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Abstract1

Many traits show plastic phenotypic variation across environments, captured by their norms of re-2

action. These reaction norms may be discrete or continuous, and can substantially vary in shape across3

organisms and traits, making it difficult to compare amounts and types of plasticity among (or even within)4

studies. In addition, the evolutionary potential of phenotypic traits and their plasticity in heterogeneous5

environments critically depends on how reaction norms vary genetically, but there is no consensus on6

how this should be quantified. Here, we propose a partitioning of phenotypic variance across genotypes7

and environments that jointly address these challenges. We start by distinguishing the components of8

phenotypic variance arising from the average reaction norm across genotypes, genetic variation in reac-9

tion norms (with additive and non-additive components), and a residual that cannot be predicted from the10

genotype and the environment. We then further partition the genetic variance of the trait (additive or not)11

into an environment-blind component and a component arising from genetic variance in plasticity. We12

show that the additive components can be expressed, and further decomposed according to the relative13

contributions from each parameter, using what we describe as the reaction norm gradient. This allows for14

a very general framework applicable from the character-state to curve-parameter approaches, including15

polynomial functions, or arbitrary non-linear models. To facilitate the use of this variance decomposition,16

we provide the Reacnorm R package, including a practical tutorial. Overall the toolbox we develop should17

serve as a basis for an unifying and deeper understanding of the variation and genetics of reaction norms18

and plasticity, as well as more robust comparative studies of plasticity across organisms and traits.19
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Introduction20

The phenotype of a given genotype can vary in response to its environment of development or expression,21

through a phenomenon broadly described as phenotypic plasticity (Schlichting & Pigliucci 1998; Bradshaw22

1965). Phenotypic plasticity is currently attracting considerable interest in the context of rapidly changing23

natural environments (Gienapp et al. 2008; Chevin et al. 2010; Merilä & Hendry 2014). While the mere exis-24

tence (and even prevalence) of phenotypic plasticity is uncontroversial, its relative contribution to observed25

or predicted phenotypic change in the wild (Teplitsky et al. 2008; Gienapp et al. 2008; Merilä & Hendry 2014;26

Bonamour et al. 2019), as well as the extent of its interplay with population-level processes such as natural se-27

lection and population dynamics (Reed et al. 2010; Vedder et al. 2013; Schaum & Collins 2014; de Villemereuil28

et al. 2020), are very active research areas. Answering these questions requires biologists to be able to dissect29

and compare phenotypic plasticity in detail in a wide range of traits, environmental contexts and species. This30

requires a methodology that is appropriate for each context, while being general enough to be comparable31

across contexts.32

The relationship between the phenotype and the environment is captured by the reaction norm (or norm33

of reaction), which is defined at the level of genotypes (Woltereck 1909; Schlichting & Pigliucci 1998). Reaction34

norms encompass phenotypic responses to both continuous environments (such as temperature, salinity, etc.)35

and categorical/discrete ones (such as host plant for a phytophagous insect). Within a simplemodel of reaction36

norm, quantifying plasticity may be straightforward. For instance, both empirical (Charmantier et al. 2008;37

Nussey et al. 2005) and theoretical (Gavrilets & Scheiner 1993a; Lande 2009) work have extensively relied on38

the assumption of a linear reaction norm, whose slope is used as a metric of plasticity, since it quantifies how39

much phenotypic change is induced per unit environmental change. However, regression slopes are signed40

and have units of trait per environment, so even in this simple case some standardisation is needed in order to41

compare the magnitude of plasticity among studies. Beyond this simple scenario, drawing robust conclusions42

about phenotypic plasticity requires being able to quantify and compare its magnitude across organisms, traits43

and environments, in a way that is applicable across the statistical frameworks used to study plasticity.44

Beyond how much phenotypes change with the environment, how they change can also be of importance.45

First, different reaction norm shapes may come with different biological interpretations. For instance, a bell-46

shaped (eg quadratic, Gaussian) reaction norm may indicate that some mechanism underlying a measured47

trait is maximized at an intermediate value of the environment. This is often expected for traits that are direct48

components of fitness, or that can be interpreted as proxys for performance, for which the reaction norms49

are generally termed tolerance or performance curves (Lynch & Gabriel 1987; Deutsch et al. 2008; Angilletta50

2009). A sigmoid shape, on the other hand, may indicate that plasticity is directional but that the range of51
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possible phenotypes is constrained, or that selection favors discrete-like variation (Moczek & Emlen 1999;52

Suzuki & Nijhout 2006; Hammill et al. 2008; Chevin et al. 2013). Second, most theoretical models on the53

evolution of plasticity, especially those based on quantitative genetics which are most directly comparable to54

empirical data, assume a given reaction norm shape - often linear for simplicity (Scheiner 1993b; Tufto 2000;55

Lande 2009). The extent to which theoretical predictions on the evolution of plasticity apply to any particular56

empirical system thus depends on how well the reaction norm shape assumed in the models conforms to57

observations in this system. In other words, we need some metric for whether a reaction norm is ”mostly58

linear” or ”mostly curved”, for instance. In addition, when fitting a particular model of reaction norm shape59

to an empirical dataset, we would like to know how well this model captures the overall plastic variation of60

the trait across environments.61

A third crucial question regarding reaction norms is how (and how much) they vary genetically. It has62

long been recognized that plasticity can evolve if reaction norms vary genetically (Bradshaw 1965), and theory63

has predicted how different aspects of reaction norm shape are expected to respond to selection in a variable64

environment (de Jong 1990; Gomulkiewicz & Kirkpatrick 1992; Gavrilets & Scheiner 1993a). However this65

theory has been little applied empirically, except for predictions about the slope of linear reaction norms (or66

phenotypic differences between two environments). But beyond this, it should also be of interest to identify67

which aspects of reaction norm shape are more likely to evolve, based on how they vary genetically. For68

instance, a reaction norm may be highly curved (e.g. quadratic) but have little genetic variability in curvature,69

instead mostly varying in position, height, or local slope. Distinguishing between the genetic variance of the70

trait, marginalised across environments, and the genetic variance of plasticity itself, can also be a conceptual71

and methodological challenge. There is thus a need to compare genetic variation in different components of72

reaction norm, but previous attempts to do so (in a meta-analysis) were limited by methodological obstacles73

