999). 71 
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A metaweb, also known as a meta-network (Suzuki et al., 2023; Tylianakis and Morris, 2017), offers a 72 

promising approach for analysing the dynamics of ecological networks with fewer data requirements compared 73 

to the aforementioned hybrid modelling frameworks. The term ‘metaweb’ (gr. μετά= comprehensive) first 74 

appeared in philosophy in 1982 (Briskman, 1982) and was later introduced in ecology in 2006 (Dunne, 2006). A 75 

metaweb was originally defined as a master web that includes all species in similar habitats and their 76 

interactions as if they co-occur in a single habitat (Dunne, 2006). However, in subsequent studies (Grünig et al., 77 

2020; Maiorano et al., 2020; Strydom et al., 2022), the definition of the metaweb shifted to potential interactions 78 

within the regional species pool rather than a single habitat. Notably, the term ‘metacommunity’, although 79 

similar, carries a distinct meaning: referring to a set of local communities connected by species dispersal, akin to 80 

the concept of 'metapopulation' (Hanski and Gilpin, 1991).  81 

Long-term evolutionary and biogeographical processes shape the species pool and interactions in a metaweb 82 

(HilleRisLambers et al., 2012; Saravia et al., 2022). However, local biodiversity is shaped by subsampling from 83 

the regional metaweb through metacommunity processes influenced by environmental conditions, dispersal 84 

ability, stochastic events, and biotic interactions (Saravia et al., 2022; Tylianakis and Morris, 2017). Therefore, 85 

not all potential interactions in the metaweb are realised in the local web due to variations in species 86 

abundances, phenological mismatch and habitat structure (Tylianakis and Morris, 2017). It is important to note 87 

here that the term ‘local web’ is used here to indicate component network (or subsampled network) at different 88 

spatial or temporal scales. 89 

Despite metaweb being introduced as a concept in ecology in 2006 (Dunne, 2006), significant advances have 90 

only been witnessed within the last five years. This review begins by offering a comprehensive guide to 91 

developing a metaweb, encompassing various approaches. Subsequently, it explores diverse predictive 92 

methodologies to overcome Eltonian shortfalls, providing insights into their preferred applications across 93 

different scenarios. The following sections delve into the generation of local webs where understanding of local 94 

web is lacking with the metaweb approach. Then, the methods required for analysing metawebs and local webs 95 

to unravel distinct properties at various scales are elucidated. Next, the article briefly outlines various research 96 

endeavours conducted using metaweb approaches. Finally, we conclude with an overview of prospects for 97 

research in this field. 98 

2. Development of a metaweb 99 

Based on the reviewed literature, three distinct approaches have been identified for developing metawebs: 100 

observation-based, literature-based, and prediction-based metawebs. This section concisely overviews these 101 

three approaches, highlighting their utilities and applications. Regardless of the chosen method, the initial step 102 

in developing a metaweb involves defining its geographical, ecological, and taxonomic scopes. Following this, 103 

the metaweb can be constructed using one of the three distinct approaches discussed in the subsequent 104 

subsections and illustrated in Figure 1. 105 

2.1 Observation-based metawebs 106 

The first category is an observation-based metaweb (Fig. 1, Section A), which are metawebs directly 107 

constructed from observed local webs. In this case, the local networks can be documented from extensive field 108 

investigations; otherwise, already published networks from different spatial/temporal points can be considered 109 
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local networks. Afterwards, the metaweb is developed by combining all the nodes and interactions observed 110 

during the study over various locations and periods. If the goal is to prepare a weighted metaweb, the weight of 111 

the nodes and edges from local webs should be normalised properly for metaweb development. This kind of 112 

metaweb is usually developed to understand gamma network properties, where local networks are well-113 

documented (Pérez‐Ortega et al., 2023; Rodríguez‐Hernández et al., 2023), thus allowing an opportunity to 114 

study how potential interactions are realised at the local level (Cirtwill et al., 2023; Emer et al., 2018). 115 

2.2 Literature-based metawebs 116 

A literature-based metaweb is developed through an extensive literature survey (Fig. 1, Section B). Adhurya et 117 

al. (2024) provide a detailed guideline for this method. In this case, a list of focal taxa is first produced using 118 

regional knowledge, and data on potential interactions between these organisms are then collected from regional 119 

records or an extensive literature survey. As a directory of possible interactions between interacting organisms, 120 

interactions documented beyond the geographical and ecological boundaries of the metaweb can also be 121 

included, considering difficulties in collecting ecological interaction data. For this purpose, a list of databases is 122 

supplemented as an Electric supplementary material (Appendix 1). Thereafter, taxa can be categorised into 123 

taxonomic groups, functional groups, and age stages depending on the goal of the study and data availability. 124 

However, caution should be exercised when grouping to ensure that it does not lead to excessive structural 125 

alterations from the original network (Olivier and Planque, 2017). Afterwards, the metaweb should be tabulated 126 

as an adjacency matrix to check for inconsistencies. In this case, if a species has no interactions, it is either 127 

removed from the metaweb or merged with a similar species in terms of phylogenetic or functional relatedness 128 

(Albouy et al., 2019). Finally, the metaweb can be represented as a graph (Dunne, 2006). This method to 129 

develop metaweb is used when local scale interaction data are unavailable (Braga et al., 2019; Kortsch et al., 130 

2019; Olivier et al., 2019). 131 

2.3 Prediction-based metawebs 132 

Collecting interaction data requires more effort and expertise than occurrence data, given the higher numbers 133 

and diverse types of interactions, with some interactions being particularly challenging to observe (Jordano, 134 

2016). This absence of knowledge on interactions results in incomplete metawebs, with many species lacking 135 

interactions (Rohr et al., 2010). However, it is not possible for a species to not have any interactions except the 136 

ecosystem in the early successional stage. Many researchers use predictive tools to amend these knowledge 137 

gaps, with the resulting metaweb developed through predictions termed a prediction-based metaweb (Fig. 1, 138 

Section C). 139 

Interactions between species develop through natural selection and co-evolution as they adapt to their 140 

environment (Thompson, 1999). This reciprocal adaptation leads to reciprocal phenotypic plasticity, enabling 141 

species pairs to modify their interactions in changing environments (Agrawal, 2001). Bartomeus et al. (2016) 142 

highlighted how species traits shape ecological network structures. Habitat filtering (Grinnellian niche), which is 143 

determined by traits related to environmental tolerance, plays a key role in structuring the network (Lima-144 

Mendez et al., 2015). Phenology also restricts the interactions between species that share the same location 145 

(Encinas-Viso et al., 2012). Meanwhile, life history traits influence species abundance and response to 146 

disturbances, thereby affecting the possibility of interactions (Laughlin et al., 2012; White et al., 2007; 147 
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Woodward et al., 2005). The combination of life-history traits, phenology, and environmental tolerance 148 

determines the likelihood of a species co-existing in the same spatiotemporal space. However, the 149 

morphological, physiological, and behavioural characteristics of a species ultimately determine potential 150 

interactions (Bartomeus et al., 2016). Species interactions and traits co-evolve, often showing phylogenetic 151 

relationships that can be used to predict missing interactions (Elmasri et al., 2020; Gray et al., 2015). Traits (or 152 

phylogenetic relationships) determine the probability of interactions, whereas neutral mechanisms linked to their 153 

local abundance influence the likelihood of interactions among potentially interacting species (Olito and Fox, 154 

2015; Pichler et al., 2020; Pomeranz et al., 2019). Therefore, these relationships in species interactions can be 155 

used to infer unknown species interactions using predictive modelling approaches. 156 

Indeed, many predictive models have been introduced since 1985 (Cohen and Newman, 1985) depending on the 157 

understanding of how species interact (Bartomeus et al., 2016). These models can be broadly classified 158 

according to their data requirements, which justifies their applicability in different situations: niche-based, 159 

interaction matrix-based, phylogeny-based, and supervised learning-based predictions (Table 1). 160 

(a) Niche-based predictions 161 

Niche-based prediction models, also known as the trait-matching model (Bartomeus et al., 2016; Brousseau et 162 

al., 2018), are commonly used to predict interactions based on a predefined niche of the interacting species. 163 

These models can be classified into two categories: intervality property models and intervality problem models 164 

(Table 1). The former includes cascade, niche, and mechanistic diet breadth models. The top-down approach is 165 

used in both cascade- (Cohen and Newman, 1985) and niche-based models (Williams and Martinez, 2000) to 166 

infer the network with basic parameters such as network size (represented by the number of species), desired 167 

connectance, and niche value for each species. The cascade-based model does not allow for the cannibalism and 168 

predation of species with higher niche values. In contrast, the niche-based model considers cannibalism and 169 

predation for a more realistic output. Gravel et al. (2013) inferred a food web for Mediterranean fish using this 170 

approach. Bartomeus et al. (2016) modified the niche-based model to allow the incorporation of the abundance 171 

or interaction frequency effect. The mechanistic diet-breadth model predicts niche and connectance to develop 172 

a network with a mechanistic approach using the optimal foraging theory and allometric feeding relationships 173 

(Beckerman et al., 2006; Petchey et al., 2008). Although the mechanistic approach is praised for the process-174 

based formulation, it requires a lot of difficult information to gather (e.g., searching time and handling time) and 175 

does not perform well. 176 

The ‘intervality problem models’ include four models developed to solve the issue of ‘intervality’ in the former 177 

models: nested hierarchy, generalised cascade, generalised niche, and minimum potential niche models (Table 178 

1). The nested-hierarchy model (Cattin et al., 2004), which modifies the niche model, assumes that if a 179 

predator shares prey with another predator, it can share more prey with that predator from its niche space 180 

defined by niche value (see (Dunne, 2009) for a brief understanding of niche space and niche value). After 181 

fulfilling the above criterion, if forming the desired network requires more links, random links are generated 182 

with any species, preferably with species of a lower niche value. The generalised cascade model (Stouffer et 183 

al., 2005) assumes a predator randomly selects prey from a niche space. The niche space is defined as a cascade 184 

model. However, the probability of forming a link with prey for any predator is species-specific. The 185 

generalised niche model reduces the niche space to make it an interval and selects some prey randomly from 186 
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the remaining unreduced niche space (Stouffer et al., 2006). Finally, the minimum potential niche model 187 

(Allesina et al., 2008) uses the inverse approach of the generalised niche model. After ordering the matrix to 188 

obtain the maximum intervality, the model scales the niche with two extreme interactions defined by their niche 189 

values (for example, the smallest and largest prey). The prey not consumed by the predators was counted to 190 

calculate the probability of forbidden links within the extended niche space. Therefore, interactions are 191 

predicted by removing random prey depending on the probability of forbidden links within the niche space 192 

