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Abstract 12 

Understanding the dynamics of ecological interactions is an essential initial step in acquiring a 13 

comprehensive understanding of the ecosystem structure and functions. Such knowledge is 14 

pivotal in effective conservation planning, sustainable development, and ecosystem 15 

management. However, the limited availability of information on ecological interactions, 16 

commonly referred to as Eltonian shortfalls, presents a significant challenge in moving beyond 17 

taxonomic diversity.  18 

The concept of a metaweb, which encompasses all species and their interactions in a specific 19 

region, has greatly contributed to our understanding of macroecology. This helps bridge the 20 

gap between static ecological networks and the dynamic nature of real ecosystems. Therefore, 21 

we aimed to comprehensively review various approaches to constructing metawebs and 22 

analyze both the metaweb and its constituent local webs. 23 
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Metawebs can be improved through link prediction to overcome the issue of data availability 24 

for ecological interactions. Different predictive approaches for ecological interactions can be 25 

categorized based on the data requirements. Some methods rely solely on existing databases 26 

and predict links based on observed interaction patterns within the web. Other methods 27 

incorporate additional information about the nodes, such as phylogenetic or trait data, to predict 28 

the links. While predicting interactions, it is crucial to ensure the model’s performance and 29 

validate the predicted links. 30 

The metaweb helps develop a local web according to the available information on local 31 

biodiversity at different spatiotemporal scales. This allowed us to study the structural properties 32 

of local webs and their dynamics at the spatiotemporal scale with minimum data requirements. 33 

This knowledge is essential for obtaining insights into how ecological interactions change in 34 

response to various factors such as climate and habitat changes. Furthermore, with increasing 35 

data availability, it may be possible to integrate biomass, abundance, and energy flow to explore 36 

the functional aspects of ecosystems. 37 

Our review highlights the existing metawebs and suggests future research directions. 38 

Harnessing the power of the metaweb enhances our understanding of ecological communities 39 

and their responses to various drivers. 40 
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I. INTRODUCTION 67 

A thorough understanding of the intricate web of species interactions within and between ecological 68 

communities is indispensable for devising effective conservation plans (Stork, 2010). This knowledge 69 

is essential for overcoming one of the four major gaps in our understanding of biodiversity: the 70 

Linnaean shortfall (lack of knowledge about different kinds of organisms), the Wallacean shortfall 71 

(limited understanding of the geographic distribution of different species), the Darwinian shortfall 72 

(limited knowledge about the evolutionary relationships between species), and the Eltonian shortfall 73 

(limited understanding of the ecological interactions between different species) (Morales-Castilla et 74 
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al., 2015). By addressing the Eltonian shortfall and understanding species interactions holistically, we 75 

can better protect biodiversity from the growing threats posed by human activities and climate change. 76 

Ecological networks, also known as ecological webs, are powerful tools for studying the interactions 77 

between different ecological entities (Wulff, Field & Mann, 1989). These interactions take many 78 

forms, including trophic, mutualistic, and parasitic. In network science, entities interacting with one 79 

another are referred to as nodes, whereas the interactions between them are called edges (Kay, 80 

Graham & Ulanowicz, 1989). Depending on the research question, nodes can represent individuals, 81 

species, functional groups, or entire ecosystems (Poisot, Stouffer & Kéfi, 2016). The study of 82 

ecological networks is greatly influenced by the field of network science (Barabási, 2013; Newman, 83 

2018), which provides many concepts, models, and tools for investigating ecological questions (Poisot 84 

et al., 2016). Using graph theory, researchers can analyze various topological properties of a network, 85 

such as connectance, linkage density, degree distribution, motif distribution, diameter, clustering 86 

coefficients, modularity, nestedness, intervality, and centrality (Delmas et al., 2019). These properties 87 

help uncover the underlying ecological and evolutionary mechanisms that shape the network. For 88 

example, centrality is a node-level measure that can help identify the most well-connected nodes in a 89 

food web (Dunne, Williams & Martinez, 2002; Martín González, Dalsgaard & Olesen, 2010). The 90 

extinction of such nodes may have drastic consequences, making it important to understand the 91 

functional traits that make nodes central (Dallas et al., 2019; Hui et al., 2021). Nestedness, 92 

conversely, is a network-level measure that reflects the presence of more specialist species in the 93 

network, which can increase biodiversity by minimizing competition between species (Bastolla et al., 94 

2009). Furthermore, several other indices for ecological network analysis, such as generality, 95 

vulnerability, and average trophic length, are described in this review. 96 

Ecological networks have been a subject of interest among ecologists; however, initial efforts toward 97 

understanding these networks have been limited owing to data unavailability (Delmas et al., 2019). 98 

However, with the increasing availability of data, there is growing interest in understanding the 99 

spatiotemporal variability of ecological networks (Pilosof et al., 2017; Strydom et al., 2021). The 100 
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main challenge in understanding the spatiotemporal dynamics of a network is its static nature 101 

(McCann & Rooney, 2009; Poisot, Stouffer & Gravel, 2015). Some modeling frameworks with a 102 

multilevel hybrid modeling approach have been developed, such as “Ecopath with Ecosim and 103 

Ecospace (EwE)” (Christensen & Walters, 2004; Colléter et al., 2015; Subramaniam et al., 2022; Ren 104 

et al., 2023), “AQUATOX” (Park, Clough & Wellman, 2008; Zhang et al., 2013; Zhang & Liu, 2014), 105 

and “Atlantis” (Tarnecki et al., 2016; Ortega-Cisneros et al., 2018; Audzijonyte et al., 2019; Nilsen et 106 

al., 2022), to address this challenge. These models enable the spatiotemporal simulation of static food 107 

webs. 108 

However, these models require information on many parameters, which limits their application to 109 

data-rich contexts. For example, the EwE approach requires a static mass-balance model of the food 110 

web (Ecopath) to be developed using a diet matrix and three (out of four) basic parameters. It requires 111 

essential inputs, such as a base map, along with habitat properties, dispersal rate of each species, 112 

habitat preference of each species, and migration of each species. Although the EwE approach focuses 113 

on developing a more realistic model, several parameter requirements restrict its application. 114 

Moreover, EwE is limited to aquatic food web development and simulations (Walters, 1999). 115 

In this regard, the “metaweb” concept serves as a solution for the dynamic spatiotemporal analysis of 116 

ecological networks with comparatively fewer data requirements. The term “metaweb” (gr. μετά= 117 

comprehensive) first appeared in literature in a very different context than network science in 1982 118 

(Briskman, 1982) and was then introduced in ecology (Dunne, 2006), who referred to a metaweb as a 119 

master web that includes all species that occurred in similar habitats and their interactions as if they co-120 

occur in a single habitat (Fig. 1). It is synonymously referred to as the “metanetwork” (Tylianakis & 121 

Morris, 2017). 122 

Therefore, the species pool and interactions in a metaweb are largely the consequences of long-term 123 

evolutionary and biogeographical processes (HilleRisLambers et al., 2012; Saravia et al., 2022). In 124 

contrast, local biodiversity results from subsampling the regional metaweb by a metacommunity 125 

process influenced by environmental conditions, dispersal ability, stochastic events, and biotic 126 
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interactions (Tylianakis & Morris, 2017; Saravia et al., 2022). All potential interactions between 127 

nodes in the metaweb may not be present in the local web, owing to the variability in species 128 

abundance and the physical structure of the habitat (Tylianakis & Morris, 2017). 129 

The concept of metawebs in ecology has emerged as a significant study area over the past five years. 130 

