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Abstract 

Social systems vary enormously across the animal kingdom, with important implications for 

ecological and evolutionary processes such as infectious disease dynamics, anti-predator 

defense, and the evolution of cooperation. Comparing social network structures between 

species offers a promising route to help disentangle the ecological and evolutionary 

processes that shape this diversity. Comparative analyses of networks like these are 

challenging and have been used relatively little in ecology, but are becoming increasingly 

feasible as the number of empirical datasets expands. Here, we provide an overview of 

multispecies comparative social network studies in ecology and evolution. We identify a 

range of advancements that these studies have made and key challenges that they face, and 

we use these to guide methodological and empirical suggestions for future research. Overall, 

we hope to motivate wider publication and analysis of open social network datasets in animal 

ecology. 
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Introduction 

The social lives of animals vary immensely and across many axes (Hinde 1976; Whitehead 

1997; Hobson et al. 2019; Prox & Farine 2020). In some species, individuals live 

predominantly solitary lives, only interacting with others sporadically, while others form 

spectacular aggregations of many thousands. Similarly, while some species live in stable 

groups and form social bonds that last a lifetime (Mitani 2009; Bruck 2013; Dakin & Ryder 

2020), in others social preferences may be weaker and the identity of social partners 

relatively unimportant. 

Variation among social systems is closely tied to ecological and evolutionary 

pressures faced by different populations (Kurvers et al. 2014; He et al. 2019; Evans et al. 

2020; Cantor et al. 2021b). Variation in well-studied benefits (e.g. access to information, 

avoidance of predation) and costs (e.g. competition, parasitism) of social interactions across 

species likely explains why particular social systems are associated with specific 

environments (Leu et al. 2016) or taxonomic groups (Chak et al. 2017). However, given the 

ecological environment can also cause variation in social structure within populations (e.g. 

(Jordán et al. 2021)), it is important to decompose intra- and inter-specific variation in social 

structure. Because, the social structure of populations alters the direction of evolution (Fisher 

& McAdam 2017, 2019), determines the outcome of ecological processes like disease 

spread (Keeling & Eames 2005; White et al. 2017), and potentially influences a species’ 

resilience to global change (Fisher et al. 2021) identifying explanations for inter-specific 

variation in social structure has important implications and applications. Consequently, 

comparative approaches are popular with researchers examining the evolutionary ecology of 

sociality (Lukas & Clutton-Brock 2013; Lukas & Huchard 2014; Kappeler & Pozzi 2019). 

Nevertheless, there are substantial challenges in applying comparative approaches in 

socioecology, of which a major one is classifying or quantifying variation in animal social 

systems. Recent work (e.g. (Lang & Farine 2017; Prox & Farine 2020)) has begun to provide 
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higher-dimensional classifications of sociality, but there remain limitations in the power and 

universality of these approaches, as qualitative classifications only provide coarse 

approximations. Further, in many contexts, it is the specific pattern of interactions that plays 

a role rather than the type of social system per se. With the popularisation of social network 

analyses in behavioural ecology, the time is ripe to apply more quantitative comparisons that 

address diverse questions around interspecific variation in social structure and dynamics. 

Social networks have become an integral part of a behavioural ecologist’s toolkit 

(Farine & Whitehead 2015; Webber & Vander Wal 2019). They provide the link from 

individual behaviour to group- and population-level structure and outcomes (Fig. 1), and so 

help study various aspects of animal behaviour including dominance (Shizuka & McDonald 

2012; Hobson et al. 2021a), cultural evolution (Voelkl & Noë 2008; Cantor et al. 2021a), and 

epidemiology (Keeling & Eames 2005; Bansal et al. 2007; White et al. 2017). Applications of 

network approaches in socioecology have grown rapidly and now encompass substantial 

geographic and taxonomic diversity, albeit with remaining biases (Webber & Vander Wal 

2019).  

Despite the recent growth in animal social network analyses, few studies have 

undertaken multispecies comparisons of social networks or used meta-analytic approaches 

to test for broader evolutionary or ecological patterns in animal social structure. This is 

despite multispecies analyses of social networks having multiple advantages for comparative 

analysis in social ecology. These benefits emerge from network descriptions of social 

systems providing: diverse measures to succinctly quantify different aspects of social 

structure; the ability to quantify fine-scale variation in social systems beyond features such as 

group size; and a way to unify analyses across social scales, from individual- to group-, and 

population-level features. Two main issues have limited the use of comparative analyses on 

social networks: i) it is challenging to compare the structure of networks of different sizes 

(Faust 2006), especially when they are generated by different behavioural processes 
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(Hobson et al. 2021b); and ii) there has been a shortage of animal social network datasets 

available to compare.  

With the recent development of multi-species repositories of social network data (Box 

1) and an increasingly advanced statistical toolkit, there is now the potential to overcome 

these issues and exploit the potential of comparative social network analyses in ecology and 

evolution. Here, we review the existing studies that have undertaken such analyses. We then 

identify outstanding challenges to successfully employing comparative and meta-analytic 

approaches with social network data, suggesting potential solutions and highlighting specific 

areas in need of further methodological research, as well as identifying promising areas for 

future empirical research. Overall, our paper provides a roadmap for conducting these 

analyses in ecology and evolution and aims to inspire the development of new statistical 

tools to increase their accessibility, as well as motivating the collection and publication of 

further open social network datasets. 

 

The current state of comparative network analysis 

The Data: As of 3rd November 2022 we uncovered 49 studies that compared multiple 

species’ social networks, spanning 16 years (2007-2022; Table S1). Initially, these studies 

typically compared a small number of species and networks; however, over time, these 

numbers have increased exponentially (Figure 1). While some studies still compare a few 

species at a time, there are now many that encompass several hundred networks 

encompassing dozens of species – three of which also included humans. These larger 

studies often featured replication of several networks within each species, (potentially) 

allowing estimation of within- and between-species variation in network structure. On three 

occasions researchers have developed (or are developing) substantial publicly available 

databases (Box 1). Otherwise, larger studies tended to produce their network datasets 

through literature searches and independently contacting researchers to request data (Nunn 



6 
 
 

et al. 2015; Rocha et al. 2021), or by aggregating datasets that the authors themselves 

collected (Bhadra et al. 2009; Pasquaretta et al. 2014). Given the few independent datasets, 

substantial reuse of said datasets, and growing exploitation of the animal social network 

repository (ASNR; Box 1), there has been encouragingly little duplication of effort in 

producing network meta-datasets. In the near future, researchers carrying out comparative 

behavioural analyses will be well-placed to use much of the available data, rather than 

encountering issues with dataset harmonisation and unification – as has been the case with 

datasets of host-pathogen associations, for example (Gibb et al. 2021). 

