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Abstract 16 

Social systems vary enormously across the animal kingdom, with important implications for 17 

ecological and evolutionary processes such as infectious disease dynamics, anti-predator 18 

defense, and the evolution of cooperation. Comparing social network structures between 19 

species offers a promising route to help disentangle the ecological and evolutionary 20 

processes that shape this diversity. Comparative analyses of networks like these are 21 

challenging and have been used relatively little in ecology, but are becoming increasingly 22 

feasible as the number of empirical datasets expands. Here, we provide an overview of 23 

multispecies comparative social network studies in ecology and evolution. We identify a 24 

range of advancements that these studies have made and key challenges that they face, and 25 

we use these to guide methodological and empirical suggestions for future research. Overall, 26 

we hope to motivate wider publication and analysis of open social network datasets in animal 27 

ecology. 28 

 29 

  30 
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Introduction 31 

The social lives of animals vary immensely and across many axes (Hinde 1976; Whitehead 32 

1997; Hobson et al. 2019; Prox & Farine 2020). In some species, individuals live 33 

predominantly solitary lives, only interacting with others sporadically, while others form 34 

spectacular aggregations of many thousands. Similarly, while some species live in stable 35 

groups and form social bonds that last a lifetime (Mitani 2009; Bruck 2013; Dakin & Ryder 36 

2020), in others social preferences can be weaker and the identity of social partners 37 

relatively unimportant. Variation among social systems is closely tied to ecological and 38 

evolutionary pressures faced by different populations (Kurvers et al. 2014; He et al. 2019; 39 

Evans et al. 2020; Cantor et al. 2021b). Variation in well-studied benefits (e.g. access to 40 

information, avoidance of predation) and costs (e.g. competition, parasitism) of social 41 

interactions across species therefore creates associations between particular social systems 42 

and specific environments (Leu et al. 2016) or taxonomic groups (Chak et al. 2017). 43 

However, given the ecological environment can also cause variation in social structure within 44 

populations (e.g. (Jordán et al. 2021)), it is important to decompose intra- and inter-specific 45 

variation in social structure. Because social structure alters the course of evolution (Fisher & 46 

McAdam 2017, 2019), determines the outcome of ecological processes like disease spread 47 

(Keeling & Eames 2005; White et al. 2017), and potentially influences a species’ resilience to 48 

global change (Fisher et al. 2021), understanding drivers of inter-specific variation in social 49 

structure has important implications and applications. Comparative approaches are popular 50 

ways for researchers examining the evolutionary ecology of sociality to understand these 51 

processes (Lukas & Clutton-Brock 2013; Lukas & Huchard 2014; Kappeler & Pozzi 2019). 52 

Nevertheless, there are substantial challenges applying comparative approaches in 53 

socioecology, of which a major one is classifying or quantifying variation in social systems. 54 

Recent work (e.g. (Lang & Farine 2017; Prox & Farine 2020)) has begun to provide higher-55 

dimensional classifications of sociality, but there remain limitations in the power and 56 
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universality of these approaches, as qualitative classifications only provide coarse 57 

approximations. Further, in many contexts, it is the specific pattern of interactions that plays 58 

a role rather than the type of social system per se. With the popularisation of social network 59 

analyses in behavioural ecology, the time is ripe to apply more quantitative cross-species 60 

comparisons that address diverse questions around interspecific variation in social structure 61 

and dynamics. 62 

Social networks are an integral part of a behavioural ecologist’s toolkit (Farine & 63 

Whitehead 2015; Webber & Vander Wal 2019). By linking individual behaviour to group- and 64 

population-level structure and outcomes (Fig. 1), they have helped study diverse aspects of 65 

animal behaviour including dominance (Shizuka & McDonald 2012; Hobson et al. 2021a), 66 

cultural evolution (Voelkl & Noë 2008; Cantor et al. 2021a), and epidemiology (Keeling & 67 

Eames 2005; Bansal et al. 2007; White et al. 2017). Applications of network approaches in 68 

socioecology have grown rapidly and now encompass substantial geographic and taxonomic 69 

diversity, albeit with remaining biases (Webber & Vander Wal 2019).  70 

Despite the growth in animal social network analyses, few studies have undertaken 71 

multispecies comparisons of social networks or used meta-analytic approaches to test 72 

broader evolutionary or ecological patterns. Nevertheless, multispecies analyses of social 73 

networks have multiple advantages for comparative analysis in social ecology, offering 74 

valuable tools to summarise the diversity of animal social systems and tease apart inter-75 

specific variation in social structure. These benefits emerge from network descriptions 76 

providing: diverse measures to succinctly quantify different aspects of social structure; the 77 

ability to quantify fine-scale variation in social systems beyond features like group size; and a 78 

way to unify analyses across social scales, from individual- to group-, and population-level 79 

features. For example, network approaches have moved discussion about sociality and the 80 

costs of parasitism beyond group size to factor in combined effects of group structure and 81 

individual social relationships (Nunn et al. 2015; Briard & Ezenwa 2021). This provides 82 

insight into the strategies with which animal societies balance the trade-offs between 83 
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parasitism and the benefits of sociality. Similarly, network approaches’ ability to quantify 84 

social structure across scales has revealed multilevel social systems in taxonomically diverse 85 

species, demonstrating variation in the mechanisms underlying these structures 86 

(Papageorgiou et al. 2019; Camerlenghi et al. 2022). Two main issues have limited 87 

comparative analyses of social networks: i) it is challenging to compare the structure of 88 

networks of different sizes (Faust 2006), especially when they are generated by different 89 

behavioural processes (Hobson et al. 2021b); and ii) there has been a shortage of animal 90 

social network datasets available to compare.  91 

With the recent development of multi-species repositories of social network data (Box 92 

1) and an increasingly advanced statistical toolkit, there is now the potential to overcome 93 

these issues and exploit comparative social network analyses in ecology and evolution. 94 

Here, we review existing studies that have undertaken such analyses. We then identify 95 

outstanding challenges to successfully employing comparative and meta-analytic 96 

approaches with social network data, suggesting potential solutions and highlighting specific 97 

areas in need of methodological research, as well as identifying promising areas for future 98 

empirical research. Overall, our paper provides a roadmap for conducting these analyses 99 

and aims to inspire the development of new statistical tools to increase their accessibility, as 100 

well as motivating the collection and publication of further open social network datasets. 101 

 102 

The current state of comparative network analysis 103 

The Data: As of 3rd November 2022 we uncovered 49 studies that compared multiple 104 

species’ social networks, spanning 16 years (2007-2022; Table S1). Initially, these studies 105 

typically compared a small number of species and networks; however, over time, these 106 

numbers have increased exponentially (Figure 1). While some studies still compare only a 107 

few species, there are now many that incorporate several hundred networks encompassing 108 

dozens of species – three of which also included humans. These larger studies often 109 
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featured replication of several networks within each species, (potentially) allowing estimation 110 

of within- and between-species variation in network structure. On three occasions 111 

researchers developed (or are developing) substantial publicly available databases (Box 1). 112 