(Murren et al. 2014, see the Appendix). In fact, comparing genetic variation in the slope versus curvature of a74

reaction norm, for instance, is not straightforward, as these parameters have different scales and even units75

(trait per environment, vs trait per squared environment). Moreover, even the notion of average slope and76

curvature can have different meanings depending on the assumed distribution for the environment. Genetic77

variation in reaction reaction norm shape can be analyzed by estimating variation in the parameters of a con-78

tinuous function of the environment, as done by the flexible framework of function-valued traits (Kirkpatrick79

& Heckman 1989; Gomulkiewicz & Kirkpatrick 1992; Stinchcombe et al. 2012). In addition, it would be useful80

to be able to compare the relative contributions of variation in different aspects of reaction norm shape to the81

overall variance arising from plasticity of a trait.82

We herein propose a theoretically justified and generally applicable framework to estimate and partition83

the phenotypic variance of reaction norms, towards three main goals: (i) quantify the contribution of plas-84
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ticity to the total phenotypic variance in reaction norms; (ii) evaluate the contribution of different aspects of85

reaction norm shape, and of the full assumed reaction norm model, to overall plastic phenotypic variation;86

and (iii) quantify heritable variation in the trait and its plastic component, due to the different aspects of the87

reaction norm. We provide this framework as a new R package Reacnorm, including a tutorial to guide users88

in applying it. Our hope is that this will stimulate more quantitative investigations of the ways in which89

phenotypic plasticity contributes to phenotypic variation and evolutionary change.90

Table 1: List of the main notations, as well as their source of variation. We here distinguish the “focal” environment,
which only concerns the environmental variable used to parametrise the reaction norm, from other putative sources
of environmental variation that may influence the phenotypic trait (sometimes described as micro-environmental vari-
ation). “Everything” in the table thus includes all (focal and other) sources of environmental and genetic variation,
developmental noise and measurement error.

Notation Explanation Varies over

𝑧 Phenotypic value for the trait Everything
𝑧 Phenotype as predicted from the environment and the genotype Focal environment,

genotypes
𝜀 Environmental variable —
𝝁 Vector of the average value of the phenotypic in each environment Focal environment

G𝑧 Additive genetic variance-covariance matrix of trait values across en-
vironments (character states)

—

𝜽𝑔 Vector of parameter values of the reaction norm for genotype 𝑔 Genotypes

𝜽 Vector of mean values of the reaction parameters over the genotypes —
G𝜃 Additive genetic variance-covariance matrix of the reaction norm pa-

rameters
—

𝝍𝜀 Reaction norm gradient, the vector of partial derivatives of the pheno-
type 𝑧 against reaction norm parameters 𝜽𝑔, averaged over the geno-
types at environment 𝜀

Focal environment

Ψ Variance-covariance matrix of 𝝍𝜀 across environments —
𝑉P Total phenotypic variance in the trait 𝑧 —

𝑉Res Residual variance, not explained by the reaction norm —
𝑉Plas, 𝑃2RN Phenotypic variance arising from changes in the mean reaction norm

across environments; divided by 𝑉P for 𝑃2RN

—

𝑉Gen, 𝐻2
RN Total genetic variance in the trait across environments; divided by 𝑉P

for 𝐻2
RN

—

𝑉Add, ℎ2RN Total additive genetic variance in the trait across environments; di-
vided by 𝑉P for ℎ2RN

—

𝑉A, ℎ2 Environment-blind additive genetic variance of the trait, i.e. based on
the mean breeding values across environments, divided by 𝑉P for ℎ2

—

𝑉A×E, ℎ2I Additive genetic variance arising from plasticity, i.e variance of the
mean-centred breeding values, divided by 𝑉P for ℎ2I

—

𝜋Sl, 𝜋Cv Proportion of 𝑉Plas explained by the average slope (𝜋Sl) or curvature
(𝜋Cv) of the average reaction norm

—

𝜑𝑖 , 𝜑𝑖 𝑗 Proportion of𝑉Plas explained by parameter 𝑖 , or by covariation between
parameter 𝑖 and 𝑗 for a polynomial reaction norm

—

𝛾𝑖 , 𝛾𝑖 𝑗 Proportion of 𝑉Add explained by the additive genetic (co)variation in
parameter 𝑖 (and 𝑗 )

—

𝜄𝑖 , 𝜄𝑖 𝑗 Proportion of 𝑉A×E explained by the additive genetic (co)variation in
parameter 𝑖 (and 𝑗 )

—
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Reaction norm models91

In the broadest sense, a reaction norm is a decomposition of phenotypic variation among known (often con-92

trolled) versus unknown sources of environmental variation. In this sense, we can start by decomposing the93

phenotypic trait 𝑧 into two components:94

𝑧 = 𝑧 + 𝑧. (1)

The first term 𝑧 is the reaction norm, that is, the component of phenotypic variation that can be predicted95

(hence the hat notation) from knowing both the genotype (which we will note 𝑔 throughout) of an individual96

and the environment (whichwewill note 𝜀 throughout) in which it developed. Note that by “environment”, we97

mean either an experimentally controlled environmental variable, or a focal variable (e.g. temperature) within98

a naturally occurring environmental context. The second term 𝑧 is the component of the measured phenotype99

that cannot be predicted from genotype and environment, and arises from unknown environmental factors100

(usually described as micro-environmental variation), developmental noise, and measurement error.101

Types of reaction norms 𝑧 can be further categorised according to the type of environmental variation.102

The environment may be inherently categorical and unordered, such as host plant for a herbivore insect. It103

may be ordered but with no (or unknown) quantitative value, such as low, medium, and high treatments. Or104

it may be ordered quantitatively, with values that are either intrinsically discrete, such as habitat quality, or105

continuous, such as temperature or salinity.106

When environments are categorical, the reaction norm can be studied by treating phenotypic values in107

different environments as alternative ’character states’, considered as different traits in a multivariate frame-108

work (Via & Lande 1985; Falconer 1952). The mean character state may differ among environments if the109

trait is plastic; phenotypic and genetic variation may be larger in some environments; and phenotypes may110

be more or less correlated across environments (Via & Lande 1985; Falconer 1952). Such a modelling frame-111

work is readily described by Equation 1 for a genotype 𝑔 and environment 𝜀𝑘 (where the index 𝑘 is used to112

reflect the discrete aspect of the environmental variable). In practice, such an approach would correspond to113

an ANOVA (or a mixed model) with discrete environment and genotype-within-environment as (random) ef-114

fects of the model. In its most compact form, such a statistical model can be framed as a multivariate Gaussian115

distribution, with the number of dimensions corresponding to the number of categories in the environment,116