 

Taxonomic skew: Many studies (19/49; 39%) were focused primarily or entirely on 

primates, with a particular focus on macaques (Macaca sp.; e.g. (Sueur et al. 2011; Ciani et 

al. 2012; Balasubramaniam et al. 2020)). Otherwise, there was broad coverage of different 

taxonomic classes, including fish (Roose et al. 2022), hymenoptera (Bhadra et al. 2009), and 

elephants (de Silva & Wittemyer 2012), as well as large-scale studies that included diverse 

vertebrate classes and some invertebrates (Sah et al. 2017; Rocha et al. 2021). It is unclear 

how the taxonomic skew of these databases could influence the results of pan-dataset 

analyses. 

 

Species-level analyses: Many comparative papers (11/49=22%) examined how species’ 

traits correlated with their social network topology with others doing so qualitatively. For 

example, several analyses linked primates’ cognition or behaviour with the structure of their 

networks (Sueur et al. 2011; Pasquaretta et al. 2014). Conversely, two studies (Poulin & 

Filion 2021; Collier et al. 2022) used the ASNR to examine how a range of species’ contact 

network structures were associated with their parasite communities, focusing on parasite 

species richness (Poulin & Filion 2021) or the evolution of parasite species transmitted over 

the focal host’s contact networks (Collier et al. 2022). These studies incorporated external 

databases of host-parasite associations (Stephens et al. 2017) and human parasite traits 
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(Richardson et al. 2001; European Centre for Disease Control 2016), as illustrated in Figure 

2. 

 

Generative models: Two papers (2/49=4%) developed generative models for the formation 

of social networks, which they validated using multi-species network datasets. For example, 

(Ilany & Akcay 2016) developed a model for network formation by social inheritance, 

validating their predicted networks using data from four species. 

 

Methodological studies: Several studies (6/49=12%) used animal social network meta-

datasets to illustrate new methods or confirm trends in network science or related fields. 

These included identifying novel scaling trends (Rocha et al. 2021; Ward 2021; Ojer & 

Pastor-Satorras 2022), producing new approaches (Shizuka & Farine 2016; McDonald & 

Hobson 2018; Ward 2021; Ojer & Pastor-Satorras 2022), or deriving new network traits 

(Péron 2023). 

 

Dynamical simulations: A particularly common approach (13/49 studies; 27%) to 

comparative social network analysis was the simulation of transmission dynamics (e.g. 

(Nunn et al. 2015; Sah et al. 2017, 2018; Romano et al. 2018; Collier et al. 2022; Fountain-

Jones et al. 2022)). This approach may be so popular because, so far, networks have been 

used to test general ideas for a broad set of potential pathogens. This reduces the 

importance of disparity in data collection methods and timescales, as (to some extent) the 

networks are providing a substrate to test ideas in network epidemiology rather than to 

provide broader ecological insights. These approaches have also often used unweighted 

(binary) versions of networks, mitigating the impact of variable edge weighting across 

different studies (see below). 
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Individual-level meta-analyses: Finally, among our identified studies, there was only one 

(1/49=2%) “true” meta-analysis – i.e., one that did not use raw data, but rather analysed a 

series of model estimates published in other studies (Briard & Ezenwa 2021). All other 

papers derived network-level traits and carried out species-level comparative analyses. We 

capture the distinction between these approaches in Box 2. 

 

Biological overview of comparative network studies 

In behavioural ecology: Comparative network analyses in behavioural ecology have 

predominantly been used to provide insights into the structure and dynamics of animal 

groups. Frequently, it has been applied to quantify population-level social structure for 

taxonomically similar species (e.g. bats: (August et al. 2014); elephants: (de Silva & Wittemyer 

2012); equids: (Sundaresan et al. 2007; Rubenstein et al. 2015)). In these cases, using a 

comparative approach can reveal fine-scale differences in social structure that were 

previously undetected (e.g. (Sundaresan et al. 2007)). These studies have also often 

demonstrated the role of ecological differences between closely related species in explaining 

variation in social network structure. For example, different social network structures 

between Australian snubfin Orcaella heinsohni and Indo-Pacific humpback dolphins Sousa 

chinensis were attributed to differences in diet, prey availability and feeding behaviour (Parra 

et al. 2011). In a similar way, the role of mating systems (Matsuda et al. 2012) and variation 

in individual traits, such as cognitive capabilities (Pasquaretta et al. 2014), have also been 

investigated. One approach that has perhaps been underutilised is to use comparative 

network analyses to find general rules for animal social structure. For example, (Rocha et al. 

2021) found a potential power law relationship between group size and social connectivity, 

with some evidence that it varied depending on social interaction type.  

At a finer social scale, comparative network analyses have also been used to study 

within-group social dynamics, including dominance hierarchies (Balasubramaniam et al. 
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2018; Hobson et al. 2021a) , aggression and social stability (Sueur et al. 2010, 2011). Here 

comparing between species can identify general patterns in within-group interactions. For 

example, (Hobson et al. 2021a) compared dominance networks across 172 groups from 85 

different species to identify that most species typically distributed aggressive interactions 

evenly across all lower-ranked individuals rather than on either close competitors or the 

weakest individuals. This has important implications for quantifying individual variation in the 

costs and benefits of social strategies. Comparative studies in macaques (Macaca sp.) have 

investigated how social networks influence fission-fusion dynamics and collective behaviour, 

for example demonstrating how the importance of kinship differs between socially tolerant 

and intolerant species (Sueur et al. 2010). These types of study naturally extend into 

applications in collective behaviour, including group fission events and departures (Sueur & 

Petit 2008). Comparative network approaches have also been used to test the applicability of 

theoretical models of collective behaviour by demonstrating how more differentiated 

relationships in within-group social networks lead to reduced cohesion and likelihood of 

consensus when modelling flocking dynamics (Ojer & Pastor-Satorras 2022).  