Otherwise, larger studies tended to produce their network datasets through literature 113 

searches and independently contacting researchers to request data (Nunn et al. 2015; 114 

Rocha et al. 2021), or by aggregating datasets that the authors themselves collected (Bhadra 115 

et al. 2009; Pasquaretta et al. 2014). Given the few independent datasets, substantial reuse 116 

of said datasets, and growing exploitation of the animal social network repository (ASNR; 117 

Box 1), there has been encouragingly little duplication of effort in producing network meta-118 

datasets. In the near future, researchers carrying out comparative behavioural analyses will 119 

be well-placed to use much of the available data, rather than encountering issues with 120 

dataset harmonisation and unification – as has been the case with datasets of host-pathogen 121 

associations, for example (Gibb et al. 2021). 122 

 123 

Taxonomic skew: Many studies (19/49; 39%) focused primarily or entirely on primates, with 124 

a particular focus on macaques (Macaca sp.; e.g. (Sueur et al. 2011; Ciani et al. 2012; 125 

Balasubramaniam et al. 2020)). Otherwise, there was broad coverage of different taxonomic 126 

classes, including fish (Roose et al. 2022), hymenoptera (Bhadra et al. 2009), and elephants 127 

(de Silva & Wittemyer 2012), as well as large-scale studies that included diverse vertebrate 128 

classes and some invertebrates (Sah et al. 2017; Rocha et al. 2021). It is unclear how this 129 

taxonomic skew could influence the results of pan-dataset analyses. 130 

 131 

Species-level analyses: Many comparative papers (11/49=22%) examined how species’ 132 

traits correlated with their social network topology with others doing so qualitatively. For 133 

example, several analyses linked primates’ cognition or behaviour with the structure of their 134 

networks (Sueur et al. 2011; Pasquaretta et al. 2014). Conversely, two studies used the 135 

ASNR to examine how species’ contact network structures were associated with their 136 
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parasite communities, focusing on parasite species richness (Poulin & Filion 2021) or the 137 

evolution of parasite species transmitted over the focal host’s contact networks (Collier et al. 138 

2022). These studies incorporated external databases of host-parasite associations 139 

(Stephens et al. 2017) and human parasite traits (Richardson et al. 2001; European Centre 140 

for Disease Control 2016), as illustrated in Figure 2. 141 

 142 

Generative models: Two papers (2/49=4%) developed generative models for social network 143 

formation, which they validated using multi-species network datasets. For example, (Ilany & 144 

Akcay 2016) developed a model for network formation by social inheritance, validating their 145 

predicted networks using data from four species. 146 

 147 

Methodological studies: Several studies (6/49=12%) used animal social network meta-148 

datasets to illustrate new methods or confirm trends in network science or related fields. 149 

These included identifying novel scaling trends (Rocha et al. 2021; Ward 2021; Ojer & 150 

Pastor-Satorras 2022), producing new approaches (Shizuka & Farine 2016; McDonald & 151 

Hobson 2018; Ward 2021; Ojer & Pastor-Satorras 2022), or deriving new network traits 152 

(Péron 2023). 153 

 154 

Dynamical simulations: A particularly common approach (13/49 studies; 27%) to 155 

comparative social network analysis was the simulation of transmission dynamics (e.g. 156 

(Nunn et al. 2015; Sah et al. 2017, 2018; Romano et al. 2018; Collier et al. 2022; Fountain-157 

Jones et al. 2022)). This approach may be so popular because, so far, networks have been 158 

used to test general ideas for a broad set of potential pathogens. This reduces the 159 

importance of disparity in data collection methods and timescales, as (to some extent) the 160 

networks are providing a substrate to test ideas in network epidemiology rather than to 161 

provide broader ecological insights. These approaches have also often used unweighted 162 
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(binary) versions of networks, mitigating the impact of variable edge weighting across 163 

different studies (see below). 164 

 165 

Individual-level meta-analyses: Finally, among our identified studies, there was only one 166 

(1/49=2%) “true” meta-analysis – i.e., one that did not use raw data, but rather analysed a 167 

series of model estimates published in other studies (Briard & Ezenwa 2021). All other 168 

papers derived network-level traits and carried out species-level comparative analyses. We 169 

capture the distinction between these approaches in Box 2. 170 

 171 

Biological overview of comparative network studies 172 

The 49 studies we found tackle diverse research questions across multiple ecological 173 

disciplines. We identify the major themes addressed so far, providing a synthesis within each 174 

theme based on the objectives and findings of comparative network studies. 175 

 176 

In behavioural ecology: Comparative network analyses in behavioural ecology (23 studies) 177 

have predominantly been used to provide insights into the structure and dynamics of animal 178 

groups, addressing these questions across social scales. Frequently, it has been applied to 179 

quantify population-level social structure for taxonomically similar species (e.g. bats: (August 180 

et al. 2014); elephants: (de Silva & Wittemyer 2012); equids: (Sundaresan et al. 2007; 181 

Rubenstein et al. 2015)). In these cases, using a comparative approach can reveal fine-scale 182 

differences in social structure that were previously undetected (e.g. (Sundaresan et al. 183 

2007)). These studies have often demonstrated how ecological differences between closely 184 

related species explain variation in network structure. For example, different social network 185 

structures between Australian snubfin Orcaella heinsohni and Indo-Pacific humpback 186 

dolphins Sousa chinensis were attributed to differences in diet, prey availability and feeding 187 

behaviour (Parra et al. 2011). Similarly, the role of mating systems (Matsuda et al. 2012) and 188 
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variation in individual traits, such as cognitive capabilities (Pasquaretta et al. 2014), have 189 

also been investigated. One underused approach is applying comparative network analyses 190 

to find general rules for animal social structure. For example, (Rocha et al. 2021) found a 191 

potential power law relationship between group size and social connectivity, with evidence 192 

that it varied depending on social interaction type.  193 

At a finer social scale, comparative network analyses have also been used for within-194 

group social dynamics, including dominance hierarchies (Balasubramaniam et al. 2018; 195 

Hobson et al. 2021a) and social stability (Sueur et al. 2010, 2011). Here comparing between 196 

species can identify general patterns in within-group interactions. For example, (Hobson et 197 

al. 2021a) compared dominance networks across 172 groups from 85 species to show most 198 

species distributed aggressive interactions evenly across all lower-ranked individuals rather 199 

than on either close competitors or the weakest individuals. This has implications for 200 

quantifying individual variation in the costs and benefits of social strategies. Comparative 201 

studies in macaques (Macaca sp.) have investigated how social networks influence fission-202 

fusion dynamics and collective behaviour, for example demonstrating how the importance of 203 

kinship differs between socially tolerant and intolerant species (Sueur et al. 2010). These 204 

types of study naturally extend into collective behaviour, including group fission events and 205 

departures (Sueur & Petit 2008). Correspondingly, comparative network approaches have 206 

also been used in theoretical models of collective behaviour by demonstrating how more 207 

differentiated relationships in within-group social networks lead to reduced when modelling 208 