This review aims to comprehensively summarize the extensive research conducted on the metaweb, 131 

encompassing its conceptual development and applications in understanding spatiotemporal variations 132 

within networks and proposing future directions for metaweb research. 133 

II. HOW TO DEVELOP A METAWEB? 134 

(1) Classical approach 135 

The metaweb concept (Dunne 2006) refers to the collection of all species in similar habitats and their 136 

potential interactions. However, more recent studies have applied the metaweb concept to an entire 137 

biogeographical region across all types of habitats rather than just similar habitats from a region 138 

(Gravel et al., 2019; Albouy et al., 2019; Braga et al., 2019; Strydom et al., 2022) (Table 2). 139 

Typically, the development of a metaweb involves the following five steps: first, the geographical and 140 

ecological boundaries of the metaweb were defined (1 in Fig. 2). Second, a list of available target 141 

species in that region was prepared (2 in Fig. 2) by collecting data from direct surveys, scientific 142 

literature, and gray literature. Organisms can be categorized into taxonomic categories (species, 143 

genus, etc.), trophospecies, and functional groups. Species can be further subdivided into age stages 144 

when ontogenic differences in ecological interactions are considered. Third, the species were 145 

tabulated into an adjacency matrix to enter their interactions (3, Fig. 2). The presence or absence of 146 

species interactions can be found in direct observations, literature, and several online open-access 147 

databases (Supporting information: Appendix A). Fourth, if there are any species without any known 148 

interactions, two approaches can be considered: (i) those species can be removed from the matrix (4A, 149 

Fig. 2), or (ii) those species can be clumped with other similar species based on functional traits or 150 

phylogeny (4B, Fig. 2) (Albouy et al., 2019). Finally, the interaction matrix is presented as a graph (5, 151 

Fig. 2) (Dunne, 2006).  152 
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Several metawebs have been developed using classical approaches, including the European tetrapod 153 

metaweb (Braga et al., 2019), German Blight metaweb (Olivier et al., 2019), and Barents Sea 154 

metaweb (Kortsch et al., 2019) (Table 2). The WebBuilder function in R can be used to construct a 155 

metaweb for a region at different taxonomic resolutions given a regional node list, a database of 156 

interactions, and their taxonomic information (Gray et al., 2015).  157 

(2) Predictive approach 158 

(a) Background of predictive approach in metaweb development 159 

Finding species that do not interact with others (4 in Fig.2) is a common problem encountered during 160 

classical metaweb development (Rohr et al., 2010). In reality, a species cannot exist without 161 

interacting with other species, except in the very early stages of ecological succession. Defining the 162 

interactions between species is challenging, particularly when the actual interactions are unknown. 163 

The difficulty of collecting ecological interaction data compared to species occurrence data is due to 164 

the higher number of interactions in an ecosystem than the number of species and the need for more 165 

time and expertise to documenting species interactions (Jordano, 2016). 166 

Interactions between species develop through natural selection and coevolution as they adapt to their 167 

environment (Thompson, 1999). This reciprocal adaptation leads to reciprocal phenotypic plasticity, 168 

enabling species pairs to modify their interactions in changing environments (Agrawal, 2001). 169 

Bartomeus et al. (2016) highlighted how species traits shape ecological network structures. Habitat 170 

filtering (Grinnellian niche), which is determined by traits related to environmental tolerance, plays a 171 

key role in structuring the network (Lima-Mendez et al., 2015). Phenology also restricts the 172 

interactions between species that share the same location (Encinas-Viso, Revilla & Etienne, 2012). 173 

Life history traits influence species abundance and response to disturbances, thereby affecting the 174 

possibility of interactions (Woodward et al., 2005; White et al., 2007; Laughlin et al., 2012). The 175 

combination of life-history traits, phenology, and environmental tolerance determines the likelihood 176 

of a species coexisting in the same spatiotemporal space. However, the morphological, physiological, 177 

and behavioral traits of a species ultimately determine potential interactions (Bartomeus et al., 2016). 178 
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Species interactions and traits co-evolve, often showing phylogenetic relationships that can be utilized 179 

to predict missing links in networks (Gray et al., 2015; Elmasri et al., 2020). Traits (or phylogenetic 180 

relationships) determine the probability of interactions, whereas the probability of interactions among 181 

potentially interacting species is influenced by neutral mechanisms linked to their local abundance 182 

(Olito & Fox, 2015; Pomeranz et al., 2019; Pichler et al., 2020). Therefore, these relationships in 183 

species interactions can be used to estimate unknown species interactions using a predictive modeling 184 

approach. However, validation of the prediction results is essential for its application. The core of the 185 

predictive model relies on understanding how species interact with each other.  186 

Several different types of predictive approaches have been used to predict the non-randomness of 187 

ecological networks, primarily focusing on food webs (Cohen & Newman, 1985). These 188 

methodologies are broadly categorized into three groups based on the inputs required to develop the 189 

models: niche-, interaction matrix-, phylogeny-, and supervised learning-based predictions (Table 1). 190 

(b) Niche-based predictions 191 

Niche-based prediction models, also known as the “trait-matching” model (Bartomeus et al., 2016; 192 

Brousseau, Gravel & Handa, 2018), are commonly used to predict interactions based on a predefined 193 

niche of the interacting species. These models can be classified into two categories: intervality 194 

property models and intervality problem models (Table 1). The former includes cascade, niche, and 195 

mechanistic diet breadth models. The top-down approach is used in both cascade (Cohen & Newman, 196 

1985) and niche (Williams & Martinez, 2000) models to infer the network with basic parameters such 197 

as network size (represented by the number of species), desired connectance, and niche value for each 198 

species. The cascade model does not allow for the cannibalism and predation of species with higher 199 

niche values, whereas the niche model considers both cannibalism and predation for a more realistic 200 

model. Gravel et al. (2013) inferred a food web for Mediterranean fish using this approach. 201 

Bartomeus et al. (2016) modified the niche model by incorporating the effect of abundance and 202 

applied it to predict prey-predator, grasshopper-leaf dry matter content, and plant-pollinator 203 

interactions. They also developed an R package called ‘traitmatch’ (Gravel et al., 2013) with 204 



9 

 

examples to serve the same purpose, which can be downloaded from GitHub 205 

(https://github.com/ibartomeus/traitmatch). The mechanistic diet-breadth model predicts niche and 206 

connectance to develop a network with a mechanistic approach using the optimal foraging theory and 207 

allometric feeding relationships (Beckerman, Petchey & Warren, 2006; Petchey et al., 2008). 208 

Although the mechanistic approach is praised for the process-based formulation, it requires a large 209 

amount of information that is difficult to gather (e.g., searching time and handling time) and does not 210 

perform well. 211 

The intervality problem models included four models to predict the non-interval links of the natural 212 

ecosystem in a concise duration: nested hierarchy, generalized cascade, generalized niche, and 213 

minimum potential niche models (Table 1). The nested-hierarchy model (Cattin et al., 2004), which 214 

modifies the niche model, assumes that if a predator shares prey with one predator, it can share more 215 

prey with that predator from its niche space defined by niche value [see (Dunne, 2009) for a brief 216 

understanding of niche space and niche value]. After fulfilling the above criterion, if more links are 217 

needed to form the desired network, random links are created with any species, preferably with 218 

species of a lower niche value. The generalized cascade model (Stouffer et al., 2005) assumes that a 219 

predator randomly selects prey from a niche space. The niche space is defined as a cascade model. 220 