 

In conservation and applied animal behaviour: By contributing to our understanding of 

social dynamics and group stability, comparative social network analyses have also 

occasionally been used in applied ecology and conservation. For example, in the context of 

human-wildlife interactions, (Balasubramaniam et al. 2020) showed differences among 

macaque species in how within-group social network centrality was associated with the 

tendency to interact with humans, with implications for pathogen spread. In the context of 

conservation welfare, comparative network analyses have been applied to captive 

populations, revealing long-term social bonds that could inform husbandry decisions (Rose & 

Croft 2017) or evaluating the impact of environmental enrichment (Dufour et al. 2011). 
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In disease ecology: Comparative social network analyses in disease ecology have helped 

quantify the role of both individuals and emergent group- or population-level social structures 

in infectious disease transmission. They have also begun to provide a more generalizable 

understanding of epidemiologically-relevant features of animal social networks that provides 

insight at both ecological and evolutionary timescales. 

Some studies have combined comparative network data with empirical 

epidemiological data. For example, (Briard & Ezenwa 2021) used a meta-analysis to show 

consistent positive effects of network centrality on infection probability, with the pattern 

stronger for local rather than global measures of social centrality. (Poulin & Filion 2021) 

demonstrated correlations between some aspects of group social network structure and 

parasite species richness in parasite groups. As more simultaneously collected network and 

epidemiological data becomes available from wild host-pathogen systems, these types of 

study are likely to provide ways to test key hypotheses in disease ecology. 

Of studies to apply comparative analysis to the outputs of simulated network 

epidemiological models on multi-species social network datasets, a small number (e.g. 

(Carne et al. 2013)) have focused at an individual level, comparing the role of individual 

heterogeneity and/or the value of network-targeted vaccination between species. Many more 

studies have examined how different aspects of network structure impact epidemiological 

dynamics, for example: providing and testing new methods to quantify the vulnerability of 

different hosts to outbreaks (Colman et al. 2021; Fountain-Jones et al. 2022), linking them to 

key epidemiological concepts such as density-dependence in transmission (Colman et al. 

2021) and offering insight into how network structure for different interaction types could 

influence pathogen evolution (Collier et al. 2022). An area of particular interest has been the 

role of modular social structures in shaping epidemiological dynamics (Griffin & Nunn 2012; 

Nunn et al. 2015; Sah et al. 2017), providing insight into how group-living shapes disease 

risk. One study extended these insights to other types of contagion (Romano et al. 2018). 
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Principal challenges for comparative network 

analysis  

Based on our literature review, we identified key challenges facing comparative analyses of 

social network structure and classified them into three main groups: meta-analytical choices, 

between-study comparability, and network features. We generated a framework to help 

researchers with the principal decisions at each stage of a comparative social network 

analysis (Figure 4), and provide a number of solutions, many of which address several 

interrelated issues (Figure 5). 

 

Analytical choices for comparison 

Sample sizes: In our review, the median number of networks compared was 12 across 4 

species. Especially for more powerful comparative approaches (e.g. controlling for 

phylogeny, machine-learning approaches etc.), this sample size substantially limits the power 

to deal with confounding variables and reduces how many questions can be answered. A key 

solution, which the field is well-placed to achieve, is the coordination and centralisation of 

publicly accessible databases to facilitate sufficient sample sizes. This could generate issues 

related to managing a large open dataset and ensuring its continuity, but social network 

researchers could learn from other efforts to maintain open, partially-automated updating 

datasets (e.g. (Carlson et al. 2022)). Increased power could also be achieved through 

greater replication per species (e.g. see MacaqueNet; Box 1), which would allow 

quantification of within- versus between-species variation in network structure. This could 

arise through renewed research effort, wider data acquisition, or incorporating networks at a 

range of temporal resolutions (e.g. weekly, monthly, yearly) where appropriate. 
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Taxonomic biases: We identified an overpowering focus on non-human primates, especially 

macaques, across comparative studies. This was present in both the studies themselves and 

in aggregated datasets; with substantial overrepresentation of primates in the ASNR, for 

example (Sah et al. 2019). A fear of overcoming the challenges of big taxonomic divides may 

have driven researchers to focus on small subsets and within-subgroup analyses rather than 

analysing across the animal kingdom. As such, it remains an open question how comparable 

these systems are, and whether generalisable rules shape social structure across these 

divides. 

There are other subtle biases present in the data: for example, because ant colonies 

are relatively easy to replicate and observe, the ASNR contains many replicate ant networks, 

such that ants are overrepresented at the network level rather than a higher taxonomic level 

(Sah et al. 2019). Because sociality is often studied at different intensities across taxonomic 

groups (Sah et al. 2018), other well-studied taxa may be similarly overrepresented. Studies’ 

findings could be swayed by these taxonomic skews. In the short-term, following the lead of 

previous studies can help mitigate these issues, for example by subsampling networks for 

over-represented species (Collier et al. 2022) or re-analysing without them (Fountain-Jones 

et al. 2022). In the longer term, targeted addition of new datasets can address taxonomic 

biases, perhaps using innovative approaches to exploit existing social or movement data, 

such as approximating proximity networks using Movebank data (Kays et al. 2022). 

 

Choosing networks relevant to the question: Careful selection of networks from 

databases is required to ensure they are relevant for the question posed (Figure 4). For 

example, there may be little value in using networks based on indirect contacts to model the 

transmission of many contagious pathogens (Albery et al. 2021). Similarly, the relevance of 

wild and captive network datasets will depend on the question asked and the taxa 
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investigated. Importantly, taxonomic biases may interact with these problems: for example, 

how does the effect of captivity on network structure differ between ants and macaques? 

One particularly difficult incarnation of this problem lies in comparing species with 

qualitatively different social systems: for example, is it meaningful to compare species with 

well-mixed fission-fusion societies to ones that lives in stable groups? A potential solution is 

to use existing frameworks (Prox & Farine 2020) to inform decisions about which types of 

social systems to compare for any given question. These frameworks can be used to 

summarise networks based on multidimensional traits, employing emergent continuous 

variables rather than discrete a priori “social organisation” categories. Also relevant here are 

decisions about which behaviours (and so networks) are relevant to a particular research 

question (see “Between-Study comparability” section below). 