flocking dynamics (Ojer & Pastor-Satorras 2022).  209 

 210 

In conservation and applied animal behaviour: Comparative social network analyses 211 

have also occasionally been used in applied ecology and conservation (5 studies), moving 212 

beyond group-based analyses to simultaneously incorporate the importance of social 213 

relationships and the wider social environment in these contexts. For example, in the context 214 
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of human-wildlife interactions, (Balasubramaniam et al. 2020) showed differences among 215 

macaque species in how within-group social network centrality was associated with the 216 

tendency to interact with humans, with implications for pathogen spread. In the context of 217 

conservation welfare, comparative network analyses have revealed long-term social bonds  218 

in captive population that could inform husbandry decisions (Rose & Croft 2017) or evaluated 219 

impacts of environmental enrichment (Dufour et al. 2011). 220 

 221 

In disease ecology: Comparative social network analyses in disease ecology (15 studies) 222 

have quantified the role of both individuals and emergent group- or population-level social 223 

structures in infectious disease transmission. They have also provided a more generalizable 224 

understanding of epidemiologically-relevant features of animal social networks that provides 225 

insight at both ecological and evolutionary timescales. 226 

Some studies have combined comparative network data with empirical 227 

epidemiological data: for example, (Briard & Ezenwa 2021) used a meta-analysis to show 228 

consistent positive effects of network centrality on infection probability, with the pattern 229 

stronger for local rather than global measures of social centrality, and (Poulin & Filion 2021) 230 

demonstrated correlations between some aspects of group social network structure and 231 

parasite species richness in parasite groups. As more simultaneously collected network and 232 

epidemiological data becomes available, these types of study will provide further tests of key 233 

hypotheses in disease ecology. 234 

Of studies to apply comparative analysis to the outputs of simulated network 235 

epidemiological models on multi-species social network datasets, a small number (e.g. 236 

(Carne et al. 2013)) have focused at an individual level, comparing the role of individual 237 

heterogeneity and/or the value of network-targeted vaccination between species. Many more 238 

studies have examined how different aspects of network structure impact epidemiological 239 

dynamics, for example: providing and testing new methods to quantify the vulnerability of 240 
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different hosts to outbreaks (Colman et al. 2021; Fountain-Jones et al. 2022), linking them to 241 

key epidemiological concepts such as density-dependence in transmission (Colman et al. 242 

2021) and offering insight into how network structure for different interaction types could 243 

influence pathogen evolution (Collier et al. 2022). An area of particular interest has been the 244 

role of modular social structures (Griffin & Nunn 2012; Nunn et al. 2015; Sah et al. 2017), 245 

providing insight into how group living shapes disease risk. One study extended these 246 

insights to other contagions (Romano et al. 2018). 247 

 248 

Principal challenges for comparative network 249 

analysis  250 

Based on our methodological synthesis, we identified key challenges facing comparative 251 

analyses of social network structure and classified them into three main groups: meta-252 

analytical choices, between-study comparability, and network features. We generated a 253 

framework to help researchers with the principal decisions at each stage of a comparative 254 

social network analysis (Figure 4), and provide a number of solutions, many of which 255 

address several interrelated issues (Figure 5). Addressing these methodological issues will 256 

be critical to tackling research questions across the themes identified in our biological 257 

synthesis, in particular by enabling comparisons that incorporate more diverse social 258 

systems, data collection approaches and social behaviours. 259 

 260 

Analytical choices for comparison 261 

Sample sizes: In our review, the median number of networks compared was 12, and the 262 

median number of species was 4. Especially for more powerful comparative approaches 263 

(e.g. controlling for phylogeny, machine-learning approaches etc.), this sample size 264 
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substantially limits the power to deal with confounding variables and reduces the diversity of 265 

questions can be answered. A key solution, which the field is well-placed to achieve, is the 266 

coordination and centralisation of publicly accessible databases to facilitate sufficient sample 267 

sizes. This could generate issues related to managing a large open dataset and ensuring its 268 

continuity, but social network researchers could learn from other efforts to maintain open, 269 

partially-automated updating datasets (e.g. (Carlson et al. 2022)). Increased power could 270 

also be achieved through greater replication per species (e.g. see MacaqueNet; Box 1), 271 

which would allow quantification of within- versus between-species variation in network 272 

structure. This could arise through renewed research effort, wider data acquisition, or 273 

incorporating networks at a range of temporal resolutions (e.g. weekly, monthly, yearly) 274 

where appropriate. 275 

 276 

Taxonomic biases: We identified an overpowering focus on non-human primates, especially 277 

macaques, across comparative studies. This was present in both the studies themselves and 278 

in aggregated datasets; with substantial overrepresentation of primates in the ASNR, for 279 

example (Sah et al. 2019). A fear of overcoming the challenges of big taxonomic divides may 280 

have driven researchers to focus on small subsets and within-subgroup analyses rather than 281 

analysing across the animal kingdom. As such, it remains an open question how comparable 282 

these systems are, and whether generalisable rules shape social structure across these 283 

divides. This limits how general the insights provided can be across the diverse social 284 

systems present in nature. 285 

There are other subtle biases present. For example, because ant colonies are 286 

relatively easy to replicate and observe, the ASNR contains many replicate ant networks, 287 

such that ants are overrepresented at the network level rather than a higher taxonomic level 288 

(Sah et al. 2019). Because sociality is often studied at different intensities across taxonomic 289 

groups (Sah et al. 2018), other well-studied taxa may be similarly overrepresented. Studies’ 290 

findings could be swayed by these taxonomic skews. In the short-term, following the lead of 291 
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previous studies can help mitigate these issues, for example by subsampling networks for 292 

over-represented species (Collier et al. 2022) or re-analysing without them (Fountain-Jones 293 

et al. 2022). In the longer term, targeted addition of new datasets can address taxonomic 294 

biases, perhaps using innovative approaches to exploit existing social or movement data, 295 

such as approximating proximity networks using Movebank data (Kays et al. 2022). 296 

 297 

Choosing networks relevant to the question: Careful selection of networks from 298 

databases is required to ensure they are relevant for the question posed (Figure 4). For 299 

example, there is little value in using networks based on indirect contacts to model the 300 

transmission of many contagious pathogens (Albery et al. 2021). Similarly, the relevance of 301 

wild and captive network datasets will depend on the question asked and the taxa 302 

investigated. Importantly, taxonomic biases may interact with these problems: for example, 303 

how does the effect of captivity on network structure differ between ants and macaques? 304 