However, the probability of forming a link with prey for any predator is species-specific. The 221 

generalized niche model reduces the niche space to make it an interval and then selects some prey 222 

randomly from the remaining unreduced niche space (Stouffer, Camacho & Amaral, 2006). Finally, 223 

the minimum potential niche model (Allesina, Alonso & Pascual, 2008) uses the inverse approach 224 

of the generalized niche model. After ordering the matrix to obtain the maximum intervality, the 225 

model scales the niche with two extreme interactions defined by their niche values (for example, the 226 

smallest and largest prey). The number of prey not consumed by the predators was counted to 227 

calculate the probability of forbidden links within the extended niche space. Therefore, they predict 228 

the number of interactions within the niche space by deleting random prey depending on the 229 

probability of forbidden links within the niche space (Allesina et al., 2008). 230 

https://github.com/ibartomeus/traitmatch
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The original cascade and niche models operated in a single niche dimension. However, a 231 

multidimensional niche leads to non-intervality within a single niche dimension (Cattin et al., 2004; 232 

Allesina et al., 2008; Allesina & Pascual, 2009). Modified cascade and niche models were developed 233 

to address this issue. Eklöf et al. (2013) attempted to solve the multidimensional niche problem by 234 

analyzing 200 ecological networks, including food webs, mutualistic networks, and antagonistic 235 

networks. They found that less than ten traits were sufficient to predict most of the links in the 236 

ecological network, with model selection favoring fewer than five traits. The authors also suggested 237 

that phylogeny could be a good proxy for multiple traits. 238 

(c) Interaction matrix-based prediction 239 

Interaction matrix-based prediction models have been developed as alternatives to niche-based models 240 

to handle large and emerging ecological networks more effectively. These models require an input–241 

interaction matrix that predicts the output matrix by understanding the statistical properties of the 242 

input matrix. There were four specific interaction matrix-based prediction models: stochastic block, 243 

latent trait, matching centrality, and coverage deficit (Table 1). 244 

The stochastic-block model, also known as the group-based model (Allesina & Pascual, 2009), 245 

utilizes the modular properties of an ecological network. The model groups interact similarly with 246 

species, and if one node of a group interacts with a node from another group, the other nodes of that 247 

group will also have similar interactions (Guimerà & Sales-Pardo, 2009). Model performance was 248 

determined by the number of groups with the lowest value for the Akaike information criterion. 249 

The latent trait model (Rohr et al., 2010) introduced the concept of “latent trait” in social network 250 

research (Hoff, Raftery & Handcock, 2002). Here, the latent trait serves as a proxy to explain certain 251 

aspects of the web, rather than representing an actual trait. This additional dimension explains the 252 

unexplained aspects of the niche model. The latent trait can be a single trait or a combination of 253 

different traits, even a phylogeny, with each having different contribution levels, such as an ordination 254 

axis, and can be compared with the real trait to understand what explains most latent traits. The 255 

matching-centrality model (Rohr et al., 2016) is an extension of the latent trait model, which 256 
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considers the concept of degree distribution. The model predicts the number of links that each node 257 

can make by adding a centrality property to each node. The matching part helps us understand which 258 

pairs can be linked to the latent trait. Finally, the coverage deficit model (Terry & Lewis, 2020) is 259 

based on the concept that ecologists often miss interactions between rare species. The model used the 260 

Chao1 (Chao & Jost, 2012) estimator to understand the sampling completeness of ecological 261 

interactions. 262 

The R package ‘cassandRa’ (Terry, 2019) provides a basic framework for using the aforementioned 263 

models for interaction prediction in bipartite networks. 264 

(d) Phylogeny-based predictions 265 

As a proxy for traits, phylogeny effectively predicted ecological networks as traits co-evolved during 266 

evolution. Two purely phylogeny-based prediction models were proposed: a generalized linear model 267 

and a latent score network model. The phylogeny-based generalized linear model (Pearse & 268 

Altermatt, 2013) predicts interactions with a generalized linear model formulation using the number 269 

of documented interaction partners of a node in the observed matrix and the phylogenetic distance as 270 

the dependent variable. While the latent score network (LS-net) model (Elmasri et al., 2020) 271 

combines phylogenetic distances and interaction affinity (similar to ‘centrality’ term in matching-272 

centrality model) between groups to predict the network with a Bayesian model. Phylogeny can 273 

improve network prediction, as it is a good predictor of the potential interactions between species. 274 

Another recent study, Brousseau et al. (2018) used a hybrid approach by modifying the matching-275 

centrality model using real traits and phylogeny with a generalized additive modeling approach and 276 

found better predictive performance when using phylogeny as a predictor. 277 

(e) Supervised machine learning-based prediction 278 

Recently, machine-learning algorithms have been used to predict ecological networks, driven by the 279 

availability of large datasets. Supervised learning, which requires explanatory variables to predict 280 

interactions, has gained popularity. The explanatory variables used in these models include niche, 281 

functional traits, and phylogenetic information. This approach can be divided into two categories: 282 
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simple supervised learning and graph embedding, followed by supervised learning. Desjardins-Proulx 283 

et al. (2017) used k-nearest neighbor (kNN) and random forest algorithms to predict interactions using 284 

traits and phylogeny as explanatory variables. Pichler et al. (2020) used seven supervised machine-285 

learning algorithms (random forest, boosted regression trees, kNN, support vector machines, deep 286 

neural networks, convolutional neural networks, and naïve Bayes) under three different 287 

circumstances: binary networks, weighted networks, and networks sampled with different observation 288 

times. Strydom et al. (2021) proposed a graph-embedding approach that involved reducing the 289 

dimensionality of the interaction matrix and using the resulting lower-dimensional space to predict a 290 

network using a supervised learning algorithm. This method was recently applied to predict Canadian 291 

mammalian metawebs (Strydom et al., 2022). 292 

(f) Comparison of performance of different models 293 

The performance of different models was mostly measured with binary classification test measures, 294 

such as accuracy, sensitivity, specificity, precision, True Skill Statistic (TSS), and Area Under 295 

Receiver Operating Characteristic Curve (AUROC), discussed in Supporting information: Appendix 296 

B. However, initial studies used measures such as mean normalized error and the likelihood of 297 

producing links. 298 

Williams & Martinez (2000) showed that the niche model (mean normalized error 0.22±1.8) was 299 

superior to the cascade model (mean normalized error -3.0±14.1) in the prediction of species 300 

interactions. Although the nested hierarchy model has the advantage of breaking the interval rules 301 

compared to the cascade and niche models, its predictive performance has not improved (Cattin et al., 302 

2004). Dunne (2009) criticized the nested hierarchy and generalized cascade models for their poor 303 

performance in representing several network structural properties compared with the niche model. 304 

Allesina et al. (2008) introduced a novel approach by comparing different network models (niche, 305 

cascade, and nested hierarchy) based on their ability to predict observed links in empirical networks. 306 

This approach is ecologically superior to previous attempts because accurately predicting desired 307 

links is of paramount importance. They found that the prediction of the niche model was more 308 
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accurate than those of the cascade and nested hierarchy models; however, it showed the lowest 309 

performance in terms of irreproducible connections. In contrast, the minimum potential niche model 310 

was the best-performing model for the likelihood of predicting correct links. 311 

Gravel et al. (2013) evaluated the fitness of food webs generated by a niche model based on TSS 312 

