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Abstract
Many traits show plastic phenotypic variation across environments, captured by their
norms of reaction. These reaction norms may be discrete or continuous, and can sub-
stantially vary in shape across organisms and traits, making it difficult to compare
amounts and types of plasticity among (or even within) studies. In addition, the evo-
lutionary potential of phenotypic traits and their plasticity in heterogeneous environ-
ments critically depends on how reaction norms vary genetically, but there is no con-
sensus on how this should be quantified. Here, we propose a partitioning of phenotypic
variance across genotypes and environments that jointly address these challenges. We
start by distinguishing the components of phenotypic variance arising from the aver-
age reaction norm across genotypes, genetic variation in reaction norms (with additive
and non-additive components), and a residual that cannot be predicted from the geno-
type and the environment. We then further partition the genetic variance of the trait
(additive or not) into an environment-blind component and a component arising from
genetic variance in plasticity.We show that the additive components can be expressed,
and further decomposed according to the relative contributions from each parameter,
using what we describe as the reaction norm gradient. This allows for a very general
framework applicable from the character-state to curve-parameter approaches, includ-
ing polynomial functions, or arbitrary non-linear models. To facilitate the use of this
variance decomposition, we provide the Reacnorm R package, including a practical tu-
torial. Overall the toolboxwe develop should serve as a basis for an unifying and deeper
understanding of the variation and genetics of reaction norms and plasticity, as well as
more robust comparative studies of plasticity across organisms and traits.
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Introduction
The phenotype of a given genotype can vary in response to its environment of development

or expression, through a phenomenon broadly described as phenotypic plasticity (Bradshaw
1965; Schlichting and Pigliucci 1998). Phenotypic plasticity is currently attracting considerable
interest in the context of rapidly changing natural environments (Chevin et al. 2010; Gienapp
et al. 2008; Merilä and Hendry 2014). While the mere existence (and even prevalence) of pheno-
typic plasticity is uncontroversial, its relative contribution to observed or predicted phenotypic
change in the wild (Bonamour et al. 2019; Gienapp et al. 2008; Merilä and Hendry 2014; Teplit-
sky et al. 2008), as well as the extent of its interplaywith population-level processes such as natu-
ral selection and population dynamics (de Villemereuil et al. 2020; Reed et al. 2010; Schaum and
Collins 2014; Vedder et al. 2013), are very active research areas. Answering these questions re-
quires biologists to be able to dissect and compare phenotypic plasticity in detail in a wide range
of traits, environmental contexts and species. This requires a methodology that is appropriate
for each context, while being general enough to be comparable across contexts.

The relationship between the phenotype and the environment is captured by the reaction
norm (or norm of reaction), which is defined at the level of genotypes (Schlichting and Pigliucci
1998; Woltereck 1909). Reaction norms encompass phenotypic responses to both continuous
environments (such as temperature, salinity, etc.) and categorical/discrete ones (such as host
plant for a phytophagous insect). Within a simple model of reaction norm, quantifying plasticity
may be straightforward. For instance, both empirical (Charmantier et al. 2008;Nussey et al. 2005)
and theoretical (Gavrilets and Scheiner 1993b; Lande 2009) work have extensively relied on
the assumption of a linear reaction norm, whose slope is used as a metric of plasticity, since it
quantifies how much phenotypic change is induced per unit environmental change. However,
regression slopes are signed and have units of trait per environment, so even in this simple case
some standardisation is needed in order to compare the magnitude of plasticity among studies.
Beyond this simple scenario, drawing robust conclusions about phenotypic plasticity requires
being able to quantify and compare its magnitude across organisms, traits and environments, in
a way that is applicable across the statistical frameworks used to study plasticity.

Beyond how much phenotypes change with the environment, how they change can also be
of importance. First, different reaction norm shapes may come with different biological inter-
pretations. For instance, a bell-shaped (eg quadratic, Gaussian) reaction norm may indicate that
some mechanism underlying a measured trait is maximized at an intermediate value of the envi-
ronment. This is often expected for traits that are direct components of fitness, or that can be
interpreted as proxys for performance, for which the reaction norms are generally termed toler-
ance or performance curves (Angilletta 2009; Deutsch et al. 2008; Lynch and Gabriel 1987). A
sigmoid shape, on the other hand, may indicate that plasticity is directional but that the range of
possible phenotypes is constrained, or that selection favors discrete-like variation (Chevin et al.
2013; Hammill et al. 2008; Moczek and Emlen 1999; Suzuki and Nijhout 2006). Second, most
theoretical models on the evolution of plasticity, especially those based on quantitative genet-
ics which are most directly comparable to empirical data, assume a given reaction norm shape -
often linear for simplicity (Lande 2009; Scheiner 1993b; Tufto 2000). The extent to which the-
oretical predictions on the evolution of plasticity apply to any particular empirical system thus
depends on how well the reaction norm shape assumed in the models conforms to observations
in this system. In other words, we need some metric for whether a reaction norm is "mostly lin-
ear"or "mostly curved", for instance. In addition, when fitting a particular model of reaction norm
shape to an empirical dataset, we would like to know how well this model captures the overall
plastic variation of the trait across environments.

A third crucial question regarding reaction norms is how (and how much) they vary genet-
ically. It has long been recognized that plasticity can evolve if reaction norms vary genetically
(Bradshaw 1965), and theory has predicted how different aspects of reaction norm shape are ex-
pected to respond to selection in a variable environment (de Jong 1990; Gavrilets and Scheiner
1993b; Gomulkiewicz and Kirkpatrick 1992). However this theory has been little applied empir-
ically, except for predictions about the slope of linear reaction norms (or phenotypic differences
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between two environments). But beyond this, it should also be of interest to identify which as-
pects of reaction norm shape are more likely to evolve, based on how they vary genetically. For
instance, a reaction norm may be highly curved (e.g. quadratic) but have little genetic variability
in curvature, instead mostly varying in position, height, or local slope. Distinguishing between
the genetic variance of the trait, marginalised across environments, and the genetic variance of
plasticity itself, can also be a conceptual and methodological challenge. There is thus a need to
compare genetic variation in different components of reaction norm, but previous attempts to
do so (in a meta-analysis) were limited by methodological obstacles (Murren et al. 2014, see the
Appendix). In fact, comparing genetic variation in the slope versus curvature of a reaction norm,
for instance, is not straightforward, as these parameters have different scales and even units
(trait per environment, vs trait per squared environment). Moreover, even the notion of average
slope and curvature can have different meanings depending on the assumed distribution for the
environment. Genetic variation in reaction reaction norm shape can be analyzed by estimating
variation in the parameters of a continuous function of the environment, as done by the flex-
ible framework of function-valued traits (Gomulkiewicz and Kirkpatrick 1992; Kirkpatrick and
Heckman 1989; Stinchcombe et al. 2012). In addition, it would be useful to be able to compare
the relative contributions of variation in different aspects of reaction norm shape to the overall
variance arising from plasticity of a trait.

We herein propose a theoretically justified and generally applicable framework to estimate
and partition the phenotypic variance of reaction norms, towards three main goals: (i) quantify
the contribution of plasticity to the total phenotypic variance in reaction norms; (ii) evaluate the
contribution of different aspects of reaction norm shape, and of the full assumed reaction norm
model, to overall plastic phenotypic variation; and (iii) quantify heritable variation in the trait
and its plastic component, due to the different aspects of the reaction norm. We provide this
framework as a new R package Reacnorm, including a tutorial to guide users in applying it. Our
hope is that this will stimulate more quantitative investigations of the ways in which phenotypic
plasticity contributes to phenotypic variation and evolutionary change.

Reaction norm models
In the broadest sense, a reaction norm is a decomposition of phenotypic variation among

known (often controlled) versus unknown sources of environmental variation. In this sense, we
can start by decomposing the phenotypic trait z into two components:
(1) z = ẑ + z̃.

The first term ẑ is the reaction norm, that is, the component of phenotypic variation that can
be predicted (hence the hat notation) from knowing both the genotype (which we will note g
throughout) of an individual and the environment (which we will note ε throughout) in which it
developed. Note that by “environment”, we mean either an experimentally controlled environ-
mental variable, or a focal variable (e.g. temperature) within a naturally occurring environmental
context. The second term z̃ is the component of the measured phenotype that cannot be pre-
dicted from genotype and environment, and arises from unknown environmental factors (usually
described as micro-environmental variation), developmental noise, and measurement error.

Types of reaction norms ẑ can be further categorised according to the type of environmental
variation. The environment may be inherently categorical and unordered, such as host plant for
a herbivore insect. It may be ordered but with no (or unknown) quantitative value, such as low,
medium, and high treatments. Or it may be ordered quantitatively, with values that are either
intrinsically discrete, such as habitat quality, or continuous, such as temperature or salinity.

When environments are categorical, the reaction norm can be studied by treating phenotypic
values in different environments as alternative ’character states’, considered as different traits in
a multivariate framework (Falconer 1952; Via and Lande 1985). The mean character state may
differ among environments if the trait is plastic; phenotypic and genetic variation may be larger
in some environments; and phenotypes may bemore or less correlated across environments (Fal-
coner 1952; Via and Lande 1985). Such amodelling framework is readily described by Equation 1
for a genotype g and environment εk (where the index k is used to reflect the discrete aspect
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Notation Explanation Varies over
z Phenotypic value for the trait Everything
ẑ Phenotype as predicted from the environment and the geno-

type
Focal

environment,
genotypes

ε Environmental variable —
µ Vector of the average value of the phenotypic in each envi-

ronment
Focal

environment
Gz Additive genetic variance-covariance matrix of trait values

across environments (character states)
—

θg Vector of parameter values of the reaction norm for geno-
type g

Genotypes

θ̄ Vector of mean values of the reaction parameters over the
genotypes

—

Gθ Additive genetic variance-covariance matrix of the reaction
norm parameters

—

ψε Reaction norm gradient, the vector of partial derivatives of
the phenotype z against reaction norm parameters θg , aver-
aged over the genotypes at environment ε

Focal
environment

Ψ Variance-covariance matrix of ψε across environments —
VP Total phenotypic variance in the trait z —

VRes Residual variance, not explained by the reaction norm —
VPlas, P 2

RN Phenotypic variance arising from changes in the mean reac-
tion norm across environments; divided by VP for P 2

RN

—

VGen, H2
RN Total genetic variance in the trait across environments; di-

vided by VP for H2
RN

—

VAdd, h2
RN Total additive genetic variance in the trait across environ-

ments; divided by VP for h2
RN

—

VA, h2 Environment-blind additive genetic variance of the trait, i.e.
based on the mean breeding values across environments, di-
vided by VP for h2

—

VA×E, h2
I Additive genetic variance arising from plasticity, i.e variance

of the mean-centred breeding values, divided by VP for h2
I

—

πSl, πCv Proportion of VPlas explained by the average slope (πSl) or
curvature (πCv) of the average reaction norm

—

φi, φij Proportion of VPlas explained by parameter i, or by covari-
ation between parameter i and j for a polynomial reaction
norm

—

γi, γij Proportion of VAdd explained by the additive genetic
(co)variation in parameter i (and j)

—

ιi, ιij Proportion of VA×E explained by the additive genetic
(co)variation in parameter i (and j)

—

Table 1 – List of the main notations, as well as their source of variation. We here distin-
guish the “focal” environment, which only concerns the environmental variable used to
parametrise the reaction norm, from other putative sources of environmental variation
that may influence the phenotypic trait (sometimes described as micro-environmental
variation). “Everything” in the table thus includes all (focal and other) sources of environ-
mental and genetic variation, developmental noise and measurement error.

of the environmental variable). In practice, such an approach would correspond to an ANOVA
(or a mixed model) with discrete environment and genotype-within-environment as (random)
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effects of the model. In its most compact form, such a statistical model can be framed as a mul-
tivariate Gaussian distribution, with the number of dimensions corresponding to the number of
categories in the environment,
(2) ẑ ∼ N (µ,Gz) ,

where µ is the vector of expected phenotypic values (across genotypes) within each environ-
ment, and Gz is the genetic variance-covariance matrix of trait values within and across environ-
ments.