One particularly difficult incarnation of this problem lies in comparing species with 305 

qualitatively different social systems: for example, is it meaningful to compare species with 306 

well-mixed fission-fusion societies to ones that lives in stable groups? A potential solution is 307 

to use existing frameworks (Prox & Farine 2020) to inform decisions about which types of 308 

social systems to compare for any given question. These frameworks can be used to 309 

summarise networks based on multidimensional traits, employing emergent continuous 310 

variables rather than discrete a priori “social organisation” categories. Also relevant here are 311 

decisions about which behaviours (and so networks) are relevant to a particular research 312 

question (see “Between-Study comparability” section below). 313 

 314 

Combining network data with external data: Combining comparative network analyses 315 

with external data on individual, group or species level traits considerably expands research 316 

scope across diverse areas. However, only rarely have studies combined network data with 317 

external data sources (Figure 2), with exceptions including cognitive traits (Pasquaretta et al. 318 
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2014) and parasite richness (Poulin & Filion 2021). These examples illustrate how integrating 319 

comparative network data with other traits provides increased power to identify the diverse 320 

factors that shape social structure and testing hypotheses related to the variable ecological 321 

and evolutionary consequences of these structures (Fig. 2). Indeed, one reason that 322 

simulations are so regularly used is because they allow approximation of epidemiological 323 

consequences of network structures without necessitating additional empirical sources of 324 

information.  325 

One limiting factor for some comparative analyses will be the availability of other 326 

species-level traits. In general, basic life-history data will likely be available for species that 327 

have been sufficiently well-studied to collect social network data, and these types of 328 

information have been collated into existing databases such as PanTHERIA (Jones et al. 329 

2009). However, other data types may be more limited. For example, a recent integration of 330 

the ASNR and global mammal parasite database (Stephens et al. 2017; Sah et al. 2019) 331 

resulted in a sample size of 18 primates with available infection data (Poulin & Filion 2021). It 332 

remains likely that comparative projects will need to compile external, non-network datasets 333 

themselves for some traits. Similarly, while existing databases (see Box 1) do contain limited 334 

individual-level data (e.g. age, sex) for some networks, this may also limit the number of 335 

networks that can be included without contacting the authors of original studies. This 336 

highlights the importance of authors providing attribute data alongside their networks to help 337 

answer individual-based questions. 338 

 339 

Between-study comparability 340 

Variable methods of data collection: Networks in multi-species datasets are collected 341 

using diverse and occasionally difficult-to-compare methodologies, and little methodological 342 

research has critically considered how this impacts comparative analyses. In some cases, 343 

there are clear issues with comparisons: for example, group-based methods of network 344 
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construction will typically cause much denser social networks than other forms of data 345 

collection. However, in others comparability can be less clear. Additionally, different data 346 

collection strategies can be confounded with taxonomy and social system. For example, 347 

rodents may be disproportionately trapped, large mammals GPS-tracked, birds ringed or 348 

PIT-tagged, and ungulates censused. Similarly, behavioural interactions are easier to 349 

observe in species living in stable groups, while network data for less social species may 350 

typically be collected using bio-loggers (Smith & Pinter-Wollman 2021). Further challenges 351 

will occur if sampling intensities differ across forms of data collection (e.g. more proximity 352 

interactions will be missed using focal sampling than if most individuals are carrying proximity 353 

loggers). All of these challenges create limitations that explain the taxonomic scale and 354 

narrow research focus of many existing comparative network analyses.  355 

Dealing with the difficulties imposed by data collection methods represents a major 356 

challenge. Great care is required, especially because interactions with other study or network 357 

features are likely and effects may not be linear. The most conservative solution is to be strict 358 

with inclusion criteria (Figure 4) and avoid comparing networks collected in different ways. 359 

However, the impacts may also be mitigated by the solutions highlighted in other sections, 360 

especially when data collection method is confounded with the type of behaviour studied or 361 

scale of interaction. In these cases, dealing with interactive effects of these confounding 362 

variables will be key. Ultimately, the best approach will be not to avoid comparing them, but 363 

to compare them explicitly – both with empirical data and simulations – with the aim of 364 

discovering such biases. This approach may be particularly powerful where multiple data 365 

collection approaches are used in a single system (e.g. (Castles et al. 2014)). 366 

 367 

Social/spatial/temporal scale of observation: Studies vary substantially in their scale, 368 

whether social (e.g. within-group vs. multigroup), spatial (study area size), or temporal. For 369 

example, studies may choose a geographic area and follow (a proportion of) a population 370 

there (Firth & Sheldon 2016; Testard et al. 2021), or choose certain individuals across a 371 
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series of groups (Silk et al. 2018; Papageorgiou & Farine 2020), or identify a specific group 372 

and follow all its members (Kulahci et al. 2018). Terminology can exacerbate challenges 373 

here; some studies use “group” and “network” interchangeably, while others do not. A key 374 

challenge is identifying if and when we can compare studies focused on groups with those 375 

focused on entire populations/multiple groups. Compounding this challenge, other issues 376 

such as data collection method and network size are often confounded. Further, the spatial 377 

or temporal scale of studies may also be correlated with the proportion of individuals that are 378 

tracked or identified, which can also impact topological measures (Gilbertson et al. 2021). All 379 

these differences could introduce disparities that are difficult to overcome during analysis and 380 

may either exacerbate or mask interspecific variability in social structure.  381 

A crucial methodological development would therefore be to identify combinations of 382 

sampling approach and types of network measure that can be used more robustly in these 383 

contexts, and which should be avoided entirely. Similarly, comparing studies that occur over 384 

different timeframes represents a considerable challenge. On the one hand, network data 385 

collected over longer durations can lead to greater confidence that the observed network 386 

structure is a good representation of reality (Farine & Strandburg-Peshkin 2015; Davis et al. 387 

2018; Hart et al. 2023). On the other, observing networks for longer will lead to more densely 388 

connected networks as more infrequent or random interactions are observed. This will be a 389 

greater problem for some data types (e.g. proximity, group-based) than others (e.g. 390 

grooming). Networks aggregated over long periods also risk overlooking network dynamics 391 

(see subsequent section). 392 

In the short term, careful screening of studies is again important in ensuring the 393 

networks used employ a relevant scale. Ensuring that metadata in databases accurately 394 

indicates this information (e.g. (Sah et al. 2019)) is therefore vital. Heading towards 395 

incorporating data into these databases as dynamic edge lists or at various temporal 396 

resolutions would allow researchers greater flexibility on whether to include a study or not. It 397 

will also be beneficial to apply other previously identified solutions such as (with caution) 398 



17 
 
 

controlling for the scale of the study within the statistical model (e.g. (Sah et al. 2018)), or 399 

analysing separately for networks measured at different social scales (e.g. group vs. 400 

population) and integrating the results qualitatively or meta-analytically. As with data 401 

collection methods, what is most needed is a renewed effort to employ simulations using 402 

well-known study systems to more accurately quantify when and how problems will arise 403 

when comparing networks across scales. 404 

 405 

Disparate edge types: There is substantial variation among networks in how edges 406 

are defined (Table 1): some use specific behavioural interactions such as grooming, while 407 

others use coarser approaches such as association within a group, or spatial proxies such as 408 

home range overlap. Frequently these networks will not be directly comparable (Castles et 409 

al. 2014). In other cases, it is not necessarily clear to what extent different observations 410 

represent different behaviours per se. Some may be nested: for example, sexual contact 411 

requires spatiotemporal proximity, and so the former network may represent a subset of the 412 

latter. Similarly, it will be challenging to work out what represents comparable behaviour 413 

types in taxa with very different ethograms. For example, DomArchive (see Box 1) only 414 

includes data on dominance networks but includes >150 different “behaviours”, some of 415 

which are rather distinct. Some network types will also have very different topologies: for 416 

example, fluid exchange networks are generally very sparse and skewed, exhibiting different 417 

topologies to direct contact networks (Collier et al. 2022). This issue is also confounded with 418 

differences in data collection methodologies outlined above, further reducing comparability: 419 

for example, GPS tracks might be used to detect grouping, while short-range proximity 420 

collars are used to identify direct contacts (Albery et al. 2021; Smith & Pinter-Wollman 2021). 421 

