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Summary By providing images of the globe, measured fre-
quently across several optical domains, in the form of public
data, EO has high potential to facilitate and advance biodiver-
sity monitoring [33]. However, there is currently a consen-
sus that EO cannot contribute to monitoring genetic diversity
[33, 32]. Here, we challenge this consensus by explaining
how EO can help to develop the headline and complemen-
tary indicators of genetic diversity recently adopted at the
15th Conference of the Parties to the CBD (COP15). We pro-
pose that EO should be rapidly integrated into genetic diver-
sity monitoring workflows to accelerate the ongoing devel-
opment of these indicators while helping Parties fulfill their
reporting commitments.

Use Earth Observation (EO) for monitoring and re-
porting on the Kunming-Montreal Global Biodiversity
Framework (GBF) indicators of genetic diversity. The
genetic variation distributed across the individuals and popu-
lations of Earth’s species is essential for their adaptation and
persistence in changing environments, and for the mainte-
nance of biodiversity [6, 24]. Its importance is recognized
within the monitoring framework of the GBF adopted at
COP15 [3], which includes a headline indicator on the main-
tenance of genetic diversity in species populations. Yet de-
spite rapid advances in sequencing technology, it remains la-
borious and expensive to monitor changes in genetic diver-
sity by repeatedly sampling populations and sequencing their
DNA. Fortunately, the COP15 headline indicator and other
key indicators of genetic diversity can be assessed based on
information about species populations inferred from local
knowledge, field surveys, and other sources, and do not nec-
essarily require genetic sequence data [24, 16, 17]. This rep-
resents a useful but indirect means of genetic diversity assess-
ment, and additional biodiversity observation data is needed
to improve indicator quality [23]. Here, we present a frame-
work and show examples for how existing, public data from
EO satellites can provide complementary biodiversity obser-
vations that could immediately be used to improve monitor-

ing and reporting on indicators of genetic diversity (Figure
1).
EO is generally not considered for genetic diversity assess-
ment because genetic information cannot be retrieved eas-
ily or directly from satellite observations [32]. However, EO
products can directly help countries to locate and delineate
species populations, and monitor their change over time. We
not only show how EO can facilitate genetic diversity moni-
toring as implemented within the GBF, but also look ahead to
potential EO contributions in assessing genetic Essential Bio-
diversity Variables (EBVs). We call for the advising of Par-
ties on how to use existing EO products for genetic diversity
monitoring and for the co-development and dissemination of
accessible tools, consistent with the approach proposed by
[33] for other CBD indicators.

Key indicators of genetic diversity can be effectively
monitored without genetic sequence information. Ef-
fective conservation and management of biodiversity rely
on maintaining sufficient genetic diversity within species to
safeguard adaptive potential, especially under rapid environ-
mental change [24]. This diversity is harbored within and
between populations of each species. A key concept from
population genetics, the effective population size (Ne) indi-
cates a population’s probability to lose its genetic variation,
often due to random chance (“drift”) or inbreeding. Con-
cretely, Ne represents the size of an imaginary population
that meets certain simplifying assumptions and which is pre-
dicted to lose genetic diversity at the same rate as a given real
population [18, 36]. Ne can be estimated from population
genetic data and is approximately one order of magnitude
smaller than the census number of reproductively mature in-
dividuals (Nc) in the real population [8, 24, 15, 16]. The
proportion of populations with an Ne > 500, which is gen-
erally considered safe to avoid genetic erosion (although it is
not a guarantee [9]), is a headline indicator provided by the
monitoring framework for the GBF [3] and can be assessed
in the absence of DNA sequence data by estimating whether
the Nc of populations is above or below 5000 [19, 24, 17]. A
complementary indicator requires assessing the proportion of



0.4 Publicly available EO resources can, and should, already support genetic diversity monitoring.

Fig. 1. Earth Observation (EO) facilitates key steps in genetic diversity monitoring and conservation of species populations. EO provides public, global data at high
temporal resolution and spatial coverage, in the form of standardized observations that can complement and fill gaps in monitoring information provided by local knowledge,
field surveys, citizen science, and other complementary information sources. Together, these support the headline indicator for monitoring and reporting on genetic diversity:
the proportion of populations within a species having an effective population size (Ne) > 500 (corresponding approximately to a census number of reproductively mature
individuals (Nc) > 5000). Knowledge of baseline conditions and periodic ground-based assessments can be combined with EO-derived information to establish baseline
data. In between ground-based assessments, parameters indicative of population presence, extent, and size can be monitored frequently from space, allowing systematic
checks of critical events that may require intervention or adjustment of other monitoring actions. In the conceptual example shown here, EO indicates a problematic drop
in population size (P1) occurring in between ground-based monitoring activities, which could facilitate timely interventions, such as targeted breeding programs or habitat
protection and restoration.