(Allesina et al., 2008). 193 

These niche-based models usually consider a single niche dimension (e.g., body size) to infer interactions. 194 

However, the multidimensional nature of the niche, in reality, leads to non-intervality in the observed data 195 

within a single niche dimension (Allesina et al., 2008; Allesina and Pascual, 2009; Cattin et al., 2004). Although 196 

modified cascade and niche models were developed to address this issue, their predictive performance is worse 197 

than that of the original niche model. Eklöf et al. (2013) suggest that considering ten niche dimensions is enough 198 

to predict most observed interactions, whereas good predictions can be obtained with five niche dimensions. 199 

However, limited data availability on the functional traits referred to as ‘Raunkiæran shortfalls’ (Hortal et al., 200 

2015) often constrains the applicability of this approach. 201 

(b) Interaction matrix-based predictions 202 

In interaction-matrix-based models, only the pattern of the interaction matrix is analysed for the interaction 203 

prediction without any other inputs (e.g., traits, phylogeny, etc.). This kind of model is praised for its ability to 204 

handle large networks, good predictive performance (sometimes more than 90% correct prediction), non-reliance 205 

on intervality property and fewer data requirements (Table 1). 206 

The stochastic-block model (SBM) also called the group-based model (Allesina and Pascual, 2009), utilises the 207 

modular properties of an ecological network. The model groups similarly interacting species in such a way that if 208 

one node of a group interacts with a node from another group, the other nodes of that group will also have similar 209 

interactions (Guimerà and Sales-Pardo, 2009). Model performance was determined by the number of groups with 210 

the lowest value for the Akaike information criterion (AIC). 211 

The latent trait model (Rohr et al., 2010) introduced the concept of a latent trait from social network research 212 

(Hoff et al., 2002). Here, the latent trait serves as a proxy to explain certain aspects of the web rather than 213 

representing an actual trait. This additional dimension explains the unexplained aspects of the niche model. The 214 

latent trait can be a single trait or a combination of different traits, even a phylogeny, with each having different 215 

contribution levels, such as an ordination axis. Meanwhile, the latent trait can be compared with the real trait to 216 

understand what explains most latent traits. 217 

The matching-centrality model (Rohr et al., 2016) is an extension of the latent trait model, including the degree 218 

distribution concept. The model predicts the number of links each node can make by adding a ‘centrality’ property 219 

to each node. The matching part helps us understand which pairs can be linked according to the latent trait. 220 

The coverage deficit model (Terry and Lewis, 2020) is based on the concept that ecologists often miss 221 

interactions between rare species. The model used the Chao1 (Chao and Jost, 2012) estimator to understand the 222 

sampling completeness of ecological interactions, which was further utilised to calculate the probability of 223 

interactions. 224 
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Finally, the SOM model (Adhurya and Park, 2024) uses the power of the Self-Organising Map (SOM) (Kohonen, 225 

2001, 1982) algorithm to identify patterns in the observed network with unsupervised machine learning. The SOM 226 

groups similarly interacting nodes together and provides the prediction according to the position of the species on 227 

the map. 228 

(c) Phylogeny-based predictions 229 

Phylogenetic distances between nodes and the interaction matrix are required to predict interactions with 230 

phylogeny-based models. In this case, phylogeny is a proxy for multiple traits because traits and interactions are 231 

co-evolved during evolution (Agrawal, 2001; Thompson, 1999). Two purely phylogeny-based prediction models 232 

were proposed: a generalised linear model and a latent score network model. The phylogeny-based generalised 233 

linear model (Pearse and Altermatt, 2013) predicts interactions with a generalised linear model formulation using 234 

a node's documented interaction partners in the observed matrix and the phylogenetic distance as the dependent 235 

variable. In contrast, the latent score network (LS-net) model (Elmasri et al., 2020) combines phylogenetic 236 

distances and interaction affinity (similar to the centrality term in the matching-centrality model) between groups 237 

to predict the network using a Bayesian model. Phylogeny can improve network prediction since it represents a 238 

good predictor of the potential interactions between species. 239 

Another recent study (Brousseau et al., 2018) used a hybrid approach by modifying the matching-centrality model 240 

employing real traits and phylogeny with a generalised additive modelling approach and found better predictive 241 

performance when applying phylogeny as a predictor. 242 

(d) Supervised machine learning-based predictions 243 

Recently, machine-learning algorithms have been used to predict ecological networks, driven by the availability 244 

of large datasets. Supervised learning, which requires explanatory variables to predict interactions, has gained 245 

popularity. The explanatory variables used in these models might include niche, functional traits, and phylogenetic 246 

information. This approach can be divided into two categories: simple supervised learning and graph embedding, 247 

followed by supervised learning. Desjardins-Proulx et al. (2017) used the k-nearest neighbors (kNN) and random 248 

forest algorithms to predict interactions using traits and phylogeny as explanatory variables. Pichler et al. (2020) 249 

used seven supervised machine-learning algorithms (random forest, boosted regression tree, kNN, support vector 250 

machines, deep neural networks, convolutional neural networks, and naïve Bayes) under three different 251 

circumstances: binary networks, weighted networks, and networks sampled with varying observation times. 252 

Another recent study (Barel et al., 2023) compared six machine learning algorithms (random forest, boosted 253 

regression tree, kNN, neural networks, generalised linear model, and Bayesian generalised linear model) to predict 254 

ecological interactions with trait and phylogeny data. Strydom et al. (2021) proposed a graph-embedding approach 255 

that involved reducing the dimensionality of the interaction matrix and applying the resulting lower-dimensional 256 

space to predict a network using a supervised learning algorithm. This method was recently applied to predict 257 

Canadian mammalian metawebs (Strydom et al., 2022). 258 

(e) Comparison of performance of different models 259 

Here, we provide a comparative overview of different models based on their performance, as highlighted across 260 

various studies. Performance metrics primarily include binary classification measures such as accuracy, 261 

sensitivity, specificity, precision, True Skill Statistics (TSS), and Area Under the Receiver Operating 262 
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Characteristic (AUROC) curve (Electronic supplementary material, Appendix B). Some earlier studies also 263 

employed metrics such as mean normalised error and link likelihood. However, direct comparison is challenging 264 

since each study used distinct methods and evaluation criteria. Therefore, our comparison relies on model 265 

performance indicators alongside key critiques from prior studies. 266 

Williams & Martinez (2000) showed that the niche model (mean normalised error 0.22 ± 1.8) was superior to the 267 

cascade model (mean normalised error -3.0 ± 14.1) in predicting species interactions. Although the nested 268 

hierarchy model has the advantage of overcoming intervality, its predictive performance has not subsequently 269 

improved (Cattin et al., 2004). Indeed, Dunne (2009) criticised the nested hierarchy and generalised cascade 270 

models for their poor performance in representing several network structural properties compared with the niche 271 

model. 272 

Allesina et al. (2008) compared different network models (niche, cascade, and nested hierarchy) based on their 273 

ability to predict observed links in empirical networks and found that the prediction of the niche model was more 274 

accurate than those of the cascade and nested hierarchy models. However, it showed the lowest performance in 275 

terms of irreproducible connections. In contrast, the minimum potential niche model was the best-performing 276 

model for the likelihood of predicting correct links. 277 

Gravel et al. (2013) evaluated the fitness of food webs generated using a niche model based on TSS, which ranged 278 

between 0.13 and 0.76. Petchey et al. (2008) revealed that the mechanistic diet-breadth model correctly predicted 279 

observed links in 5–65% of 15 analysed food webs. However, the model performance was the worst for a highly 280 

non-interval network. Allesina and Pascual (2009) found that the stochastic block model performed better than 281 

the minimum potential niche model in predicting the structures of six of ten tested food webs. These six food 282 

webs were notably larger than the four better-predicted networks obtained using the minimum potential niche 283 

model. 284 

Introducing the latent trait concept improves the prediction of ecological networks considerably, whereby Rohr et 285 

al. (2010) found that including latent traits alone could predict 29–87% of the links in the empirical food web, 286 

whereas including body size and latent traits could predict 44–93%. Additionally, the matching-centrality model 287 

displayed a 50–100% fit to the empirical data by considering two matching latent characteristics (Rohr et al., 288 

2016). 289 

Terry and Lewis (2020) showed that stochastic block (AUROC: 0.63–0.691), latent trait (AUROC: 0.631–0.66), 290 

and matching-centrality (AUROC: 0.671–0.718) models outperform the coverage-deficit model (AUROC: 0.589–291 

0.6). However, the coverage deficit model can predict poorly sampled interactions. Therefore, combining the 292 

coverage deficit model with other models can improve the predictability of the model in some cases. 293 

In phylogenetic models, a phylogeny-based generalised linear model was used to predict the interactions between 294 

lepidopterans and non-native plants using an observed network of lepidopteran-native plants (AUROC: 0.93) 295 

(Pearse and Altermatt, 2013). In another study, the predictive performance of LS-net was better than kNN based 296 

on the AUROC and the percentage of true interactions recovered in a host–parasite interaction network (Elmasri 297 

et al., 2020). However, the kNN method, which relies solely on the interaction matrix, also demonstrated good 298 

predictive power. 299 
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Brousseau et al. (2018) formulated a general additive model by combining a matching-centrality model (using 300 

real traits) and phylogenetic information with different combinations of functional traits, both including and 301 

excluding phylogenetic information. They found that phylogeny alone, with an accuracy of 74% and a TSS of 302 

0.46, could better predict interactions than the best trait-matching combinations, which have an accuracy of 71.5% 303 

and a TSS of 0.37. Moreover, Brousseau et al. (2018) found that combining both phylogenetic and trait 304 

combinations greatly improved model predictions, resulting in an accuracy of 83.4% and a TSS of 0.65. 305 

The predictability of the kNN approach exhibited variability across studies, with one study (Elmasri et al., 2020) 306 

reporting good predictability and another one (Desjardins-Proulx et al., 2017) reporting unclear results. Among 307 

the supervised machine-learning algorithms, the random forest, boosted regression tree, and deep neural network 308 

models are the most suitable for predicting ecological networks (Barel et al., 2023; Pichler et al., 2020). Strydom 309 

et al. (2022) used graph embedding followed by machine learning and reported that their model correctly predicted 310 

92% of interactions. 311 

The unsupervised machine learning method (SOM) shows an excellent predictive performance in terms of 312 

AUROC (0.88–0.99), F1 (0.84–0.98), TSS (0.77–0.95), accuracy (0.97–0.99), and proportion of observed links 313 

correctly predicted (77.63–95.2%). Additionally, this model predicts fewer interactions compared to other 314 

methods. However, predictive performance is better for large networks and networks with connectance > 0.1 315 