Because these methods exhibit different sensitivities and sampling frequencies, two 422 

networks may have different topologies purely because of methodology rather than biological 423 

differences. 424 
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In the short term, careful use of selection criteria can prevent these potential issues 425 

(Figures 4 & 5). For example, questions related to within-group social stability may use data 426 

on grooming, dominance, social foraging or trophallaxis from the ASNR and combine this 427 

with relevant data from DomArchive or MacaqueNet. Researchers can also include data 428 

collection methods as fixed or random effects in comparative analyses (e.g. (Albery et al. 429 

2022)). However, in many cases, it can be more effective to repeat the analysis for different 430 

data collection methodologies and then either qualitatively or quantitatively compare the 431 

results. This can even be used as the strength of a study (Collier et al. 2022). One could 432 

even examine if the results of a comparative analysis are sensitive to inclusion/exclusion of 433 

particular behavioural types. In the future, methodological research that uses the 434 

comparability of different networks from the same species can help identify interaction types 435 

that are more comparable and perhaps use advances in latent network modelling (Young et 436 

al. 2021; Ross et al. 2022) to combine insights from multiple data sources. 437 

 438 

Disparate network size: Network size also differs considerably between studies. 439 

Historically, differences in network size have been identified as a key problem for 440 

comparisons (Faust 2006), by creating several overlapping issues. First and most simply, 441 

raw values of many social network measures depend on network size and how best to 442 

correct for its effect will differ between measures and is not always intuitive. For example, 443 

while degree is best normalised by dividing through by the number of possible partners and 444 

betweenness is best normalised by dividing by the number of possible paths, for other 445 

measures this choice is less clear. Second, the value of using size-corrected measures can 446 

depend on both the research question and the generative process determining network 447 

structure. For example, network size in existing databases could be reflective of either 448 

sampling effort or social group size. In the latter case, it can be biologically meaningful that 449 

individuals in larger groups have more social connections. Similarly, if the number of 450 

connections an individual forms has an upper bound regardless of group size, then 451 
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correcting for group size effects will remove biological signals. However, this will not 452 

universally be the case, and in some contexts failing to control for group size could drive 453 

misleading conclusions if interpreted incautiously.  454 

Because i) differences in network size may also be driven by variation in sampling 455 

(e.g. edge effects or the inability to identify all individuals) and ii) how network measures 456 

covary with network size may differ between systems and approaches, great care in 457 

interpretation is necessary when network size varies considerably between studies. As such, 458 

this is an area in need of methodological research. For example, the advent of Bayesian 459 

approaches to impute missing network data (Young et al. 2021) and generate uncertainty 460 

around edge weights and network measures (Hart et al. 2023) can help mitigate issues 461 

directly related to sampling differences and allow the focus to be on analytical decisions 462 

around the biological effect of group size. One option is to fit network (or group) size as a 463 

covariate within comparative models; however, how this is done (e.g. whether it is included 464 

as a linear effect) would require careful consideration and cautious interpretation. 465 

Differences in confounding effects of network size and sampling intensity also 466 

represent a challenge to comparative analyses assessing the relationship between 467 

conditional traits and individual network position (Box 2). In these cases, employing Bayesian 468 

methods that propagate uncertainty from this initial stage of the analysis through to the 469 

cross-system comparative analytic stage would be an ideal solution, especially by enabling 470 

studies with better-sampled or larger networks to have greater weight. This is likely to 471 

become increasingly feasible as new methods allow uncertainty around social network metric 472 

calculations in animal societies (Hart et al. 2023).  473 

 474 

Network features (and information loss) 475 

Researchers must also decide what level of information loss is acceptable, especially for 476 

network dynamics, edge weights and edge sizes (Figures 4 & 5). Accepting more information 477 
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loss allows for comparative analyses across more diverse species, but limits the ability to 478 

detect variation in network structure and reduces the diversity of questions one can ask. 479 

 480 

Dynamic networks: Social interaction patterns typically change over time and/or between 481 

ecological contexts (Silk et al. 2017; Smith et al. 2018; Shizuka & Johnson 2020) meaning 482 

social networks are rarely static, and snapshots or aggregations captured in adjacency 483 

matrices are a simplification of reality. Currently very few papers have considered network 484 

dynamics within a comparative framework (but see (Rubenstein et al. 2015; Chase et al. 485 

2022)), in part because dynamic network data is less readily available (e.g. not in the ASNR; 486 

(Sah et al. 2019)). However, even when conducting comparative analyses using static 487 

networks it is important to consider the impact of social dynamics. 488 

Generally, researchers define data collection periods based on their research 489 

question (e.g. matching the transmission dynamics of a pathogen (White et al. 2017)) and 490 

biological knowledge. However, the duration of data collection can also be constrained by 491 

convenience factors (e.g. battery performance of bio-loggers, duration of presence in a study 492 

location, etc. (Gilbertson et al. 2021; Smith & Pinter-Wollman 2021)). Similar considerations 493 

and constraints also apply to the frequency of network data collection. This creates a 494 

challenge when conducting comparative analyses because the potential for variation in social 495 

dynamics between systems means it is not straightforward to control for study duration. For 496 

example, if the rate at which individuals of species A change their interaction partners is 497 

much slower than that same rate in species B, then any correction for study duration will 498 

introduce bias related to genuine biological differences, rather than achieving what is 499 

intended. The potential impact can be limited by focusing a comparative analysis on a subset 500 

of social systems (or taxonomic relatives) in which changes in network structure over time 501 

are more similar. Alternatively, if using network duration as a control variable, then allowing 502 

its effect to vary according to social system, behaviour type, method of data collection, etc. 503 

may mitigate this issue to some extent. In the longer run, another effective solution will be 504 
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storing data as dynamic edge lists so that researchers can make their own decisions whether 505 

to use a dynamic or static approach, and the duration over which to aggregate static 506 

networks. However, moving towards these higher-resolution datasets may reduce 507 

researchers’ willingness to share network data, as they contain more information about their 508 

study system.    509 

 510 

Disparate edge weightings: Variation in edge weight definitions represents another key 511 

challenge for comparative analyses, especially when they covary with taxonomy, social 512 

system and data collection methods. For example, many studies have used association 513 

indices like the simple ratio index (Hoppitt & Farine 2018), and the popularity of alternatives 514 

has varied over time and between research communities. In contrast, many contact-based 515 

networks use bio-logging devices to measure the duration or frequency of encounters. This 516 

creates problems for a comparative analyst because edge weights in different studies can 517 

mean very different things. Previous studies have typically used only a subset of networks 518 

that use a similar approach (limiting statistical power), extracted binary networks (losing 519 

information on connection strength), or fitted a network’s weighted/unweighted status as a 520 

covariate in the comparative analyses (Collier et al. 2022). One potential alternative would be 521 

to use a simple correction to make edge weights in different networks more comparable (e.g. 522 

by dividing all edges by the maximum edge weight to generate a standardised index). 523 