 

Combining network data with external data: Combining comparative network analyses 

with external data on individual, group or species level traits considerably expands the scope 

of questions it is possible to answer in diverse research areas. However, only rarely have 

studies combined their network data with external data sources (Figure 2), with exceptions 

including cognitive traits (Pasquaretta et al. 2014) and parasite richness (Poulin & Filion 

2021). These examples collectively illustrate how integrating comparative network data with 

other traits provides increased power in identifying general factors shaping social structure 

and testing hypotheses related to the ecological and evolutionary consequences of these 

structures. Indeed, one reason that simulations are so regularly used is because they allow 

approximation of epidemiological consequences of social network structures without 

necessitating additional empirical sources of information.  

One limiting factor for some comparative analyses will be the availability of other 

species-level traits. In general, basic life-history data will likely be available for species that 

have been sufficiently well-studied to collect social network data, and these types of 

information have been collated into existing databases such as PanTHERIA (Jones et al. 
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2009). However, other data types may be more limited. For example, a recent integration of 

the ASNR and global mammal parasite database (Stephens et al. 2017; Sah et al. 2019) 

resulted in a sample size of 18 (Poulin & Filion 2021), as limited data availability required the 

authors to focus on primates. It remains likely that comparative projects will need to compile 

external, non-network datasets themselves for some traits. Similarly, while existing 

databases (see Box 1) do contain limited individual-level data (e.g. age, sex) for some 

networks, this may also limit the number of networks that can be included without contacting 

the authors of original studies. This highlights the importance of authors providing attribute 

data alongside their networks to improve our ability to answer individual-based questions. 

 

Between-study comparability 

Variable methods of data collection: Networks in multi-species datasets are often 

collected using diverse and potentially incomparable methodologies, and little methodological 

research has critically considered how this impacts comparative analyses. In some cases, 

there are clear issues with comparisons. For example, group-based methods of network 

construction will typically cause much denser social networks than other forms of data 

collection. However, in others comparability can be much less clear. Additionally, different 

data collection strategies can be confounded with taxonomy and social system. For example, 

rodents may be disproportionately trapped, large mammals GPS-tracked, birds ringed or 

PIT-tagged, and ungulates censused. Similarly, behavioural interactions are easier to 

observe in species living in stable groups, while network data for less social species may 

typically be collected using bio-loggers (Smith & Pinter-Wollman 2021). Further challenges 

will occur if sampling intensities differ across forms of data collection (e.g. more proximity 

interactions will be missed for data collected using focal sampling than if most individuals in a 

group are carrying proximity loggers).  
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Dealing with the difficulties imposed by data collection methods represents a major 

challenge. Great care is required, especially because interactions with other study or network 

features are likely and effects may not be linear. The most conservative solution is to be strict 

with inclusion criteria (Figure 4) and avoid comparing networks collected in different ways. 

However, the impacts may also be mitigated by solutions highlighted in other sections, 

especially when data collection method is confounded with the type of behaviour studied or 

scale of interaction. In these cases, dealing with interactive effects of these confounding 

variables will be key. Ultimately, the best approach will be not to avoid comparing them, but 

to compare them explicitly – both with empirical data and simulations – with the aim of 

discovering such biases. This approach may be particularly powerful where multiple data 

collection approaches are used in a single system (e.g. (Castles et al. 2014)). 

 

Social/spatial/temporal scale of observation: Studies vary substantially in their scale, 

whether social (e.g. within-group vs. multigroup), spatial (study area size), or temporal. For 

example, studies may choose a geographic area and follow (a proportion of) a population 

there (Firth & Sheldon 2016; Testard et al. 2021), or choose certain individuals across a 

series of groups (Silk et al. 2018; Papageorgiou & Farine 2020), or identify a specific group 

and follow all its members (Kulahci et al. 2018). Confusingly, terminology can exacerbate 

challenges here; some studies use “group” and “network” interchangeably, while others do 

not. A key challenge is identifying if and when we can compare studies focused on groups 

with those focused on entire populations/multiple groups. Exacerbating this challenge, other 

issues such as data collection method and network size are often confounded. Further, the 

spatial or temporal scale of studies may also be correlated with the proportion of individuals 

that are tracked or identified, which can also impact topological measures (Gilbertson et al. 

2021). All these differences could introduce disparities that are difficult to overcome during 

analysis.  
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A crucial methodological development would therefore be to identify combinations of 

sampling approach and types of network measure that can be used more robustly in these 

contexts, and which should be avoided entirely. Similarly, comparing studies that occur over 

different timeframes represents a considerable challenge. On the one hand, network data 

collected over longer durations can lead to greater confidence that the observed network 

structure is a good representation of reality (Farine & Strandburg-Peshkin 2015; Davis et al. 

2018; Hart et al. 2023). On the other, observing networks for longer will lead to more densely 

connected networks as more infrequent or random interactions or associations are observed. 

This will be a greater problem for some data types (e.g. proximity, group-based) than others 

(e.g. grooming). Networks aggregated over long periods also risk overlooking network 

dynamics (see subsequent section). 

In the short term, careful screening of studies is again important in ensuring the 

networks used employ a relevant scale. Ensuring that metadata in databases accurately 

indicates this information (as some already do: (Sah et al. 2019)) is therefore vital. Heading 

towards incorporating data into these databases as dynamic edge lists or at a range of 

temporal resolutions would allow researchers greater flexibility on whether to include a study 

or not. It will also be beneficial to apply other previously identified solutions such as (with 

caution) controlling for the scale of the study within the statistical model (e.g. (Sah et al. 

2018)), or analysing separately for networks measured at different social scales (e.g. group 

vs. population) and integrating the results qualitatively or meta-analytically. As with data 

collection methods, what is most needed is a renewed effort to employ simulations using 

well-known study systems to more accurately quantify when and how problems will arise 

when comparing networks across scales. 

 

Disparate edge types: There is substantial variation among networks in how edges 

are defined (Table 1): some use specific behavioural interactions such as grooming, while 

others use coarser approaches such as association within a group, or spatial proxies such as 
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home range overlap. Frequently these networks will not be directly comparable (Castles et 

al. 2014). In other cases, it is not necessarily clear the extent to which different observations 

represent different behaviours per se. Some may be nested: for example, sexual contact 

requires spatiotemporal proximity, and so the former network may represent a subset of the 

latter. Similarly, it will be challenging to work out what represents comparable behaviour 

types in taxa with very different ethograms. For example, DomArchive (see Box 1) only 

includes data on dominance networks but includes >150 different “behaviours”, some of 

which are rather distinct. Some network types will also have very different topologies that 

make them hard to compare directly (Castles et al. 2014): for example, fluid exchange 

networks are generally very sparse and skewed, exhibiting different topologies to direct 

contact networks (Collier et al. 2022). This issue is also confounded with differences in data 

collection methodologies outlined above, further reducing comparability: for example, GPS 

tracks might be used to detect grouping, while short-range proximity collars are used to 

identify direct contacts (Albery et al. 2021; Smith & Pinter-Wollman 2021). Because these 

methods exhibit different sensitivities and sampling frequencies, two networks may have 

different topologies purely because of this methodology rather than biological differences. 