�̂� ∼ N (𝝁,G𝑧) , (2)

where 𝝁 is the vector of expected phenotypic values (across genotypes) within each environment, and G𝑧 is117

the genetic variance-covariance matrix of trait values within and across environments.118
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For quantitative environments (both discrete and continuous), the most common approach is to model119

the reaction norm as a function of environment and genotype:120

𝑧 = 𝑓 (𝜀, 𝜽𝑔), (3)

where 𝜀 is the environmental value, and 𝜽𝑔 is a vector that contains the parameters of the function (e.g. coeffi-121

cients associated to each exponent for a polynomial) for each genotype𝑔; these parameters are thus genetically122

variable. The parameters 𝜽𝑔 are generally assumed to be polygenic and thus follow a multivariate Gaussian123

distribution,124

𝜽𝑔 ∼ N(𝜽 ,G𝜃 ), (4)

where 𝜽 is the vector of average parameter values across genotypes and G𝜃 is the additive genetic variance-125

covariance matrix of the parameters 𝜽𝑔. This approach has been described alternatively as the “reaction126

norm” approach, the “polynomial approach”, or a parametric version of function-valued traits. To keep it127

general here and avoid confusion with the general concept of reaction norm as defined in Equation 1 (which128

applies even to categorical environments), we will describe it as the “curve-parameter” approach. Note that129

Equation 4 assumes that the only source of variation in reaction norm parameters 𝜽 is genetic. In cases where130

reaction norms can be measured in individuals using repeated measurements across environments (individual131

plasticity sensu Nussey et al. 2007) it can be necessary, or useful, to include other sources of variation in 𝜽 ,132

including confounding environmental effects, or permanent environmental effects. For the sake of simplicity,133

we will assume throughout that all variation in 𝜽 is genetic, but we show in Appendix C5 that relaxing this134

assumption only affects how non-genetic variances are computed.135

It can be shown that the character-state and curve-parameter approaches are equivalent, following the136

spirit of de Jong (1995), who showed that a polynomial curve of sufficient order is exactly equivalent to a137

character-state model. In particular, the character-state in Equation 2 can be expressed using Equation 3 and138

Equation 4 by letting 𝜽 = 𝝁, G𝜃 = G𝑧 and 𝑓 a function that outputs the 𝑘th value of 𝜽𝑔 when evaluated at139

𝜀𝑘 environment (see Appendix A). In the following, we will derive general results using the more general140

formalism of Equation 3 and Equation 4, and then express them for the particular case of the character-state141

approach when relevant.142
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Partitioning variation in reaction norms143

Complete partition of the variation in reaction norms144

The total phenotypic variance in the reaction norm can be partitioned by isolating independent components145

of variation. The main reasoning will be summarised here, with more mathematical details provided in the146

Appendix A to Appendix D. For a start, the terms in Equation 1 are assumed to be independent, such that147

the total phenotypic variance V(𝑧) (usually noted 𝑉P) is the sum of the variance predicted by the genotype148

and the environment V(𝑧), plus a residual component of variance V(𝑧𝑖), which we will note 𝑉Res. Then, a149

second distinction can be made between the general, average shape of the reaction norm, and the genotype-150

specific variation surrounding such an average, as illustrated in Figure 1 using a quadratic reaction norm. The151

component of phenotypic variance arising from plastic responses to the environment by the mean reaction152

norm, i.e. after averaging across all genotypes (Figure 1), will be denoted𝑉Plas. This variance can be considered153

as fully ascribed to the environmental component of phenotypic variation. The component of phenotypic154

variation attributable to genetic variation in the reaction norm Figure 1 will be denoted 𝑉Gen. As these two155

components are independent by construction, denoting as E𝑔 |𝜀 (𝑧) the expected value of the reaction norm156

across genotypes at a given environmental value 𝜀, we have157

V(𝑧) = V
(
E𝑔 |𝜀 (𝑧)

)
+ V

(
𝑧 − E𝑔 |𝜀 (𝑧)

)
= 𝑉Plas +𝑉Gen, (5)

such that158

𝑉P = 𝑉Plas +𝑉Gen +𝑉Res. (6)

Compared to the classical equation 𝑉P = 𝑉G + 𝑉E + 𝑉G×E (Falconer & Mackay 1996; Lynch & Walsh 1998;159

Des Marais et al. 2013), the correspondence is that𝑉E = 𝑉Plas +𝑉Res and𝑉Gen = 𝑉G +𝑉G×E. Also note that both160

decompositions make the same common assumption that genotypes and environments are not correlated. We161

have thus decomposed the environmental variance into a component due to phenotypic plasticity in response162

to 𝜀 (𝑉Plas) on the one hand, and any other residual source of phenotypic variation (𝑉Res) on the other hand,163

as commonly done in theory (Via & Lande 1985; Gavrilets & Scheiner 1993a) as well as in practice.164

The genotypic variance 𝑉Gen accounts for all sources of genetic variation, including the genotype-by-165

environment interaction. Note that this contrasts with a view where the genotype-by-environment interac-166

tion is instead associated with the environmental component, e.g. as plastic variance (Scheiner & Lyman 1989;167

Scheiner 1993a; Falconer & Mackay 1996; Lynch &Walsh 1998). As seen above,𝑉Gen can be decomposed into168

the genetic variance of the trait, measured using its average genotypic value across environments (𝑉G), and the169
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Figure 1: Illustration of the full variance decomposition using quadratic reaction norms. We start from the reaction
norms (left graph, grey lines, the residual variance is not illustrated) and compute their average shape across all geno-
types (left graph, red line). The phenotypic variance arising from this average shape is 𝑉Plas. Centering the reaction
norms along this average shape directly yields the distribution of the breeding values along environments (middle
graph, purple lines), because in this quadratic case, the non-additive genetic variance is𝑉NonAdd = 0. The total variance
of the breeding values along the environment is 𝑉Add. The classical, environment-blind additive genetic variance 𝑉A is
the variance of the breeding values averaged across environments for each genotype (middle graph, green dots). The
𝑉A×E is the variance of the reminder of the breeding values after mean-centring (right graph, blue lines).