populations maintained within a species (extant populations
divided by the original number at a baseline date). These
indicators are valuable, particularly in the absence of DNA
sequence data – which may be limiting especially when mon-
itoring species populations in megadiverse countries – as re-
cently demonstrated in pilot studies conducted across nine
countries, calculating indicators for around 100 species per
country [17].

Monitoring genetic diversity from space
Together with sufficient local knowledge of the state
of focal populations, EO data can help to obtain
baseline information such as numbers of populations
maintained (also compared to historical satellite data)
and their potential or actual locations, boundaries,
Nc and Ne values. EO can then be used to mon-
itor changes in population status, habitat condition,
and habitat extent, to estimate the probability that any
known population has disappeared or dropped below
the threshold of Ne > 500 (Nc > 5000), and to set
priorities for field surveys and interventions.
“Sufficient local knowledge” implies both georefer-
enced population areas as well as at least approximate
census size (Nc) or estimated population density.

Publicly available EO resources can, and should, al-
ready support genetic diversity monitoring. Dozens of
orbiting satellites currently provide global, free, and open
data on features of the Earth’s surface, at spatial resolutions
ranging from about 10 m to several km, and at temporal res-
olutions ranging from days to weeks over multiple decades
[37]. The resulting EO products can directly help countries
to locate, delineate, and characterize species populations, and
monitor their change over time. Components of habitat suit-
ability derived from these EO products, including tempera-
ture, precipitation, and topography, information on land sur-
face phenology, and characteristics including vegetation in-
dices and forest cover, can provide input for species distri-
bution models and otherwise support the assessment of suit-
able habitats and inform field surveys [34, 4, 17]. In cases
where georeferenced areas of species populations are already
known, time-stamped images from satellite sensors can facil-
itate estimations of population maintenance, loss, and change
by showing the status of Earth surface features associated
with populations: habitat characteristics and their change
over time; or even by revealing individual species and their
activity. Machine learning models may be trained to directly
predict population presence and characteristics, including ge-
netic characteristics, from satellite imagery [22]. These can
guide the prioritization of sites for in-situ population surveys
and conservation efforts, and help to quantify change and to
set baseline values.
EO data can further support assessing changes in Nc above
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or below the threshold value of 5000, and Nc estimates
will be more accurate where in-situ counts are available for
comparison. For example, it is already possible to monitor
the proportion of populations above or below Nc ≈ 5000
for emperor penguins from space using publicly available
EO products. The Sentinel Playground interface (https://
www.sentinel-hub.com/explore/) facilitated the rapid review
of known emperor penguin habitats in Antarctica, leading to
the discovery of seven previously unknown colonies by col-
oration typical of penguin guano against the snow and ice
[11]. The resulting shapefile of all known extant colonies
could be used to monitor change over time in the propor-
tion of populations maintained, using EO data. An exist-
ing metapopulation model of emperor penguins under cli-
mate change [20] further supports predictions of colony per-
sistence and growth or shrinkage of Nc that can be checked
against public EO data, ideally combined with public access
to selected scenes with higher spatial resolution from com-
mercial EO products. In addition to the relatively advanta-
geous case of emperor penguins (high contrast between dark
guano and white surface), Landsat Enhanced Thematic Map-
per (ETM) imagery was used to identify guano from other
seabirds against background geology and vegetation [10]. In
these examples, atmospheric corrections introduce some un-
certainty, and there is a bias towards identifying large guano
concentrations; satellite-based counts of individuals are also
associated with high uncertainty in these cases, and best sup-
ported by field surveys [10, 11].