In the short term, careful use of selection criteria can prevent these potential issues 

(Figures 4 & 5). For example, questions related to within-group social stability may use data 

on grooming, dominance, social foraging or trophallaxis from the ASNR and combine this 

with relevant data from DomArchive or MacaqueNet. Researchers can also include data 

collection methods as fixed or random effects in comparative analyses (e.g. (Albery et al. 

2022)). However, in many cases, it can be more effective to repeat the analysis for different 

data collection methodologies and then either qualitatively or quantitatively compare the 

results. This can even be used as the strength of a study (Collier et al. 2022). One could 

even examine if the results of a comparative analysis are sensitive to inclusion/exclusion of 

particular behavioural types. In the future, methodological research that uses the 

comparability of different networks from the same species can help identify interaction types 
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that are more comparable and perhaps use advances in latent network modelling (Young et 

al. 2021; Ross et al. 2022) to combine insights from multiple data sources. 

 

Disparate network size: Network size also differs considerably between studies. 

Historically, differences in network size have been identified as a key problem for 

comparisons (Faust 2006), by creating several overlapping issues. First and most simply, 

raw values of many social network measures depend on network size and how best to 

correct for its effect will differ between measures and is not always intuitive. For example, 

while degree is best normalised by dividing through by the number of possible partners and 

betweenness is best normalised by dividing by the number of possible paths, for other 

measures this choice is less clear. Second, the value of using size-corrected measures can 

depend on both the research question and the generative process determining network 

structure. For example, network size in existing databases could be reflective of either 

sampling effort or social group size. In the latter case, it can be biologically meaningful that 

individuals in larger groups have more social connections. Similarly, if the number of 

connections an individual forms has an upper bound regardless of group size then correcting 

for group size effects will remove biological signals. However, this will not universally be the 

case, and in some contexts failing to control for group size could drive misleading 

conclusions if interpreted incautiously.  

Because i) differences in network size may also be driven by variation in sampling 

(e.g. edge effects or the inability to identify all individuals) and ii) how network measures 

covary with network size may differ between systems and approaches, great care in 

interpretation is necessary when network size varies considerably between studies. As such, 

this is an area in substantial need of methodological research. For example, the advent of 

Bayesian approaches to impute missing network data (Young et al. 2021) and generate 

uncertainty around edge weights and network measures (Hart et al. 2023) can help mitigate 

issues directly related to sampling differences and allow the focus to be on analytical 
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decisions around the biological effect of group size. One option is to fit network (or group) 

size as a covariate within comparative models; however, how this is done (e.g. whether it is 

included as a linear effect) would require careful consideration and cautious interpretation. 

Differences in confounding effects of network size and sampling intensity also 

represent a challenge to comparative analyses assessing the relationship between 

conditional traits and individual network position (Box 2). In these cases, employing Bayesian 

methods that propagate uncertainty from this initial stage of the analysis through to the 

cross-system comparative analytic stage would be an ideal solution, especially by enabling 

studies with better-sampled or larger networks to have greater weight. This is likely to 

become increasingly feasible as new methods allow uncertainty around social network metric 

calculations in animal societies (Hart et al. 2023).  

 

Network features (and information loss) 

Researchers must also decide what level of information loss is acceptable, especially for 

network dynamics, edge weights and edge sizes (Figures 4 & 5). 

 

Dynamic networks: Social interaction patterns typically change over time and/or between 

ecological contexts (Silk et al. 2017; Smith et al. 2018; Shizuka & Johnson 2020) meaning 

social networks are rarely static, and snapshots or aggregations captured in adjacency 

matrices are a simplification of reality. Currently very few papers have considered network 

dynamics within a comparative framework (but see (Rubenstein et al. 2015; Chase et al. 

2022)), in part because dynamic network data is less readily available (e.g. not in the ASNR; 

(Sah et al. 2019)). However, even when conducting comparative analyses using static 

networks it is important to consider the impact of social dynamics. 

Generally, researchers define data collection periods based on their research 

question (e.g. matching the transmission dynamics of a pathogen (White et al. 2017)) and 

biological knowledge. However, the duration of data collection can also be constrained by 
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convenience factors (e.g. battery performance of bio-loggers, duration of presence in a study 

location, etc. (Gilbertson et al. 2021; Smith & Pinter-Wollman 2021)). Similar considerations 

and constraints also apply to the frequency of network data collection. This creates a major 

challenge when conducting comparative analyses because the potential for variation in social 

dynamics between systems means it is not straightforward to control for study duration. For 

example, if the rate at which individuals of species A change their interaction partners is 

much slower than that same rate in species B, then any correction for study duration will 

introduce bias related to genuine biological differences, rather than achieving what is 

intended. The potential impact can be limited by focusing a comparative analysis on a subset 

of social systems (or taxonomic relatives) in which changes in network structure over time 

are more similar. Alternatively, if using network duration as a control variable, then allowing 

its effect to vary according to social system, behaviour type, method of data collection, etc. 

may mitigate this issue to some extent. In the longer run, another effective solution will be 

storing more data as dynamic edge lists so that researchers have more power to make their 

own decisions as to whether to use a dynamic or static approach, and the duration over 

which to aggregate static networks. However, moving towards these higher-resolution 

datasets may reduce researchers’ willingness to share network data, as they contain more 

information about their study system.    

 

Disparate edge weightings: Considerable variation in edge weight definitions represents 

another key challenge for comparative analyses, especially when they covary with taxonomy, 

social system and data collection methods. For example, many studies have used 

association indices like the simple ratio index (Hoppitt & Farine 2018), and the popularity of 

alternatives has varied over time and between research communities. In contrast, many 

contact-based networks use bio-logging devices to measure the duration or frequency of 

encounters. This creates problems for a comparative analyst because edge weights in 

different studies can mean very different things. Previous studies have typically used only a 



21 
 
 

subset of networks that use a similar approach (limiting statistical power), extracted only 

binary networks (losing information on the strength of connections), or fitted a network’s 

weighted/unweighted status as a covariate in the comparative analyses (Collier et al. 2022). 