variance arising from genotype-by-environment interaction (𝑉G×E). Here, we will apply such decomposition170

at the level of the additive genetic variance (𝑉Add), relegating all the non-additive parts of 𝑉G and 𝑉G×E into a171

common𝑉NonAdd component (Figure 1), arising from dominance and epistasis (Lynch &Walsh 1998; Falconer172

& Mackay 1996). Usually, models like Equation 2 or Equation 4 are defined using additive genetic variance-173

covariance matrices for their basic parameters, meaning that 𝑉Add can be directly estimated from the models.174

As such, we will discard explicit inclusion of dominance or epistasis variance components in a theoretical or175

statistical model throughout, for the sake of simplicity. However, non-additive genetic variance can still arise176

from non-linearity in the (assumed) developmental system (Rice 2004; Morrissey 2015; de Villemereuil et al.177

2016; de Villemereuil 2018), meaning that non-additive variance can be generated by the reaction norm itself.178

Looking at Equation 3 and Equation 4, the ultimate source of any additive genetic variation in the trait 𝑧 comes179

from the additive genetic variation in the parameters 𝜽 . As a result, non-additivity in the trait arises when180

the function 𝑓 (𝜀, 𝜽 ) in Equation 3 is non-linear with regard to 𝜽 , a situation we will refer to as “non-linearity181

in the parameters”. Importantly, this means that polynomial (e.g. quadratic) functions, which are linear in182

their parameters, are such that 𝑉NonAdd = 0 and 𝑉Gen = 𝑉Add.183

When studying the evolution of plasticity, it proves useful to further decompose 𝑉Add into two compo-184

nents. The first is the environment-blind additive genetic variance of the trait, arising from differences in185

average breeding values between genotypes, and typically equal to the classical𝑉A. In other words,𝑉A is the186

variance of the breeding values after averaging them across environments (Figure 1), as would be obtained187

if the genotype-by-environment interaction was ignored altogether. For example, it would be the output of188
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a simple animal model analysis of repeated measurements of a plastic trait in a wild population. The sec-189

ond component of 𝑉Add is the additive genetic variance arising from plasticity, which we will note 𝑉A×E (for190

additive genetic component due to genotype-by-environment interactions). 𝑉A×E is the remaining additive191

genetic variance in the reaction norm after removing the mean breeding value for each genotype (Figure 1).192

This definition is akin to the one used by Albecker et al. (2022), but here more directly expressed in terms of193

variance of breeding values, i.e. additive genetic variance. It measures the potential for evolution of plasticity194

in the trait. Notably, if𝑉A×E = 0 but𝑉Add > 0, then the additive genetic variation in the reaction norms is only195

due to average differences between genotypes, i.e. the reaction norms of different genotypes are parallel. The196

variances 𝑉A and 𝑉A×E are exactly equivalent to the classical decomposition using 𝑉G and 𝑉G×E, only applied197

to the heritable part of the genetic variance. We show below that it is possible to express𝑉Add,𝑉A and𝑉A×E in198

a way that encompasses all approaches of reaction norm, from a character-state to a curve that is non-linear199

in its parameters, by computing reaction norm gradients of the trait 𝑧 with respect to its reaction norm pa-200

rameters 𝜽 , in line with previous theoretical results for the quantitative genetics of non-linear developmental201

systems and non-Gaussian traits (Morrissey 2015; de Villemereuil et al. 2016),.202

The complete partition of the phenotypic variance is thus:203

𝑉P = 𝑉Plas +𝑉A +𝑉A×E +𝑉NonAdd +𝑉Res. (7)

From this, it is possible to derive unitless quantities of interest, for instance by standardising by the pheno-204

typic variance, which is more widely applicable and appropriate than mean-standardisation in the context of205

reaction norms (Pélabon et al. 2020). In particular:206

𝑃2RN =
𝑉Plas
𝑉P

, (8)

is the proportion of the phenotypic variance arising from average plastic responses to environments (depend-207

ing on the average reaction norm shape). Variance-standardised additive genetic variances are heritabilities.208

In our case, we can use 𝑉Add, 𝑉A or 𝑉A×E as the numerator, yielding the following relationship:209

ℎ2RN =
𝑉Add
𝑉P

=
𝑉A
𝑉P

+ 𝑉A×E
𝑉P

= ℎ2 + ℎ2I . (9)

In other words, the heritability of the trait when fully accounting for its reaction norm (ℎ2RN) is equal to the210

environment-blind heritability of the trait (ℎ2, based on the breeding values averaged across environments)211

plus the heritability from plasticity (ℎ2I , based on the breeding values by environment interaction). If it is212

not possible to measure additive genetic variances due to limitations in the experimental design (e.g. when213

9



“genotypes” correspond to populations, accessions or clones), it is possible to perform the same decomposition214

using “broad-sense heritabilities”,215

𝐻2
RN =

𝑉Gen
𝑉P

=
𝑉G
𝑉P

+ 𝑉G×E
𝑉P

= 𝐻2 + 𝐻2
I . (10)

In all cases, the quantity:216

𝑇 2
RN =

𝑉Plas +𝑉Gen
𝑉P

= 𝑃2RN + 𝐻2
RN (11)

would measure the proportion of the phenotypic variance explained by the (possibly plastic and genetically217

variable) reaction norm, and thus our ability to predict the individual phenotype from the genotype and218

the environment. In a linear context with respect to the parameters, when the environment is considered a219

fixed quantity, the quantities 𝑃2RN and𝑇 2
RN are analogous to the (resp. marginal and conditional) coefficient of220

determination of the reaction norm (Nakagawa & Schielzeth 2013; Johnson 2014), but their definition here is221

given beyond that simple context. Relaxing the assumption that the only source of variation in 𝜽 is of genetic222

origin (e.g. individual plasticity, Nussey et al. 2007), we show in Appendix C5 that only the computation of𝑉P223

and 𝑇 2
RN are slightly affected.224

Importantly, so far we are not making any statement about the actual reaction norm shape: 𝑃2RN captures225

the contribution of the average reaction norm regardless of its shape, and the broad- or narrow-sense heritabil-226

ities the contribution of various aspects the genetic variation to the phenotypic variance. The contribution227

of detailed aspects of reaction norms shape to phenotypic variation are obtained by further partitioning𝑉Plas228

and the additive genetic variances, as we do below.229

Contributions of reaction norm shape and parameters to the plastic230

variance231

As stated in Equation 5, the general definition of the variance arising from the average reaction norm is232