For quantitative environments (both discrete and continuous), the most common approach
is to model the reaction norm as a function of environment and genotype:
(3) ẑ = f(ε,θg),

where ε is the environmental value, and θg is a vector that contains the parameters of the func-
tion (e.g. coefficients associated to each exponent for a polynomial) for each genotype g; these
parameters are thus genetically variable. The parameters θg are generally assumed to be poly-
genic and thus follow a multivariate Gaussian distribution,
(4) θg ∼ N (θ̄,Gθ),

where θ̄ is the vector of average parameter values across genotypes and Gθ is the additive
genetic variance-covariance matrix of the parameters θg . This approach has been described al-
ternatively as the “reaction norm” approach, the “polynomial approach”, or a parametric version
of function-valued traits. To keep it general here and avoid confusion with the general concept
of reaction norm as defined in Equation 1 (which applies even to categorical environments), we
will describe it as the “curve-parameter” approach. Note that Equation 4 assumes that the only
source of variation in reaction norm parameters θ is genetic. In cases where reaction norms can
be measured in individuals using repeated measurements across environments (individual plas-
ticity sensuNussey et al. 2007) it can be necessary, or useful, to include other sources of variation
in θ, including confounding environmental effects, or permanent environmental effects. For the
sake of simplicity, we will assume throughout that all variation in θ is genetic, but we show in
subsection C5 that relaxing this assumption only affects how non-genetic variances are com-
puted.

It can be shown that the character-state and curve-parameter approaches are equivalent,
following the spirit of de Jong (1995), who showed that a polynomial curve of sufficient order is
exactly equivalent to a character-state model. In particular, the character-state in Equation 2 can
be expressed using Equation 3 and Equation 4 by letting θ̄ = µ, Gθ = Gz and f a function that
outputs the kth value of θg when evaluated at εk environment (see Appendix A). In the following,
we will derive general results using the more general formalism of Equation 3 and Equation 4,
and then express them for the particular case of the character-state approach when relevant.

Partitioning variation in reaction norms
Complete partition of the variation in reaction norms

The total phenotypic variance in the reaction norm can be partitioned by isolating indepen-
dent components of variation. The main reasoning will be summarised here, with more mathe-
matical details provided in the Appendix A to Appendix D. For a start, the terms in Equation 1
are assumed to be independent, such that the total phenotypic variance V(z) (usually noted VP)
is the sum of the variance predicted by the genotype and the environment V(ẑ), plus a residual
component of variance V(z̃i), which we will note VRes. Then, a second distinction can be made
between the general, average shape of the reaction norm, and the genotype-specific variation
surrounding such an average, as illustrated in Figure 1 using a quadratic reaction norm. The com-
ponent of phenotypic variance arising from plastic responses to the environment by the mean
reaction norm, i.e. after averaging across all genotypes (Figure 1), will be denoted VPlas. This vari-
ance can be considered as fully ascribed to the environmental component of phenotypic vari-
ation. The component of phenotypic variation attributable to genetic variation in the reaction
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norm Figure 1 will be denoted VGen. As these two components are independent by construc-
tion, denoting as Eg|ε(ẑ) the expected value of the reaction norm across genotypes at a given
environmental value ε, we have
(5) V(ẑ) = V

(
Eg|ε(ẑ)

)
+ V

(
ẑ − Eg|ε(ẑ)

)
= VPlas + VGen,

such that
(6) VP = VPlas + VGen + VRes.

Compared to the classical equation VP = VG + VE + VG×E (Des Marais et al. 2013; Falconer
and Mackay 1996; Lynch and Walsh 1998), the correspondence is that VE = VPlas + VRes and
VGen = VG+VG×E. Also note that both decompositionsmake the same common assumption that
genotypes and environments are not correlated. We have thus decomposed the environmental
variance into a component due to phenotypic plasticity in response to ε (VPlas) on the one hand,
and any other residual source of phenotypic variation (VRes) on the other hand, as commonly
done in theory (Gavrilets and Scheiner 1993b; Via and Lande 1985) as well as in practice.
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VP = VPlas + VAdd + VNonAdd + VRes VAdd = VA + VA×E

Mean value for
each genotype

Figure 1 – Illustration of the full variance decomposition using quadratic reaction norms.
We start from the reaction norms (left graph, grey lines, the residual variance is not il-
lustrated) and compute their average shape across all genotypes (left graph, red line).
The phenotypic variance arising from this average shape is VPlas. Centering the reaction
norms along this average shape directly yields the distribution of the breeding values
along environments (middle graph, purple lines), because in this quadratic case, the non-
additive genetic variance is VNonAdd = 0. The total variance of the breeding values along
the environment is VAdd. The classical, environment-blind additive genetic variance VA
is the variance of the breeding values averaged across environments for each genotype
(middle graph, green dots). The VA×E is the variance of the reminder of the breeding val-
ues after mean-centring (right graph, blue lines).

The genotypic variance VGen accounts for all sources of genetic variation, including the geno-
type-by-environment interaction. Note that this contrasts with a view where the genotype-by-
environment interaction is instead associated with the environmental component, e.g. as plastic
variance (Falconer and Mackay 1996; Lynch and Walsh 1998; Scheiner 1993a; Scheiner and Ly-
man 1989). As seen above, VGen can be decomposed into the genetic variance of the trait, mea-
sured using its average genotypic value across environments (VG), and the variance arising from
genotype-by-environment interaction (VG×E). Here, we will apply such decomposition at the
level of the additive genetic variance (VAdd), relegating all the non-additive parts of VG and VG×E
into a common VNonAdd component (Figure 1), arising from dominance and epistasis (Falconer
and Mackay 1996; Lynch and Walsh 1998). Usually, models like Equation 2 or Equation 4 are
defined using additive genetic variance-covariance matrices for their basic parameters, meaning
that VAdd can be directly estimated from the models. As such, we will discard explicit inclusion of
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dominance or epistasis variance components in a theoretical or statistical model throughout, for
the sake of simplicity. However, non-additive genetic variance can still arise from non-linearity
in the (assumed) developmental system (de Villemereuil 2018; de Villemereuil et al. 2016; Mor-
rissey 2015; Rice 2004), meaning that non-additive variance can be generated by the reaction
norm itself. Looking at Equation 3 and Equation 4, the ultimate source of any additive genetic
variation in the trait z comes from the additive genetic variation in the parameters θ. As a re-
sult, non-additivity in the trait arises when the function f(ε,θ) in Equation 3 is non-linear with
regard to θ, a situation we will refer to as “non-linearity in the parameters”. Importantly, this
means that polynomial (e.g. quadratic) functions, which are linear in their parameters, are such
that VNonAdd = 0 and VGen = VAdd.

When studying the evolution of plasticity, it proves useful to further decompose VAdd into
two components. The first is the environment-blind additive genetic variance of the trait, arising
from differences in average breeding values between genotypes, and typically equal to the clas-
sical VA. In other words, VA is the variance of the breeding values after averaging them across
environments (Figure 1), as would be obtained if the genotype-by-environment interaction was
ignored altogether. For example, it would be the output of a simple animal model analysis of
repeated measurements of a plastic trait in a wild population. The second component of VAdd
is the additive genetic variance arising from plasticity, which we will note VA×E (for additive ge-
netic component due to genotype-by-environment interactions). VA×E is the remaining additive
genetic variance in the reaction norm after removing themean breeding value for each genotype
(Figure 1). This definition is akin to the one used by Albecker et al. (2022), but here more directly
expressed in terms of variance of breeding values, i.e. additive genetic variance. It measures
the potential for evolution of plasticity in the trait. Notably, if VA×E = 0 but VAdd > 0, then the
additive genetic variation in the reaction norms is only due to average differences between geno-
types, i.e. the reaction norms of different genotypes are parallel. The variances VA and VA×E are
exactly equivalent to the classical decomposition using VG and VG×E, only applied to the herita-
ble part of the genetic variance. We show below that it is possible to express VAdd, VA and VA×E
in a way that encompasses all approaches of reaction norm, from a character-state to a curve
that is non-linear in its parameters, by computing reaction norm gradients of the trait z with
respect to its reaction norm parameters θ, in line with previous theoretical results for the quan-
titative genetics of non-linear developmental systems and non-Gaussian traits (de Villemereuil
et al. 2016; Morrissey 2015),.

The complete partition of the phenotypic variance is thus:

(7) VP = VPlas + VA + VA×E + VNonAdd + VRes.

From this, it is possible to derive unitless quantities of interest, for instance by standardising by
the phenotypic variance, which is more widely applicable and appropriate than mean-standard-
isation in the context of reaction norms (Pélabon et al. 2020). In particular:

(8) P 2
RN = VPlas

VP
,

is the proportion of the phenotypic variance arising from average plastic responses to environ-
ments (depending on the average reaction norm shape). Variance-standardised additive genetic
variances are heritabilities. In our case, we can use VAdd, VA or VA×E as the numerator, yielding
the following relationship:

(9) h2
RN = VAdd

VP
= VA
VP

+ VA×E
VP

= h2 + h2
I .

In other words, the heritability of the trait when fully accounting for its reaction norm (h2
RN) is

equal to the environment-blind heritability of the trait (h2, based on the breeding values aver-
aged across environments) plus the heritability from plasticity (h2

I , based on the breeding values
by environment interaction). If it is not possible tomeasure additive genetic variances due to limi-
tations in the experimental design (e.g. when “genotypes” correspond to populations, accessions
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or clones), it is possible to perform the same decomposition using “broad-sense heritabilities”,

(10) H2
RN = VGen

VP
= VG
VP

+ VG×E
VP

= H2 +H2
I .

In all cases, the quantity:

(11) T 2
RN = VPlas + VGen

VP
= P 2

RN +H2
RN

would measure the proportion of the phenotypic variance explained by the (possibly plastic and
genetically variable) reaction norm, and thus our ability to predict the individual phenotype from
the genotype and the environment. In a linear context with respect to the parameters, when
the environment is considered a fixed quantity, the quantities P 2

RN and T 2
RN are analogous to the

(resp. marginal and conditional) coefficient of determination of the reaction norm (Johnson 2014;
Nakagawa and Schielzeth 2013), but their definition here is given beyond that simple context.
Relaxing the assumption that the only source of variation in θ is of genetic origin (e.g. individual
plasticity, Nussey et al. 2007), we show in subsection C5 that only the computation of VP and
T 2

RN are slightly affected.
Importantly, so far we are not making any statement about the actual reaction norm shape:

P 2
RN captures the contribution of the average reaction norm regardless of its shape, and the

broad- or narrow-sense heritabilities the contribution of various aspects the genetic variation
to the phenotypic variance. The contribution of detailed aspects of reaction norms shape to
phenotypic variation are obtained by further partitioning VPlas and the additive genetic variances,
as we do below.

Contributions of reaction norm shape and parameters to VPlas

As stated in Equation 5, the general definition of the variance arising from the average re-
action norm is VPlas = V

(
Eg|ε(ẑ)

)
. Important simplifications arise in more particular cases. For

example, when the assumed curve is linear in its parameters, Eg|ε(ẑ) = f(ε, θ̄), where θ̄ is the av-
erage value of the parameters across genotypes. In particular, in the case of a quadratic reaction
norm (Gavrilets and Scheiner 1993a; Morrissey and Liefting 2016; Scheiner 1993a):
(12) f(ε, θg) = (ā+ ag) + (b̄+ bg)ε+ (c̄+ cg)ε2,

where ā, b̄, c̄ are the average intercept, first- and second-order parameters of the model, and ag ,
bg and cg are genotype-specific deviation from these average values for the same parameters,
we can express VPlas simply as:
(13) VPlas = b̄2V(ε) + c̄2V(ε2) + 2b̄c̄cov(ε, ε2).
If the environmental variable ε has been mean-centred and is symmetrical, then cov(ε, ε2) = 0
and the third term vanishes. Finally, in the case of a character-state model, the average pheno-
type in each environment εk is readily provided by the µk in Equation 2, so that VPlas = V(µ).
Once VPlas is computed, its standardised version P 2

RN follows by dividing by the total phenotypic
variance.