One potential alternative to this would be to use a simple correction to make edge weights in 

different networks more comparable (e.g. by dividing all edges by the maximum edge weight 

to generate a standardised index). However, a potentially more satisfying approach would be 

to use statistical approaches such as mixture models that can classify edges as belonging to 

different distributions, e.g. “weak”, “intermediate” and “strong” (Weiss et al. 2019; Ellis et al. 

2021). A key advantage would be that any uncertainty in these classifications could be 

propagated through to subsequent stages of the analysis. Additionally, as is the case with 

network dynamics, storing network data in raw edge list format would empower those 

conducting comparative analyses to make their own decisions about how to weight edges to 

be comparable between studies. 

 

Higher-order interactions: Another source of lost information in all comparative social 

network studies conducted so far – and in existing data repositories – is that network data is 

stored as a conventional dyadic network, even in situations where this is a simplification (e.g. 

group-based networks). This loses information on the size of social interactions that can be 

captured using higher-order network approaches (Silk et al. 2022). While these have only 

rarely been used in behavioural ecology thus far (Musciotto et al. 2022), they are gaining 

popularity as a tool in broader network science (Battiston et al. 2021). It would be valuable to 

move towards also storing higher-order network data in animal social network databases 

(e.g. in the form of group-by-individual or incidence matrices) to facilitate approaches that 

explicitly incorporate this higher-order structure.  
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Future opportunities for comparative social network 

analysis  
Comparative social network analysis has displayed wide informative power across a range of 

different topics. Building on and expanding this literature, there remain diverse research 

areas for comparative social network analysis that are as yet relatively underexplored. Here 

we focus on disease ecology, behavioural ecology and conservation, as well as the interface 

between these topics. However, we encourage others to develop additional applications of 

these approaches, especially as a tool to unify across ecological disciplines. 

 

Transmission and contagion processes: While transmission has been a major focus of 

existing comparative network analyses, there remain many unanswered questions. For 

example, most simulation studies of transmission dynamics examined traits of the networks 

themselves, rather than using the results to explain between-species differences, despite the 

potential added by integrating additional data (Fig. 2). A prominent example of this lies in our 

improved understanding of modularity (Griffin & Nunn 2012; Sah et al. 2017), which although 

highly informative has largely not been related to species traits themselves. Similar studies 

could also extend beyond concepts such as modularity to further explore what species- and 

population-level traits explain important network properties revealed by existing comparative 

analyses (Colman et al. 2021; Fountain-Jones et al. 2022). Similarly conducting more 

nuanced comparative analyses that examine differences across multiple types of social 

association and interaction (Collier et al. 2022) could be extended to better quantify the 

expected dynamics of diverse zoonotic and agricultural diseases in their wild hosts. 

Moving beyond pathogen spread, there are relatively few explorations of how other 

social contagions (e.g. behaviour spread) manifest across systems. Because other 

contagions often exhibit complex (e.g. non-dyadic) contagion behaviour that can differ from 

how pathogens spread (Firth 2020), with implications for animal social system evolution 
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(Evans et al. 2020), comparative network analyses represent an opportunity to explore the 

consequences of different social systems for pathogen and behaviour spread, as well as to 

link this to species traits. For example, (Evans et al. 2021) showed that only modular 

networks with small sub-groups favoured the spread of conformist behavioural contagions 

over pathogen spread. A nice example of how this could be applied to multi-network 

comparisons is provided by (Beck et al. 2023), who compared different social contagions 

across multiple great tit Parus major social networks, providing insight into how individual 

network position linked to the order of behaviour acquisition. Extending these types of study 

could generalise their insights across diverse taxa, and link outcomes to species-level traits. 

 

Health and immunity: Applications of comparative network analyses in disease ecology 

could also include better quantifying cross-species social drivers of health and immunity. 

While the consequences of network structure for outbreak dynamics are relatively well 

understood (theoretically at least), an individual’s social interactions can also influence their 

stress physiology (MacLeod et al. 2023) and health (Snyder-Mackler et al. 2020). 

Consequently, comparative network analyses can help examine the importance of social 

network structure for the manifestation of individual and population-level disease (or health) 

itself. To provide a specific example, because mechanisms of immunity are expected to 

evolve in response to infection (Graham et al. 2011), species- and population-level 

differences in social network structure should manifest in realised differences in immunity 

across species via their effects on infection prevalence. Comparative network analyses offer 

an ideal way to test these predicted relationships that moves beyond coarse measures of 

sociality like group size (Côté & Poulin 1995; Patterson & Ruckstuhl 2013). Future work 

could integrate individual-level social network position with group or population-level social 

network structure and explicitly incorporate physiological markers of health or immunity. It 

should be noted that comparative studies of immunity are also difficult to perform across 

species due to issues such as the variable sensitivity of the available eco-immunological 
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tools (Boughton et al. 2011), but nevertheless even coarse and generalisable measures like 

white blood cell count (Cooper et al. 2012) may prove informative when integrated with 

comparative social network analyses. 

 

Socio-spatial ecology and behavioural integration: individuals’ spatial and social 

behaviours are tightly intertwined (Webber et al. 2023), with spatial behaviour often being 

important in explaining social network structure (Mourier et al. 2012; Pinter-Wollman 2015; 

Firth & Sheldon 2016). Comparative network analyses offer an exciting opportunity to look at 

how the role of the ecological environment and movement behaviour in explaining social 

structure varies among populations and species, testing to what extent variation in these 

relationships can be linked to other species level traits such a body mass, mobility and kin 

structure. Examining how spatial and social network types are linked across and within 

species could help to inform a wide range of empirical questions, e.g. refining our ability to 

quantify individual variation in optimal group size and structure (Webber et al. 2023), as well 

as encouraging the integration of spatial data types into social network workflows using 

spatio-temporally parameterised telemetry tracks (Robitaille et al. 2019).  

 

Group structure and dynamics: Existing applications of comparative social network 

analyses have focused on comparing group- and population-level social structure and 

patterns of group stability. However, typically this has been between small numbers of 

closely-related species. Extending these approaches across a diverse set of social systems 

offers the potential to start teasing apart the importance of the ecological environment, 

taxonomy/evolutionary history and species-level traits (e.g. body mass, mode of movement, 

migratoriness, mating system etc.) in explaining broad patterns in animal social structure. 