𝑉Plas = V
(
E𝑔 |𝜀 (𝑧)

)
. Important simplifications arise in more particular cases. For example, when the assumed233

curve is linear in its parameters, E𝑔 |𝜀 (𝑧) = 𝑓 (𝜀, 𝜽 ), where 𝜽 is the average value of the parameters across234

genotypes. In particular, in the case of a quadratic reaction norm (Scheiner 1993a; Gavrilets & Scheiner235

1993b; Morrissey & Liefting 2016):236

𝑓 (𝜀, 𝜃𝑔) = (𝑎 + 𝑎𝑔) + (𝑏 + 𝑏𝑔)𝜀 + (𝑐 + 𝑐𝑔)𝜀2, (12)

where 𝑎, 𝑏, 𝑐 are the average intercept, first- and second-order parameters of the model, and 𝑎𝑔, 𝑏𝑔 and 𝑐𝑔 are237

genotype-specific deviation from these average values for the same parameters, we can express 𝑉Plas simply238
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as:239

𝑉Plas = 𝑏
2V(𝜀) + 𝑐2V(𝜀2) + 2𝑏𝑐cov(𝜀, 𝜀2) . (13)

If the environmental variable 𝜀 has been mean-centred and is symmetrical, then cov(𝜀, 𝜀2) = 0 and the third240

term vanishes. Finally, in the case of a character-state model, the average phenotype in each environment241

𝜀𝑘 is readily provided by the 𝜇𝑘 in Equation 2, so that 𝑉Plas = V(𝜇). Once 𝑉Plas is computed, its standardised242

version 𝑃2RN follows by dividing by the total phenotypic variance.243

Pushing the analysis further, we aim to compute the contributions of different aspect of reaction norm244

shape to the overall environmental plastic variance of the trait, notably the contribution of its slope and245

curvature, which we will denote as 𝜋Sl and 𝜋Cv, respectively. For this, at least one of two of the following246

assumptions must be valid: (i) 𝜀 follows a normal distribution, or (ii) the true reaction norm is quadratic. In247

all cases, it also require that the environmental variable has been mean-centered. A last requirement is for 𝑓248

to be at least twice differentiable with respect to 𝜀 (which excludes e.g. the character-state approach). In this249

case, these terms simply depend on the average first- and second-order derivative of E𝑔 |𝜀 (𝑧) and the variance250

of 𝜀 and 𝜀2 (see Appendix D1):251

𝜋Sl =
E

( dE𝑔 |𝜀
d𝜀 (𝑧)

)2
V(𝜀)

𝑉Plas
, 𝜋Cv =

1
4E

( d2E𝑔 |𝜀
d𝜀2 (𝑧)

)2
V(𝜀2)

𝑉Plas
. (14)

An important point arising from Equation 14 is that the relative importance of variation in the slope and cur-252

vature components of reaction norm depend on variation in the environment, respectively V(𝜀) and V
(
𝜀2

)
253

(note that V
(
𝜀2

)
= 2V (𝜀)2 if the environment is normally distributed). Crucially, we chose to express this254

partitioning using the mean environment as the reference environment (as commonly practiced, e.g. Morris-255

sey & Liefting 2016), but any other choice of a reference environment would result in a different 𝜋-partition,256

notably due to a non-null value for Cov(𝜀, 𝜀2). Fortunately, neither 𝑉Plas nor 𝑃2RN are impacted by this choice257

in the reference environment. Furthermore, if the reaction norm is linear in the parameters, the derivatives258

of E𝑔 |𝜀 (𝑧) can be directly taken as the derivatives of 𝑓 . In particular, for a quadratic reaction norm as in259

Equation 12, for a mean-centred environment, those quantities simply are:260

𝜋Sl =
𝑏2V(𝜀)
𝑉Plas

, 𝜋Cv =
𝑐2V

(
𝜀2

)
𝑉Plas

, (15)

consistent with the fact the first and second order coefficients of a quadratic polynomial correspond to its261

average slope and curvature, respectively. Only in this configuration do we have 𝜋Sl +𝜋Cv = 1. Unfortunately,262

this simple, geometric interpretation of the polynomial coefficients is lost above the second-order case (see263

Appendix D).264
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Figure 2 shows the values of 𝜋Sl and 𝜋Cv for various quadratic reaction norms, assuming 𝜀 follows either265

a normal or uniform distribution, with same mean 0 and variance 1. The values for 𝜋Sl and 𝜋Cv translate well266

the perceived “trendiness” (for large 𝜋Sl) or “curviness” (for large 𝜋Cv) of reaction norms, but they may also267

strongly depend on the statistical distribution of the environmental variable 𝜀, as shown especially in the third268

example of Figure 2. In this example, the difference arises because the assumed environmental distributions269

have different kurtosis (the scaled fourth central moment, related to 𝑉 (𝜀2) in Equation 15). Because 𝑉 (𝜀2) is270

larger for the Gaussian, this distribution leads to larger 𝜋Cv than the uniform.271

Environment (𝜀)Ex
pe

ct
ed

ph
en

ot
yp

e
(
̂ 𝑧)

𝜋Sl = 0.97, 𝜋Cv = 0.03Gauss.

𝜋Sl = 0.99, 𝜋Cv = 0.01Unif.

Environment (𝜀)Ex
pe

ct
ed

ph
en

ot
yp

e
(
̂ 𝑧)

𝜋Sl = 0.03, 𝜋Cv = 0.97Gauss.

𝜋Sl = 0.07, 𝜋Cv = 0.93Unif.

Environment (𝜀)Ex
pe

ct
ed

ph
en

ot
yp

e
(
̂ 𝑧)

𝜋Sl = 0.33, 𝜋Cv = 0.67Gauss.

𝜋Sl = 0.56, 𝜋Cv = 0.44Unif.