(Allouche, Tsoar & Kadmon, 2006). The TSS is based on the number of correctly and falsely 313 

predicted links and the number of correctly and falsely predicted absences of links. The TSS approach 314 

is considered ecologically sound for model assessment because it considers link identities. Petchey et 315 

al. (2008) revealed that the mechanistic model correctly predicted observed links in 5–65% of 15 316 

analyzed food webs. However, the model performance was worst in the case of a highly non-interval 317 

network. Allesina and Pascual (2009) found that the stochastic block model performed better than the 318 

minimum potential niche model in predicting the structures of six of ten tested food webs. Notably, 319 

these six food webs were larger than the four better-predicted networks obtained using the minimum 320 

potential niche model. 321 

Introducing the latent trait concept improves the prediction of ecological networks considerably. Rohr 322 

et al. (2010) found that the inclusion of latent traits alone could predict 29–87% of the links in the 323 

empirical food web, whereas the inclusion of both body size and latent traits could predict 44–93% of 324 

the links. Additionally, the matching-centrality model displayed a 50–100% fit to the empirical data, 325 

which was improved by incorporating two matching latent traits. In contrast to the latent trait model, 326 

the matching-centrality model does not include body size in combination with the latent traits. The 327 

main advantage of these latent trait-based models is the identification of correlations between latent 328 

and ecological traits by exploring their relationships (Rohr et al., 2016). 329 

Terry and Lewis (2020) showed that stochastic block, latent trait, and matching-centrality models 330 

outperform the coverage-deficit model. However, the coverage deficit model can predict poorly 331 

sampled interactions. Therefore, combining the coverage deficit model with other models sometimes 332 

improves the model’s predictability. 333 
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In phylogenetic models, a phylogeny-based generalized linear model was used to predict the 334 

interactions between lepidopterans and non-native plants using an observed network of lepidopteran-335 

native plants (AUROC 0.93, (Pearse & Altermatt, 2013). In a study comparing LS-net, another 336 

phylogenetic model, with the machine learning-based approach kNN, researchers found that LS-net 337 

exhibited slightly better predictability based on AUROC and the percentage of true interactions 338 

recovered in a host-parasite interaction network (Elmasri et al., 2020). However, the nearest neighbor 339 

method, which relies solely on the interaction matrix, also demonstrated good predictive power. 340 

Consequently, the researchers suggested using the nearest-neighbor approach when phylogenetic data 341 

are unavailable, as it provides insight into the extent and nature of interactions between entities, which 342 

is influenced by phylogeny. 343 

Brousseau et al. (2018) formulated a general additive model by combining a matching-centrality 344 

model (using real traits) and phylogenetic information with different combinations of functional traits, 345 

both including and excluding phylogenetic information. They found that phylogeny, with an accuracy 346 

of 74% and a TSS of 0.46, alone could better predict interactions than the best trait-matching 347 

combinations, which have an accuracy of 71.5% and a TSS of 0.37. They also found that combining 348 

both phylogenetic and trait combinations greatly improved model predictions, resulting in an accuracy 349 

of 83.4% and a TSS of 0.65. 350 

The predictability of the nearest-neighbor approach exhibited variability across studies, with one 351 

study (Elmasri et al., 2020) reporting good predictability and another one (Desjardins-Proulx et al., 352 

2017) reporting unclear results. Among the supervised machine-learning algorithms, random forests, 353 

boosted regression trees, and deep neural networks are the most suitable for predicting ecological 354 

networks (Pichler et al., 2020; Desjardins-Proulx et al., 2017). Strydom et al. (2022) used graph 355 

embedding followed by machine learning and reported that their model correctly predicted 92% of 356 

interactions. 357 
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(g) Which method to use for metaweb development? 358 

As the metaweb is a collection of all species and their interactions in a region, we recommend 359 

employing any random yet accurate method to analyze and study the data effectively. Unlike local-360 

scale ecological networks, metawebs often contain an overwhelming number of species. Data on the 361 

functional traits and environmental tolerance of such a large number of species belonging to diverse 362 

taxonomic groups are often challenging to gather. However, many emerging databases exist (see 363 

Supporting information: Appendix A). Therefore, our recommendation is based on the amount of data 364 

available (Fig. 3). Firstly, interaction matrix-based predictive models, especially the matching-365 

centrality model, as per its superior predictive ability, are recommended for metaweb development 366 

because this kind of model only needs the interactions matrix to predict the metaweb. Our second 367 

choice was phylogeny-based models because of their superior predictive ability and ease of collecting 368 

phylogenetic data compared to trait data. Phylogenetic information reflects the effects of multiple 369 

traits (Brousseau et al., 2018). Supervised learning can be used if trait or phylogeny data are available. 370 

random forests, boosted regression trees, and deep neural networks can be used in this case.  371 

III. INFERRING LOCAL WEBS USING METAWEB APPROACH 372 

The decomposition of the metaweb into local food webs facilitates the examination of spatiotemporal 373 

variations in ecological networks. This, in turn, establishes a research domain for comprehending the 374 

factors accountable for the differences in ecological communities and their structural organization. In 375 

local web development, two scenarios could arise: (i) presence of empirical data on local species, and 376 

(ii) absence of local species data (Fig. 4). In the first case, locally available species form the nodes of 377 

the local web and interactions are assigned from the metaweb. Nodes without any interactions were 378 

removed from the local web and were considered false positives (Braga et al., 2019). This method was 379 

followed in all existing studies, where local webs were developed from a metaweb for further analysis 380 

(Kortsch et al., 2019; Albouy et al., 2019; Braga et al., 2019; Olivier et al., 2019; Ho et al., 2022). 381 

However, these local webs overestimate actual interactions because co-occurrence does not always 382 

result in interactions (neutral mechanisms) (Olivier et al., 2019). Metawebs can also be developed 383 
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from regional-level species occurrence data, such as checklists of different species in a country. In the 384 

second case, the local data are unavailable for metaweb inference. Recently, Strydom et al. (2021) 385 

proposed a method to overcome the issue of data unavailability; however, this method is yet to be 386 

tested.  387 

The probability of occurrence of different species across space and time can be inferred from species 388 

distribution models using bioclimatic data. Such data can also be used to infer local networks. 389 

However, the co-occurrence of these two species does not always imply that they interact. In this 390 

regard, we suggest including a neutral mechanism to infer the local web from the metaweb. Therefore, 391 

generalist nodes have stronger interactions with nodes with higher abundances than with those with 392 

lower abundances. If the interaction matrix is binary, there should be an ecologically sound limit to 393 

the minimum abundance with which a generalist can interact. However, this condition should not be 394 

applied between specialist nodes; otherwise, it would result in fewer interactions on the local web. 395 

Another concern is the removal of species that do not interact with the local web. The presence of this 396 

kind of species in the local checklist indicates undersampling of biodiversity, that is, other taxa with 397 

which it should have ecological interactions are not reported because of inadequate sampling. This 398 

type of species must be reported in research publications to highlight the gap in knowledge regarding 399 

local biodiversity and missing interactions. 400 

IV.ANALYSIS OF METAWEB AND ITS LOCAL CONSTITUENT WEBS 401 

Metaweb and its local constituent webs should be analyzed to obtain ecological insights into 402 

network properties at the local and regional scales, along with their temporal and spatial 403 

variability. The metaweb represents the gamma (γ) diversity of species interactions in a 404 

region, which is a combination of all species and their interactions. However, local 405 

constituent webs are local subsets of the metaweb and represent alpha (α) diversity. The 406 

difference between a metaweb and its local constituent webs represents beta (β) diversity 407 

(Luna et al., 2020). 408 
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(1) Metrics to describe a network 409 