Pushing the analysis further, we aim to compute the contributions of different aspect of
reaction norm shape to the overall environmental plastic variance of the trait, notably the con-
tribution of its slope and curvature, which we will denote as πSl and πCv, respectively. For this,
at least one of two of the following assumptions must be valid: (i) ε follows a normal distribution,
or (ii) the true reaction norm is quadratic. In all cases, it also require that the environmental vari-
able has been mean-centered. A last requirement is for f to be at least twice differentiable with
respect to ε (which excludes e.g. the character-state approach). In this case, these terms simply
depend on the average first- and second-order derivative of Eg|ε(ẑ) and the variance of ε and ε2

(see subsection D1):

(14) πSl =
E
(dEg|ε

dε (ẑ)
)2

V(ε)
VPlas

, πCv =
1
4E
(

d2Eg|ε
dε2 (ẑ)

)2
V(ε2)

VPlas
.

8
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An important point arising from Equation 14 is that the relative importance of variation in the
slope and curvature components of reaction norm depend on variation in the environment, re-
spectively V(ε) and V

(
ε2) (note that V

(
ε2) = 2V (ε)2 if the environment is normally distributed).

Crucially, we chose to express this partitioning using the mean environment as the reference en-
vironment (as commonly practiced, e.g. Morrissey and Liefting 2016), but any other choice of
a reference environment would result in a different π-partition, notably due to a non-null value
for Cov(ε, ε2). Fortunately, neither VPlas nor P 2

RN are impacted by this choice in the reference
environment. Furthermore, if the reaction norm is linear in the parameters, the derivatives of
Eg|ε(ẑ) can be directly taken as the derivatives of f . In particular, for a quadratic reaction norm
as in Equation 12, for a mean-centred environment, those quantities simply are:

(15) πSl = b̄2V(ε)
VPlas

, πCv = c̄2V
(
ε2)

VPlas
,

consistent with the fact the first and second order coefficients of a quadratic polynomial cor-
respond to its average slope and curvature, respectively. Only in this configuration do we have
πSl +πCv = 1. Unfortunately, this simple, geometric interpretation of the polynomial coefficients
is lost above the second-order case (see Appendix D).

Figure 2 shows the values of πSl and πCv for various quadratic reaction norms, assuming ε
follows either a normal or uniform distribution, with same mean 0 and variance 1. The values
for πSl and πCv translate well the perceived “trendiness” (for large πSl) or “curviness” (for large
πCv) of reaction norms, but they may also strongly depend on the statistical distribution of the
environmental variable ε, as shown especially in the third example of Figure 2. In this example,
the difference arises because the assumed environmental distributions have different kurtosis
(the scaled fourth central moment, related to V (ε2) in Equation 15). Because V (ε2) is larger for
the Gaussian, this distribution leads to larger πCv than the uniform.
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𝜋Sl = 0.97, 𝜋Cv = 0.03Gauss.

𝜋Sl = 0.99, 𝜋Cv = 0.01Unif.
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𝜋Sl = 0.03, 𝜋Cv = 0.97Gauss.
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𝜋Sl = 0.33, 𝜋Cv = 0.67Gauss.

𝜋Sl = 0.56, 𝜋Cv = 0.44Unif.

Figure 2 – Computation of πSl = πb and πCv = πc, the relative contributions of linear
and quadratic terms to phenotypic variation caused by the mean reaction norm, for dif-
ferent shapes of reaction norms, and two distributions of the environmental variable ε: a
standard Gaussian (of mean 0 and variance 1), and a uniform distribution between −

√
3

and
√

3 (of mean 0 and variance 1).

When it is not possible to assume that ε is normally distributed (because it is discrete, or ex-
perimentally constrained) and a quadratic assumption is not a good fit to the reaction norm, it is
always possible to use a higher-order polynomial model to approximate the true reaction norm,
in line with theoretical work by de Jong (1990, 1995) and Gavrilets and Scheiner (1993a). In this
case, we can conduct an alternative decomposition based on the parameters of the polynomial
(rather than themean slope and curvature of the function), using the fact that a polynomial curve
is linear in its parameters. To distinguish this parameter-based decomposition from the specific
decomposition in terms of slope and curvature, we use a different notation. The relative contri-
bution of a given exponent m in the polynomial to the variance caused by the mean plasticity

9
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becomes (see subsection D2)

(16) φm = θ̄2
mV(εm)
VPlas

,

and the contribution of the covariance between exponents l andm is

(17) φlm = 2θ̄lθ̄mCov(εl, εm)
VPlas

.

Note that even with a symmetrical and mean-centred environment, the covariance between
higher-order exponents will not be zero in general, contrary to ε and ε2 in the quadratic case.
Using orthogonal polynomials would solve this issue of covariances, but at the cost of a more
complex interpretation of the coefficients. More generally, this φ-decomposition only relies on
the assumption that the reaction norm is linear on its parameters, which includes polynomials
as a particularly useful special case. We summarise the requirements and applications for the π-
and φ-decomposition depending on the context in Figure 3.

What is the type of
the environmental

variable?
Categorical
or Ordinal

Discrete
(e.g. controlled environment)

Is a quadratic
curve a good fit?

Continuous
(e.g. wild population)

Is the environment
normally

distributed?

No

Compute VPlas from
the character-state

Compute VPlas from the character-
state and use the φ-decomposition

on a polynomial curve

No
(Discrete)

Compute VPlas from a good
fit curve, optionnally use
the φ-decomposition

using a polynomial curve

No
(Continuous)

Compute VPlas from the
curve parameter and

use the π-decompositionYes

Yes

Figure 3 – Decision tree summarising our suggested workflow for the computation and
decomposition of VPlas, depending on the nature of the environmental variable, its nor-
mality and the validity of a quadratic approximation of the reaction norm shape.

Contributions of reaction norm parameters to the genetic variance
We can expression the variance of the genotypic values of the reaction norms in Equation 5

in a slightly different, but more operational, manner:
(18) VGen = V

(
ẑ − Eg|ε(ẑ)

)
= E

(
Vg|ε(ẑ)

)
,

i.e. the total genotypic variance of the reaction norms is equal to the environment-specific geno-
typic variance averaged across environments. As explained above, this total genetic variance can
be further decomposed into the genetic variance and the genotype-by-environment variance, i.e.
VGen = VG + VG×E (Des Marais et al. 2013; Falconer and Mackay 1996; Lynch and Walsh 1998).
From an evolutionary perspective, the component of main interest is rather the total additive
genetic variance of the reaction norm VAdd, which will be the main focus of this section. As a
reminder, we here assume, that the experimental design allows for the inference of the additive
genetic variance of the parameters of the reaction norm (Gz or Gθ above), and that non-additive
variance in the trait VNonAdd only arises when the reaction norm is non-linear in the parameters

10
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(i.e. dominance and/or epistasis were not fitted in the statistical model). This assumption is for
the sake of simplicity, as our framework can include such effects into VGen if needed.

A general way to relate the additive genetic variance of the trait to the additive genetic vari-
ances of the reaction norm parameters is through a vector that we describe as the reaction norm
gradient, which we will note ψε (following notations in de Villemereuil et al. 2016),

(19) ψε = Eg

(
∂z

∂θ

)
ε
,

where the subscript ε makes it clear that ψε will generally be a function of the environment. In
the case of a quadratic curve, ψε is the (1, ε, ε2)T vector (see subsection C3 for a polynomial
of arbitrary order). In the case of a character-state model, ψεk

is a vector with 1 for the kth
environmental level (or character state), and zero elsewhere. Whether or not the reaction norm
is linear in its parameters, the additive genetic variance of the trait in a given environment ε is
(de Villemereuil et al. 2016; Morrissey 2015, and see Appendix B),
(20) VA|ε = ψT

ε Gθψε,

where superscript T denotes matrix transposition, Gθ the genetic covariance matrix of reaction
norm parameters as defined in Equation 4 for the curve-parameter approach, and Gθ is Gz from
Equation 2 for the character-state approach. The total additive genetic variance in the reaction
norm, VAdd, is the average of VA|ε across environments (see subsection C1):

(21) VAdd = E
(
ψT

ε Gθψε

)
.

The environment-blind additive genetic variance of the trait VA, based on breeding values aver-
aged across environments, is (see subsection C2)
(22) VA = E(ψε)T GθE(ψε).
Although some elements of E(ψε) and Gθ can be negative, the fact that Gθ is a variance-covari-
ance matrix ensures that VA ≥ 0 (see subsection C2). The additive genetic variance arising from
plasticity is thus (see subsection C2):
(23) VA×E = VAdd − VA = E

(
ψT

ε Gθψε

)
− E(ψε)T GθE(ψε).

If we define Ψ = E
(
ψεψ

T
ε

)
− E (ψε) E (ψε)T , the variance-covariance matrix of the reaction

norm gradients across environments, then a more intuitive way to express VA×E is as a sum, for
all pairs of parameters, of the (co)variance of their reaction norm gradient across environments
(in Ψ) and their additive genetic (co)variance (in Gθ):
(24) VA×E =

∑
i,j

Ψ(i,j)Gθ(i,j) = Tr(ΨGθ),

where Tr is the trace of a matrix. All of the quantities above can be divided by VP to get the
corresponding heritabilities.

To illustrate with an example, for a quadratic reaction norm with mean-centred environment
as shown in Figure 1, ψε = (1, ε, ε2) and thus we have (see subsection C3)

(25)
VAdd = Va + (Vb + 2Cac)E(ε2) + VcE(ε4),
VA = Va + 2CacE(ε2) + VcE(ε2)2,

VA×E = VbV(ε) + VcV(ε2),
where Va, Vb and Vc are the additive genetic variances in the parameters ag , bg and cg , and Cac is
the additive genetic covariance between the intercept ag and the second-order effect cg . Those
expressions are reminiscent of classical results from the theory of evolution of plasticity (e.g.
de Jong 1990; Gavrilets and Scheiner 1993a), especially regarding the crucial role of Cac in the
evolution of quadratic reaction norms, but here distinguishing three important components of
the additive genetic variance of reaction norms. In particular, we see how the additive genetic
variance arising from plasticity, VA×E, can be simply expressed as the sum of the products of the
variances in the reaction norm gradients (here the environment and its squared value) and the
corresponding additive genetic variance in the parameters (here bg and cg in Equation 12). This

11
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means that, in the quadratic case, genetic variances in slope and curvature directly translate into
variance arising from plasticity, as they should. By contrast, VA does not solely depend on the
variance in the intercept Va, but also on the quadratic coefficient, more specifically its covariance
with the intercept.

The expressions for these variance components in the character-state approach are best
described directly from the Gz matrix. The total additive genetic variance along the reaction
norm, VAdd, is the average of the additive genetic variance in each environment, i.e. the average
of the diagonal elements of the Gz . The environment-blind additive genetic variance of the trait,
VA, is the average of all the elements of the Gz matrix. Finally, the variance VA×E is the sum of
the products of the (co)variances in the frequency of each environment and the additive genetic
(co)variances in Gz . We illustrate in subsection C4 the relationship between the structure in the
Gz matrix and the additive genetic variances, but a simplified statement is that VA×E > 0 as soon
as the correlation between environments are different from 1 and/or variances in the diagonal
are not all equal.

To further decompose genetic variation in the reaction norms, we first note that here, the
reaction norm parameters are the focus of the decomposition, rather than shape characteristics
like the slope or curvature (with the exception of a quadratic reaction norm, the only case were
they are formally linked). Because Equation 21 is a sum of products, and since Gθ is a constant,
we can isolate each term of the resulting sum as:

(26) γi =
Eε

(
ψ2

ε,i

)
Vg(θi)

VAdd
, γij = 2Eε (ψε,iψε,j) Covg(θi, θj)

VAdd
,

∑
i

γi +
∑
i<j

γij = 1.

Here, γi provides the contribution of the ith parameter in the model to the total additive genetic
variance VAdd, while γij provides the contribution of the covariation between parameters i and
j to VAdd. As such, this “γ-decomposition” (where gamma refers to g for Genetics) measures the
relative importance of genetic variances and covariances of the parameters to the evolvability of
the plastic trait. Large values of γi indicate that genetic variation in the ith parameter translate
into a large proportion of the genetic variation in the trait. Also, large positive or negative values
for γij indicate that covariation between parameters i and j can have a large impact in increasing
or reducing genetic variation in the trait.

It is also possible to focus on the additive genetic variation arising fromplasticity, VA×E, which
yields:

(27) ιi = V (ψε,i) Vg(θi)
VA×E

, ιij = 2Covε (ψε,i, ψε,j) Covg(θi, θj)
VA×E

,
∑

i

ιi +
∑
i<j

ιij = 1.