Using a comparative network approach provides a more flexible way to capture nuanced 

variation in social structure and its temporal dynamics than historical approaches. Moving to 
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finer social scales, there is considerable scope to answer novel questions as more social 

network datasets become available in online repositories. For example, different 

relationships between the costs of aggression and dominance rank have been documented 

(Silk et al. 2019; Hobson et al. 2021a), and comparative network analyses offer promise in 

finding general patterns for how this relationship varies and depends on other species traits. 

 

The evolution of sociality and cooperation: The evolution of cooperation is a major focus 

in behavioural ecology, and benefited from previous comparative analyses (Cornwallis et al. 

2017; Firman et al. 2020). Despite studies in this area frequently examining the maintenance 

of complex sociality (e.g. (Akçay 2018)), they have yet to take full advantage of comparative 

network approaches, either theoretically or empirically. Moving network models of the 

evolution of cooperation from theoretical network structures (e.g. (Ohtsuki et al. 2006)) to 

exploit multi-species data from social network repositories could help generalise findings to 

different real-world network structures. These approaches may also help investigate how the 

emergence of cooperation in different network structures is linked to species-level traits and 

how well it aligns with recorded cooperative behaviours. From an empirical perspective, 

comparative social network analyses can provide further metrics to help construct 

multidimensional projections of social complexity (Prox & Farine 2020), as well as feeding 

back to inform the development of social network structures themselves (Akçay 2018). 

Identifying consistent features of social networks that differ between cooperative and non-

cooperative species, for example, could help quantify how the evolution of cooperation 

shapes wider ecological and evolutionary processes.   

 

Social ageing: Recent interest in social ageing has revealed age-related changes in social 

behaviours in older individuals become less socially connected (Siracusa et al. 2022). 

Because ageing itself is a complex process that needs to be demonstrated at the individual 
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level (Nussey et al. 2008), it will greatly benefit from – if not necessitate – comparative 

network analyses rather than more classical approaches that look at traits such as group size 

and composition. Given that age data is regularly monitored in many long-term study 

systems and already available as a node attribute in some social network repositories, 

comparative network approaches can play an important role in generalising age-related 

changes in social interaction patterns across animal species and ecological contexts. 

 

Human-wildlife interactions and conservation: Another opportunity is to test how species’ 

social networks differ in their responses to anthropogenic disturbance and human-induced 

rapid environmental change (HIREC; (Sih 2013)). For group-living species, social networks 

may respond in varied ways to these anthropogenic pressures (Fisher et al. 2021; Blumstein 

et al. 2023). For example, endangered mountain gorillas’ social networks became more 

cohesive when tourists were too close (Costa et al. 2023). Testing to what extent these 

dynamics vary according to other species traits could help inform which social species are 

most at risk from anthropogenic pressures and how best to protect them (Snijders et al. 

2017). In a similar vein, a generalised, cross-species understanding of group social network 

stability or individual social integration and how it is linked to health could help inform 

population augmentation or reintroduction attempts if it can be extended to endangered 

social species. Group stability and social integration are likely to play a key role in the initial 

success of such projects when social relationships strongly determine fitness. 

 

Concluding Remarks 

Comparative social network analyses have huge untapped potential to further our 

understanding of the evolutionary ecology of animal societies and strengthen the links 

between different ecological sub-fields. Our review reveals growing interest in comparing 
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network structures and their ecological consequences across taxonomic divides, as well as 

the increasing power of approaches being used. Especially given the apparent trend of 

increasing data breadth, depth, and availability over time, we expect that these approaches 

will only become more powerful for examining socio-ecological trends across species in the 

near future. Greater use of meta-analyses of within-network trends alongside these 

approaches will increase the reach and reliability of comparative approaches in social 

network analysis (Spake et al. 2022), and transform the hunt for general patterns shaping the 

structure of animal social systems.  
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Box 1: Social network repositories 

A recent development is the creation of large-scale, publicly available databases of social 

network data (Table 1). We introduce three databases for non-human animal social networks 

here and draw attention to similar efforts for human networks too. 

Animal Social Network Repository (ASNR) 

The animal social network repository (ASNR; (Sah et al. 2019)) was first published online in 

2016, although has been regularly updated since then. It has subsequently been used by 7 

of the studies in our review. Of all the current social network datasets, the ASNR captures 

the greatest taxonomic diversity, including insects, fish, birds, reptiles and mammals. Data is 

currently stored as adjacency matrices. It also incorporates substantial variation in network 

size and the types of behaviour monitored. However, care is needed when exploiting the 

ASNR as it also includes networks measured in different ways and over varied social and 

temporal scales, as well as incorporating both free-living and captive populations   

DomArchive 

DomArchive is a newly-available database of dominance interactions (Strauss et al. 2022), 

exploiting the long-term focus on social dominance in the animal behaviour literature. The 

majority of data is available as adjacency matrices (sociomatrices), with a subset stored 

instead as edge lists. The types of interaction incorporate a wide range of aggressive, formal 

dominance or submissive behaviours as well as related behaviours such as threats, 

avoidance and social displacement. The data available will be directly relevant to questions 

related to social stability and group function. 

MacaqueNet 

MacaqueNet (Box 1; Table 1) is an in-development social network database focused on 

macaques (Macaca sp.) curated for the purpose of comparative analyses in primatology and 

behavioural ecology. By concentrating on a well-studied genus that share similar social 

behaviours, MacaqueNet will offer an exciting opportunity for tackling research questions 
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related to group-living with fewer of the pitfalls of larger datasets. As is the case for the 

ASNR, all data stored in MacaqueNet is formatted consistently so fully ready for comparative 

analyses (although note that data collection methods and edge weights can still differ 

between studies). 

Human contact network databases 

The SocioPatterns team have collected a range of proximity network datasets using 

Bluetooth loggers (e.g. primary school (Stehlé et al. 2011); scientific conference (Cattuto et 

al. 2010); Kenyan village (Kiti et al. 2016); hospital (Vanhems et al. 2013)) in addition to one 

similar dataset from wild baboons. Data are provided as edge lists, and if aggregated as 

adjacency matrices would be directly comparable with networks connected using similar 

methods from the ASNR.  
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Box 2: Classifying comparative network analyses 

A diverse set of comparative approaches are possible using social network datasets. Here 

we provide a framework to distinguish between different approaches (Figure 3) 

1. Comparisons of network properties 

A first approach involves comparing the topology of different networks as an outcome 

of other network properties (e.g. network size). This is common in network science 

where understanding the generative processes underlying network formation is a 

major focus (e.g. (Rocha et al. 2021; Ward 2021; Ojer & Pastor-Satorras 2022)). 