(Adhurya and Park, 2024). 316 

(f) Which predictive method should be used for metaweb development? 317 

Metawebs often contain an overwhelming number of species. Thus, data on the functional traits and environmental 318 

tolerance of such a large number of species belonging to diverse taxonomic groups are usually challenging to 319 

gather. However, many emerging databases exist (see Electronic supplementary material, Appendix 1) to cover 320 

this gap. Therefore, our recommendation is based on the amount of data available. Firstly, interaction matrix-321 

based predictive models, especially SOM, are the most accurate in predicting interactions with large metawebs. 322 

However, unsupervised methods, such as SOM, SBM, and kNN, do not provide any information on the ecological 323 

mechanisms alongside their prediction. Hence, a latent trait or matching centrality model can be a good alternative 324 

if the goal is to relate traits or phylogeny.  325 

Our second choice was phylogeny-based models because of their superior predictive ability and ease of collecting 326 

phylogenetic data compared to trait data. Additionally, phylogenetic information reflects the effects of multiple 327 

traits (Brousseau et al., 2018). However, similar to SOM, phylogeny-based models do not provide an 328 

understanding of the mechanism behind the interactions. 329 

Supervised learning can be used in data-rich conditions, where data about traits and/or phylogeny are available. 330 

Then, the random forest, boosted regression tree, and deep neural networks can be used due to their proven 331 

performance in predicting ecological interactions. Supervised learning also offers scope to understand the relative 332 

weight of different explanatory variables affecting the interaction prediction. Although the niche models are less 333 

suitable for large heterogeneous datasets for making robust predictions, they can still be utilised to gain a 334 

mechanistic understanding of the metaweb. 335 

3. Inferring local webs using the metaweb approach 336 
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Utilising metaweb to generate local food webs facilitates the examination of spatiotemporal variations in 337 

ecological networks. This, in turn, establishes a research domain for comprehending the factors accountable for 338 

the differences in ecological communities and their structural organisation. Two kinds of cases could arise during 339 

local web development with the metaweb approach: (i) when empirical data on local species are available and (ii) 340 

when local species data are absent (Fig. 2). 341 

In the first case, locally observed species constitute the nodes of the local web, and interactions are assigned from 342 

the metaweb; nodes lacking interactions are excluded. This methodology has been consistently employed in 343 

various studies where local webs were derived from metawebs using local occurrence data (Albouy et al., 2019; 344 

Braga et al., 2019; Gaüzère et al., 2023; Ho et al., 2022; Kortsch et al., 2019; Olivier et al., 2019).  345 

In scenarios where local-level data for different nodes are unavailable, the probability of species occurrence across 346 

space and time can be inferred using species distribution models (SDMs) with bioclimatic data. Simulated 347 

occurrence data are then utilised to construct local webs by subsampling interactions from the metaweb (Strydom 348 

et al., 2021). This methodology has been employed to assess changes in local networks under future climate 349 

scenarios in the Gulf of Gabès (Hattab et al., 2016) and Mediterranean Sea continental shelf (Albouy et al., 2014) 350 

metawebs, where species distribution models generated occurrence data for future climate scenarios. In the 351 

Canadian Rocky Mountains, species distribution modelling based on camera trap data is also deployed to improve 352 

understanding of species occurrence for local web development (Steenweg et al., 2023). 353 

In these above approaches, interactions are inferred under two assumptions: (i) species are present in sufficient 354 

abundance and temporal synchrony to realise potential interactions, and (ii) species do not adjust their diet in 355 

response to biotic (e.g., competitors) or abiotic factors (Bauer et al., 2022; Tylianakis and Morris, 2017). However, 356 

co-occurrence does not necessarily imply interaction. Therefore, encounter probability based on local abundance 357 

data can be incorporated to address the potential overestimation of links in the local network. This approach 358 

assumes that more abundant species have a higher chance of interacting, while rare species have a lower chance, 359 

often referred to as a neutral process (Canard et al., 2012). In recent studies (Pomeranz et al., 2020; Vagnon et al., 360 

2023), the interaction probability from a niche model was multiplied by encounter probability (scaled between 361 

0.5 and 1), resulting in a final interaction probability matrix scaled between 0.01 and 0.99. These matrices were 362 

then used to infer multiple binary interaction matrices per location with Bernoulli’s trial. Note that this method 363 

may pose challenges when either the metaweb is binary, or there is no abundance of data at the local level. As an 364 

alternative, we propose converting the binary local web matrix developed from the metaweb into a probability 365 

matrix based on abundance-based encounter probability, followed by applying Bernoulli’s trial to generate binary 366 

local webs. 367 

4.4 Analysis of metaweb and its local constituent webs 368 

A thorough examination of the metaweb and its local constituent webs is essential for gaining ecological insights 369 

into network properties across different scales and understanding their temporal and spatial dynamics. The 370 

metaweb represents the gamma (γ) properties, encompassing all species and interactions within a region, while 371 

local webs reflect the alpha (α) properties, shaped by environmental and biotic filtering. The turnover between the 372 

metaweb and local webs, or differences among local networks, represents the beta (β) properties. Analysing node-373 
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level variations provides deeper insights into specific network components. Meanwhile, incorporating null models 374 

helps reveal how local networks and the metaweb deviate from random expectations. 375 

We discuss these analytical approaches in the following subsections to provide a comprehensive framework for 376 

using the metaweb approach in various analyses. Metrics at the α, β, γ, and node levels from studies utilising 377 

metaweb analysis, along with their definitions and ecological significance, are summarised in Table 2. 378 

4.1 Understanding network properties 379 

The interaction matrix of the metaweb and inferred local webs is typically binary, leading to graph theory-based 380 

indices being used for network analyses. Common indices used to describe both α and γ properties of networks 381 

include interaction richness, linkage density, connectance, degree distribution, modularity, nestedness, clustering 382 

coefficient, and diameter. These indices are widely applicable and offer key ecological insights. 383 

 For example, connectance is considered a critical network descriptor due to its robustness (Dunne et al., 2002), 384 

invasiveness (Baiser et al., 2010; Smith-Ramesh et al., 2017), and correlation with most ecological properties 385 

(Dunne et al., 2002; Poisot and Gravel, 2014). Connectance decreases with increasing species richness in a 386 

network (Kay and Schemske, 2004). Degree distribution helps identify specialists and generalists in the network 387 

(Memmott et al., 2004), while increased modularity enhances network persistence by containing perturbations 388 

within modules (Stouffer and Bascompte, 2011, 2010). Nested networks support higher biodiversity, as specialists 389 

share interaction partners with generalists (Bastolla et al., 2009). Smaller network diameter indicates denser 390 

connections but higher vulnerability to perturbations (Minor et al., 2008), while network robustness measures its 391 

ability to resist disturbances (Dunne and Williams, 2009). Network specialisation (H2) quantifies the balance 392 

between specialists and generalists, ranging from 0 (extreme specialisation) to 1 (extreme generalisation) 393 

(Blüthgen et al., 2006). 394 

Ohlmann et al. (2019) introduced six Hill number-based (Hill, 1973) indices to assess node and link diversity at 395 

the α and γ levels. These include indices for node diversity (AP and GP), link diversity based on interaction 396 

probabilities (AP and GP), and link diversity based on link abundance (AL and GL). Link abundance indicates the 397 

likelihood of interaction between a pair of nodes, which multiplies the abundance of the interacting node. 398 

Additionally, they provide a clear guideline for using these indices in different species grouping levels from micro 399 

to macroscale. 400 

Comparatively, due to their unique structure, trophic networks require specialised indices. For example, generality 401 

and vulnerability are alternatives to degree distribution, indicating the average number of resources per consumer 402 

and consumers per resource. Additional trophic-specific indices are outlined in Table 2, while further details can 403 

be found in related literature (Bersier et al., 2002; Delmas et al., 2019; Williams and Martinez, 2004).  404 

Apart from an index-based understanding of network structure, the motif frequencies can also provide important 405 

ecological insights into different processes responsible for community assembly. Motifs are smaller subgraphs in 406 

a network (Milo et al., 2002), the smallest of which consists of three nodes (Holt, 1997). In total, 13 unique motifs 407 

are possible for directed networks with three nodes. The frequency of different motifs aids in understanding the 408 

prevalence of various processes in a network. Recent studies have explored the motif frequency variations in local 409 
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networks (Bauer et al., 2022; Garrison et al., 2022) and how these differ from null expectations using the metaweb 410 

approach. 411 

4.2 Understanding network turnover 412 

Species composition and interactions vary spatially and temporally due to biotic and abiotic conditions (Gravel et 413 

al., 2019). Various diversity measures estimate species turnover, including formulations for presence–absence 414 

data (Koleff et al., 2003). However, interaction diversity often differs from species diversity and is not always 415 

correlated (Poisot et al., 2017, 2011). Many studies have used multivariate ordination analyses to explore how 416 

network properties change along environmental gradients (Baiser et al., 2012; Braga et al., 2019; Frelat et al., 417 

2022; Kortsch et al., 2021, 2019; Vermaat et al., 2009). In contrast, many further studies employed other indices 418 

to focus on understanding the β-diversity of ecological interaction networks. Similar to ordination, where α-419 

diversity measures are checked for their variation in environmental gradients, β-diversity measures can also be 420 

checked for their relationship to different distance measurements (i.e., environmental, geographical, functional 421 

traits, etc.) (Bauer et al., 2022; Dáttilo and Vasconcelos, 2019). 422 

The three most widely used indices to understand β-diversity of ecological networks in metaweb studies are βWN, 423 

βST, and βOS. Here, βWN measures total interaction turnover, which can be split into species turnover (βST) and 424 

rewiring of interactions between shared species (βOS or βRW) (Canard, 2011; Poisot et al., 2012). Additionally, 425 

dissimilarity indices such as Sorenson’s and Simpson’s have been applied to measure interaction network 426 

differences (Gaüzère et al., 2023), with Sorenson’s index (Sorensen, 1948) capturing overall dissimilarity and 427 

Simpson’s index (Simpson, 1943) capturing dissimilarity due to turnover. 428 

However, neither of these indices relates a metaweb to the local web. β′OS (Poisot et al., 2012) is the first index 429 

developed from the perspective of a metaweb and measures how the locally realised interactions differ from the 430 

potential interactions between the same species in a metaweb. However, the β′OS index is not applicable if the 431 

local web is subsampled from the metaweb, as this results in the interaction in the metaweb and local web being 432 

precisely the same between the same set of species (Olivier et al., 2019). 433 

Luna et al. (2020) argued that β′OS is not a measure of β-diversity because instead, it compares the local network 434 

with the regional metaweb, i.e., comparing α-diversity with γ-diversity. They also argued that β′OS does not 435 

highlight the presence of unique interactions in local networks because finding a locally unique interaction 436 

requires subtracting the focal network from the metaweb. Subsequently, they proposed two indices: Local 437 