This “ι-decomposition” (where iota refers to i for Interaction) highlights the fact that VA×E is
the sum of the products of (co)variances in elements of the reaction norm gradient ψε and the
additive genetic (co)variances in the parameters.

For a quadratic reaction norm as in Equation 12with amean-centred environment, this yields:
(28)
γa = Va

VAdd
, γb = VbE(ε2)

VAdd
, γc = VcE(ε2)2

VAdd
, γac = 2CacE(ε2)

VAdd
, ιb = VbV(ε)

VA×E
, ιc = VcV(ε2)

VA×E
.

Note that since the environment has been mean-centred, we have V(ε) = E(ε2) since E(ε)2 = 0,
and thus γb = ιb, i.e. in the quadratic case, all of the genetic variation in the slope contributes
to the genetic variance arising from plasticity. Note also that genetic variance in reaction norm
intercept a does not contribute to the heritability from plasticity (ιa = 0).

For the character-state approach, such decomposition would be less informative about the
potential for (and constraints on) reaction norm evolution. Instead, we can define an effective
number of character states (as proposed for general multivariate phenotypes by Kirkpatrick
2009) as

(29) ne =
∑

i

λi

λ1
,

12
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where λi is the ith eigenvalue of Gz ranked by size (i.e., λ1 is the largest eigenvalue). Strong ge-
netic correlations of phenotypes across environments lead to small ne, whereby reaction norm
evolution is highly constrained (with the limit of ne = 1 corresponding to the strongest con-
straint). Conversely, weak genetic correlations across environments leave more degrees of free-
dom for reaction norms to evolve, causing a large ne, close to the actual number of assayed
environments. This ne metric does not capture all aspects of reaction norm evolvability, and
is best combined with the ratio VA×E/VAdd of the proportion of total genetic variance due to
genetic variance in plasticity). Unfortunately, ne is estimated with a strong bias due to the over-
estimation of the leading eigenvalue of Gz (Lawley 1956), making it less useful in practice than
in theory. We thus do not develop this metric further.

Parameter estimation and variance partitioning in practice

Estimating the parameters

All the parameters mentioned in the previous section can be estimated through commonly
used statistical frameworks. For the character-state approach (Equation 2), a random-parameter
model can be used, or alternatively a “multi-trait” model (Mitchell and Houslay 2021; Rovelli et
al. 2020). We will focus here on the former, which is more easily implemented while seemingly
scarcely used in the literature on plasticity. In the random-parameter model, the environment is
considered as a categorical variable, to which a random effect is added using the genotype as
the grouping factor. In the curve-parameter approach, the appropriate models will be random-
parameter models for a polynomial approach (as mentioned in Morrissey and Liefting 2016),
or non-linear mixed models, fitting the reaction norm function f(ε,θ) to the data. Genotype-
specific parameters, such as the intercept, slope, and any higher-order effects of a polynomial
function, are treated as random’

Since the parameters are estimated with noise, it is important to account for the impact
of estimation uncertainty when computing variance components. In particular, while variances
directly obtained using random effects (e.g. genetic variances) are expected to be unbiased, the
variances arising from fixed effects (e.g. variances related to VPlas) should be corrected for biases
due to uncertainty (as the adjusted R2 does for example). Details are provided in Appendix E.

To compute the total phenotypic variance required to get the estimates P̂ 2
RN, Ĥ2

RN and ĥ2
RN,

we advise using the sum of all estimated components rather the raw sample variance. The former
is common practice in most quantitative genetics inference to account for potential imbalance
in the experimental or sampling design (de Villemereuil et al. 2018; Wilson et al. 2010).

We provide an R package, named Reacnorm github.com/devillemereuil/Reacnorm, providing
functions implementing the variancce decomposition based on raw outputs of statistical models.
A tutorial is shipped with the package, as an R vignette, showing how to implement such models
using the Bayesian brms R packages (Bürkner 2017), along with Reacnorm.

Perfect modelling of quadratic curves

We simulated phenotypic data conforming to a quadratic reaction norm, to evaluate the
performance of the proposed approach when the reaction norm truly is quadratic. We consid-
ered both a discrete and continuous environment. For the discrete environment, we considered
NGen = 20 or 5 different genotypes and an environmental gradient of NEnv = 10 or 4 values,
equally spaced from -2 to 2. We sampled NRep = NGen individual measures for each genotype
within an environment. For the continuous environment, we drew NEnv = 10 or 4 values from
a normal distribution for each of the NGen = 200 or 50 genotypes, without repeats contrary
to the discrete case. In both cases, a residual noise was applied around each measure with a
residual variance VRes = 0.25. In all cases, we defined a quadratic curve with average parameters
θ̄ = (1.5, 0.5,−0.5) for intercept, slope and curvature. We then drew NGen different genotype-
specific vectors of curve-parameter θ from a multivariate normal distribution with mean θ̄ and

13
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Figure 4 – Distribution of the error (difference between the inferred and true value) for
each the inferred variance components for three scenarios: two discrete (Nenv: number
of environments, NGen: number of different genotypes, NRep: number of replicates per
genotype) and one continuous (Nenv: number of environment tested per genotype,NGen:
number of different genotypes). The grey dots correspond to the average over the 1000
simulations. The character-state approach was impossible for the continuous environ-
ment scenario. The yellow boxes on the right show the estimates for P̂ 2

RN (proportion of
variance generated by the plasticity in the mean reaction norm), ĥ2

RN (total heritability of
the reaction norm), ĥ2 (environment-blind heritability) and ĥ2

I (heritability from plasticity)
for both the curve-parameter and character-state approaches. For the curve-parameter,
the π-decomposition of P̂ 2

RN into πSl (contribution of the slope) and πCv (contribution
of the curvature); the γ-decomposition of ĥ2

RN into γa (genetic contribution of the inter-
cept), γb (genetic contribution of the slope), γc (genetic contribution of the curvature) and
γac (genetic contribution of the covariance between the intercept and the curvature) and
the ι-decomposition of h2

I into ιb (slope) and ιc (curvature) are also shown.

(genotypic) variance-covariance matrix

Gθ =

 0.090 −0.024 −0.012
−0.024 0.160 0.008
−0.012 0.008 0.040

 .
Figure 1 displays examples of curves resulting from these parameters. The simulation process
was repeated 1000 times for each scenario, and for each simulated dataset, we ran estimations
using the lme4 R package (Bates et al. 2015) under the curve-parameter (for discrete and con-
tinuous environment) and character-state (only for discrete environment) approaches, in order
to check how these approaches compare in practice.
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From the curve-parameter models, we computed V̂Plas (accounting for the uncertainty in
fixed effects), then P̂ 2

RN. We also computed the π-decomposition (π̂Sl and π̂Cv, Equation 14),
since the true reaction norm is quadratic here, as well as ĥ2

RN, ĥ2 and ĥ2
I as in Equation 9. We

then applied the γ-decomposition to ĥ2
RN (Equation 26): γ̂a (impact of the genetic variation of

the intercept), γ̂b (for the slope), γ̂c (for of the curvature) and γ̂ac (for the covariance between the
intercept and curvature). Similarly, we applied the ι-decomposition to h2

I (Equation 27): ιb (for
the slope) and ιc (for the curvature). From the character-state model, we computed only P̂ 2

RN,
ĥ2

RN, ĥ2 and ĥ2
I .

The yellow boxes in Figure 4 display the theoretical expected values for the different pa-
rameters for three scenarios of environmental variation (two discrete, one continuous; other
scenarios are shown in Appendix F). Using the first discrete scenario as a reference for now,
most of the total phenotypic variance comes from the average plasticity (P 2

RN = 0.55). This, in
turns, includes a large contribution from the curvature (πCv = 0.56) of the average reaction norm,
more than from its slope (πSl = 0.44). The total heritability of the reaction norm is substantial
(h2

RN = 0.3), but interestingly most of it is due to the heritability from plasticity (h2
I = 0.21), while

the environment-blind heritability of the trait is only h2 = 0.08. Contrary to the average shape,
most of the additive genetic variation comes from the slope, both when considering the total
reaction norm (γb = 0.52), or plasticity alone (ιb = 0.76). All scenarios share the same underly-
ing parameters θ and Gθ, resulting in very comparable values for our variance decomposition
(i.e. P 2

RN and the heritabilities) across the different environmental sampling scheme. By contrast,
the environemental sampling scheme (especially discrete v. continuous distribution) can substan-
tially impact the expected values of the π-, γ- and ι-decompositions. This is especially true when
switching from the discrete to the continous scenarios (e.g. πSl = 0.44 for the first discrete sce-
nario while πSl = 0.33 for the continuous scenario).

Switching to the error in the estimation of the parameters (left panels of Figure 4), we see
first that both the character-state and curve-parameter approaches allow for unbiased inference
(Wilcoxon’s rank test, p > 0.05), apart from a slight bias in the heritabilities (ĥ2

RN, ĥ2 and ĥ2
I ) and

some of their γ and ι components in the discrete scenarios (< 5% relative bias, Wilcoxon’s rank
test, p < 0.05), notably due to a slight overestimation of the genetic variance of the intercept
(visible in the top row of Figure 4). For the discrete case, the precision of the estimates was not
much influenced by the number of environments and depended more on the number of geno-
types (see Figure S1). For the continuous case, both the number of environments and genotypes
influenced the precision of estimates (see Figure S2). As a sanity check, we also verified that V̂Tot
(not shown in Figure 4) reflected the raw phenotypic variancewith extreme precision (correlation
> 99%) in the discrete case and very good precision (correlation > 87%) in the continuous case.
The difference between these two types of scenarios is explained by how the stochasticity in
environmental values differs among them. Importantly, the results in Figure 4) also illustrate the
exact equivalence, in the discrete case, between the curve-parameter and character-state ap-
proaches, as the distributions of P̂ 2

RN and ĥ2
RN were nearly identical (Figure 4, correlation> 99%)

between the two approaches. This means that our variance partitioning is not impacted bywhich
approach is chosen to study plasticity, as long as the curve-parameter approach captures the true
reaction norm shape. When this does not hold, the differences between estimates from these
alternative approaches can be exploited efficiently, as we describe below.

Imperfect modelling of a non-polynomial reaction norm
The true shapes of reaction norms are generally unknown and may be complex, such that

any curve-parameter model is likely to be mis-specified to some extent. In the case of a discrete
environment, the character-state approach is arguably more general, as it does not assume any-
thing about the “true” shape of the reaction norm (as pointed out previously by de Jong 1995).
Nonetheless, having access to curve-parameters is often very interesting and more actionable
(even in cases where the linear and quadratic components cannot be interpreted as the average
slope and curvature), especially to predict evolution of phenotypic plasticity (see also de Jong
1995). To get the best of both worlds, we rely on the ability of the character-state approach to
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Figure 5 – Estimation of the variance of the reaction norm when the true shape (sigmoid
on the left, Gompertz-Gaussian performance curve on the right, red lines on top graphs)
is unknown and approximated from a polynomial function. The estimated reaction norms
using a polynomial function (black line, top graphs) only account for a part of the reac-
tion norm shape, while the ANOVA estimation (pink dots, top graphs) fit the true shape
more accurately. As a result, the model is expected to explain only a partM2

Plas of phe-
notypic variance due to plasticity. On the bottom rows, the error distribution are shown
forM2

Plas, P 2
Plas, φ1 and φ2 (grey dots are the average estimated values, black crosses are

the expected true values).

recover P 2
RN, using it as an “anchor”, to assess the performance of a given curve. Note that, under

these circumstances, it is not possible to obtain themost natural π-decomposition in Equation 14,
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so we instead rely on the φ-decomposition in Equation 16 (here taken at the second order). Be-
cause of this, we need to assess how “bad” our simplification using an imperfect curve is. To do
so, we compute the ratio of the variance modelled by the polynomial curve to the total variance
due to phenotypic plasticity:

(30) M2
Plas = V̂mod

V̂Plas
,

where both V̂mod and V̂Plas are bias-corrected. It is important to note here that M2
Plas is just a

convenient way to quantify the amount of V̂Plas explained by the chosen parametric curve, and
should not be used to performmodel selection.Model selection is a complexmatter andwe refer
the readers to published reviews on this subject (e.g. Johnson and Omland 2004; Tredennick et
al. 2021).