However, it is also of interest to ecologists, such as with studies that test the 

relationship between network size and modularity (Griffin & Nunn 2012). 

2. Species-level comparative approaches 

A second type is a conventional species-level comparative approach, in which a 

network property of interest is fitted as a response variable with a series of species-

level traits as explanatory variables, and potentially alongside a phylogeny to control 

for non-independence among closely-related species. The appropriate use of random 

effects can allow multiple observations to be used for a given species. We subdivide 

species-level approaches by the outcome variable of interest.    

 2a) Using network topology 

 Often the outcome of interest is a property of the network itself (e.g. degree 

heterogeneity, modularity). For example, a researcher might want to ask: How does 

the modularity of affiliative networks in animal groups vary with environmental 

harshness? These types of question will be common in behavioural ecology, for 

example in contributing discussions around the role of social complexity in cognitive 

evolution (Barrett et al. 2007) or linking network structure to demographic factors 

(Shizuka & Johnson 2020).  
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 2b) Using the outcome of dynamical processes 

The outcome of interest could also be the ecological consequences of network 

structure, necessitating additional steps prior to the comparative analysis. For 

example, studies in disease ecology often conduct simulations of pathogen spread 

and then use features of the resulting outbreaks as variables in comparative analyses 

(e.g. (Nunn et al. 2015; Sah et al. 2017; Collier et al. 2022; Fountain-Jones et al. 

2022)). Similar approaches are useful in understanding the consequences of social 

structure for information spread and behaviour change (Evans et al. 2020). 

3. Individual-level meta-analyses 

The final category is a meta-analytic approach looking at how relationships between 

social interaction patterns and conditional traits vary among species. For example, 

Briard and Ezenwa (Briard & Ezenwa 2021) showed an overall positive association 

between social centrality and parasite burden across 210 effect sizes covering 16 

host species, but they could not explain variation in this relationship using other host 

traits. While this study was in the context of disease ecology, there is no reason 

similar methodologies could not be applied to other questions of interest such as the 

relationship between social network position and fitness (Silk 2007; Snyder-Mackler 

et al. 2020).  

 

We provide a schematic (Figure 3) to display model construction for these three main types 

of comparative network analyses: 1) analyses examining the relationship between different 

network traits across a range of studies (e.g. How does modularity depend on network or 

group size? How does network efficiency depend on degree heterogeneity?); 2) analyses of 

network properties (either topological or the outcome of dynamical processes operating on 

the network) as an outcome of both network traits and species traits (e.g. How does 

modularity depend on group size and longevity? How does mean outbreak size depend on 

fragmentation and body size?); 3) a full meta-analysis to test how relationships between 
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network traits and individual traits vary across species and networks (e.g. Does the 

relationship weighted degree and fitness depend on species life-history and network 

modularity?) 
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Tables 

Table 1. Summary of existing social network databases. 

Database Number 
of 
networks 

Number 
of 
species 

Behaviours Access 

ASNR 790 76 Dominance; 
Foraging; 
Grooming; 
Group 
membership; 
Non-
physical 
social 
interaction; 
Physical 
contact; 
Social 
projection 
bipartite; 
Spatial 
proximity; 
Trophallaxis; 
Mixed 

https://bansallab.github.io/asnr/  

MacaqueNet 761 14 Spatial 
proximity 
Body 
contact; 
Grooming; 
Contact 
aggression; 
Non-contact 
aggression 

https://macaquenet.github.io/database/ 

DomArchive 436 135 Dominance 
interactions; 
Submissive 
interactions; 
Aggression 
(151 
subtypes 
identified)  

https://github.com/DomArchive/DomArchive  

SocioPatterns 14* 2 Proximity http://www.sociopatterns.org/datasets/  

 

  

https://bansallab.github.io/asnr/
https://gbr01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fmacaquenet.github.io%2Fdatabase%2F&data=05%7C01%7C%7Cf9de344585c845a6cb0c08db35f85d31%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C638163113058658748%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=awBQvFaNqrl1fMD2JKl0cFz5m91aSHFsKPYcqaFhNkw%3D&reserved=0
https://github.com/DomArchive/DomArchive
http://www.sociopatterns.org/datasets/
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Figures 

 

Figure 1. Coverage of our identified comparative social network studies. A) increase in 

number of species over time; B) increase in number of compared networks over time; C) 

positive correlation between the number of species investigated and the number of 

compared networks. Each point represents one of 49 studies; the line represents a Loess 

smooth fitted to the data. The rug on either axis displays the distribution of the data. 
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Figure 2. A conceptual overview of the value of how comparative social network analyses fit 

within a broader framework for social ecology and evolution. We illustrate selected 

relationships between species- and individual-level traits and social network structure and 

draw attention to key comparative databases for the main traits illustrated. Github1 refers to 

https://github.com/CharlotteAnaisOLIVIER/Social-organization-of-primates.  

 

  

https://github.com/CharlotteAnaisOLIVIER/Social-organization-of-primates
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Figure 3. An overview of different types of comparative analyses that can be applied to 

social network datasets. 1) Network-level analyses that connect network-derived traits with 

the structure of the network themselves. 2) Network-level analyses that connect network-

derived traits or simulation outputs with other traits of the networks and the species that 

comprise them. 3) Node-level analyses across N networks that involve connecting node and 

individual-level traits within each system (inside brackets) and then connecting these 

estimates with species- and network-level traits in a meta-analytical context. 
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Figure 4. An illustration of our recommended workflow for comparative network analyses, 

identifying key questions for researchers to consider at each of the three stages of the 

process: data selection, scale of investigation and model design. 
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Figure 5. Common problems in comparative social network analyses (left) and solutions that 

may help to address them (right). Links between problems and solutions are those identified 

in the Principal challenges for comparative network analysis section of the main text as an 

outcome of the literature review and judgement of the authors. Solutions are sized according 

to the number of links they have – i.e., the number of problems they are likely to help solve. 

 

 

 