As a second example, it is already possible to estimate and
monitor changes in Nc from space for many temperate for-
est trees. Public EO products support local and global tree
inventories as well as forest cover change detection, as ex-
emplified by the Global Forest Watch initiative (https://www.
globalforestwatch.org/) [35, 13, 30]. Public tools are increas-
ingly available to classify tree species from EO data, espe-
cially for mono-dominant species in temperate forests, al-
though high-spatial-resolution data (i.e., meter to sub-meter
spatial data) are generally still required [1]. However, such
classification results can be used to obtain a baseline esti-
mate of Nc, and detection of changes from this baseline can
be achieved with EO products having lower spatial resolution
e.g. via changes in land cover, forest extent, and biophysical
or biochemical traits typical of particular species and groups.
Discrimination of tropical forest tree species from EO data
is more challenging and likewise benefits from greater spa-
tial resolution than is available from public EO platforms [7],
but is feasible for some dominant and large-crowned species,
and when incorporating the more detailed spectral informa-
tion becoming available with the advent of space-based imag-
ing spectroscopy [28].

Advances in assessing biophysical and biochemical prop-
erties of forest canopies with EO, which provides detailed
information on characteristics of tree populations and their
functioning in different environments – as well as aspects
of their habitat provisioning – support moving beyond the
GBF genetic indicators toward assessing genetic EBVs [2,
14, 29, 27, 38]. Upcoming imaging spectroscopy missions

including the European Space Agency’s Copernicus Hyper-
spectral Imaging Mission for the Environment (CHIME), the
US National Aeronautics and Space Administration Surface
Biology and Geology (SBG) mission, and the French-Indian
Trishna mission may provide additional opportunities to de-
velop space-based proxies for genetic diversity [34, 38], as
indicated by studies using aerial imaging spectroscopy in
combination with 3D structural information from LiDAR ob-
servations to assess genetic and phylogenetic differentiation
among temperate and tropical forest trees [12, 5, 31]. How-
ever, we note that the environmental dependence and tempo-
ral dynamics of plant canopy spectra must be accounted for
when using these data to distinguish species and assess their
genetic variation [26, 25, 5].

Make EO more accessible to reporting Parties. Impor-
tant EO products should be made more accessible to coun-
tries and independent organizations for biodiversity moni-
toring and reporting. The examples above use EO prod-
ucts that are freely available to the public (e.g. via https:
//dataspace.copernicus.eu/browser/), but specialized knowl-
edge is required for their use and interpretation, and report-
ing organizations may not be aware of the availability of
these products or know how to effectively use them to mon-
itor genetic diversity. Capacity-building efforts should fo-
cus first on supporting Parties to access and utilize public
EO tools through training and dissemination. These efforts
and the increased use of EO platforms by Parties should
then inform and stimulate the co-creation of new tools and
applications to improve the accessibility and usefulness of
EO data for biodiversity monitoring and reporting, for ex-
ample through the “BON-in-a-Box” platform from GEO
BON (https://boninabox.geobon.org/frontend/index). Pro-
moting the use of EO data for genetic diversity monitoring
may also encourage the co-development of new monitoring
products from EO platforms to meet practitioners’ needs. A
framework for integrated user-requirement analysis incorpo-
rating policy, EO, and ecology was recently proposed [33].
Co-creation driven by the needs of countries, national and
international organizations, combined with a deep interdisci-
plinary understanding and guided by local knowledge, can
support standardized and effective biodiversity monitoring
complemented by citizen science (Figure 1) and, further-
more, provide data for regions that may not be well covered
by field surveys [21]. In addition to increasing access to EO
data beyond basic map products for use in monitoring, the
scientific value of adding EO data to genetic diversity mon-
itoring must be tested and further developed through cases
in which the frequency and quality of information from EO
products improve genetic diversity indicators and eventually
contribute to the assessment of genetic EBVs. For exam-
ple, the biochemical information encoded in imaging spec-
troscopy data over landscapes has revealed cases in which the
dissimilarity of detected spectra corresponds to differences in
genotype-by-environment interactions that can be attributed
to genetic distance or to differences in groups of species and
their traits. These studies suggest an approach that intersects
with classical genetics and conducts phenotyping remotely
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by aerial and/or space-based platforms; one major challenge
is to genetically interpret the composites of organisms in a
single pixel [5, 14, 39].
We hope to foster the use of EO data as existing, public infor-
mation for biodiversity monitoring by providing a framework
and concrete examples, and thus to help Parties achieve their
2030 GBF commitments [17]. The rapid integration of ex-
isting, publicly available EO products into genetic diversity
monitoring and reporting will facilitate the location, delin-
eation, and monitoring of species populations as well as their
conservation, and will help the Parties to make informed de-
cisions about the effective use of their monitoring resources.
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