In order to demonstrate the soundness and usefulness of this approach,we simulated datasets
following relatively common curves that are not well-captured by a second order polynomial:
a logistic sigmoid (hereafter sigmoid scenario), or a Gompertz-Gaussian thermal performance
curve (hereafter TPC scenario, see Figure 5). We assumed that the environment is sampled at
either 10 or 4 values. For each of these conditions, we simulated 1000 datasets, with 10 mea-
sures per environment (for the sake of simplicity, and given the focus on P̂ 2

RN here, we did not
include different genotypes in these simulations). We estimated the parameters of a polynomial
model, and computed the relative contributions of the first- and second-order parameters using
Equation 16. In addition, we computed the unbiased estimates of the variance explained by our
polynomial or character-state models to obtainM2

Plas.
Our results show that, as expected, the polynomial function is an imperfect proxy of our

complex shapes (Figure 5, M2
Plas = 0.89 for the sigmoid and M2

Plas = 0.65 for the TPC), but
using the character-state approach allows retrieving the total plastic variance without bias. The
approach described here is thus useful to compare a given reaction norm model (e.g. a polyno-
mial function) to an unknown true shape of the reaction norm, in a case where environment is
discretised. In more detail, the linear component was the most important component to explain
the phenotypic variation for the sigmoid scenario (φ1 = 0.89, same as the total model). This was
because the quadratic component was always estimated close to zero (< 10−3), thus no variance
was explained by the quadratic component (φ2 = 0). Of course, the sigmoid is not a straight line
either, and some remaining variance unexplained by the polynomial curve (1−0.89 = 0.11) could
have been explained by higher-order effects (e.g. cubic effect and higher). By contrast, for the
TPC scenario, while the linear component was an important factor (φ1 = 0.47), the quadratic
component also explained quite a lot of the variance as well (φ2 = 0.2). Again, higher-order ef-
fect, including at least a cubic effect, would have explained more of the variance arising from the
average shape of plasticity.

This example illustrates the usefulness of a combined curve-parameter and character-state
approach to study the shape of reaction norms of a discretely sampled environment. While the
character-state approach provides a widely applicable estimation of P̂ 2

RN (if the environment
is discretised), the curve-parameter approach provides interpretable information about (at least)
first- and second-order parameters of the reaction norm (although theymight departmore or less
strongly from its average slope and curvature), which helps describing where most phenotypic
variance lies. Our ratioM2

Plas can then be used to evaluate howwell a chosen polynomial function
models an actual reaction norm.

Estimation of non-linear models
Althoughwehave focused so far onmodels that are linear in its parameters, themain strength

of our approach is its generality: it can be applied to any arbitrary functions (provided it is dif-
ferentiable). This requires numerically computing integrals for VPlas (for P̂ 2

RN), πSl, πCv and ψε

(for the heritabilities), but this can be solved with efficient algorithms. We illustrate this by intro-
ducing genetic variation in the parameters of the sigmoid and TPC reaction norms illustrated in
Figure 5 (top panels). We used a non-zero, but small, residual variance (VR = 0.0001) to avoid
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numerical issues typical when running thousands of non-linear models. We focused on a contin-
uous environment, and estimated the actual functions used to generate the datasets, using the
non-linear modelling function of nlme package (Pinheiro et al. 2009).We used the cubature pack-
age (Narasimhan et al. 2023), as in theQGglmmpackage (de Villemereuil et al. 2016), to compute
parameters linked to the variance decomposition, and, further, the π-, γ- and ι-decomposition.
We simulated 1000 datasets for each scenario, consisting of 200 genotypes measured each in
10 different environments, randomly sampled from a normal distribution.

We retrieved our simulated parameters without bias using the nlme function, except for a
slight bias (Wilcoxon’s rank test, p < 0.05) in the variance of r (latent slope) in the sigmoid model
and in C (height of the peak) in the TPC model. This translated into significant (Wilcoxon’s rank
test, p < 0.05), but very limited bias (relative bias < 5%) in our derived parameters (Figure 6,
bottom panels). Moreover, the sum of variance components (V̂Tot) successfully reflects the total
phenotypic variance, with a correlation between the two quantities > 91%.

First focusing on the average shape of the reaction norm (Figure 6, top panel), one unfortu-
nate aspect of running a non-linear model is that our bias correction described in Appendix E can
no longer be applied. However, this bias is generally small provided the standard error is small
for most parameters, and the resulting bias in P̂ 2

RN is extremely small, and even non-significant
for the sigmoid model. This could of course be partly explained by a favourable context here,
especially since the residual variance is relatively small. An important distinction here is the dif-
ference between the curve defined by the average parameters f(ε, θ̄) (Figure 6, top panel, black
curve) and the one defined by the local average phenotypeEg|ε(ẑ) (Figure 6, top panel, red curve),
recalling that P̂ 2

RN is linked to the latter. While the two are very close for the sigmoid case, they
differ quite visibly for the TPC one, due to a more pronounced non-linearity in the parameters
in the latter. The average slope contributed the most to the overall plastic variance of the mean
reaction norm for the sigmoid shape (πSl = 0.88), with no impact of average curvature (πCv = 0),
close to the φ-decomposition in Figure 5. For the TPC scenario, the contribution of the average
slope (πSl = 0.31) and curvature (πCv = 0.35) are similar. In this case, the values are very different
from the φ-decomposition in Figure 5 (although note that the distribution of the environment
is different between these two scenarios). It might appear as counter-intuitive that the slope
contributes so much to variance, since the curve increases from 0 and then decreases toward
0, but this is linked to the fact that the environment is normally distributed, so most values are
near ε = 0, an area where the slope of the curve is close to being maximised.

Although the variation between genotypes in the top panel of Figure 6 seems quite large,
the contribution from the average plasticity P̂ 2

RN is 1.7 to 3.4 times higher than the one of the
genetic variance Ĥ2

RN (Figure 6, yellow box in first- and second-row panels). This occurs because
the genetic variance is actually very low in most environments (Figure 6, brown and purple lines
of the second-row panels), and scarcely as high as VPlas. As mentioned above, non-linearity in
the parameters is less strong for the sigmoid case than for the TPC case, resulting in almost
exactly equal values for Ĥ2

RN and ĥ2
RN for the former, while they are slightly different for the

latter. In both cases, the small difference between Ĥ2
RN and ĥ2

RN can be explained by the dispro-
portionate importance in the γ-decomposition of parameters that are actually linearly related to
the trait (γL = 0.98 for the sigmoid and γC = 0.81 for the TPC scenarios). In terms of heritability
from plasticity, it is substantial in both cases (h2

I = 0.081 for the sigmoid and h2
I = 0.133 for the

TPC scenario), as can be expected from the non-parallel reaction norms (Figure 6). However, it
remains smaller than the environment-blind heritability of the trait in both cases (h2 = 0.143
for the sigmoid and h2 = 0.216 for the TPC scenarios). Interestingly, for the TPC scenario, and
contrary to what happens with the γ-decomposition, a majority of the additive genetic variance
arising from plasticity comes from the variation in the location of the optimum (ιε0 = 0.525).
This is because variation in the location of the optimum shifts the reaction norm along the en-
vironment axis (i.e. on the “x-axis”), meaning that even a small shift can generate considerable
variation that is non-parallel along the phenotype axis (i.e. along the “y-axis”).

An interesting aspect of our framework is that we can explore the variation of VGen,ε, VA,ε and
the γ-decomposition of VA,ε along the environmental gradient, which can be very informative
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Figure 6 – Scenarios and results
of non-linear modelling of phe-
notypic plasticity in a continuous
environment. On the left: results
corresponding to a sigmoid curve
scenario; on the right: results
corresponding to a TPC scenario.
First row: example of the individual
curves (each curve corresponds
to one individual) simulated in
each scenario; yellow box: true
parameters for the model and
average shape; black curve : f(ε, θ̄);
red curve : Eg|ε(ẑ). Second row:
distribution of the estimations
of VG,ε (brown) and VA,ε (purple),
along the environment; solid line:
average value across simulations;
pale ribbon: 95% CI across sim-
ulations; yellow box: true values
for the genetic variance partition.
Third row: γ-decomposition of VA,ε

along the environment, for each
parameter and their covariation.
Fourth row: distribution of the error
for each component of our variance
partition (“Variances”) or for the
π- and γ-decomposition (“Compo-
nents”), red dot is the average of
estimates over all simulations.
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from an evolutionary perspective. In the case of the sigmoid curve (Figure 6, second and third
rows, left panels), the analysis is relatively simple : as the value of the environment increases, the
parameter L is multiplied by an increased value (going from 0 to 1 due to the sigmoid function)
and thus its genetic variance plays a stronger role. This translates into VGen,ε and VA,ε increasing
with the environment, and γL accounting for almost all of the genetic variance after the sigmoid
inflexion point in 0. The TPC scenario is even more interesting. First, we can see that both VGen,ε
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and VA,ε (Figure 6, second row, right panels) are close to zero in the extreme environments and
maximised in a region between the optimum and critical maximal temperature, where the re-
action norm suddenly drops after the optimum. This maximum also corresponds to the region
where VGen,ε and VA,ε are the most different (and where the red and black departs the most in
Figure 6, top row, right panel). Regarding the γ-decomposition (Figure 6, third row, right panels),
the influence of the location of the optimum (γε0 ) is maximised at extreme environments, while
the influence of the maximum value at the peak (γC ) is exactly maximised at the average location
of the peak. The influence of the covaration between both (γCε0 ) is negative before the peak and
positive after.

As these simulations illustrate, our framework allows very finely describing the characteris-
tics of reaction norms, such as how its average shape (slope/curvature) and genetic variation in
the parameters influence the phenotypic variance in the trait, while discriminating between total
genetic variation of the trait and genetic variation exclusively linked with plasticity itself.

Discussion
The variance decomposition in Equation 7 is very general, and applicable to any approach

used to estimate a reaction norm. In particular, it applies equally well to both the character-state
and curve-parameter approaches. Each component and its variance-standardisation provide a
different information on the reaction norms: P 2

RN quantifies the proportion of phenotypic vari-
ance due to the average plastic response across genotypes, whileH2

RN or h2
RN quantify the con-

tributions from (broad or additive) genetic variance in the reaction norms. Further, these genetic
components can be separated into the environment-blind heritability of the trait (h2) based on
the average breeding values across environments, and the heritability from plasticity (h2

I ) which
is solely based on the gene-by-environment interactions at the level of breeding values. Finally,
the sum T 2

RN = P 2
RN +H2

RN quantifies how well we can predict the individual phenotypes based
on their genotypes and environments (i.e. genetically variable reaction norms). Those compo-
nents are efficient summary statistics yielding important information regarding the evolutionary
potential of both the trait and its plasticity. Importantly, they are very generally applicable, with
a strict equivalence between e.g. a character-state or a curve-parameter approach. However,
they do not provide information regarding the actual shape of the reaction norms. To that end,
we further decomposed some of these components in terms of characteristics of the shape or
parameters of reaction norms.

The most difficult problem is to decompose the average plastic variance P 2
RN into terms aris-

ing either from the linear trend (πSl) or from the curvature (πCv) of the reaction norm, which
we called π-decomposition. Unfortunately, our estimates for πSl and πCv are only valid if the
environment is normally distributed, or the true reaction norm is quadratic. In other cases, mean
slope and curvature loose their simple interpretation, preventing a meaningful π-decomposition.
Nonetheless, for polynomial reaction norms of higher order, we described an alternative decom-
position, based on the polynomial coefficients rather than actual slope and curvature, which we
called φ-decomposition. While not as interpretable as the π-decomposition, this decomposition
can serve as a way to compare polynomial shapes across contexts. Based on the equivalence
between the curve-parameter and character-state, we introduced M2

Plas as a way to quantify
the ability of a polynomial model to recover VPlas compared to an “agnostic” model such as the
character-state. Our proposed framework is summarised in Figure 3.