However, a potentially more satisfying approach is to use statistical approaches like mixture 524 

models that can classify edges as belonging to different distributions, e.g. “weak”, 525 

“intermediate” and “strong” (Weiss et al. 2019; Ellis et al. 2021). A key advantage would be 526 

that uncertainty in these classifications could be propagated to subsequent stages of the 527 

analysis. Additionally, as is the case with network dynamics, storing network data in raw 528 

edge list format would empower those conducting comparative analyses to make their own 529 

decisions about how to weight edges to be comparable between studies. 530 

 531 



22 
 
 

Higher-order interactions: Another source of lost information in all comparative social 532 

network studies conducted so far – and existing data repositories – is that data is stored as 533 

dyadic networks, even when this is a simplification (e.g. group-based data). This loses 534 

information on interaction size that can be captured using higher-order network approaches 535 

(Silk et al. 2022). While these have only rarely been used in behavioural ecology (Musciotto 536 

et al. 2022), they are gaining popularity as a tool in network science (Battiston et al. 2021). It 537 

would be valuable to move towards also storing higher-order network data in repositories 538 

(e.g. as group-by-individual or incidence matrices) to facilitate approaches that explicitly 539 

incorporate this higher-order structure.  540 

 541 

Future opportunities for comparative social network 542 

analysis  543 

Comparative social network analysis has displayed wide informative power across diverse 544 

topics, and offers a tool to link social structure to varied ecological and evolutionary 545 

processes (Fig. 2). Building on and expanding this literature, there remain numerous 546 

research areas that are as yet relatively underexplored, especially once methodological 547 

approaches facilitate effective comparisons across diverse social systems. Here we continue 548 

to focus on disease ecology, behavioural ecology and conservation, as well as the interface 549 

between these topics. However, we encourage others to develop additional applications of 550 

these approaches (see Fig. 2), especially as a tool to unify across ecological disciplines. 551 

 552 

Social behaviour and disease 553 

Transmission and contagion processes: While transmission has been a focus of existing 554 

comparative network analyses, there remain many unanswered questions. For example, 555 

most simulation studies of transmission dynamics examined traits of the networks 556 

themselves, rather than using the results to explain between-species differences, despite the 557 
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potential added by integrating additional data (Fig. 2). A prominent example of this lies in our 558 

improved understanding of modularity (Griffin & Nunn 2012; Sah et al. 2017), which although 559 

highly informative, has largely not been related to species traits themselves. Similar studies 560 

could also extend beyond concepts such as modularity to further explore what species- and 561 

population-level traits explain important network properties revealed by existing comparative 562 

analyses (Colman et al. 2021; Fountain-Jones et al. 2022). Conducting more nuanced 563 

comparative analyses that examine differences across multiple types of social association 564 

and interaction (Collier et al. 2022) could also be extended to better quantify the expected 565 

dynamics of diverse zoonotic and agricultural diseases in their wild hosts. 566 

Moving beyond pathogen spread, there are few explorations of how other social 567 

contagions (e.g. behaviour spread) manifest across systems. Because other contagions are 568 

often complex (e.g. non-dyadic), their spread can differ from that of pathogens (Firth 2020), 569 

with implications for social system evolution (Evans et al. 2020). For example, (Evans et al. 570 

2021) showed that only modular networks with small sub-groups favoured conformist 571 

behavioural contagions over pathogen spread. Comparative network analyses represent an 572 

opportunity to explore the consequences of different social systems for pathogen and 573 

behaviour spread, as well as to link this to species traits.  A nice example of how this could 574 

be applied to multi-network comparisons is provided by (Beck et al. 2023), who compared 575 

different social contagions across multiple great tit Parus major social networks, showing 576 

how individual network position linked to the order of behaviour acquisition. Extending these 577 

types of study to multispecies comparisons could help generalise across diverse taxa. 578 

 579 

Health and immunity: Applications of comparative network analyses in disease ecology 580 

could also include better quantifying cross-species social drivers of health and immunity. 581 

While the consequences of network structure for outbreak dynamics are relatively well 582 

understood (theoretically at least), an individual’s social interactions can also influence their 583 

stress physiology (MacLeod et al. 2023) and health (Snyder-Mackler et al. 2020). 584 
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Consequently, comparative network analyses could examine the importance of social 585 

network structure for the manifestation of individual and population-level disease (or health) 586 

itself. To provide a specific example, because mechanisms of immunity are expected to 587 

evolve in response to infection (Graham et al. 2011), species- and population-level 588 

differences in social network structure should manifest in realised differences in immunity 589 

across species via their effects on infection prevalence. Comparative network analyses offer 590 

an ideal way to test these predicted relationships that moves beyond coarse measures of 591 

sociality like group size (Côté & Poulin 1995; Patterson & Ruckstuhl 2013). Future work 592 

could integrate individual-level social network position with group- or population-level network 593 

structure and explicitly incorporate physiological markers of health or immunity. It should be 594 

noted that comparative studies of immunity are also difficult due to issues such as the 595 

variable sensitivity of the available eco-immunological tools (Boughton et al. 2011), but 596 

nevertheless even coarse and generalisable measures may prove informative when 597 

integrated with social networks. 598 

 599 

Integrative behavioural ecology 600 

Socio-spatial ecology and behavioural integration: individuals’ spatial and social 601 

behaviours are tightly intertwined (Webber et al. 2023), with spatial behaviour often being 602 

important in explaining social network structure (Mourier et al. 2012; Pinter-Wollman 2015; 603 

Firth & Sheldon 2016). Comparative network analyses offer an exciting opportunity to look at 604 

how the role of the ecological environment and movement behaviour in explaining social 605 

structure varies among populations and species (Fig. 2), testing whether variation in these 606 

relationships can be linked to species traits such a body mass, mobility, and kin structure. 607 

Examining how spatial and social network types are linked across and within species could 608 

inform a wide range of empirical questions, e.g. refining our ability to quantify individual 609 

variation in optimal group size and structure (Webber et al. 2023), as well as encouraging 610 
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integration of spatial data types into social network workflows using spatio-temporally 611 

parameterised telemetry tracks (Robitaille et al. 2019).  612 

 613 

Group structure and dynamics: Existing applications of comparative social network 614 

analyses have focused on comparing group- and population-level social structure and 615 

patterns of group stability. However, typically this has involved small numbers of closely-616 

related species. Extending these approaches across diverse social systems offers the 617 

potential to start teasing apart the importance of the ecological environment, evolutionary 618 

history and species-level traits (e.g. life history, mode of movement, migratory tendency, 619 

mating system etc.; Fig. 2) in explaining broad patterns in animal social structure. Using a 620 

comparative network approach provides a more flexible way to capture nuanced variation in 621 

social structure and its temporal dynamics than historical approaches. Moving to finer social 622 

scales, there is considerable scope to answer novel questions as more social network 623 

datasets become available. For example, different relationships between the costs of 624 

aggression and dominance rank have been documented (Silk et al. 2019; Hobson et al. 625 