Figure 2: Computation of 𝜋Sl = 𝜋𝑏 and 𝜋Cv = 𝜋𝑐 , the relative contributions of linear and quadratic terms to pheno-
typic variation caused by the mean reaction norm, for different shapes of reaction norms, and two distributions of the
environmental variable 𝜀: a standard Gaussian (of mean 0 and variance 1), and a uniform distribution between −

√
3

and
√
3 (of mean 0 and variance 1).

When it is not possible to assume that 𝜀 is normally distributed (because it is discrete, or experimentally272

constrained) and a quadratic assumption is not a good fit to the reaction norm, it is always possible to use273

a higher-order polynomial model to approximate the true reaction norm, in line with theoretical work by274

de Jong (1990), Gavrilets & Scheiner (1993b), and de Jong (1995). In this case, we can conduct an alternative275

decomposition based on the parameters of the polynomial (rather than the mean slope and curvature of the276

function), using the fact that a polynomial curve is linear in its parameters. To distinguish this parameter-277

based decomposition from the specific decomposition in terms of slope and curvature, we use a different278

notation. The relative contribution of a given exponent 𝑚 in the polynomial to the variance caused by the279

mean plasticity becomes (see Appendix D2)280

𝜑𝑚 =
𝜃2𝑚V(𝜀𝑚)
𝑉Plas

, (16)

and the contribution of the covariance between exponents 𝑙 and𝑚 is281

𝜑𝑙𝑚 =
2𝜃𝑙𝜃𝑚Cov(𝜀𝑙 , 𝜀𝑚)

𝑉Plas
. (17)
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Note that even with a symmetrical and mean-centred environment, the covariance between higher-order282

exponents will not be zero in general, contrary to 𝜀 and 𝜀2 in the quadratic case. Using orthogonal polynomials283

would solve this issue of covariances, but at the cost of a more complex interpretation of the coefficients.284

More generally, this 𝜑-decomposition only relies on the assumption that the reaction norm is linear on its285

parameters, which includes polynomials as a particularly useful special case. We summarise the requirements286

and applications for the 𝜋- and 𝜑-decomposition depending on the context in Figure 3.287

What is the type of
the environmental

variable?
Categorical
or Ordinal

Discrete
(e.g. controlled environment)

Is a quadratic
curve a good fit?

Continuous
(e.g. wild population)

Is the environment
normally

distributed?

No

Compute VPlas from
the character-state

Compute VPlas from the character-
state and use the φ-decomposition

on a polynomial curve
No

(Discrete)

Compute VPlas from a good
fit curve, optionnally use
the φ-decomposition

using a polynomial curve

No
(Continuous)

Compute VPlas from the
curve parameter and

use the π-decompositionYes

Yes

Figure 3: Decision tree summarising our suggested workflow for the computation and decomposition of𝑉Plas, depend-
ing on the nature of the environmental variable, its normality and the validity of a quadratic approximation of the
reaction norm shape.

Contributions of reaction norm parameters to the genetic variance288

We can expression the variance of the genotypic values of the reaction norms in Equation 5 in a slightly289

different, but more operational, manner:290

𝑉Gen = V
(
𝑧 − E𝑔 |𝜀 (𝑧)

)
= E

(
V𝑔 |𝜀 (𝑧)

)
, (18)

i.e. the total genotypic variance of the reaction norms is equal to the environment-specific genotypic variance291

averaged across environments. As explained above, this total genetic variance can be further decomposed into292

the genetic variance and the genotype-by-environment variance, i.e. 𝑉Gen = 𝑉G + 𝑉G×E (Falconer & Mackay293

1996; Lynch & Walsh 1998; Des Marais et al. 2013). From an evolutionary perspective, the component of294

main interest is rather the total additive genetic variance of the reaction norm 𝑉Add, which will be the main295
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focus of this section. As a reminder, we here assume, that the experimental design allows for the inference of296

the additive genetic variance of the parameters of the reaction norm (G𝑧 or G𝜃 above), and that non-additive297

variance in the trait𝑉NonAdd only arises when the reaction norm is non-linear in the parameters (i.e. dominance298

and/or epistasis were not fitted in the statistical model). This assumption is for the sake of simplicity, as our299

framework can include such effects into 𝑉Gen if needed.300

A general way to relate the additive genetic variance of the trait to the additive genetic variances of the301

reaction norm parameters is through a vector that we describe as the reaction norm gradient, which we will302

note 𝝍𝜀 (following notations in de Villemereuil et al. 2016),303

𝝍𝜀 = E𝑔
(
𝜕𝑧

𝜕𝜽

)
𝜀

, (19)

where the subscript 𝜀 makes it clear that 𝝍𝜀 will generally be a function of the environment. In the case of a304

quadratic curve, 𝝍𝜀 is the (1, 𝜀, 𝜀2)𝑇 vector (see Appendix C3 for a polynomial of arbitrary order). In the case305

of a character-state model, 𝝍𝜀𝑘 is a vector with 1 for the 𝑘th environmental level (or character state), and zero306

elsewhere. Whether or not the reaction norm is linear in its parameters, the additive genetic variance of the307

trait in a given environment 𝜀 is (Morrissey 2015; de Villemereuil et al. 2016, and see Appendix B),308

𝑉𝐴 |𝜀 = 𝝍𝑇𝜀 G𝜃𝝍𝜀, (20)

where superscript 𝑇 denotes matrix transposition, G𝜃 the genetic covariance matrix of reaction norm pa-309

rameters as defined in Equation 4 for the curve-parameter approach, and G𝜃 is G𝑧 from Equation 2 for the310

character-state approach. The total additive genetic variance in the reaction norm,𝑉Add, is the average of𝑉𝐴 |𝜀311

across environments (see Appendix C1):312

𝑉Add = E
(
𝝍𝑇𝜀 G𝜃𝝍𝜀

)
. (21)

The environment-blind additive genetic variance of the trait 𝑉A, based on breeding values averaged across313

environments, is (see Appendix C2)314

𝑉A = E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) . (22)

Although some elements of E(𝝍𝜀) and G𝜃 can be negative, the fact that G𝜃 is a variance-covariance matrix315

ensures that 𝑉A ≥ 0 (see Appendix C2). The additive genetic variance arising from plasticity is thus (see316