Network Uniqueness (LNU) and Shared Interactions Frequency (SIF). LNU and SIF measure the proportion of 438 

unique and shared interactions in a focal web. For comparison, these indices require the development of a quasi-439 

metaweb, which is the metaweb minus the local focal web. Subsequently, the local web was compared with the 440 

quasi-metaweb to calculate the indices. In contrast to βOS, LNU and SIF can be applied in cases where the local 441 

food web is developed by subsampling the regional metaweb. 442 

Ohlmann et al. (2019) proposed three β-diversity indices by dividing their proposed Hill number-based γ-diversity 443 

indices with the α-diversity indices for node diversity (BP), interaction probability (BL), and link abundances (Bπ). 444 

These diversity indices can be used at different grouping levels to obtain different macroecological insights, as 445 

mentioned in the previous section for α- and γ-diversity indices utilising this approach. 446 
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4.3 Understanding the node 447 

Analysing networks at both the α- and γ-diversity levels is essential for understanding the characteristics of local 448 

and regional networks and their spatiotemporal dynamics. However, examining nodes provides insights into 449 

which species are regionally significant, their roles at the local level, and how these vary across time and space. 450 

Since nodes form the foundation of networks, understanding their interactions helps identify which parts are 451 

crucial for maintaining the network's structure and function, making this knowledge valuable for management and 452 

conservation. 453 

Centrality remains the most widely used method for studying nodes, as it identifies the most influential species, 454 

aiding in discovering potential keystone species. Different centrality measures offer unique perspectives: degree 455 

centrality (Freeman, 1977) distinguishes between generalists and specialists; betweenness centrality (Freeman, 456 

1977) identifies species that serve as connectors between modules; closeness centrality (Freeman, 1978; Freeman 457 

et al., 1979) measures a species' proximity to all other nodes, indicating how quickly disturbances may spread if 458 

that species is removed. A recent review (Delmas et al., 2019) discussed centrality measures in ecological network 459 

analyses, and Table 2 summarises those used in previous metaweb studies. Comparing similar species across 460 

different networks, such as multiple local webs, can be challenging due to variations in centrality values with 461 

network size and connectivity. In this case, centralisation, a normalised centrality metric, may prove useful for 462 

comparing nodes across local webs derived from metawebs, revealing their changing roles over time and space 463 

(Freeman et al., 1979). 464 

Another area of interest is understanding how different nodes contribute to modularity and nestedness. Modularity 465 

is assessed using the within-module connectivity score (z) and the among-module connectivity score or 466 

participation coefficient (c) (Guimerà and Nunes Amaral, 2005). Species contributions to modularity are then 467 

understood through the z–c score pattern, as summarised in Table 2 (Olesen et al., 2007). For nestedness, a node’s 468 

contribution is measured by nestedness contribution (Saavedra et al., 2011), comparing the observed nestedness 469 

of a network with a randomised network by altering the interaction of a focal node while maintaining the same 470 

degree. This concept can be extended to other metrics to assess how nodes contribute to other network properties 471 

(Delmas et al., 2019). 472 

Another way to evaluate node importance is by examining their interaction specialisation. Degree centrality is a 473 

popular metric due to its simplicity and applicability across networks. Indeed, as previously mentioned, the degree 474 

extends to generality and vulnerability in trophic networks. However, incorporating interaction strength and 475 

species abundance provides a more realistic view of the roles of species, leading to weighted indices. For instance, 476 

species strength is a quantitative extension of the degree of mutualistic networks, indicating how much other 477 

species rely on a particular species based on interaction frequency (Bascompte et al., 2006). Similar indices, such 478 

as dependency and contribution coefficients, are used in trophic networks to assess the importance of resources 479 

and consumers (Wulff et al., 1989). Interaction specialisation (d’) is another metric calculated using Kullback–480 

Leibler distance, which measures how specialised a node is in terms of its interactions (Blüthgen et al., 2006). 481 

The advantage of d’ is its normalisation between 0 and 1, making it easy to interpret, with higher values indicating 482 

greater specialisation. 483 

4.4 Utilisation of null models 484 
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Null models are pattern-generating models used to test alternative hypotheses by comparing observed patterns 485 

against random expectations (Gotelli and Graves, 1996). Meanwhile, ecological networks help assess how 486 

network structure deviates from random patterns or changes along environmental gradients (Pellissier et al., 2018). 487 

At the node level, null models evaluate the significance of a node by generating random networks where the node 488 

maintains the same degree but interacts randomly. This produces a statistical distribution of a network property, 489 

allowing researchers to determine the node's role based on observed values, such as its contribution to nestedness. 490 

Comparatively, at the network level, null models explore the processes shaping network structure. By generating 491 

networks under specific constraints (e.g., fixed connectance or degree), researchers can compare them with 492 

observed networks to determine if patterns arise by chance. For instance, Fortuna and Bascompte (2006) used null 493 

models to study the impact of habitat loss on extinction, revealing that real communities decay faster but persist 494 

longer than random ones. 495 

Null models are also used to study community assembly. Bauer et al. (2022) developed metawebs from local webs 496 

and generated random webs under different assumptions (e.g., no filtering, resource filtering, limiting similarity) 497 

to compare their properties with observed webs, shedding light on how local food webs form. Additionally, null 498 

models can help analyse network patterns across environmental gradients. For example, null models have been 499 

applied to study nestedness in Andean plant–pollinator networks along elevation gradients (Ramos-Jiliberto et al., 500 

2010) and the variation of nestedness and modularity with latitude and climate factors in global seed dispersal 501 

networks (Sebastián‐González et al., 2015). 502 

5. Different metawebs and their applications 503 

5.1 Overview 504 

This section reviews published metawebs and their analyses up to 2023. We identified 42 research articles 505 

(including one doctoral thesis) that examined 33 metawebs. Of these, 17 metawebs represented terrestrial 506 

ecosystems, 12 focused on aquatic ecosystems, and four encompassed both. The metawebs include 19 unipartite 507 

networks, 12 bipartite networks, and two tripartite networks.  508 

Recent metaweb developments have increasingly used observation-based approaches, with 11 metawebs relying 509 

on field observations, highlighting the growing importance of direct ecological data. However, most published 510 

metawebs (18) remain literature-based, with a smaller number (4) being prediction-based, underscoring the 511 

challenges and data gaps in documenting ecological interactions.  512 

Most metaweb-related research has appeared in journals such as Ecology (six articles), Global Ecology and 513 

Biogeography (six articles), and Ecography (five articles). Notably, there has been a surge in metaweb 514 

publications over the past two years, with 17 metawebs published between 2022 and 2023 alone. Geographically, 515 

most metawebs have been developed in Europe and its surrounding seas (14 articles), followed by North America 516 

(eight articles) and South America (eight articles), pointing to a significant knowledge gap in regions such as 517 

Africa, Asia, and Australia. 518 

The global marine fish metaweb (Albouy et al., 2019) is the largest, predicting 7,062,647 potential interactions 519 

among 11,367 fish species using a niche model. The Blue and Green metaweb of Switzerland (Ho et al., 2022) 520 

rank as the second largest, documenting 242,779 interactions among 2016 plant species, 191 butterfly species 521 
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(larval stage), 109 grasshopper species, 155 bird species, 248 stream invertebrates, and 78 stream fish. Among 522 

terrestrial metawebs, the European Tetrapod metaweb (TetraEU) (Maiorano et al., 2020) is the largest, comprising 523 

83,568 interactions among 288 mammal species, 509 bird species, 250 reptile species, and 104 amphibian species. 524 

Metaweb studies generally fall into two categories. The first category consists of studies where metawebs were 525 

constructed for a specific region, with local webs inferred based on species occurrence. These inferred local webs 526 

are typically unweighted, although some studies have incorporated node weights based on local abundance 527 

(Kortsch et al., 2021, 2019; Olivier et al., 2019) and edge weights using allometric models (Kortsch et al., 2021). 528 

The second category involves the development of metawebs by combining observed local webs. This approach 529 

enables the study of interaction rewiring, which cannot be achieved with inferred local webs. The subsequent 530 

sections will explore various research domains where the metaweb concept has been applied. 531 

5.2 Metawebs in understanding spatiotemporal dynamics of interaction 532 

Metawebs have proven valuable in exploring the temporal and spatial dynamics of ecological interactions. The 533 

German Bight metaweb of the North Sea (Olivier et al., 2019) was used to assess food web properties from 1998 534 

to 2015, finding temporal variations in these properties better captured by node-weighted metrics than by binary 535 

ones. Similarly, the Gulf of Riga metaweb (Kortsch et al., 2019) analysed food web dynamics from 1971 to 2016, 536 

introducing link-weighted metrics that emphasised the magnitude of energy flow through feeding preferences. 537 

This study (Kortsch et al., 2019) revealed contrasting patterns: while node- and link-weighted metrics reflected 538 

changes in species dominance and energy fluxes, unweighted metrics captured shifts in species richness and 539 

interaction diversity. 540 

The North Sea metaweb (Frelat et al., 2022) used principal tensor decomposition to analyse spatial and temporal 541 

patterns across six regions from 1999 to 2014. The study found strong latitudinal patterning in food webs, though 542 

temporal changes were observed only locally. In the Baltic Sea (Garrison et al., 2022), four benthic trophic 543 

metawebs were developed for four regions (Bothnian Sea, Baltic Proper, Bornholm Basin, and Skagerrak) to 544 

compare network properties across two decades (1980–1989 and 2010–2019). The most saline site (Skagerrak) 545 

exhibited greater species richness and network complexity; however, a significant loss of species and interaction 546 

diversity occurred over time, while other regions showed no significant differences between the two decades. The 547 

mycobiont–photobiont metaweb of Antarctic lichens (Pérez‐Ortega et al., 2023), based on data from 11 locations, 548 

was analysed to understand network properties and the roles of nodes. This study revealed networks with high 549 

modularity and specialisation but low connectance and nestedness (Pérez‐Ortega et al., 2023). The lower 550 

interaction asymmetry indicated a strong reciprocal dependence between the interacting groups. 551 

In the High Arctic, the plant–pollinator metaweb of Zackenberg, northeast Greenland, was used to generate 552 

random local webs for comparison with yearly and weekly empirical network structures (Cirtwill et al., 2023). 553 