Decomposing h2
RN and h2

I is comparatively easier, because the model assumed in Equation 3
and Equation 4 ensures that we can always translate additive genetic variance in the parameters
θ into additive genetic variance in the trait z, even if the function f is not linear in its parameters.
Decomposition of the total heritability of the reaction norm h2

RN into the impact of the parame-
ters θ leads to the γ-decomposition. It quantifies the relative importance of genetic variance in
different reaction norm parameters to the evolvability of the trait. For instance if a given selec-
tion episode concerns individuals that all experienced the same plasticity-inducing environment
(i.e. when spatial environmental variation is negligible relative to temporal variation), using the
multivariate breeder’s equation (Lande 1979), the relative contribution of genetic variation in
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parameter θi to the response to selection for the trait z is

(31) ∆θi
z̄

∆z̄ = γi + 1
2
∑
i ̸=j

γij ,

where the γi and γij are defined in Equation 26. In other words, the contributions of responses
to selection by different reaction norm parameters to overall response to selection by the plas-
tic trait z is directly proportional to their contribution to its genetic variance. Importantly, these
contributions will depend on the reaction norm gradient ψε defined in Equation 19, and thus
on the environment, as illustrated in Equation 26. In fact, the environment-specific additive ge-
netic variance VA,ε is a critical piece of information regarding evolutionary potential, and we can
apply the γ-decomposition within each environment as well. For example, in the TPC scenario
investigated above (Figure 6, right panels), the contribution of the peak height parameter C is
maximised at the average location of the optimum, where it accounts for 100% of the additive
genetic variance. On the contrary, the influence of additive genetic variation in the location of
the optimum ε0 is more important in extreme environments. The complex interaction between
the role of C and ε0 generates a peak for VA,ε in the area between the peak and critical maximal
value for the environment (where the performance curve reaches zero). In the context of pre-
dicting eco-evolutionary response to warming, this would mean that a slight temperature rise
above the optimum would provide a very short window of higher evolvability, but followed by a
sharp decrease thereof if warming persists. Beyond these simple scenarios, how selection acts
on reaction norms and plasticity depends on how the environment varies in space and/or time
(de Jong 1999; King and Hadfield 2019; Scheiner 1993b; Tufto 2015), and how the reaction
norm gradient ψε and direction selection on the expressed trait z covary across environments.
However, an in-depth exploration of how to estimate these selection responses is beyond the
scope of the present work.

While the γ-decomposition is key to understanding and predicting evolution of the trait, it
is based on the total heritability of the reaction norm h2

RN, which combines additive genetic
variation in the trait and its plasticity. To study plasticity in isolation from the environment-blind
additive genetic variance in the trait, we decomposed h2

I in a similar fashion as h2
RN, which we

called the ι-decomposition. The components of the ι-decomposition measure the contribution
of each parameter to the evolutionary potential of plasticity, i.e. to the evolvability of reaction
norm shape. In our thermal performance case (TPC) example, the ι associated to C and ε0 were
close to 0.5, meaning that evolution can roughly equally impact the peak heightC or the location
of the optimum ε0, should selection on the shape of reaction norms occur.

The detailed decomposition that we propose open the door to better comparatibility across
studies, which can be a challenge in meta-analyses of plasticity. Murren et al. (2014) performed
such ameta-analysis, comparing genetic variation in different parameters of reaction norm shape
across published datasets. However they (i) computed these parameters using only extreme en-
vironmental values, instead of the whole range of environments; (ii) did not account for uneven
spacing between environmentswhere relevant; (iii) did not account for uncertainty in estimations
of reaction norms (as previously highlighted by Morrissey and Liefting 2016); and (iv) assumed
the modeled reaction norm shape is true. More details about the analyses in that study are pro-
vided in Appendix G. Our approach overcomes all these issues (some of which had been dealt
with already by Morrissey and Liefting 2016; Pélabon et al. 2020). Unfortunately the dataset
compiled by Murren et al. (2014) does not provide information on uncertainty of phenotypic
estimates (related to VRes), precluding proper meta-analysis of reaction norm shape variation.

Importantly, our variance partitioning can be implemented through commonly used statistical
models, notably (non-)linear mixed models. We showed that even complex non-linear modelling
can perform well, only at the cost of using dedicated libraries to compute integrals numerically.
This means that biologists can readily seize all the modelling tools introduced here. In partic-
ular, although a character-state approach can be performed using a simple random-intercept
model, studies of genetic variance in plasticity seem to rather use a multi-trait model, which
offers more control, but is more difficult to implement (but see Stirling and Roff 2000). In or-
der to make the variance partitioning introduced here more accessible, we have implemented
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the computation of all the decomposition mentioned here as an R package named Reacnorm
github.com/devillemereuil/Reacnorm, including cases where more than the genetic effect is as-
sumed affecting variation in θ. The package also provides a tutorial as a vignette, showing how to
implement the models in the Bayesian package brms and use functions from Reacnorm to study
the properties of reaction norms.We hope that this will further stimulate interest in investigating
variation and evolutionary potential of reaction norms.
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Appendix A. A unified formalism for the curve-parameters and character-state
approaches

Despite having different mechanics, the curve-parameter and character-state approaches
can be shown to be mathematically equivalent de Jong (1995). We can use this to express both
approaches under the same, unified formalism. More precisely, we can express the character-
state approach as being a special case of the curve-parameters approach. Under a curve-parameters
approach, the reaction norm is seen as a function f of the environment ε and a vector of param-
eters θg:

(S1) ẑ = f(ε,θg).

The θg ’s covary across genotypes with a variance-covariance matrix Gθ:

(S2) θg ∼ N (θ̄,Gθ).

By contrast, in a character-state approach, the reaction norm values of different genotypes
across environments are directly provided by sampling from a multivariate normal distribution:

(S3) ẑ ∼ N (µ,Gz) .

One way to express the character-state using the same formalism as the curve-parameter is to
recognise that Equation S3 can be written as

(S4) ẑ = µT
g uk,

µg ∼ N (µ,Gz),

where uk is the unit vector with 1 at the kth value (corresponding to environment εk) and 0 else-
where. Thus, the character-state model can be expressed using the formalism of Equation S1
and Equation S2, where µg in Equation S4 plays the role of θg , and thus Gz plays the role of Gθ.
In this case, the function f is a function taking the level k of the environment and the param-
eters µg of the genotype g as input, and yielding the evaluated reaction norm ẑ as the output.
Evidently, this function f is not continuous and not differentiable along the (categorical) environ-
ment. However, it is a continuous, differentiable and even linear function along the (continuous)
parametersµg . As such, all properties mentioned in the main text and the Appendices pertaining
to reaction norms that are “linear in its parameters” also apply to the character-state approach.

Appendix B. Computation of the additive genetic variance holding environment
constant

B1. Preliminary results
Multiple regression slopes expressed using a variance-covariance matrix. Let us assume a mul-
tiple regression between a random variable y and a set of random variables x = (x1, . . . , xn)T

such that:

(S5) y = µ+ xTβ + e,

where µ is the intercept and e is the residual of the model. Note that in practical regression,
the realised sampling of x will be contained in the design matrix of the model. If it exists and is
unique, the solution for the vector of multiple regression slopes β can be formulated in terms
variance-covariance matrices (see e.g. p.179, Lynch and Walsh 1998):

(S6) β = V(x)−1cov(x, y),

where V(x) is the variance-covariance matrix of x, , V(x)−1 is its inverse matrix and cov(x, y) is
the column-vector of covariances between the xi and y.
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Multivariate version of Stein’s lemma. Let us assume that x = (x1, . . . , xpx) and y = (y1, . . . , ypy )
follow multivariate normal distributions, and that g is a differentiable, Rpx → R function such
that E (▽g), where ▽g is the gradient of g (the vector of partial derivatives), is a vector with
finite values, then it can be shown (Landsman and Nešlehová 2008; Landsman et al. 2013) that:
(S7) cov (g(x),y) = cov(x,y)E (▽g) .
Note that covariance matrices of vectors (also known as cross-covariance matrices) are not com-
mutative, but are such that cov(x,y) = cov(y,x)T . In the case where py = 1, then y = y follows
a normal distribution and:
(S8) cov (g(x), y) = cov(y,x)E (▽g) .
Note that cov(y,x) is a row-vector and cov(x, y) is a column-vector by convention.

B2. Breeding values in a given environment
Genetics of reaction norms. As mentioned in the main text, a general formalism (including the
character-state as a special case) for the reaction norm ẑ is given by Equation 3 in the main text,
i.e.
(S9) ẑ = f(ε,θg).
The phenotype predicted by the reaction norm ẑ thus depends on the environmental value ε,
and the reaction norm parameters θg specific to the genotype g. When holding the environment
ε constant, the genetic variance is simply the variance of reaction norms across genotypes:
(S10) VG|ε = Vg|ε (f(ε,θg))
If the reaction norms are estimated in such a way that non-additive genetic variance can be
separated out fromadditive genetic variance (e.g. if “genotype” refers to individuals) or are known
to be negligible on the one hand; and if the reaction norm is linear in its parameters (i.e. f is a
linear function of θg , as for a polynomial function) on the other hand, then the additive genetic
variance conditional on the environment is readily given by Equation S10, i.e. VA|ε = VG|ε. In the
case where f is not linear in its parameters, it is necessary to rely on the theory in non-linear
quantitative genetics (de Villemereuil et al. 2016; Morrissey 2015), as we do below.
Linear relationship between breeding values. The relationship between the breeding value of
the trait Az and the breeding values of the reaction norm parameters θg is the key towards
developing a framework that works for any reaction norm, linear in its parameters or not. Let
us note Aθ the vector of breeding values of all the parameters in θ. We will follow the same
demonstration as in de Villemereuil et al. (2016), which starts from the point that, by definition,
breeding values are all linked through linear relationships (see also Robertson 1966), since they
are all linearly linked to the genotype (Lynch and Walsh 1998). More precisely, the breeding
value Az of the phenotypic trait z of an individual linearly depends on a linear combination of
its breeding values for the reaction norm parameters Aθ, so that:
(S11) Az = µA + AT

θ ψ

where µa is a constant chosen such that E(Az) = 0, ψ is a vector of slopes that we will shortly
describe as the reaction norm gradient.
Derivation of ψ. To derive an expression of ψ, we can apply the results in Equation S6 to Equa-
tion S11, yielding
(S12) ψ = G−1

θ cov(Aθ, ẑ).
This assumes that cov(Aθ,Az) = cov(Aθ, ẑ), i.e. that there is no covariance between the envi-
ronmental values of the phenotype as predicted by the reaction norm and the breeding values
of the parameters. This results also assumes that Gθ is inversible. However, such assumption
is already necessary to most statistical algorithms available to infer Gθ in practice, so that this
assumption is not limiting here. Noting that ẑ = f(ε,θ), we can apply the multivariate version
of Stein’s lemma (Equation S7):
(S13) ψ = G−1

θ cov(Aθ,θg)E(▽θf) = G−1
θ GθE(▽θf) = E(▽θf),
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where we have used the fact that the covariance of breeding values of reaction norm parame-
ters with their breeding values is their additive genetic covariance matrix Gθ. Again, note that
this assumes that f is partially differentiable with respect to all elements of θg . Given that this
demonstration was applied when holding the environment constant, the values in ψ generally
depend on the environment ε, so below and in the main text, we use the notation ψε.
Values of ψε in specific contexts. When the reaction norm is linear in its parameters, the values
in ψε are (trivially) the linear coefficients of such relation. For a quadratic reaction norm, where
ẑ = (Ā + ag) + (b̄ + bg)ε + (c̄ + cg)ε2, such linear coefficients are respectively 1, ε and ε2 for
ag , bg and cg . It results that ψε = (1, ε, ε2)T as mentioned in the main text. More generally, if
f is a polynomial of order N , then ψε = (1, ε, . . . , εN )T . In the context of a character-state, it
can be seen from Equation S4 that the gradient ψε in the parameters will be equal to uk, i.e. a
vector of 1 for the kth value (corresponding to the environment chosen to be hold constant) and
0 elsewhere.

B3. Additive genetic variance
By definition, the additive genetic variance of the trait conditional on the environment VA|ε

is the variance of the breeding values defined in Equation S11. We can thus express it from the
breeding values of the reaction norm parameters (right hand side of Equation S11) as

(S14) VA|ε = Vg|ε(AT
θ ψε) = ψT

ε Gθψε.

This formula holdswhether the reaction norm is linear on its parameters or not, and also holds for
the character-state approach (although in this case, this formula merely selects the kth element
of the diagonal of Gz).