These metrics can be used to understand the properties of both local webs and metaweb; thus, they 410 

can provide an overview of α and γ interaction diversity, respectively. The inferred local web matrix 411 

developed from a metaweb is usually binary. Therefore, graph theory-based indices are generally used 412 

to describe networks. The richness of the interactions is simply the number of links in the network. 413 

The number of network links was determined by the species count. Therefore, connectance is 414 

considered an accurate measure of community interaction richness (Tylianakis et al., 2010). 415 

Connectance is emphasized as one of the most important descriptors of an ecological network because 416 

of its robustness (Dunne et al., 2002), invasiveness (Baiser, Russell & Lockwood, 2010; Smith-417 

Ramesh, Moore & Schmitz, 2017), and correlation with most ecological properties (Dunne et al., 418 

2002; Poisot & Gravel, 2014). Connectance decreases with increasing species richness in a network 419 

(Kay & Schemske, 2004). Degree distribution, which counts the number of nodes with a particular 420 

number of edges, can also be a good indicator of network properties. It helps understand the number 421 

of specialists or generalists in a network (Memmott, Waser & Price, 2004). In the case of a directed 422 

network, the degree distribution can be further divided into in-degree and out-degree, corresponding 423 

to vulnerability and generality in the food web, respectively (Schoener, 1989). Modularity, another 424 

important network property, can be measured to compare networks (Girvan & Newman, 2002; Poisot, 425 

2013). Modularity measures the extent of network distribution to subsystems of densely connected 426 

nodes called modules. Modularity increases the persistence of a network by restricting perturbations 427 

in the module (Stouffer & Bascompte, 2010, 2011). Measuring nestedness (Almeida-Neto, R. 428 

Guimarães Jr & M. Lewinsohn, 2007; Bastolla et al., 2009) is essential for comparing networks. This 429 

measures the extent to which specialist edges are a subset of generalist edges in the network. This is 430 

the tendency of nodes to interact with subsets of interaction partners of better-connected nodes. 431 

Nested structures promote greater biodiversity by minimizing competition within the community 432 

(Bastolla et al., 2009). The diameter of the network, which is the longest of the shortest distances 433 

between every pair of nodes, is also an ecologically interpretable network property (Delmas et al., 434 

2019). A small diameter indicates the presence of densely connected nodes in a network, which makes 435 
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the network sensitive to perturbations (Minor et al., 2008). Other commonly used indices to compare 436 

networks concerned with chain lengths, which are mainly applicable to the food web, including the 437 

maximum chain length, average chain length, median chain length, and standard deviation of 438 

chain lengths (Bersier, Banasek-Richter & Cattin, 2002). 439 

Ohlmann et al. (2019) developed three Hill numbers (Hill, 1973) based on indices to understand the 440 

average alpha diversity across local webs generated from meta-webs using a single metric. They 441 

developed three matrices for node (weighted or unweighted) diversity (AP), link diversity (AL), and 442 

weighted link diversity (Aπ) (Table 2). Similar indices were also developed to calculate the diversity 443 

at γ-level, i.e., GP, GL, and Gπ representing the γ-level indices for nodes (weighted or unweighted), 444 

links and weighted links, respectively. These indices can be calculated with the R package 445 

‘metanetwork’ (Ohlmann, Garnier & Vuillon, 2022). 446 

Some other indices for alpha diversity are used for comparing local webs derived from metaweb 447 

(Kortsch et al., 2019; Olivier et al., 2019) as follows: VulSD, GenSD (Williams & Martinez, 2000; 448 

Bersier et al., 2002), level of omnivory (Sprules & Bowerman, 1988; Goldwasser & Roughgarden, 449 

1997), mean trophic level (Williams & Martinez, 2004), mean maximum trophic similarity 450 

(Williams & Martinez, 2000) and proportion of basal, intermediate, top, cannibals and omnivores 451 

in a food web (Claessen, de Roos & Persson, 2000; Bersier et al., 2002; Thompson et al., 2007). A 452 

brief description of the metrics used to understand the network properties of ecological interactions 453 

and their usage in different meta-web analysis studies is provided in Table 2. The R package 454 

‘UNODF’ (Cantor et al., 2017) can calculate nestedness while ‘Netindices’ (Soetaert, Kones & Dick, 455 

2022) for calculating other indices. 456 

(2) Metrics to understand interaction turnover 457 

The species composition of an ecological network varies spatially and temporally depending on the 458 

ecosystem. Different measures of diversity exist to estimate interaction turnover with a single 459 

measurement, including various formulations for use with presence-absence data (Koleff, Gaston & 460 

Lennon, 2003). However, interactional diversity differs from species diversity; in many cases, these 461 
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measures are not correlated and are more complex (Poisot et al., 2011, 2017). Consequently, most 462 

studies differentiate between networks by performing multivariate ordination analyses with network 463 

measures (Vermaat, Dunne & Gilbert, 2009; Baiser et al., 2012; Kortsch et al., 2015; Braga et al., 464 

2019). Kortsch et al. (2019) used the popular index βW (Whittaker, 1960) to understand the interaction 465 

differences between local networks. However, this analysis focuses more on the mathematical 466 

perspective of dissimilarity than the ecological perspective (Poisot et al., 2012). 467 

The diversity of ecological networks (βWN) results from the variation in species composition (βST), as 468 

well as variation in the interaction between shared species (βOS) (Canard, 2011; Poisot et al., 2012). 469 

The first β diversity index developed in the perspective of metaweb is β′OS, which measures how the 470 

local network interactions differ from the interactions between the same species in a metaweb. The 471 

β′OS index was further used in many studies to understand how locally realized interactions differ from 472 

potential interactions in metaweb at a spatial scale (Poisot et al., 2017; Dáttilo & Vasconcelos, 2019). 473 

However, the β′OS index is not applicable if the local web is subsampled from the metaweb without 474 

considering local abundance, as this results in the interaction in the metaweb and local web being 475 

precisely the same between the same set of species (Olivier et al., 2019). Therefore, measuring 476 

interaction variability due to species turnover (βST) is the only alternative in this case. R package 477 

'betalink' (Poisot et al., 2012) is available to calculate the above beta diversity indices. 478 

Luna et al. (2020) argued that β′OS is not a measure of β diversity because it compares the local 479 

network with the regional metaweb, comparing α diversity with γ diversity. They also argued that β′OS 480 

does not represent the presence of unique interactions because finding a locally unique interaction 481 

requires subtracting the focal network from the metaweb. They proposed two indices along with an R 482 

function to calculate these: Local Network Uniqueness (LNU) and Shared Interactions Frequency 483 

(SIF). For comparison, these indices require the development of a quasi-metaweb, which is the 484 

metaweb minus the local focal web. Subsequently, the local web was compared with the quasi-485 

metaweb to compare the indices. In contrast to β′OS, LNU and SIF can be applied in cases where the 486 
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local food web is developed by subsampling the regional metaweb, making them better measures of 487 

β-diversity than others. 488 

Ohlmann et al. (2019) proposed three β-diversity indices by dividing the γ diversity indices with the 489 

α-diversity indices for node diversity (BP), unweighted (BL), and weighted link diversity (Bπ). These β 490 

diversity indices can be calculated with the ‘Metanetwork’ (Ohlmann et al., 2022) R package. 491 

Recently, a couple of indices (βco-pres & βco-abs) were proposed and integrated into the R package 492 