However, while annual variations were observed, no directional change was detected. Phenology explained local 554 

network variations, and a few key species provided most pollination services, indicating a potential risk of network 555 

collapse if these species are affected by climate change. 556 

In Japan, the temporal dynamics of Spider–Hexapod prey networks in warm temperate grasslands (Suzuki et al., 557 

2023) were studied for nestedness, modularity, and species roles, including node specialisation and betweenness 558 

centrality. A metaweb was also constructed to understand the roles of species in modules. The study found the 559 
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networks to be modular and largely anti-nested, with modules changing seasonally as central species shifted. A 560 

metaweb analysis identified core species across seasons, revealing their pivotal roles within the network. 561 

5.3 Metawebs in exploring the impact of environment, human activity, and spatial variation on network structure 562 

Metawebs have been instrumental in exploring how environmental factors, human activity, and spatial variations 563 

influence food web properties. For example, Braga et al. (2019) used the TetraEU to create local food webs across 564 

a 10 x 10 km² grid in Europe based on species occurrence data. They calculated various food web metrics, checked 565 

their significance against random expectations, and performed principal component analysis (PCA) for dimension 566 

reduction. The resulting composite metrics (first two PCA axes), primarily driven by species richness and 567 

connectance, were analysed using generalised additive models (GAMs) to assess relationships with climate, 568 

resource availability, habitat diversity, and human disturbance. The findings indicated that temperature and human 569 

footprint significantly influenced food web properties. Similarly, the Barents Sea metaweb (Planque et al., 2014) 570 

was used to infer local webs for 25 subregions, examining spatial variations in food web properties and their 571 

environmental drivers (Kortsch et al., 2019). Warmer, ice-free waters were associated with higher connectance, 572 

clustering coefficients, omnivory, and cannibalism, while colder, ice-covered areas exhibited greater modularity 573 

and variability in vulnerability. 574 

The global marine fish metaweb (Albouy et al., 2019) was constructed using an allometric niche model and 575 

adjusted for herbivory, vertical distribution, and geographic co-occurrence factors. This metaweb was utilised to 576 

generate local webs at a 1° x 1° resolution, revealing that marine fish food webs are geographically interconnected, 577 

with low spatial modularity but high robustness. Furthermore, food web metrics strongly correlate with sea surface 578 

temperature, peaking in tropical regions (Albouy et al., 2019). Meanwhile, in China, a multitrophic metaweb for 579 

the Dongjiang River (Qin et al., 2023) was developed using an environmental DNA (eDNA)-based approach and 580 

literature review to study the effects of human land use and water pollution on species diversity and network 581 

structure. The study found that link density, connectance, and omnivory decreased with increased human land use 582 

and proximity to the estuary. Lastly, an ant–plant interaction metaweb for the Brazilian neotropical savanna 583 

(Dáttilo and Vasconcelos, 2019) explored how latitudinal gradients affect network properties. The study found 584 

that sites at higher latitudes were characterised by larger network sizes, greater interaction diversity, and higher 585 

dissimilarity, driven largely by net primary productivity (NPP) variations. 586 

5.4 Metawebs to assess the impact of climate change 587 

The Barents Sea metaweb (Planque et al., 2014) was utilised to understand the properties of boreal and Arctic 588 

food webs and how they are affected by climate change (Kortsch et al., 2015). Climate change was assessed by 589 

incorporating four boreal fish species into the Arctic food web, which are known to be shifting their ranges towards 590 

the Arctic. The Arctic food web was found to be more modular due to the presence of specialist species. However, 591 

with the poleward shift of generalist boreal species due to climate change, the Arctic network is expected to 592 

become less modular in the future, increasing the risk of disturbances spreading throughout the network. 593 

Gaüzère et al. (2023) utilised the TetraEU to explore interaction and trophic group uniqueness. They calculated 594 

similarity using Sørensen’s dissimilarity and assessed the distance decay of similarity via a power law relationship, 595 

which was then used to compute uniqueness. The study evaluated the impact of climate change, human footprint, 596 

and site vulnerability (in terms of protected area coverage) on regions with unique networks or trophic groups. It 597 
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was found that unique networks in the Arctic are particularly vulnerable to future climate change, while those in 598 

southern Europe are more exposed to human activities. 599 

Additionally, changes in food web structure in response to climate change were studied in the Mediterranean Sea 600 

(Albouy et al., 2014) and the Gulf of Gabès (Hattab et al., 2016). These metawebs were refined using the 601 

allometric niche model, and species occurrence was predicted under current and future A2 climate scenarios 602 

(IPCC, 2000) using SDMs. Both studies revealed decreases in body size, number of links, generality, 603 

vulnerability, and mean trophic level, alongside increased average path length. 604 

The European crop and forest pest metaweb was employed to predict how European ecological interactions might 605 

change under different climate scenarios (Grünig et al., 2020). Using SDMs to forecast species occurrences, the 606 

study revealed that climate change would likely increase linkage density in crop pest interaction networks in 607 

northern Europe; meanwhile, southern Europe exhibited a more saturated pattern. However, northern Europe is 608 

expected to become more suitable for growing a wider variety of crops, and this will also attract a greater diversity 609 

of pests. In contrast, southern Europe may face unfavourable conditions for some staple crops due to climate 610 

shifts. 611 

5.5 Metaweb to understand species interaction patterns 612 

The Jena Grassland metaweb in Germany (Hines et al., 2019), which focuses on invertebrates and their food 613 

sources, was developed to explore how plant diversity influences the prevalence of various interaction motifs 614 

(Giling et al., 2019). This metaweb was constructed using an intensive literature survey, knowledge of trophic 615 

levels, and a trait-based approach to estimate interaction probabilities. Subsequently, when developing local webs, 616 

this metaweb was filtered by species occurrence and their encounter probability, thereby considering their 617 

abundance (Poisot et al., 2015). The study found that motifs such as tri-trophic chains, apparent competition, and 618 

exploitative competition increased with plant species richness while omnivory motifs decreased. Additionally, 619 

plant diversity influenced local interaction patterns among arthropod consumers, even in cases where plants were 620 

not directly involved. Furthermore, combining this metaweb with the Cedar Creek metaweb from North America 621 

revealed that higher plant diversity promotes more energy flow into the food web, particularly to predators, 622 

strengthening top-down control. also led to lower food quality for herbivores, exerting bottom-up control by 623 

reducing their energy loss (Barnes et al., 2020). 624 

In central Chile, a rocky shore metaweb was developed by compiling both trophic and non-trophic interactions 625 

using literature and expert knowledge (Kéfi et al., 2015). The analysis revealed more than double the number of 626 

non-trophic interactions compared with trophic ones, with non-trophic interactions more prevalent among basal 627 

taxa. These non-trophic interactions were predominantly negative and exhibited non-modular, non-nested patterns 628 

within the web. 629 

The Mexican plant–Buprestid metaweb was analysed at the network, subnetwork, and node levels to examine 630 

structural and functional patterns (Pérez-Hernández et al., 2023). This metaweb was found to be modular and anti-631 

nested, with different Buprestid tribes contributing uniquely to the observed modularity. Most species displayed 632 

specialised interaction patterns, leading to many peripheral species in the network, with taxonomically similar 633 

species showing contrasting host-use patterns. Lastly, the Mexican Haemosporidian–bird metaweb, developed 634 

using observational data from four vegetation types along elevational gradients (Rodríguez‐Hernández et al., 635 
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2023), revealed high specialisation and modularity but low nestedness. Birds were shown to engage in more 636 

specialised interactions than their parasite counterparts. 637 

5.6 Metaweb to reveal species and interaction turnover 638 

The Eurasian rodent–flea metaweb, constructed from 57 community datasets (Hadfield et al., 2014), was utilised 639 

to investigate variability in potential species interactions, realised interactions, and species diversity across spatial 640 

scales (Poisot et al., 2017). The study found that realised interactions showed greater variability than potential 641 

interactions, with local webs developed from the metaweb underestimating this variation. It was also observed 642 

that climate affects hosts, parasites, and their interactions differently. 643 

In Switzerland, a metaweb for the upper Thur catchment was developed to explore the spatiotemporal dynamics 644 

of biodiversity and food web properties (Blackman et al., 2022). Significant changes were noted in biodiversity 645 

and food web characteristics, although the shifts in biodiversity did not necessarily reflect changes in food web 646 

structure. In contrast, interaction turnover and species turnover were strongly correlated in the Barents Sea 647 

(Kortsch et al., 2019) and North Sea (Olivier et al., 2019), with interaction changes exceeding species composition 648 

shifts. However, in Brazilian anuran–arthropod metawebs (Ceron et al., 2022), species turnover increased more 649 

than interaction turnover with increasing geographical distance. A positive relationship between species and 650 

interaction turnover was observed in German Biodiversity Exploratories forest food webs and Adirondack Lakes 651 

food webs (Bauer et al., 2022). Both spatial and environmental distances were found to impact species turnover 652 

in both areas; however, food web dissimilarity was related to environmental distance only in the former networks. 653 

Meanwhile, species turnover was identified as a key driver of β-diversity in the Brazilian ant–trophobiont 654 

metaweb (Belchior et al., 2023) and the bird–Haemosporidian metaweb (Rodríguez‐Hernández et al., 2023). In 655 

the former metaweb (Belchior et al., 2023), species turnover increased with geographical distance, while in the 656 

latter, turnover was driven by elevation (Rodríguez‐Hernández et al., 2023). Moreover, the Mexican bird–657 

Haemosporidian metaweb exhibited low β’os values, suggesting that potential interactions were realised locally; 658 

however, high LNU values indicated that metawebs were unique due to high species turnover. Similar low β’os 659 

values were observed in plant, lepidopteran herbivore, and insect parasitoid networks across tropical regions of 660 

North and South America (Sudta, 2023). 661 

Interaction rewiring was found to play a significant role in interaction turnover in the Neotropical ant-plant 662 

networks of Brazil (Dáttilo and Vasconcelos, 2019), the Antarctic mycobiont–photobiont networks (Pérez‐Ortega 663 

et al., 2023), and Brazilian anuran–arthropod metawebs (Ceron et al., 2022) In the Neotropical ant–plant metaweb, 664 

species and interaction diversity, as well as turnover, were observed to decrease with increasing latitude. However, 665 

no latitudinal effect was noted for the Antarctic mycobiont–photobiont networks. 666 