Appendix C2):317

𝑉A×E = 𝑉Add −𝑉A = E
(
𝝍𝑇𝜀 G𝜃𝝍𝜀

)
− E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) . (23)
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If we define Ψ = E
(
𝝍𝜀𝝍𝑇𝜀

)
− E (𝝍𝜀) E (𝝍𝜀)𝑇 , the variance-covariance matrix of the reaction norm gradients318

across environments, then a more intuitive way to express𝑉A×E is as a sum, for all pairs of parameters, of the319

(co)variance of their reaction norm gradient across environments (inΨ) and their additive genetic (co)variance320

(in G𝜃 ):321

𝑉A×E =
∑
𝑖, 𝑗

Ψ(𝑖, 𝑗 )G𝜃 (𝑖, 𝑗 ) = Tr(ΨG𝜃 ), (24)

where Tr is the trace of a matrix. All of the quantities above can be divided by 𝑉P to get the corresponding322

heritabilities.323

To illustrate with an example, for a quadratic reaction norm with mean-centred environment as shown324

in Figure 1, 𝝍𝜀 = (1, 𝜀, 𝜀2) and thus we have (see Appendix C3)325

𝑉Add = 𝑉𝑎 + (𝑉𝑏 + 2𝐶𝑎𝑐)E(𝜀2) +𝑉𝑐E(𝜀4),

𝑉A = 𝑉𝑎 + 2𝐶𝑎𝑐E(𝜀2) +𝑉𝑐E(𝜀2)2,

𝑉A×E = 𝑉𝑏V(𝜀) +𝑉𝑐V(𝜀2),

(25)

where 𝑉𝑎 , 𝑉𝑏 and 𝑉𝑐 are the additive genetic variances in the parameters 𝑎𝑔, 𝑏𝑔 and 𝑐𝑔, and 𝐶𝑎𝑐 is the additive326

genetic covariance between the intercept 𝑎𝑔 and the second-order effect 𝑐𝑔. Those expressions are reminiscent327

of classical results from the theory of evolution of plasticity (e.g. de Jong 1990; Gavrilets & Scheiner 1993b),328

especially regarding the crucial role of𝐶𝑎𝑐 in the evolution of quadratic reaction norms, but here distinguish-329

ing three important components of the additive genetic variance of reaction norms. In particular, we see330

how the additive genetic variance arising from plasticity, 𝑉A×E, can be simply expressed as the sum of the331

products of the variances in the reaction norm gradients (here the environment and its squared value) and332

the corresponding additive genetic variance in the parameters (here 𝑏𝑔 and 𝑐𝑔 in Equation 12). This means333

that, in the quadratic case, genetic variances in slope and curvature directly translate into variance arising334

from plasticity, as they should. By contrast,𝑉A does not solely depend on the variance in the intercept𝑉𝑎 , but335

also on the quadratic coefficient, more specifically its covariance with the intercept.336

The expressions for these variance components in the character-state approach are best described directly337

from the G𝑧 matrix. The total additive genetic variance along the reaction norm, 𝑉Add, is the average of338

the additive genetic variance in each environment, i.e. the average of the diagonal elements of the G𝑧 . The339

environment-blind additive genetic variance of the trait,𝑉A, is the average of all the elements of theG𝑧 matrix.340

Finally, the variance𝑉A×E is the sum of the products of the (co)variances in the frequency of each environment341

and the additive genetic (co)variances in G𝑧 . We illustrate in Appendix C4 the relationship between the342

structure in the G𝑧 matrix and the additive genetic variances, but a simplified statement is that 𝑉A×E > 0 as343

soon as the correlation between environments are different from 1 and/or variances in the diagonal are not344

all equal.345

15



To further decompose genetic variation in the reaction norms, we first note that here, the reaction norm346

parameters are the focus of the decomposition, rather than shape characteristics like the slope or curvature347

(with the exception of a quadratic reaction norm, the only case were they are formally linked). Because348

Equation 21 is a sum of products, and since𝐺𝜃 is a constant, we can isolate each term of the resulting sum as:349

𝛾𝑖 =
E𝜀

(
𝜓2
𝜀,𝑖

)
V𝑔 (𝜃𝑖)

𝑉Add
, 𝛾𝑖 𝑗 =

2E𝜀
(
𝜓𝜀,𝑖𝜓𝜀,𝑗

)
Cov𝑔 (𝜃𝑖 , 𝜃 𝑗 )

𝑉Add
,

∑
𝑖

𝛾𝑖 +
∑
𝑖< 𝑗

𝛾𝑖 𝑗 = 1. (26)

Here, 𝛾𝑖 provides the contribution of the 𝑖th parameter in the model to the total additive genetic variance350

𝑉Add, while 𝛾𝑖 𝑗 provides the contribution of the covariation between parameters 𝑖 and 𝑗 to 𝑉Add. As such,351

this “𝛾-decomposition” (where gamma refers to g for Genetics) measures the relative importance of genetic352

variances and covariances of the parameters to the evolvability of the plastic trait. Large values of 𝛾𝑖 indicate353

that genetic variation in the 𝑖th parameter translate into a large proportion of the genetic variation in the trait.354

Also, large positive or negative values for 𝛾𝑖 𝑗 indicate that covariation between parameters 𝑖 and 𝑗 can have a355

large impact in increasing or reducing genetic variation in the trait.356

It is also possible to focus on the additive genetic variation arising from plasticity, 𝑉A×E, which yields:357

𝜄𝑖 =
V

(
𝜓𝜀,𝑖

)
V𝑔 (𝜃𝑖)

𝑉A×E
, 𝜄𝑖 𝑗 =

2Cov𝜀
(
𝜓𝜀,𝑖 ,𝜓𝜀,𝑗

)
Cov𝑔 (𝜃𝑖 , 𝜃 𝑗 )

𝑉A×E
,

∑
𝑖

𝜄𝑖 +
∑
𝑖< 𝑗

𝜄𝑖 𝑗 = 1. (27)

This “𝜄-decomposition” (where iota refers to i for Interaction) highlights the fact that 𝑉A×E is the sum of the358

products of (co)variances in elements of the reaction norm gradient𝜓𝜀 and the additive genetic (co)variances359

in the parameters.360

For a quadratic reaction norm as in Equation 12 with a mean-centred environment, this yields:361