‘econetwork’ (Miele et al., 2022) to understand the co-presence and co-absence of different nodes 493 

across the environmental gradients. These two indices jointly signify the effects of biotic interactions 494 

and environmental variables on the organization of ecological networks along environmental 495 

gradients. 496 

V.OVERVIEW OF RESEARCH ON METAWEBS 497 

Among the ten metawebs developed thus far (Table 3), only one metaweb was analyzed for temporal 498 

variations in local webs using the metaweb approach (Olivier et al., 2019), and one metaweb has not 499 

yet been analyzed (Strydom et al., 2022), whereas others were analyzed for spatial variations. Global 500 

marine metawebs are the largest metawebs ever made (Albouy et al., 2019). They investigate the 501 

influence of heterogeneous species distribution across latitudinal gradients and trophic interactions of 502 

marine fishes on their networks globally. They also studied whether the metaweb-exhibit modules 503 

corresponded to spatial species distribution across biogeographic regions. Ho et al. (2022) inferred 504 

aquatic and terrestrial food webs from a metaweb using empirically sampled local community 505 

composition data and examined how these webs have different structural and ecological properties 506 

along elevational gradients and various land use patterns. Grünig et al. (2020) studied the effects of 507 

climate change on the metawebs of managed plants and their novel pests. Maiorano et al. (2020) 508 

evaluated the effects of climatic and anthropogenic factors on the spatial structure of European 509 

tetrapod food webs using a metaweb. Metawebs were also analyzed for changes in trophic groups in 510 

response to environmental variations across European ecoregions. Trophic groups were formed by 511 

applying a stochastic block model to a metaweb (O’Connor et al., 2020). In Brazil, a metaweb was 512 
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developed to understand the variation in network properties, beta diversity, and latitudinal variation in 513 

the ant-plant interaction network (Dáttilo & Vasconcelos, 2019). The Eurasian rodent-ectoparasite 514 

metaweb was developed to study the climatic impacts of these interactions (Poisot & Gravel, 2014). 515 

Most meta-webs are constructed using observed literature-based data. However, the predictive 516 

approach is applied to two metawebs: the Canadian Mammal metaweb (Strydom et al., 2022) using a 517 

machine learning algorithm (Brownian motion) with graph embedding and the global marine 518 

metaweb (Albouy et al., 2019), using niche-based prediction with body size as a measure of niche. 519 

As a descriptor of α diversity, the following measures are used in different studies: species richness, 520 

interaction richness, link density, connectance, generality (weighted, non-weighted, standard 521 

deviation), vulnerability (weighted, non-weighted, standard deviation), clustering coefficient, the 522 

proportion of different species (basal, intermediate, predator, cannibal and omnivore), maximum 523 

trophic similarity, mean trophic level, maximum trophic level, Horn's index, nestedness, and 524 

modularity. Dáttilo and Vasconcelos (2019) used the H2′ index (Blüthgen, Menzel & Blüthgen, 2006) 525 

to measure the interaction diversity, which can only be used if local-level abundance data are 526 

available. βWN, βST, βW, βOS, β′OS, and ordination methods are used to understand network turnover 527 

(Table 2). 528 

A null model of the network was developed mathematically using certain parameters and conditions 529 

to test the hypotheses. Kortsch et al. (2019) used a null model to test whether an ecological network 530 

was formed randomly or influenced by environmental constraints. It was also used to test the evidence 531 

for the effects of colonization, extinction, habitat filtering, and dynamical constraints that result in the 532 

formation of local webs from a metaweb (Saravia et al., 2022). Multivariate analyses, such as 533 

principal component analysis, have been applied to define differences in different local networks 534 

(Braga et al., 2019). Various methods, such as correlation (Albouy et al., 2019; Braga et al., 2019), 535 

redundancy analysis (Poisot et al., 2017; Kortsch et al., 2019), principal component analysis (Braga et 536 

al., 2019), generalized additive modeling (Braga et al., 2019), structural equation modeling (Ho et al., 537 

2022), probabilistic modeling (Gravel et al., 2019), generalized dissimilarity modeling (Dáttilo & 538 
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Vasconcelos, 2019), and permutation accuracy importance (Braga et al., 2019) were used to 539 

understand the influence of environmental drivers on network structure. 540 

VI.CONCLUSION 541 

(1) The study of metawebs is essential for understanding spatiotemporal variations in 542 

communities and how they react to environmental changes, including climate change and 543 

anthropogenic disturbances.  544 

(2) One of the primary limitations of metaweb approach is the lack of information on species 545 

abundance and interaction strength, which are critical factors in developing local food webs. 546 

This knowledge is crucial for moving beyond mere structural analyses of the network and 547 

delving into its functional aspects. Recently, citizen science projects, such as eBird 548 

(https://www.ebird.org) (Sullivan et al., 2009), have greatly improved our ability to collect 549 

abundance data. However, there are still limits to public participation and expertise in the 550 

sampling and identification of lesser-known taxa; and methods to collect data on the 551 

interaction strength with citizen science initiatives remain unclear. Incorporating abundance 552 

data into the development of local food webs can help to better understand the variation of 553 

intra- and inter-network diversity using indices such as H2′ and d′ index. Furthermore, 554 

different ecosystem health-based and keystone indices can be calculated using as much data 555 

as possible in Ecopath. 556 

(3) The behavior of animals significantly affects ecological interactions, and collecting this 557 

information can help develop better metawebs and local subsets. 558 

(4) Metawebs faced the challenge of “false positives” in local webs, where certain species are 559 

included despite lacking interactions with other species in the metaweb. Although this issue 560 

can be addressed by removing these species from the matrix, they cannot exist without 561 

interacting with others unless the ecosystem is at an early successional stage. Better 562 

https://www.ebird.org/
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methodologies must be developed to overcome this problem. Environmental DNA and 563 

metabarcoding have recently emerged as promising approaches for improving species 564 

occurrence data (Saccò et al., 2022). However, there is still no method for revealing 565 

undersampled ecological interactions, except for predictive models. 566 

(5) Recent effort toward understanding the patterns of ecological networks along the 567 

environmental gradients through the ordination method or recently developed β-diversity 568 

indices (βco-pres & βco-abs) is quite encouraging. However, research in this area is still in its 569 

infancy. Future research should be conducted to understand how environmental variables 570 

function and affect network structure and predict network properties using environmental 571 

variables. 572 

(6) Furthermore, having a metaweb and a local food web is better than not having anything 573 

because no model is perfect. Therefore, a future approach should be taken to develop a 574 

metaweb for regions where no metaweb has been developed, by taking a predictive approach 575 

incorporating a species distribution model, climatic model, niche model, phylogenetic model, 576 

and mechanistic model. This can help us understand how interactions change spatially and 577 

temporally on local and regional scales. It is also possible to verify whether the metaweb 578 

changes over time. 579 

(7) We believe incorporating this future direction is essential for a better macroecological 580 

understanding. Wildlife conservation is incomplete without the proper knowledge of species 581 

interactions. A realistic ecological network will ultimately help policymakers find an answer 582 

to one of the most crucial questions about wildlife conservation: which species should be 583 

protected to enhance ecological interactions and ultimately save other species within the 584 

ecosystem. 585 
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Table 1. Summary of the different predictive models. 864 

Category Model Characteristics Advantage Disadvantage 

Niche-

based 

In
te

rv
al

it
y

 p
ro

p
er

ty
 m

o
d

el
 

Cascade Model 

(Cohen & 

Newman, 1985) 

Each species has a fixed 

probability of consuming other 

species with lower niche value 

This first model to 

predict ecological 

interactions. 

Does not allow cannibalism 

and feeding on the node 

with higher niche values. 