5.7 Metaweb in conservation 667 

In the Canadian Rocky Mountains, a metaweb comprising 16 mammal species was developed to identify suitable 668 

umbrella species for conservation (Steenweg et al., 2023). Umbrella species were evaluated based on their 669 

occupancy and the effect of their presence on food web properties, using generalised linear models that accounted 670 

for various biotic and abiotic factors. The grizzly bear (Ursus horribilis), a generalist carnivore, was identified as 671 

the best umbrella species for explaining species richness. Meanwhile, wolves (Canis lupus) and cougars (Felis 672 

concolor) were better umbrella species for maintaining ecosystem functions. 673 
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Another study used the Serengeti food web (Baskerville et al., 2011) to develop a metaweb from the African 674 

savanna (Higino et al., 2023). This metaweb produced local food webs at a 0.5-degree resolution, based on local 675 

species occurrence from IUCN range maps, to assess prey–predator mismatches in these maps. The study revealed 676 

that many predator ranges are over-represented in the IUCN range maps, with an absence of prey in large portions 677 

of their range. 678 

5.8 Metaweb to understand the effect of spatial extent of sampling on network properties 679 

Wood et al. (2015) explored how the spatial extent of sampling influences food web properties by constructing 680 

food webs at various spatial scales using occurrence data and the metaweb of the marine intertidal ecosystem in 681 

the Sanak Archipelago, Eastern Aleutian Islands, Alaska. The study found that fundamental network properties, 682 

such as the number of nodes, links, and links per node, increased with the sampled area, while connectance 683 

exhibited an inverse trend. Further analysis of 14 additional food web indicators (Table 2) showed that variations 684 

in most of these indicators could be attributed to changes in the number of nodes and connectance, as supported 685 

by niche model analysis (Williams and Martinez, 2000) and power-law scaling relationships (Riede et al., 2010). 686 

However, the study revealed that the number of species involved in loops and cannibalism increased more than 687 

expected as the spatial scale expanded. 688 

5.9 Metaweb to understand food web properties in different ecosystems 689 

The blue and green metawebs of Switzerland, representing aquatic and terrestrial ecosystems, respectively, were 690 

utilised to infer local webs and examine both the structural and ecological (niche overlap) properties of food webs 691 

and their response to environmental patterns (Ho et al., 2022). The study found that aquatic food webs are 692 

generally smaller, less modular, and more connected than terrestrial ones. Further, elevation was observed to 693 

influence structural and ecological properties, positively impacting modularity and negatively affecting niche 694 

overlap in terrestrial food webs. In contrast, the opposite pattern was seen in aquatic food webs, where elevation 695 

decreased modularity and increased niche overlap. 696 

A global investigation of marine fish food webs revealed that coastal ecosystems, with higher interaction 697 

redundancy, are more robust to species extinctions than open sea food webs (Albouy et al., 2019). 698 

5.10 Metaweb to understand the community assembly process 699 

Bauer et al. (2022) examined how spatial and environmental gradients affect species composition and food web 700 

structures by utilising two metaweb datasets: the German Biodiversity Exploratories forest and the Adirondack 701 

Lakes. Additionally, to explore how local webs are derived from the regional species pool, they used these 702 

metawebs to generate random local webs via three approaches: (i) no filtering, where species were randomly 703 

selected from the metaweb; (ii) resource filtering, where after (i), species without interactions were replaced by 704 

others from the metaweb until each species had a resource; (iii) limiting similarity, where after (i), species with 705 

similar trophic positions were replaced by others. The study found that biotic filtering plays a key role in shaping 706 

local community assembly by comparing the statistical distributions of food web properties from these models 707 

with observed values (Bauer et al., 2022). 708 

The metaweb of willows, willow-galling sawflies, and their natural enemies in Europe (Kopelke et al., 2017) was 709 

used to understand how environmental factors and species co-occurrence affect interactions, applying a 710 
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probabilistic generalised linear model (Gravel et al., 2019). The study found that species co-occurrence is 711 

environmentally dependent; however, the likelihood of interaction between co-occurring species is largely 712 

stochastic, with environmental factors having little influence on the probability of interaction. 713 

Another study Galiana et al. (2023) focused on interactions between willow-galling sawflies and parasitoids to 714 

investigate the relationship between climatic and dietary niches. They found that widely distributed species tend 715 

to be generalists at both local and regional levels, possessing broader climatic and dietary niches while showing 716 

significant interaction rewiring. Null model analysis revealed that species typically have broader dietary niches 717 

and narrower climatic niches than expected by chance, suggesting dietary niche constraints on species distribution. 718 

The study also highlighted that consumers with narrow ranges tend to interact with widely distributed resources 719 

and vice versa, indicating a pattern of complementary interactions between species with contrasting ranges. 720 

5.11 Metaweb to understand the role of functional traits in structuring communities 721 

The Brazilian–Atlantic forest bird–seed dispersal metaweb, constructed using observational data from 16 studies 722 

(Emer et al., 2018), was analysed to assess connectance, modularity, and node centrality. This analysis revealed 723 

that interactions within different forest patches were concentrated in certain modules, with only a few species 724 

serving as key connectors to these modules. The study examined the body size of the birds and seed size to identify 725 

the functional traits driving these connections. Small-sized birds feeding on small-seeded plants acted as 726 

connectors in fragmented areas. In contrast, large-sized birds had disappeared from these fragments, leading to 727 

sparse interactions between species of contrasting sizes. 728 

The Brazilian–Atlantic frugivory metaweb (Bello et al., 2017) was used to examine the role of native and invasive 729 

species (Dáttilo et al., 2023). The study found that both native and invasive species played similar roles in the 730 

metaweb regarding centrality, contributing equally to nestedness and modularity. However, plants producing 731 

smaller, lipid-rich fruits were more frequently involved in interactions, regardless of their native or invasive status. 732 

The relationship between trophic and non-trophic interactions was analysed in the central Chile rocky shore 733 

metaweb (Kéfi et al., 2015). Sessile species were found to establish more non-trophic interactions, while mobile 734 

species formed more trophic interactions. Comparatively, predators tended to have larger body masses than prey 735 

in the trophic network. Smaller, lower-trophic-level species with low generality and high vulnerability primarily 736 

initiated positive non-trophic interactions. Meanwhile, negative non-trophic interactions were driven by small 737 

species with low trophic levels on target species with similar characteristics. 738 

5.12 Metaweb used to reconstruct another metaweb via machine learning 739 

The Canadian mammal metaweb was constructed by transferring knowledge about phylogeny and latent traits 740 

from TetraEU (Strydom et al., 2022). Latent traits related to generality and vulnerability were extracted from the 741 

TetraEU dataset and then applied to Canadian mammals based on their phylogenetic relatedness to European 742 

species. Subsequently, this information was used to reconstruct the Canadian metaweb. Although only 4% of 743 

species overlapped between the Canadian and European metawebs, the method accurately predicted 91% of 744 

known interactions, demonstrating the effectiveness of using machine learning and phylogenetic relatedness in 745 

metaweb construction (Strydom et al., 2022). 746 

 747 
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6. Perspectives and future directions in metaweb approaches 748 

The preceding sections indicate that applying metawebs in ecology is a rapidly expanding field, creating numerous 749 

avenues for research due to their ability to model complex interactions and enhance our understanding of 750 

biodiversity, community structure, and ecosystem functioning. Below, we discuss some promising research scopes 751 

for metawebs. 752 

6.1 Expanding geographical coverage 753 

Most metawebs have been developed in Europe and the Americas, with limited representation from Asia and 754 

Africa and an almost complete absence in Oceania. While metawebs have been created for temperate and polar 755 

regions, the biodiverse tropics—particularly South Asia and Africa—have received little attention. Therefore, 756 

addressing this gap would improve understanding of ecological interactions in these regions, and developing 757 

metawebs from these understudied areas could reveal new interaction dynamics unique to highly biodiverse 758 

tropical ecosystems. Boosting data collection in these regions may eventually lead to global metawebs integrating 759 

data from diverse ecosystems, offering unprecedented insights into biodiversity patterns, global species extinction 760 

risks, and ecosystem connectivity. Furthermore, studying food web structures across different biomes could help 761 

uncover universal principles of ecological networks alongside region-specific dynamics. 762 

6.1 Enhancing data collection efforts 763 

The creation of large regional ecological networks is often hindered by limited data availability, especially in 764 

developing or underdeveloped regions where funding is scarce despite high biodiversity. Habitat destruction in 765 

these regions also threatens biodiversity at alarming rates, making data collection even more urgent. Although 766 

citizen science initiatives have increased biodiversity data collection, generating billions of records annually, most 767 

platforms focus on species occurrences rather than interactions. Hence, while a few portals encourage abundance 768 

data (e.g., eBird), few support data collection on ecological interactions (e.g., iNaturalist), which are often under-769 

promoted. 770 

Recent studies have employed eDNA and metabarcoding to collect ecological interaction data, ranging from 771 

mutualistic to trophic networks (Banerjee et al., 2022; Blackman et al., 2022; Qin et al., 2023). Thus, resources 772 

for integrating eDNA and metabarcoding in ecological interaction studies already exist (Evans et al., 2016; Pereira 773 

et al., 2023), and citizen science-based eDNA monitoring programs are beginning to support biodiversity 774 

monitoring, including identifying prey bases of migratory species (Clarke et al., 2023; Kvalheim et al., 2024; 775 

Padró, 2024; Zhang et al., 2023). Increased citizen involvement in eDNA–metabarcoding approaches could 776 

significantly bridge knowledge gaps in ecological interactions, particularly in data-poor regions. Additionally, 777 

collecting quantitative rather than qualitative data would allow for more realistic analyses, as weighted networks 778 

capture strong versus weak interactions, thereby enhancing understanding of the roles of species in local 779 

ecosystems and revealing possible shifts in interaction networks. Moreover, a quantitative local network will help 780 

to develop a quantitative metaweb where the interacting partner preference of each node can be demonstrated. 781 

6.2 Assessing environmental change 782 

Metawebs have proven effective in predicting climate change impacts on species interactions and network 783 

resilience, and further research could extend these applications to habitat fragmentation, pollution, and 784 
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vulnerability assessments related to development projects. Studies could also explore which networks are resilient 785 

or vulnerable to change. Furthermore, obtaining node-level information on the roles of species within networks 786 

and how these roles change spatially or temporally under different environmental conditions represents another 787 

promising research area. Additionally, metawebs may help predict how restored ecosystems will function post-788 

intervention, guiding which species and interactions should be prioritised for ecosystem recovery. 789 