Appendix C. Derivation of the general decomposition of variance
C1. Distinguishing between VPlas, VGen and VAdd

The phenotype predicted by the reaction norm ẑ depends on the environment, and the reac-
tion norm parameters θg specific to the genotype g. The impacts of environment and genotype
are intricately related via the reaction norm shape, but in a given environment, one can still iso-
late the average impact of the environment from variation among genotypes by computing the
average value of the reaction norm across genotypes conditional on the environment, i.e. Eg|ε(ẑ).
The variance of Eg|ε(ẑ), taken across environments, is the component VPlas = V(Eg|ε(ẑ)) in the
main text, i.e. the phenotypic variance arising from plasticity after averaging across genotypes.
The genotypic value Gz of genotype g within the environment ε is then given by

(S15) Gz = ẑ − Eg|ε(ẑ).

Note that, although we removed the average effect of the environment, the genotypic value
Gz still depends on both the genotype g and the environement ε, because genotypes can vary
in their response to the environment. The total genetic variance in the reaction norm is thus
VGen = V(Gz). It is possible to get to the breeding values of the trait in each environment Az

following the process described in Appendix B, i.e. Az = µa + AT
θ ψε. The total additive genetic

variance in the reaction norm is then

(S16) VAdd = V(Az) = E
(
Vg|ε(Az)

)
+ V

(
Eg|ε(Az)

)
= E(ψT

ε Gθψε),

using the law to total variance and noting that Eg|ε(Az) = 0 by construction. In Figure 1 in the
main text, the average Eg|ε(ẑ) corresponds to the red line in the left panel of Figure Figure 1 in
the main text, while Az corresponds to the purple lines in the middle panel.

C2. Distinguishing between VAdd, VA and VA×E

We can separate the total additive genetic variance of the reaction norm, VAdd, into two
components: the environment-blind additive genetic variance of the trait VA and the additive
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genetic variance arising from plasticity VA×E. The first component is given by considering, for a
given genotype, its average breeding value across environment:
(S17) Ā = Eε|g(Az).

This average corresponds to the breeding value that would be predicted for the same genotype
present in all environments (or moving across them, being measured several times), ignoring the
impact of the environment. In other words, this average is the predicted breeding value after the
impact of the environment has been marginalised. Graphically, it depicts the average shift in the
y-axis of the reaction norm, as can be seen in the middle panel of Figure 1 in the main text. The
environment-blind additive genetic variance of the trait is
(S18) VA = V(Ā) = E(ψε)T GθE(ψε)

VA is here defined as a variance, but there are negative elements in E(ψε) and Gθ, so in the-
ory, their product could happen to be a negative scalar. This is not so here, because Gθ being
a variance-covariance matrix, it must be positive semi-definite. By definition of positive semi-
definiteness, the product E(ψε)T GθE(ψε) will be positive (or null) for any real vector E(ψε).

The remaining additive genetic variation after accounting for the marginal breeding value is
linked to the impact of genetic variation arising from plasticity, i.e. genotype-by-environment
interactions. We can define the part of the breeding values strictly linked to that genotype-by-
environment interaction by mean-centring the breeding values, for each genotype:
(S19) AI = Az − Ā.

The right panel of Figure 1 depicts these interaction breeding values. The additive genetic vari-
ance linked to genotype-by-environment, and thus to variation arising from plasticity, is:
(S20) VA×E = V(AI) = V(Az) + V(Ā) − 2cov(Az, Ā) = V(Az) − V(Ā) = VAdd − VA,

noting that, by construction, cov(Az, Ā) = cov(Ā, Ā) = V(Ā). By substituting VAdd and VA with
their values in Equation S16 and Equation S18, we obtain

(S21) VA×E = E(ψT
ε Gθψε) − E(ψε)T GθE(ψε) = tr(ΨGθ) =

∑
l,k

Ψl,kGθ(l,k),

where Ψ is the variance-covariance matrix of the reaction norm gradient ψε across the envi-
ronment. In other words, VA×E is the sum of the products, for all pairs of parameters, of the
(co)variance in the reaction norm gradient and the additive genetic (co)variance. The γ- and ι-
decomposition directly comes from dividing each elements of the sums in Equation S16 and
Equation S21 respectively by VAdd and VA×E, so that the total sums to 1.

C3. Variance decomposition for a polynomial model
In this section, we will assume a polynomial reaction norm:

(S22) ẑ =
N∑

n=0
(θ̄n + θn,g)εn

where θn = θ̄n+θn,g is thenth order coefficient of the polynomial. In this form, it is easy to remark
that polynomial reaction norms are linear in their parameters, i.e. there is a linear relationship
between the θn’s and ẑ, so that Gz = Az . It results that:

(S23) Gz = Az = ẑ − Eg|ε(ẑ) =
N∑

n=0
(θ̄n + θn,g)εn −

N∑
n=0

θ̄nε
n =

N∑
n=0

θn,gε
n.

Taking the derivative of this expression with respect to each of θn,g in a given environment
ε would yield a reaction norm gradient equal to the value of each exponent of ε, i.e. ψε =
(1, ε, . . . , εN )T . The total (additive) genetic variance is thus:

(S24) VGen = VAdd = E(ψT
ε Gθψε) =

∑
n

VnE(ε2n) + 2
∑

n<m

CnmE(εn+m),
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where Vn is the additive genetic variance for θn,g and Cnm is the additive genetic covariance
between θm,g and θn,g . For the quadratic case, if ε has been mean-centred and is symmetrical,
we have E(ε) = E(ε3) = 0 and the expression reduces to

(S25) VGen = VAdd = V0 + (V1 + C03)E(ε2) + V3E(ε4).

For a given genotype, its average breeding value across environments is

(S26) Ā = Eε|g(Az) = Eε|g

(
N∑

n=0
θn,gε

n

)
=

N∑
n=0

θn,gE(εn)

The environment-blind (additive) genetic variance of the trait is

(S27) VG = VA = E(ψε)T GθE(ψε) =
∑

n

VnE(εn)2 + 2
∑

n<m

CnmE(εn)E(εm)

For the quadratic case with mean-centred and symmetrical ε, this yields:
(S28) VA = V0 + 2C02E(ε2) + V2E(ε2)2

Finally, the additive genetic variance arising from plasticity itself is
(S29)
VA×E = VAdd −VA =

∑
n

VnE(ε2n)+2
∑

n<m

CnmE(εn+m)−
∑

n

VnE(εn)2 +2
∑

n<m

CnmE(εn)E(εm).

By recognising that V(εn) = E(ε2n) − E(εn)2 and cov(εn, εm) = E(εn+m) − E(εn)E(εm), we can
further simplify this expression as:

(S30) VA×E =
∑

n

VnV (εn) + 2
∑
lk

Cnmcov(εn, εm).

For the quadratic case, for a mean-centred and symmetrical ε, all the covariances between the
different exponents of ε are 0, yielding
(S31) VA×E = V1V(ε) + V2V(ε2).

C4. Variance decomposition for the character-state approach
As mentioned in Appendix A, the character-state can be written using a function f such that

in environment εk and for genotype g, we have
(S32) ẑ = f(µg, εk) = µT

g uk.

In a given environment εk, the unit vector uk is equal to 1 at the kth index and 0 elsewhere.
The reaction norm gradient is equal to this unit vector, i.e. ψεk

= uk. In the first environment,
for example, we have ψε1 = u1 = (1, 0, . . . )T . As mentioned in Appendix A, the character-state
approach is linear in its parameters. We can thus compute the genotypic/breeding values in a
given environment εk as
(S33) Gz = Az = ẑ − Eg|ε(ẑ) = µT

g uk − µTuk = µg,k − µj ,

where µg,k and µj are the kth values of the vectorsµg andµ. The total (additive) genetic variance
is the variance of the breeding values across environments:
(S34) VGen = VAdd = V(Az) = V(µg,k).

Since the variance-covariance matrix of µg is the Gz matrix, the variance of all elements µg,k

taken together is the average of the diagonal elements of Gz , which we will note Vk. Assum-
ing that all environments are equiprobable for the sake of simplicity (releasing this assumption
merely requires to use weighted average), we have

(S35) VAdd = 1
K

K∑
k=1

Vk.

In other words, VAdd is the average of the diagonal elements of the Gz matrix.
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The environment-blind (additive) genetic variance of the trait depends on the average of the
breeding values across environment for a given genotype:

(S36) Ā = 1
K

∑
k

Az,k,

where Az,k is the breeding value evaluated at the kth environment for a given genotype, still
assuming equiprobable environments. It results that the environment-blind (additive) genetic
variance of the trait is

(S37) VG = VA = 1
K2

∑
k

Vk + 2
∑
k<l

Ckl

 ,
where Ckl is the genetic covariance between the environment k and l. In other words, VA is the
average of all the elements of the Gz matrix.

Finally, the (additive) genetic variance arising from plasticity can be computed as the differ-
ence between VAdd and VA:

(S38) VG×E = VA×E = VAdd − VA = 1
K2

(K − 1)
∑

k

Vk − 2
∑
k<l

Ckl


A few particular cases are important to note here. The first case is when all environments

harbour the same additive genetic variance, say V , and are all perfectly correlated with one an-
other. This is a situation generally describe as a total absence of genetic variation in plasticity. In
our framework, this situation would indeed result in VAdd = VA = V and, indeed, no genetic vari-
ation arising from plasticity with VA×E = 0. Note that uneven additive genetic variances across
environments, even if genetic correlation are kept perfect across environments, would result in
slightly positive genetic variance arising from plasticity with VA×E > 0. This is because, in such
context, the trait can still evolve faster in some environments compared to other, hence plasticity
can evolve. The second extreme case, is when the environment-blind additive genetic variance
of the trait is null, i.e. VA = 0, while all the additive genetic variance in reaction norm is composed
of the additive genetic variance arising from plasticity, i.e. VAdd = VA×E. This happens when the
sum of covariances (the total of which must be negative) exactly compensates the sum of diag-
onal variances in the Gz , meaning that negative genetic correlation between environments are
maximised. In this case, its is impossible for directional selection to act on average value of the
trait across all environments, but the evolvability of plasticity is maximal. A third, interesting case
is when there is absolutely no genetic correlation between environments, i.e. the off-diagonal
elements of Gz are all equal to 0. In such case, it is important to note that, because evolution
can freely operate across environments, then both VA = 1

K2
∑

k Vk and VA×E = K−1
K2

∑
k Vk are

non-zero.

C5. Decomposition of variance for individual-based reaction norms
In Equation 4, we assumed that the only source of variation in θ is of genetic origin. This is a

classical assumption both in the empirical and theoretical literature (de Jong 1990; Gavrilets and
Scheiner 1993b; Via and Lande 1985), but in many cases, it can be useful or needed to include
further sources of variation in θ. This is for example the case when studying reaction norms
using repeatedmeasurements of the same individual in different environments. In particular, this
may require including a further “permanent environment” effect to account for multiple repeats
(Wilson et al. 2010) on the same individual, and also allows for themodelling of the reaction norm
at the individual level (individual plasticity, Nussey et al. 2007). When other random effects are
assumed in the model, we can write the full variation of θ as:

(S39) θ ∼ N (θ̄,Vθ),
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where Vθ is the total variance-covariance matrix of θ. Note that Equation 4 is still valid to model
the genetic component of θ which we named θg . In such case, the heritability of the kth com-
ponent of θ can be computed as the ratio of the kth diagonal element of Gθ to the kth ele-
ment of Vθ, i.e. h2

θ,k = Gθ,k,k

Vθ,k,k
. Because the modelling of θg remains unchanged, all our com-

putations of (additive) genetic variances and their decomposition remains completely identical.
However, there are two important changes. The first change is that the definition of VPlas does
not only depend on averaging over g any more, but on other sources of variations in θ as well,
i.e. VPlas = V

(
Eθ|ε(ẑ)

)
. This means that the marginalisation step conditional to the environment

now implies the full Vθ rather only its subcomponent Gθ. The second change is that it is not
possible to write the total variance of the reaction norm as the sum of VPlas and VGen anymore,
because the latter is only a partial reflection of the full variation in θ. Instead, we need to intro-
duce the phenotypic variation in the trait arising from the full sources of variation in θ, which
we denote here VParam:

(S40) VParam = V
(
ẑ − Eθ|ε(ẑ)

)
= E

(
Vθ|ε(ẑ)

)
.