Niche Model 

(Williams & 

Martinez, 2000) 

Species interact within a niche 

range determined by beta 

distribution, with the center of 

the niche having either equal or 

lower niche value than the 

concerned species. 

Allows cannibalism 

and feeding on 

species with higher 

niche values. 

Most accurate in this 

category model but 

criticized for generating 

false interactions. 

Mechanistic 

diet-breadth 

model 

(Beckerman et 

al., 2006) 

This model mechanistically 

predicts niche size and 

connectance of nodes using 

optimal foraging theory. 

The niche and 

connectance are 

mechanistically 

calculated in this 

method. 

Needs information about 

many parameters compared 

to other models. Also, the 

predictive performance is 

low. 

In
te

rv
al

it
y

 p
ro

b
le

m
 m

o
d

el
 

Nested-

hierarchy 

model (Cattin et 

al., 2004) 

The model is based on the niche 

model and follows two rules: (i) 

predators with shared prey in 

their niche space will form 

more links with each other, (ii) 

additional links are formed 

randomly to reach the desired 

connectance. 

First attempt to break 

the intervality issue 

and create 

modularity, as seen 

in the real ecological 

network. 

Predictive performance is 

poor compared to the niche 

model. 

Generalized 

cascade model 

(Stouffer et al., 

2005) 

It follows the rule of the 

cascade model. Niche 

distribution follows either 

exponential or beta distribution. 

The model addresses 

intervality issues 

through random link 

Model performance is not as 

good as the niche model. 
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Predator selects prey randomly 

from niche space. 

formation within the 

niche space. 

Generalized 

niche model 

(Stouffer et al., 

2006) 

It attempted to modify the niche 

model by reducing the niche 

space to make it interval, then 

selecting some preys randomly 

from the remaining unreduced 

niche spaces. 

The model tries to 

overcome the 

intervality issue by 

creating random 

interactions outside 

the niche space. 

The predictive performance 

is not as good as the niche 

model. 

Minimum 

potential niche 

model (Allesina 

et al., 2008) 

The model creates a maximum 

niche space, then randomly 

forbids some nodes to develop 

interactions based on observed 

data. 

The model tries to 

overcome the 

intervality problem 

by randomly making 

some interactions 

forbidden from the 

niche space. 

This model produces fewer 

non-reproducible links 

compared to the niche 

model, although its 

predictive performance is 

not better. 

Interaction 

matrix-

based 

 Stochastic 

block model 

(Allesina & 

Pascual, 2009) 

The model uses network 

modularity properties to group 

similarly interacting nodes by 

organizing the interaction 

matrix. 

The model is capable 

of predicting large 

networks accurately. 

Performance to predict 

small-sized network is not 

good. 

 Latent-trait 

model (Rohr et 

al., 2010) 

It predicts the interaction with 

the help of one or more 

imaginary trait 

Capable of 

predicting large 

networks and has 

good predictive 

performance. The 

latent trait can be 

compared to 

functional traits. 

Predictive performance is 

not always good (29% 

correct prediction in one 

network). 
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 Matching-

centrality 

model (Rohr et 

al., 2016) 

It combined the latent trait 

model with the concept of 

degree distribution. 

Model performance 

is better than the 

latent-trait model. 

Sometimes the performance 

can be poor (50% correct 

prediction). 

 Coverage 

deficit model 

(Terry & Lewis, 

2020) 

The model is based on the 

Chao1 estimator to understand 

the incompleteness of the 

sampling of interactions in the 

network. 

The model tries to 

focus on a genuine 

issue of incomplete 

sampling of 

interactions. 

The predictive performance 

is worst in this category. 

Phylogeny-

based 

 Phylogeny-

based 

generalized 

linear model 

(Pearse & 

Altermatt, 

2013) 

This model predicts interaction 

with generalized linear model 

formulation with number of 

interaction partner of a node 

and phylogenetic distance. 

Predictive 

performance is good 

Requires phylogenetic data. 

 LS-net (Elmasri 

et al., 2020) 

It combines phylogenetic 

distances and interaction 

affinity between groups to 

predict the network with 

Bayesian model 

Predictive 

performance is good. 

Requires phylogenetic data. 

Supervised 

learning-

based 

 Simple 

supervised 

learning 

(Desjardins-

Proulx et al., 

2017) 

This model learns from 

observed interactions and 

explanatory variables to predict 

missing links. 

Capable of handling 

large data. Predictive 

performance is good. 

Requires large data and 

information about 

explanatory variables. 
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 Graph 

embedding 

(Strydom et al., 

2021) 

This model reduces the 

dimension of the ecological 

network and uses supervised 

learning to predict interactions. 

This model reduces 

the problem of the 

very high dimension 

of the ecological 

network. 

Requires large data and 

information about 

explanatory variables. 

 865 

 866 

 867 
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Table 2. Summary of network metrics and their previous application in different research. 869 

Category Metric Definition Applications 

M
et

ri
cs

 t
o

 d
es

cr
ib

e 
a

 n
et

w
o

r
k

 (
α

-d
iv

er
si

ty
 a

n
d

 γ
-d

iv
er

si
ty

) 

G
en

er
al

 i
n

d
ic

es
 

Interaction 

richness 

Number of interactions in a community (Kortsch et al., 2019; Albouy et al., 

2019; Olivier et al., 2019; Grünig 

et al., 2020) 

Linkage 

density 

Average number of links per node (Kortsch et al., 2019; Gravel et al., 

2019; Albouy et al., 2019; Braga et 

al., 2019; Olivier et al., 2019) 

Connectance Proportion of links realised out of the maximum possible 

links. 

(Kortsch et al., 2019; Gravel et al., 

2019; Albouy et al., 2019; Dáttilo 

& Vasconcelos, 2019; Braga et al., 

2019; Olivier et al., 2019; Ho et 

al., 2022) 

 Degree 

distribution 

Probability that the number of species having a particular 

number of interactions 

 

 Clustering 

coefficient 

Probability that two linked species are also linked with a 

third species. 

(Kortsch et al., 2019; Braga et al., 

2019) 

 Modularity Measures how much the network is distributed to 

subsystems of densely connected nodes. 

(Kortsch et al., 2019; Albouy et al., 

2019) 

 Nestedness Measures how much the specialist edges are a subset of 

generalist edges in the network. 

(Dáttilo & Vasconcelos, 2019; Ho 

et al., 2022) 

 Diameter of 

the network 

Longest of the shortest distances between every pair of 

nodes 

 

 AP Overall α-diversity at for weighted or unweighted nodes.  (Ohlmann et al., 2019) 

 GP Overall γ-diversity at for weighted or unweighted nodes. (Ohlmann et al., 2019) 

 AL Overall α-diversity at for links in binary interaction matrix. (Ohlmann et al., 2019) 

 GL Overall γ-diversity at for links in binary interaction matrix. (Ohlmann et al., 2019) 

 Aπ Overall α-diversity at for weighted interaction matrix. (Ohlmann et al., 2019) 

 Gπ Overall γ-diversity at for weighted interaction matrix. (Ohlmann et al., 2019) 
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F
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d
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eb
 s

p
ec

if
ic

 i
n
d

ic
es

 
Maximum 

chain length 

Longest of the maximal food chain (a chain linking top and 

basal species) 

 

 Average chain 

length 

Average of the maximal food chain (Kortsch et al., 2019; Braga et al., 

2019) 

 Median chain 

length 

Median of the maximal food chain  

 Standard 

deviation of 

chain lengths 

The standard deviation of the maximal food chain  

 Vulnerability Mean number of consumers per resource (Kortsch et al., 2019; Albouy et al., 

2019; Braga et al., 2019; Olivier et 

al., 2019) 

 Generality Mean number of resources per consumer (Kortsch et al., 2019; Albouy et al., 

2019; Braga et al., 2019; Olivier et 

al., 2019) 

 VulSD Standard deviation of vulnerability (Kortsch et al., 2019; Albouy et al., 

2019; Braga et al., 2019; Olivier et 

al., 2019) 

 GenSD Standard deviation of generality (Kortsch et al., 2019; Albouy et al., 

2019; Braga et al., 2019; Olivier et 

al., 2019) 

 Mean trophic 

level 

Mean of the prey-averaged trophic level  (Kortsch et al., 2019; Albouy et al., 

2019; Braga et al., 2019; Olivier et 

al., 2019) 

 Maximum 

trophic level 

Maximum of the prey averaged trophic level (Braga et al., 2019) 

 Level of 

omnivory 

Level of omnivory of each species is the standard deviation 

of the trophic level of its resources. 