6.3 Conservation planning 790 

Most conservation efforts focus on protecting specific species or habitats without fully understanding which 791 

species or interactions are key to ecosystem function. Meanwhile, metawebs can help identify keystone species, 792 

interactions, and ecosystems that maintain critical services, such as pollination, seed dispersal, or nutrient cycling, 793 

informing efforts to protect species that disproportionately contribute to ecological networks. Metawebs could 794 

also be instrumental in predicting and managing the impacts of biological invasions, allowing conservationists to 795 

assess the consequences and prioritise intervention efforts. 796 

6.4 Integration of metawebs with the species distribution model 797 

SDMs usually consider the habitat and climatic suitability of a species, i.e., they predict the fundamental niche. 798 

However, the fundamental niche of a species is further shaped by biotic factors, resulting in the realised niche. 799 

Joint species distribution models (JSDMs), which simultaneously predict the occurrence of many species from 800 

the environmental data to understand the relationship between two species, sometimes also provide misleading 801 

information about species interaction patterns (Zurell et al., 2018). In this scenario, it should be useful to integrate 802 

species interaction data directly into the species distribution model. The concept of including species interaction 803 

in the SDM is not novel (Wisz et al., 2013); however, the application of this concept is very scarce (Staniczenko 804 

et al., 2017; Zhang et al., 2022). Overall, the metaweb can be an important asset for improving existing species 805 

distribution models to obtain a more realistic prediction. This can be further used to assess the range maps and 806 

responses of species to climate change and habitat modification. 807 

6.5 Hybrid metawebs 808 

A hybrid metaweb, consisting of both trophic and non-trophic interactions, can provide a more realistic picture of 809 

the ecological network; however, data for such diverse kinds of interaction between lots of species is sometimes 810 

difficult to collect, only a few researchers can explore this avenue (Kéfi et al., 2015; Morrison et al., 2020). 811 

Another approach to understanding species interactions is incorporating multi- or hypergraphs, where an 812 

interaction between two species may affect another interaction, representing ecosystem complexity more 813 

accurately (Delmas et al., 2019). Future developments in hypergraphs and hybrid metawebs are expected to 814 

provide a deeper understanding of how different interaction types contribute to ecosystem health. 815 

6.6 Improvement in the niche model from latent trait and supervised learning informed trait selection 816 

The basis for the niche-based prediction is that two species interact based on their functional traits. However, 817 

using niche-based models, it is difficult to understand how two species interact based on exactly which functional 818 

traits resulted in poor model performance. Comparatively, predictive performance was greatly improved using 819 

latent traits, which learn from the patterns of networks. The application of latent traits has also been observed for 820 
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machine learning-based predictions (Strydom et al., 2022). Moreover, latent traits can be compared with real traits 821 

to understand the relative importance of different traits in shaping interactions. 822 

Here, we propose an inverse approach to improve our mechanistic understanding of the role of traits in shaping 823 

ecological networks. First, we should analyse the network to obtain latent traits and then compare the latent traits 824 

with the real traits to identify several actual traits shaping the network structure. We can build a niche model and 825 

evaluate its performance using these identified traits. Testing this approach across various ecosystems will 826 

enhance our knowledge of trait–trait interactions in different scenarios while paving the way for more process-827 

based ecological network modelling. Notably, supervised learning also allows the identification of functional traits 828 

impacting its prediction. 829 

6.7 Evolutionary dynamics 830 

Metawebs can be used to explore co-evolutionary dynamics within ecosystems, helping to understand how mutual 831 

adaptations among species shape ecological networks over evolutionary timescales. Future research could also 832 

investigate how evolutionary history and phylogenetic relatedness constrain or influence species interactions 833 

within metawebs, particularly in understanding the persistence or extinction of species. 834 

 835 

7. Conclusions 836 

In conclusion, metaweb research has become pivotal for understanding ecological interactions across spatial and 837 

temporal scales, providing a structured framework to explore the complex networks of species interactions in 838 

diverse ecosystems. This review serves as a foundational reference for researchers aiming to harness the full 839 

potential of metawebs in addressing complex ecological questions. It highlights methodological advances in 840 

constructing, analysing, and applying metawebs, demonstrating their effectiveness in bridging data gaps, 841 

capturing interaction diversity, and predicting network dynamics under various environmental pressures. 842 

Meanwhile, challenges remain in developing regionally representative metawebs, improving data accuracy, and 843 

expanding geographical coverage, especially in biodiverse but under-represented areas. Therefore, future research 844 

should prioritise refining predictive models, incorporating diverse data sources such as eDNA, advancing hybrid 845 

metawebs that include both trophic and non-trophic interactions, and exploring co-evolutionary dynamics. 846 

Metawebs hold significant potential to deepen ecological understanding and inform conservation efforts, 847 

supporting global initiatives such as the UN Sustainable Development Goals, especially those related to climate 848 

action (13) and biodiversity (14-15). Overall, metaweb-based approaches offer a promising avenue for 849 

anticipating the responses of ecosystems to environmental change and fostering a more holistic approach to 850 

ecosystem management. 851 
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Tables 1334 

Table 1. Summary of the different predictive models.  1335 

Category Model Characteristics Advantage Disadvantage 

Niche-based 

In
te

rv
al

it
y

 p
ro

p
er

ty
 m

o
d

el
 

Cascade model 

(Cohen and 

Newman, 1985) 

Each species has a fixed 

probability of consuming other 

species with lower niche value 

This first model to predict 

ecological interactions. 

Does not allow 

cannibalism and feeding 

on the node with higher 

niche values. 

Niche model 

(Williams and 

Martinez, 2000) 

Species interact within a beta-

distributed niche range, centered at 

or below their niche value 

Allows cannibalism and 

feeding on species with 

higher niche values. 

Accurate but criticized 

for generating false 

interactions. 

Mechanistic diet-

breadth model 

(Beckerman et 

al., 2006) 

This model mechanistically 

predicts niche size and connectance 

of nodes using optimal foraging 

theory. 

The niche and connectance 

are mechanistically 

calculated in this method. 

It requires more 

parameters and has low 

predictive performance. 

In
te

rv
al

it
y

 p
ro

b
le

m
 m

o
d

el
 

Nested-hierarchy 

model (Cattin et 

al., 2004) 

The model, based on the niche 

model, links predators with shared 

prey and adds random links to 

achieve desired connectance. 

This is the first attempt to 

break the intervality issue 

and create modularity, as 

seen in the real ecological 

network. 

Predictive performance is 

poor compared to the 

niche model. 

Generalised 

cascade model 

(Stouffer et al., 

2005) 

It follows the rule of the cascade 

model. Niche distribution follows 

either exponential or beta 

distribution. Predator selects prey 

randomly from niche space. 

The model addresses 

intervality issues through 

random link formation within 

the niche space. 

Model performance is not 

as good as the niche 

model. 

Generalised niche 

model (Stouffer 

et al., 2006) 

It modifies the niche model by 

reducing the niche space to make it 

interval, then selecting some prey 

randomly from the remaining 

unreduced niche spaces. 

The model tries to overcome 

the intervality issue by 

creating random interactions 

outside the niche space. 

The predictive 

performance is not as 

good as the niche model. 

Minimum 

potential niche 

model (Allesina 

et al., 2008) 

The model creates a maximum 

niche space, then randomly forbids 

some nodes to develop interactions 

based on observed data. 

The model tries to overcome 

the intervality problem by 

randomly making some 

interactions forbidden from 

the niche space. 

This model produces 

fewer non-reproducible 

links than the niche 

model, with similar 

predictive performance. 

Interaction 

matrix-based 

 Stochastic block 

model (Allesina 

and Pascual, 

2009) 

The model uses network 

modularity properties to group 

similarly interacting nodes by 

organising the interaction matrix. 

The model is capable of 

predicting large networks 

accurately. 

Performance to predict 

small-sized networks is 

not good. 

 Latent-trait 

model (Rohr et 

al., 2010) 

It predicts the interaction with the 

help of one or more imaginary trait 

Capable of predicting large 

networks and has good 

predictive performance. The 

latent trait can be compared 

to functional traits. 

Predictive performance is 

not always good (29% 

correct prediction in one 

network). 

 Matching-

centrality model 

(Rohr et al., 

2016) 

It combined the latent trait model 

with the concept of degree 

distribution. 

Model performance is better 

than the latent trait model. 

Sometimes, the 

performance can be poor 

(50% correct prediction). 

 Coverage deficit 

model (Terry 

and Lewis, 

2020) 

The model is based on the Chao1 

estimator to understand the 

incompleteness of the sampling of 

interactions in the network. 

The model tries to focus on a 

genuine issue of incomplete 

sampling of interactions. 

The predictive 

performance is worst in 

this category. 
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Phylogeny-

based 

 Phylogeny-based 

generalised linear 

model (Pearse 

and Altermatt, 

2013) 

This model predicts interactions 

using a generalized linear model 

based on a node's interaction 

partners and phylogenetic distance. 

Predictive performance is 

good 

Requires phylogenetic 

data. 

 LS-net (Elmasri 

et al., 2020) 

It combines phylogenetic distances 

and interaction affinity between 

groups to predict the network with 

the Bayesian model 

Predictive performance is 

good. 

Requires phylogenetic 

data. 

Supervised 

learning-

based 

 Simple 

supervised 

learning 

(Desjardins-

Proulx et al., 

2017) 

This model learns from observed 

interactions and explanatory 

variables to predict missing links. 

Capable of handling large 

data. Predictive performance 

is good. 

It requires large data and 

information on 

explanatory variables. 

 Graph embedding 

(Strydom et al., 

2021) 

This model reduces the dimension 

of the ecological network and uses 

supervised learning to predict 

interactions. 

This model reduces the 

problem of the very high 

dimension of the ecological 

network. 

It requires large amounts 

of data and information 

about explanatory 

variables. 
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Table 2. Different network indices applied in previous research based on metaweb. Their reference, ecological 1338 
implication and applications are available in Electronic supplementary material (Appendix 1).  1339 

Index Definition 

1. Indices to describe a network (α-diversity and γ-diversity) 

Interaction richness Number of interactions in a community 

Linkage density Average number of links per node 

LinkSD The standard deviation of links per species 

Connectance The proportion of links realised out of the maximum possible links. 

Clustering coefficient The probability that two linked species are also linked with a third species. 

Modularity Measures how much the network is distributed to subsystems of densely connected nodes. 

Nestedness Measures how much the specialist edges are a subset of generalist edges in the network. 

Path length  Longest of the shortest distances between every pair of nodes 

Characteristic path length Average distance between all pairs of nodes 

Robustness Ability of a network to withstand perturbation is usually measured by how well the network can 

withstand the loss of species or interactions  

Flow diversity Shannon index-based measures which increases with the richness and evenness of flows in a network 

Flow specialisation  Indicates average niche breadth of all nodes in the network. 

AL Diversity of link abundances of local networks. 