2021a), and comparative network analyses offer promise in finding general patterns for how 626 

this relationship varies and depends on other species traits. 627 

 628 

The evolution of sociality and cooperation: The evolution of cooperation is a major focus 629 

in behavioural ecology, and has benefited from previous comparative analyses (Cornwallis et 630 

al. 2017; Firman et al. 2020). Despite studies in this area frequently examining the 631 

maintenance of complex sociality (e.g. (Akçay 2018)), they have yet to take full advantage of 632 

comparative network approaches, either theoretically or empirically. Moving network models 633 

of the evolution of cooperation from theoretical network structures (e.g. (Ohtsuki et al. 2006)) 634 

to exploit multi-species data from social network repositories could help generalise findings 635 

to different real-world network structures. These approaches may also help investigate how 636 
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the emergence of cooperation in different network structures is linked to species-level traits, 637 

and how well it aligns with recorded cooperative behaviours. From an empirical perspective, 638 

comparative social network analyses can provide further metrics to help construct 639 

multidimensional projections of social complexity (Prox & Farine 2020), as well as feeding 640 

back to inform the development of social network structures themselves (Akçay 2018). 641 

Identifying consistent features of social networks that differ between cooperative and non-642 

cooperative species, for example, could help quantify how the evolution of cooperation 643 

shapes wider ecological and evolutionary processes.   644 

 645 

Social ageing: Recent interest in social ageing has revealed age-related changes in social 646 

behaviours as older individuals become less socially connected (Siracusa et al. 2022). 647 

Because ageing itself is a complex process that needs to be demonstrated at the individual 648 

level (Nussey et al. 2008), it will greatly benefit from – if not necessitate – comparative 649 

network analyses rather than more classical approaches that look at traits such as group size 650 

and composition. Given that age data is regularly monitored in many long-term study 651 

systems and already available as a node attribute in some social network repositories, 652 

comparative network approaches can play an important role in generalising age-related 653 

changes in social interaction patterns across species and ecological contexts. 654 

 655 

Conservation and behaviour 656 

Human-wildlife interactions and conservation: Another opportunity is to test how species’ 657 

social networks differ in their responses to anthropogenic disturbance. For group-living 658 

species, social networks may respond in varied ways to these anthropogenic pressures 659 

(Fisher et al. 2021; Blumstein et al. 2023). For example, endangered mountain gorillas’ social 660 

networks became more cohesive when tourists were too close (Costa et al. 2023). Testing to 661 
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what extent these dynamics vary according to other species traits could help inform which 662 

social species are most at risk from anthropogenic pressures and how best to protect them 663 

(Snijders et al. 2017). In a similar vein, a generalised, cross-species understanding of group 664 

social network stability or individual social integration and how it is linked to health 665 

(integrating behaviour, disease, and conservation) could help inform population 666 

augmentation or reintroduction attempts if extended to endangered social species. Group 667 

stability and social integration are likely to play a key role in the initial success of such 668 

projects when social relationships strongly determine fitness. 669 

 670 

Concluding Remarks 671 

By providing a tool to compare and contrast diverse social systems across species with 672 

diverse evolutionary histories and highly variable ecologies, comparative social network 673 

analyses have huge untapped potential to further our understanding of the evolutionary 674 

ecology of animal societies and to strengthen the links between different ecological sub-675 

fields. Our synthesis reveals growing interest in comparing network structures and their 676 

ecological consequences across taxonomic divides, as well as the increasing power of 677 

approaches being used. Especially given the apparent trend of increasing data breadth, 678 

depth, and availability over time, we expect that these approaches will only become more 679 

powerful for quantifying the diversity of animal social systems and explaining variability 680 

across species in the near future. Greater use of meta-analyses of within-network trends 681 

alongside these approaches will increase the reach and reliability of comparative approaches 682 

in social network analysis (Spake et al. 2022), and transform the hunt for general patterns 683 

shaping the structure of animal social systems.  684 
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Box 1: Social network repositories 1015 

A recent development is the creation of large-scale, publicly available databases of social 1016 

network data (Table 1). We introduce three databases for non-human animal social networks 1017 

here and draw attention to similar efforts for human networks too. 1018 

Animal Social Network Repository (ASNR) 1019 

The animal social network repository (ASNR; (Sah et al. 2019)) was first published online in 1020 

2016, although has been regularly updated since then. It has subsequently been used by 7 1021 

of the studies in our review. Of all the current social network datasets, the ASNR captures 1022 

the greatest taxonomic diversity, including insects, fish, birds, reptiles and mammals. Data is 1023 

currently stored as adjacency matrices. It also incorporates substantial variation in network 1024 

size and the types of behaviour monitored. However, care is needed when exploiting the 1025 

ASNR as it also includes networks measured in different ways and over varied social and 1026 

temporal scales, as well as incorporating both free-living and captive populations   1027 

DomArchive 1028 

DomArchive is a newly-available database of dominance interactions (Strauss et al. 2022), 1029 

exploiting the long-term focus on social dominance in the animal behaviour literature. The 1030 

majority of data is available as adjacency matrices (sociomatrices), with a subset stored 1031 

instead as edge lists. The types of interaction incorporate a wide range of aggressive, formal 1032 

dominance or submissive behaviours as well as related behaviours such as threats, 1033 

avoidance and social displacement. The data available will be directly relevant to questions 1034 

related to social stability and group function. 1035 

MacaqueNet 1036 

MacaqueNet (De Moor et al. 2023) is an in-development social network database focused on 1037 

macaques (Macaca sp.) curated for the purpose of comparative analyses in primatology and 1038 

behavioural ecology. By concentrating on a well-studied genus that share similar social 1039 

behaviours, MacaqueNet will offer an exciting opportunity for tackling research questions 1040 
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related to group-living with fewer of the pitfalls of larger datasets. As is the case for the 1041 

ASNR, all data stored in MacaqueNet is formatted consistently so fully ready for comparative 1042 

analyses (although note that data collection methods and edge weights can still differ 1043 

between studies). 1044 

Human contact network databases 1045 

The SocioPatterns team have collected a range of proximity network datasets using 1046 

Bluetooth loggers (e.g. primary school (Stehlé et al. 2011); scientific conference (Cattuto et 1047 

al. 2010); Kenyan village (Kiti et al. 2016); hospital (Vanhems et al. 2013)) in addition to one 1048 

similar dataset from wild baboons. Data are provided as edge lists, and if aggregated as 1049 

adjacency matrices would be directly comparable with networks connected using similar 1050 

methods from the ASNR.  1051 

 1052 

  1053 
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Box 2: Classifying comparative network analyses 1054 

A diverse set of comparative approaches are possible using social network datasets. Here 1055 

we provide a framework to distinguish between different approaches (Figure 3) 1056 