(Kortsch et al., 2019; Albouy et al., 

2019; Braga et al., 2019) 

 Mean 

maximum 

Mean maximum similarity of two nodes in terms of shared 

resources and consumers, based on Jaccard similarity 

(Olivier et al., 2019) 
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trophic 

similarity 

 Proportion of 

basal species 

Proportion of nodes with no prey (Kortsch et al., 2019; Albouy et al., 

2019; Braga et al., 2019) 

 Proportion of 

intermediate 

species 

Proportion of nodes with both prey and predator (Kortsch et al., 2019; Albouy et al., 

2019; Braga et al., 2019) 

 Proportion of 

top species 

Proportion of nodes with no predator (Kortsch et al., 2019; Albouy et al., 

2019; Braga et al., 2019) 

 Proportion of 

omnivores 

Proportion of nodes that consumes other nodes belongs to 

more than one trophic level 

(Kortsch et al., 2019) 

 Proportion of 

cannibals 

Number of nodes having self-edge (Kortsch et al., 2019) 

M
et

ri
cs

 t
o

 u
n

d
er

st
a

n
d

 i
n

te
r
a

ct
io

n
 t

u
rn

o
v

er
 (

β
-d

iv
er

si
ty

) 

 βW Overall dissimilarity of interaction between two networks (Kortsch et al., 2019) 

 βST Variation of interaction between two networks due to 

variation in their species composition 

(Olivier et al., 2019) 

 βOS Variation of interaction between shared species of two 

networks 

 

 β′OS Difference between the interaction of two species in local 

network and metaweb 

(Poisot et al., 2017; Dáttilo & 

Vasconcelos, 2019) 

 LNU The proportion of unique interaction in a local network with 

its quasimetaweb 

 

 SIF Mean of occurrence of shared interactions of local networks 

with quasimetaweb 

 

 BP Overall β-diversity of weighted/unweighted nodes between 

the local webs 

(Ohlmann et al., 2019) 

 BL Overall β-diversity of links between the local webs for 

binary interaction matrix. 

(Ohlmann et al., 2019) 
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 Bπ Overall β-diversity of links between the local webs for 

weighted interaction matrix.  

(Ohlmann et al., 2019) 

 βco-pres & βco-

abs 

Measures co-presence and absence of different nodes along 

the environmental gradients 

 

 870 

871 
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Table 3. List of different metawebs developed so far. For the metaweb construction method, 'classical’ 872 

and 'predictive' corresponds to section 2 of this article. In the local web construction method, 'predicted' 873 

means interactions are predicted from metaweb, whereas 'observed' means interactions are observed 874 

locally. The column 'analysis method' indicates how the metawebs were analysed. Here, spatial and 875 

temporal indicates that local webs were analysed for spatial and temporal changes, respectively; ‘α’ 876 

indicates that α diversity was analysed. While in the case of β diversity, ‘β1’ indicates that indices are 877 

estimated to understand β diversity, ‘β2’ indicates ordination used to understand the turnover, and ‘β3’ 878 

indicates both indices & ordination are used to understand the β diversity. 879 

Metaweb Ecosystem Taxa  Method of network 

construction 

Analysis 

method 

Reference 

Metaweb Local 

web 

European 

Tetrapod 

metaweb 

Terrestrial Mammals (288), 

birds- (509-510), 

Reptiles (239-250), 

Amphibians (103-

104)  

Classical Predicted Spatial 

 α β1 

(Braga et al., 

2019; 

Maiorano et 

al., 2020) 

German 

Blight 

Metaweb 

Marine Benthic epifaunal 

invertebrates (21), 

fish (27)  

Classical Predicted Temporal 

α β1 

(Olivier et al., 

2019) 

Barent sea 

metaweb 

Marine 233 trophospecies 

belong to planktons 

and benthos 

Classical Predicted Spatial 

 α β3 

(Planque et al., 

2014; Kortsch 

et al., 2019) 

Canadian 

mammals 

metaweb 

Terrestrial and 

semi-aquatic 

ecosystem 

- Predictive - - (Strydom et 

al., 2022) 

Global 

Marine 

Marine Fishes (11,365)  Predictive Predicted Spatial 

 α 

(Albouy et al., 

2019) 
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Ecosystem 

metaweb 

Northern 

Europe 

Host-

parasite 

metaweb 

Terrestrial 

(agricultural) 

Plants (52), 

herbivores (96), 

Parasitoids (127) 

Classical Observed Spatial 

 α 

(Gravel et al., 

2019) 

European 

crop-forest 

pest 

metaweb 

Terrestrial Pest (89), Host plant 

(126) 

Classical Predicted Spatial (Grünig et al., 

2020) 

Eurasian 

rodent-flea 

metaweb 

Terrestrial Rodents (121), 

ectoparasites (206) 

Classical Observed Spatial 

β2 

(Poisot et al., 

2017) 

Brazilian 

ant-tree 

metaweb 

Terrestrial Ants (100) and tree 

(177) 

Classical Observed Spatial 

 α β1 

(Dáttilo & 

Vasconcelos, 

2019) 

Swiss Blue 

and Green 

metaweb 

Terrestrial and 

Freshwater 

Plant (2016), 

butterfly (191), 

grasshopper (109), 

bird (155), stream 

invertebrate (248), 

stream fish (78) 

Classical Predicted Spatial 

 α β2 

(Ho et al., 

2022) 

 880 

 881 

  882 
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Figure legends 883 

Figure 1. Concept of the metaweb. A, B and C are three bipartite undirected ecological networks 884 

documented from a region. Here, circles represent nodes, and lines represent edges. The metaweb (M) 885 

is a combination of all nodes and potential interactions documented from that region (M=A⋃B⋃C) 886 

Figure 2: Classical approach of developing metaweb. (1) Defining the ecological and geographical 887 

boundary of the metaweb, (2) preparing a list of species from the defined area, categorizing them by 888 

trophospecies or functional groups or clumping them to a higher taxonomic level, (3) developing an 889 

interaction matrix of the species, where in this figure, A-F and P-U are two groups of species with only 890 

intergroup interactions possible, (4) resolving the problem of species that do not interact with other 891 

species (in this case, P) by (A) either merging it with another similar species or (B) removing it from 892 

the matrix, and (5) presenting the resulting matrix as a graph, which is the metaweb.  893 

Figure 3. A recommended method for metaweb development. See section 2.2.7 for the elaboration. 894 

Figure 4. A suggested guideline to develop local web from the metaweb. See section 3 for the detailed 895 

description. 896 

 897 

 898 

  899 
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