GL Diversity of link abundances in metaweb 

Aπ Diversity of link probabilities of local networks 

Gπ Diversity of link probabilities of local networks 

Average chain length Average of the maximal food chain 

Vulnerability Mean number of consumers per resource 

Generality Mean number of resources per consumer 

VulSD The standard deviation of vulnerability 

GenSD The standard deviation of generality 

Mean trophic level Mean of the prey-averaged trophic level 

Maximum trophic level Maximum of the prey averaged trophic level 

Standard deviation of trophic 

level 

The standard deviation of the trophic level of all nodes 

Mean Short-weighted trophic 

level 

Mean of the short-weighted trophic level 

Level of omnivory The standard deviation of the trophic level of its resources. 

Proportion of basal species Proportion of nodes with no prey 

Proportion of intermediate 

species 

Proportion of nodes with both prey and predator 

Proportion of top species Proportion of nodes with no predator 

Proportion of the herbivores The proportion of nodes consuming the autotrophs 

Proportion of omnivores The proportion of nodes that consume other nodes belongs to more than one trophic level 

Proportion of cannibals Proportion of nodes having self-edge 

Proportion of nodes in loop The proportion of nodes that are in the loop. 

Trophic coherence Measures the tendency of nodes to form distinct trophic levels by resources and consumers 

2. Indices to understand interaction turnover (β-diversity) 

Simpson’s dissimilarity index Dissimilarity between two samples based on shared species and minimum of the unshared species 

between two sites. 

Sorenson’s dissimilarity index Dissimilarity between two samples by considering the number of shared and unshared species. 

βWN Dissimilarity of interactions 

βST Variation of interaction between two networks due to variation in their species composition 

βOS Variation of interaction between shared species of two networks 

β′OS Difference between the interaction of two species in local networks and metaweb 

LNU The proportion of unique interaction in a local network with its quasimetaweb 

BL Turnover of link abundance between local networks. 

Bπ Turnover of interaction probability between local networks. 

3. Indices to understand node properties 

Degree centrality Sum of number of links of a node 

Closeness centrality Reciprocal of the sum of the shortest path distances from a node to all other nodes in the network 

Betweenness centrality Extent to which a node lies on the shortest paths between other pairs of nodes in a network. 

Katz centrality Number of directs and indirect connections of a node penalised by distances factor. 

Interaction specialisation  Node level interaction specialisation by comparing observed distribution pattern and null expectation 

with Kullback-Leibler distance 

Species strength Sum of dependencies of each species in a network, a weighted extension of degree centrality concept. 

Interaction asymmetry Dependence of a species on another guild's species in a bipartite network 

Nestedness contribution Contribution of each node towards the nested structure of the network 

Within module connectivity Standardised within module degree 

Among-module connectivity Standardised among module degree 
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Table 3: List of metawebs included in this review.  1341 

 Metaweb name Nature Ecosystem Type Taxa 

Eurasian rodent-flea metaweb (Hadfield et al., 2014) Bipartite Terrestrial Observed Interaction between 121 rodents and 206 flea species from 51 different 

regions 

Barent sea metaweb (Planque et al., 2014) Unipartite Aquatic Literature-based 1589 trophic links between 244 taxa from plankton to marine mammals 

Mediterranean Sea continental shelf metaweb (Albouy et al., 

2014) 

Unipartite Aquatic Predicted 11055 interactions between 256 species 

Central Chile Rocky shore metaweb (Kéfi et al., 2015) Unipartite Aquatic Literature-based 3296 non-trophic and 1458 trophic interactions between 104 species 

Metaweb of Sanak, Alaska (Wood et al., 2015) Unipartite Aquatic Literature-based 912 links between 131 taxa 

Gulf of Gabes metaweb (Hattab et al., 2016) Unipartite Aquatic Predicted 929 links between 62 species 

Metaweb of Willow-willow-galling sawflies and their natural 

enemies in Europe (Kopelke et al., 2017) 
Tripartite Terrestrial Observed 1173 links between 52 plants, 96 herbivores and 126 parasitoids 

Brazilian Atlantic Frugivory metaweb (Bello et al., 2017) Bipartite Terrestrial Observed 787 plants and 344 frugivore 

Brazilian Atlantic Forest Bird Seed dispersal metaweb (Emer et 

al., 2018) 

Bipartite Terrestrial Literature-based 2587 interactions between 335 plant species and 170 bird species 

Brazilian ant-tree metaweb (Dáttilo and Vasconcelos, 2019) Bipartite Terrestrial Observed 3900 interactions between 100 ant and 177 tree species 

German Blight Metaweb (Olivier et al., 2019) Unipartite Aquatic Literature-based 588 links between 21 epifaunal invertebrate and 27 fish species 

Global Marine fish metaweb (Albouy et al., 2019) Unipartite Aquatic Predicted 7062647 interactions between 11367 fish species 

Jena grassland meta food web (Hines et al., 2019) Unipartite Terrestrial Literature-based 51496 links between 63 plants, 647 invertebrates, carrion, fungi, 

microbes and dung 

European crop-forest pest metaweb (Grünig et al., 2020) Bipartite Terrestrial Literature-based 937 interactions between 126 host plants (crop and forest tree) and 89 

insect pest species 

European Tetrapod metaweb (Maiorano et al., 2020) Unipartite Terrestrial Literature-based 83,568 interactions between 288 mammals, 509 birds, 250 reptiles and 

104 amphibians  

Gulf of Riga metaweb (Kortsch et al., 2021) Unipartite Aquatic Literature-based 207 interactions between 34 species 

Metaweb of Baltic sea benthic macroinvertebrates (Garrison et 

al., 2022) 

Unipartite Aquatic Literature-based Bothnian Sea 57 links between 19 species, 82 links between 27 species 

in Baltic proper, 102 links between 31 species in Bornholm basin, 

10647 links between 381 species in Skagerrak 

Anuran-arthropod metawebs of Brazil (Ceron et al., 2022) Bipartite Semi-

aquatic 

Observed 43 anuran species and 42 kinds of prey items 

Canadian mammals metaweb (Strydom et al., 2022) Unipartite Aquatic and 

terrestrial 

Predicted 260 mammals 

Metaweb of Adirondack Lake and German Biodiversity 

Exploratories forest datasets (Bauer et al., 2022) 
Unipartite Aquatic and 

terrestrial 

Observed - 

North sea metaweb (Frelat et al., 2022) Unipartite Aquatic Literature-based 114 fish and epifauna, phytoplankton, benthic microalgae, macroalgae, 

detritus and zooplankton 
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Swiss Blue and Green metaweb (Ho et al., 2022) Unipartite Terrestrial 

and aquatic 

Literature-based 242779 interaction between 2016 plant, 191 butterflies, 109 

grasshoppers, 155 birds, 248 stream invertebrates, and 78 stream fish 

taxa 

Upper Thur catchment metaweb of Switzerland (Blackman et al., 

2022) 

Unipartite Aquatic Literature-based 12 fish genera, 80 invertebrate genera and 282 bacteria genera 

Mexican plant-buprestid metaweb (Pérez-Hernández et al., 

2023) 

Bipartite Terrestrial Literature-based 1061 interactions between 365 buprestids and 376 plants 

Ant-trophobiont metaweb of Minas-Gerais, Brazil (Belchior et 

al., 2023) 

Bipartite Terrestrial Observed 189 interactions between 22 ant and 11 trophobiont species 

African Savannah mammalian herbivore-predator metaweb 

(Higino et al., 2023) 
Unipartite Terrestrial Literature-based 32 mammals 

Canadian Rocky Mountain Large Carnivore Metaweb (Steenweg 

et al., 2023) 

Unipartite Terrestrial Literature-based 16 large mammals 

Dongjiang river metaweb (Qin et al., 2023) Unipartite Aquatic Literature-based 526 fish OTU, 411 aquatic insect OTU, 482 protozoa OTU and 4010 

bacteria OTU. 

American Plant-lepidopteran herbivore-insect parasitoid metaweb 

(Sudta, 2023) 
Tripartite Terrestrial Observed - 

Antarctic Mycobiont-photobiont (lichens) metaweb (Pérez‐Ortega 

et al., 2023) 

Bipartite Terrestrial Observed 248 interactions between 77 mycobionts and 45 photobionts 

High arctic plant-pollinator metaweb of Zackenberg, Northeast 

Greenland (Cirtwill et al., 2023) 

Bipartite Terrestrial Observed 122 insects and 45 plants 

Mexican Birds-Haemosporidian parasite metaweb (Rodríguez‐

Hernández et al., 2023) 

Bipartite Terrestrial Observed 78 haemosporidians and 38 birds 

Spider-Hexapoda prey metaweb of temperate grassland, Japan 

(Suzuki et al., 2023) 
Bipartite Terrestrial Observed 50 species of spider and 974 prey operational taxonomic unit 

  1342 



페이지 41 / 43 

 

Figure legends  1343 

Fig. 1. Flowchart of the development of a metaweb through different pathways. First, the taxonomical, 1344 

geographical and ecological scopes of the metaweb should be defined. Suppose data on local webs 1345 

across spatial and temporal points are available. In that case, a metaweb can be created through the 1346 

aggregation of these local webs into what is termed an observation-based metaweb. If local interaction 1347 

data are unavailable, information on nodes and potential interactions can be compiled from literature 1348 

and databases to build an initial metaweb. Here, nodes with similar interactions may be merged and 1349 

unconnected nodes removed, producing a literature-based metaweb. To further improve the initial 1350 

metaweb, predictive methods can be applied to estimate potential interactions, resulting in a prediction-1351 

based metaweb. Predictive approaches include several methodologies: the interaction matrix-based 1352 

predictive model, which relies solely on analysing the interaction matrix; the phylogeny-based 1353 

predictive model, which incorporates the phylogenetic relationships among nodes; the niche model, 1354 

which uses species traits. Additionally, supervised learning-based models integrate interaction data, 1355 

traits, and/or phylogeny to infer potential interactions using machine learning techniques.  1356 

 1357 

Fig. 2. Flowchart of the process of inferring local webs using the metaweb approach. If information 1358 

about locally available species is accessible, interactions from the metaweb can be subsampled to infer 1359 

local networks. When such information is unavailable, species distribution modelling can first be used 1360 

to estimate local species assemblages, which can then be applied to generate local webs. However, mere 1361 

co-occurrence of potentially interacting species does not guarantee interactions. To address this, local 1362 

abundance data can be incorporated to estimate interaction probabilities, where more abundant species 1363 

are assigned higher interaction likelihoods. Subsequently, Bernoulli trials can generate local webs based 1364 

on these interaction probabilities. 1365 

 1366 

 1367 
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