1. Comparisons of network properties 1057 

A first approach involves comparing the topology of different networks as an outcome 1058 

of other network properties (e.g. network size). This is common in network science 1059 

where understanding the generative processes underlying network formation is a 1060 

major focus (e.g. (Rocha et al. 2021; Ward 2021; Ojer & Pastor-Satorras 2022)). 1061 

However, it is also of interest to ecologists, such as with studies that test the 1062 

relationship between network size and modularity (Griffin & Nunn 2012). 1063 

2. Species-level comparative approaches 1064 

A second type is a conventional species-level comparative approach, in which a 1065 

network property of interest is fitted as a response variable with a series of species-1066 

level traits as explanatory variables, and potentially alongside a phylogeny to control 1067 

for non-independence among closely-related species. The appropriate use of random 1068 

effects can allow multiple observations to be used for a given species. We subdivide 1069 

species-level approaches by the outcome variable of interest.    1070 

 2a) Using network topology 1071 

 Often the outcome of interest is a property of the network itself (e.g. degree 1072 

heterogeneity, modularity). For example, a researcher might want to ask: How does 1073 

the modularity of affiliative networks in animal groups vary with environmental 1074 

harshness? These types of question will be common in behavioural ecology, for 1075 

example in contributing discussions around the role of social complexity in cognitive 1076 

evolution (Barrett et al. 2007) or linking network structure to demographic factors 1077 

(Shizuka & Johnson 2020).  1078 
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 2b) Using the outcome of dynamical processes 1079 

The outcome of interest could also be the ecological consequences of network 1080 

structure, necessitating additional steps prior to the comparative analysis. For 1081 

example, studies in disease ecology often conduct simulations of pathogen spread 1082 

and then use features of the resulting outbreaks as variables in comparative analyses 1083 

(e.g. (Nunn et al. 2015; Sah et al. 2017; Collier et al. 2022; Fountain-Jones et al. 1084 

2022)). Similar approaches are useful in understanding the consequences of social 1085 

structure for information spread and behaviour change (Evans et al. 2020). 1086 

3. Individual-level meta-analyses 1087 

The final category is a meta-analytic approach looking at how relationships between 1088 

social interaction patterns and conditional traits vary among species. For example, 1089 

Briard and Ezenwa (Briard & Ezenwa 2021) showed an overall positive association 1090 

between social centrality and parasite burden across 210 effect sizes covering 16 1091 

host species, but they could not explain variation in this relationship using other host 1092 

traits. While this study was in the context of disease ecology, there is no reason 1093 

similar methodologies could not be applied to other questions of interest such as the 1094 

relationship between social network position and fitness (Silk 2007; Snyder-Mackler 1095 

et al. 2020).  1096 

 1097 

We provide a schematic (Figure 3) to display model construction for these three main types 1098 

of comparative network analyses: 1) analyses examining the relationship between different 1099 

network traits across a range of studies (e.g. How does modularity depend on network or 1100 

group size? How does network efficiency depend on degree heterogeneity?); 2) analyses of 1101 

network properties (either topological or the outcome of dynamical processes operating on 1102 

the network) as an outcome of both network traits and species traits (e.g. How does 1103 

modularity depend on group size and longevity? How does mean outbreak size depend on 1104 

fragmentation and body size?); 3) a full meta-analysis to test how relationships between 1105 
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network traits and individual traits vary across species and networks (e.g. Does the 1106 

relationship weighted degree and fitness depend on species life-history and network 1107 

modularity?) 1108 

 1109 

  1110 
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Tables 1111 

Table 1. Summary of existing social network databases. 1112 

Database Number 

of 
networks 

Number 

of 
species 

Behaviours Access 

ASNR 790 76 Dominance; 
Foraging; 

Grooming; 
Group 
membership; 

Non-
physical 
social 

interaction; 
Physical 
contact; 

Social 
projection 
bipartite; 

Spatial 
proximity; 
Trophallaxis; 

Mixed 

https://bansallab.github.io/asnr/  

MacaqueNet 761 14 Spatial 
proximity 
Body 

contact; 
Grooming; 
Contact 

aggression; 
Non-contact 
aggression 

https://macaquenet.github.io/database/ 

DomArchive 436 135 Dominance 

interactions; 
Submissive 
interactions; 

Aggression 
(151 
subtypes 

identified)  

https://github.com/DomArchive/DomArchive  

SocioPatterns 14* 2 Proximity http://www.sociopatterns.org/datasets/  

 1113 

  1114 

https://bansallab.github.io/asnr/
https://gbr01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmacaquenet.github.io%2Fdatabase%2F&data=05%7C01%7C%7Cf9de344585c845a6cb0c08db35f85d31%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C638163113058658748%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=awBQvFaNqrl1fMD2JKl0cFz5m91aSHFsKPYcqaFhNkw%3D&reserved=0
https://github.com/DomArchive/DomArchive
http://www.sociopatterns.org/datasets/
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Figure Legends 1115 

Figure 1. Coverage of our identified comparative social network studies. A) increase in 1116 

number of species over time; B) increase in number of compared networks over time; C) 1117 

positive correlation between the number of species investigated and the number of 1118 

compared networks. Each point represents one of 49 studies; the line represents a Loess 1119 

smooth fitted to the data. The rug on either axis displays the distribution of the data. 1120 

 1121 

Figure 2. A conceptual overview of the value of how comparative social network analyses fit 1122 

within a broader framework for social ecology and evolution. We illustrate selected 1123 

relationships between species- and individual-level traits and social network structure and 1124 

draw attention to key comparative databases for the main traits illustrated. Github1 refers to 1125 

https://github.com/CharlotteAnaisOLIVIER/Social-organization-of-primates.  1126 

 1127 

Figure 3. An overview of different types of comparative analyses that can be applied to 1128 

social network datasets. 1) Network-level analyses that connect network-derived traits with 1129 

the structure of the network themselves. 2) Network-level analyses that connect network-1130 

derived traits or simulation outputs with other traits of the networks and the species that 1131 

comprise them. 3) Node-level analyses across N networks that involve connecting node and 1132 

individual-level traits within each system (inside brackets) and then connecting these 1133 

estimates with species- and network-level traits in a meta-analytical context. 1134 

 1135 

Figure 4. An illustration of our recommended workflow for comparative network analyses, 1136 

identifying key questions for researchers to consider at each of the three stages of the 1137 

process: data selection, scale of investigation and model design. 1138 

 1139 

https://github.com/CharlotteAnaisOLIVIER/Social-organization-of-primates
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Figure 5. Common problems in comparative social network analyses (left) and solutions that 1140 

may help to address them (right). Links between problems and solutions are those identified 1141 

in the Principal challenges for comparative network analysis section of the main text as an 1142 

outcome of the literature review and judgement of the authors. Solutions are sized according 1143 

to the number of links they have – i.e., the number of problems they are likely to help solve. 1144 

 1145 

  1146 
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Figures 1147 

 1148 

Figure 1 1149 

  1150 
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Figure 3 1160 
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