Then, we can write the correct formulae for VP and T 2
RN:

(S41) VP = VPlas + VParam + VRes, T 2
RN = VPlas + VParam

VP
.

The Reacnorm package was designed to be able to input Vθ to compute those quantities if
needed.

Appendix D. Derivation of π- and φ-partition of VPlas

D1. The π-decomposition
We have seen in Appendix C how to compute the variance arising from the average shape

of reaction norm VPlas. In order to go further, we now separate this into a component linked to
the average slope of the reaction norm and another linked to the average curvature. For this, we
need one or two of the following assumptions to hold true: (i) the environment ε follows a normal
distribution; or (ii) the function f is quadratic. In such context, we can isolate the contribution
of the slope, VSl, from the contribution of the curvature, VCv to VPlas, based on the best qua-
dratic approximation of Eg|ε(ẑ) (akin to the reasoning in Lande and Arnold 1983, for estimates
of selection gradients), as:

(S42) VSl = E
(dEg|ε

dε (ẑ)
)2

V(ε), VCv = 1
4E

(
d2Eg|ε

dε2 (ẑ)
)2

V(ε2).

As an illustration of why the assumptions above are needed, if ε follows a uniform distribution
between -2 and 2; and the average shape of plasticity is the following cubic function, f(ε) =
2ε−0.5ε2−ε3, then the average slope is -2, while the slope from the best quadratic approximation
of Eg|ε(ẑ) is -0.4. In such cases, the decomposition in Equation S42 is not valid anymore, due to
(i) the impossibility to apply Stein’s lemma to a non-normal distribution and (ii) strong covariation
between the slope and curvature. This means that whenever the environment is non-normal and
the reaction norm is non-quadratic, the π-decomposition can bear little meaning (in the cubic
example above, VSl would be 5.4, while VPlas = 2.0, so that πSl would be largely above 1). A truly
quadratic reaction norm is the only case where πSl + πCv = 1.

D2. The φ-decomposition
In such cases where the environment is non-normal and the reaction norm is non-quadratic,

it is always possible to approximate the true shape of the reaction norm using a polynomial
function:

(S43) ẑ =
N∑

n=0
(θ̄n + θn,g)εn
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In the context of decomposing VPlas, such polynomial approximation provides a possibility to
isolate the (co-)contribution of the (pairs of) coefficients in Eg|ε(ẑ) =

∑N
n=0 θ̄nε

n:

(S44) VPlas = V(Eg|ε(ẑ)) =
∑

n

θ̄2
nV(εn) + 2

∑
n<m

θ̄nθ̄mcov(εn, εm)

From this, we suggest the alternative φ-decomposition of VPlas, with φn = θ̄2
nV(εn)
VPlas

and φnm =
2θ̄nθ̄mcov(εn,εm)

VPlas
. It is important to note that this decomposition is based on the coefficients of the

polynomial function and, thus, it is unfortunately impossible to simply interpret the φn in terms
of slope (for φ1), curvature (for φ2), and so on. The only exception is when the reaction norm
shape is quadratic, in which case πSl = φ1 and πCv = φ2.

Appendix E. Correcting for uncertainty in the estimation of fixed effects
Character-state approach. It is easier to start with the character-state approach based on the
ANOVA model. We want to compute VPlas as the variance of the group-level effects µ:
(S45) VPlas = V(µ)
However, we do not have access to the real-world values for µ, but only to the estimated µ̂ from
the model. Such estimates, if unbiased, have an expected value of µk in environment k and a
standard-error (i.e. the estimation of the sampling standard deviation) sk. In other words, we can
state that µ̂k is equal to µk up to an additive error:
(S46) µ̂k = µk + µ̃k

where µ̃ is of mean 0 and variance s2
k. Considering each virtual repeat r of the experiment, we

can apply the law of total variance:
(S47) V(µ̂) = Vε(Er|ε(µ̂)) + Eε(Vr|ε(µ̂)) = Vε(µ) + Eε(s2).
We thus have:
(S48) VPlas = Vε(µ) = Vε(µ̂) − Eε(s2)
This result is equivalent to e.g. the classical computation of the “sire variance” in sire models in
quantitative genetics (Lynch and Walsh 1998), although the latter is generally expressed using
sums-of-squares.
Curve-parameter approach. There is unfortunately no simple solution to the problem of account-
ing for the uncertainty of fixed effects in the general context of non-linear modelling. However,
for the particular case where the model can be framed as a linear model, as is the case for the
polynomial function, then ẑ = Xθ, where X is the design matrix containing the values for the
environment. Noting ΣX the variance-covariance matrix of X, we can define VPlas as:
(S49) VPlas = θT ΣXθ.

Again, the problem is that θ is unknown, we only have access to the estimated values of the
parameters, θ̂, that are inferred with an error provided by the variance-covariance matrix of
standard errors, Sθ. We can write again:
(S50) θ̂ = θ̄ + θ̃,
Noting that the error is independent from the true value, we have:
(S51) θ̂T ΣX θ̂ = θT ΣXθ + θ̃T ΣX θ̃

To express θ̃T ΣX θ̃, it is important to note that Sθ,ij = E(θ̃iθ̃j), since E(θ̃) = 0. Then, we can
note that, the error being unknown, we actually want to compute Er(θ̃T ΣX θ̃) taken across
virtual repeats r of the experiment:
(S52) Er(θ̃T ΣX θ̃) = Er(

∑
ij

θ̃iθ̃jΣX,i,j) =
∑
ij

Er(θ̃iθ̃j)ΣX,i,j =
∑
ij

Sθ,ijΣX,i,j = Tr(SθΣX)

This is similar to the result of Brown and Rutemiller (1977). Finally, we have:
(S53) VPlas = θ̂T ΣX θ̂ − Tr(SθΣX).
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Appendix F. Full results for the section “Perfect modelling of quadratic curves”

This section provides the full results corresponding to the section “Perfect modelling of qua-
dratic curves” in the main text. The results of all investigated values for the number of envi-
ronments (10 or 4) and number of genotypes (20 or 5 for the discrete case, 200 or 50 for the
continuous case) are provided for the discrete and continuous cases.
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Figure S1 – Distribution of the error (difference between the inferred and true value)
for each the inferred variance components for three discrete scenarios: Nenv: number
of environments, NGen: number of different genotypes, NRep: number of replicates per
genotype. Estimates are for P̂ 2

RN (proportion of variance generated by plasticity after av-
eraging across genotypes), ĥ2

RN (total heritability of the reaction norm), ĥ2 (environment-
blind heritability) and ĥ2

I (heritability from plasticity) for both the curve-parameter
and character-state approaches. For the curve-parameter, the π-decomposition of P̂ 2

RN
into πSl (contribution of the slope) and πCv (contribution of the curvature); the γ-
decomposition of ĥ2

RN into γa (genetic contribution of the intercept), γb (genetic contribu-
tion of the slope), γc (genetic contribution of the curvature) and γac (genetic contribution
of the covariance between the intercept and the curvature) and the ι-decomposition of
h2

I into ιb (slope) and ιc (curvature) are also shown. The grey dots correspond to the av-
erage over the 1000 simulations.
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Figure S2 – Distribution of the error (difference between the inferred and true value) for
each the inferred variance components for four continous scenarios: Nenv: number of
environment tested per genotype, NGen: number of different genotypes. The character-
state approach was impossible for the continuous environment scenario. Estimates are
for P̂ 2

RN (proportion of variance generated by plasticity after averaging across geno-
types), ĥ2

RN (total heritability of the reaction norm), ĥ2 (environment-blind heritability)
and ĥ2

I (heritability from plasticity) for both the curve-parameter and character-state ap-
proaches. For the curve-parameter, the π-decomposition of P̂ 2

RN into πSl (contribution of
the slope) and πCv (contribution of the curvature); the γ-decomposition of ĥ2

RN into γa

(genetic contribution of the intercept), γb (genetic contribution of the slope), γc (genetic
contribution of the curvature) and γac (genetic contribution of the covariance between
the intercept and the curvature) and the ι-decomposition of h2

I into ιb (slope) and ιc (cur-
vature) are also shown. The grey dots correspond to the average over the 1000 simula-
tions.

Appendix G. Comparison with the approach from Murren et al. (2014)
Murren et al. (2014) studied variation of the reaction norm shapes across different datasets,

using their own metrics. We argue in the main text that our variance decomposition is more
appropriate than the ones suggested by Murren et al. (2014), and we develop here why.

The first step in the approach of Murren et al. (2014) is to choose a reference reaction norm
in each of the studies and compute contrasts (i.e. difference with) to that particular reaction
norm. The contrasts are then analysed, rather than the reaction norms themselves. For the sake
of simplicity, and because this does not (or marginally) impact our comments on this approach,
we will overlook that step and consider reaction norms directly.
For each genotype k and from its given reaction norm (or contrast) zk = {zk,1, . . . , zk,n}, Murren
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et al. (2014) compute four statistics (we removed the absolute values for the sake of simplicity
here):

(1) The offset,OM, measures the “location” of the reaction norm, i.e. its mean. Comparison of
the offsets allows detecting wether reaction norms are “shifted” toward higher or lower
values. It is computed, for each genotype k, as the absolute value of the average of the
norm across environments:

(S54) OM,k =
∑n

i |zk,i|
n

.

(2) The slope,SM, measures the linear trend of the reaction norms. Formally, it is the absolute
sum of the differences between two consecutive environments, divided by the number
of intervals (n− 1):

(S55) SM,k =
∑n−1

i |zk,i+1 − zk,i|
n− 1 .

(3) The curvature,CM, is computed as the absolute value of the average change in phenotype
between two consecutive pairs of environments:

(S56) CM,k =
∑n−2

i |(zk,i+2 − zk,i+1) − (zk,i+1 − zk,i)|
n− 2 .

(4) The wiggle, WM, is, according to the authors the “the variability in shape not described
by any of the previous three measures”:

(S57) WM,k =
∑n−2

i |(zk,i+2 − zk,i+1) − (zk,i+1 − zk,i)|
n− 2 − CM,k.

Given the lower interest in this latter statistics, we will not comment on it any further.
Most of the comments on the other statistics also apply to this one.

One strong assumption underlying the calculations above is that environmental values ε =
{ε1, . . . , εn} on which the reaction norms were evaluated are evenly spaced, e.g. that the dif-
ferences εi+1 − εi are equal for all possible values of i. The assumption is actually that the space
between twomeasures is equal to 1 (which, admittedly, is only amatter of rescalingwhen evenly-
spaced values are already assumed). If this is the case, then there is indeed no loss in generality
in using the number of components (n, n − 1 and n − 2) rather than actual values of x in the
denominator. Although it is common for studies on reaction norms to use evenly-spaced envi-
ronmental values, it is an unnecessary assumption that shall not be satisfied by all studies.
Second, developing the sums in SM andCM above show that the intermediate values cancel each
other out, leaving only the values at each extreme of the environmental range in the estimate:

(S58)
SM,k = zk,n − zk,1

n− 1 ,

CM,k = (zk,n − zk,n−1) − (zk,2 − zk,1)
n− 2 .

The issue here is double: (i) the estimation is highly sensitive to the random noise coming from a
small number of values (two or three/four); and (ii) the intermediate values in the reaction norm
are simply thrown out and not used for a more robust estimation. In other words, it would have
been exactly the same to not measure the reaction norm at these intermediate values, since they
are not accounted for in the calculation.
A final issue is that the approach uses the measured values of the reaction norms without ac-
counting for the uncertainty in their estimation (i.e. standard-deviation and sample size for each
genotype and environmental value) which poses the well-known issue of non-propagation of
the error when doing “statistics on statistics”.

Although we also provide estimators of the impact of several aspects of reaction norms on
the phenotypic variation, our approach differs from the one from Murren et al. (2014) by many
aspects. First, our variance decomposition makes the explicit distinction between the average
shape of the reaction norm and the genetic variance surrounding it. As such, toOM , SM and CM
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corresponds not only the π-, but also the γ- and ι-decomposition. We clearly delimit the domain
of validity of each of these decomposition. We also account for possible correlation between
those components. Second, we use the whole of the statistical inference to define our variance
decomposition estimates. Third, we explicitly account for the uncertain estimation of reaction
norms.
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