𝛾𝑎 =
𝑉𝑎
𝑉Add

, 𝛾𝑏 =
𝑉𝑏E(𝜀2)
𝑉Add

, 𝛾𝑐 =
𝑉𝑐E(𝜀2)2
𝑉Add

, 𝛾𝑎𝑐 =
2𝐶𝑎𝑐E(𝜀2)
𝑉Add

, 𝜄𝑏 =
𝑉𝑏V(𝜀)
𝑉A×E

, 𝜄𝑐 =
𝑉𝑐V(𝜀2)
𝑉A×E

. (28)

Note that since the environment has been mean-centred, we have V(𝜀) = E(𝜀2) since E(𝜀)2 = 0, and thus362

𝛾𝑏 = 𝜄𝑏 , i.e. in the quadratic case, all of the genetic variation in the slope contributes to the genetic variance363

arising from plasticity. Note also that genetic variance in reaction norm intercept 𝑎 does not contribute to the364

heritability from plasticity (𝜄𝑎 = 0).365

For the character-state approach, such decomposition would be less informative about the potential for366

(and constraints on) reaction norm evolution. Instead, we can define an effective number of character states367

(as proposed for general multivariate phenotypes by Kirkpatrick 2009) as368

𝑛𝑒 =
∑
𝑖

𝜆𝑖
𝜆1
, (29)
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where 𝜆𝑖 is the 𝑖th eigenvalue ofG𝑧 ranked by size (i.e., 𝜆1 is the largest eigenvalue). Strong genetic correlations369

of phenotypes across environments lead to small 𝑛𝑒 , whereby reaction norm evolution is highly constrained370

(with the limit of 𝑛𝑒 = 1 corresponding to the strongest constraint). Conversely, weak genetic correlations371

across environments leave more degrees of freedom for reaction norms to evolve, causing a large 𝑛𝑒 , close372

to the actual number of assayed environments. This 𝑛𝑒 metric does not capture all aspects of reaction norm373

evolvability, and is best combined with the ratio 𝑉A×E/𝑉Add of the proportion of total genetic variance due to374

genetic variance in plasticity). Unfortunately, 𝑛𝑒 is estimated with a strong bias due to the overestimation of375

the leading eigenvalue of G𝑧 (Lawley 1956), making it less useful in practice than in theory. We thus do not376

develop this metric further.377

Parameter estimation and variance partitioning in practice378

Estimating the parameters379

All the parameters mentioned in the previous section can be estimated through commonly used statistical380

frameworks. For the character-state approach (Equation 2), a random-parameter model can be used, or al-381

ternatively a “multi-trait” model (Rovelli et al. 2020; Mitchell & Houslay 2021). We will focus here on the382

former, which is more easily implemented while seemingly scarcely used in the literature on plasticity. In383

the random-parameter model, the environment is considered as a categorical variable, to which a random384

effect is added using the genotype as the grouping factor. In the curve-parameter approach, the appropriate385

models will be random-parameter models for a polynomial approach (as mentioned in Morrissey & Liefting386

2016), or non-linear mixed models, fitting the reaction norm function 𝑓 (𝜀, 𝜽 ) to the data. Genotype-specific387

parameters, such as the intercept, slope, and any higher-order effects of a polynomial function, are treated as388

random’389

Since the parameters are estimated with noise, it is important to account for the impact of estimation390

uncertainty when computing variance components. In particular, while variances directly obtained using391

random effects (e.g. genetic variances) are expected to be unbiased, the variances arising from fixed effects392

(e.g. variances related to 𝑉Plas) should be corrected for biases due to uncertainty (as the adjusted 𝑅2 does for393

example). Details are provided in Appendix E.394

To compute the total phenotypic variance required to get the estimates 𝑃2RN,𝐻
2
RN and ℎ̂2RN, we advise using395

the sum of all estimated components rather the raw sample variance. The former is common practice in most396

quantitative genetics inference to account for potential imbalance in the experimental or sampling design397

(Wilson et al. 2010; de Villemereuil et al. 2018).398

We provide an R package, named Reacnorm github.com/devillemereuil/Reacnorm, providing functions399

17

https://github.com/devillemereuil/Reacnorm


implementing the variancce decomposition based on raw outputs of statistical models. A tutorial is shipped400

with the package, as an R vignette, showing how to implement such models using the Bayesian brms R pack-401

ages (Bürkner 2017), along with Reacnorm.402
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Figure 4: Distribution of the error (difference between the inferred and true value) for each the inferred variance
components for three scenarios: two discrete (𝑁env: number of environments, 𝑁Gen: number of different genotypes,
𝑁Rep: number of replicates per genotype) and one continuous (𝑁env: number of environment tested per genotype, 𝑁Gen:
number of different genotypes). The grey dots correspond to the average over the 1000 simulations. The character-state
approach was impossible for the continuous environment scenario. The yellow boxes on the right show the estimates
for 𝑃2RN (proportion of variance generated by the plasticity in the mean reaction norm), ℎ̂2RN (total heritability of the
reaction norm), ℎ̂2 (environment-blind heritability) and ℎ̂2I (heritability fromplasticity) for both the curve-parameter and
character-state approaches. For the curve-parameter, the 𝜋-decomposition of 𝑃2RN into 𝜋Sl (contribution of the slope)
and 𝜋Cv (contribution of the curvature); the 𝛾-decomposition of ℎ̂2RN into 𝛾𝑎 (genetic contribution of the intercept),
𝛾𝑏 (genetic contribution of the slope), 𝛾𝑐 (genetic contribution of the curvature) and 𝛾𝑎𝑐 (genetic contribution of the
covariance between the intercept and the curvature) and the 𝜄-decomposition of ℎ2I into 𝜄𝑏 (slope) and 𝜄𝑐 (curvature) are
also shown.

Perfect modelling of quadratic curves403

We simulated phenotypic data conforming to a quadratic reaction norm, to evaluate the performance of the404

proposed approach when the reaction norm truly is quadratic. We considered both a discrete and continu-405
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ous environment. For the discrete environment, we considered 𝑁Gen = 20 or 5 different genotypes and an406

environmental gradient of 𝑁Env = 10 or 4 values, equally spaced from -2 to 2. We sampled 𝑁Rep = 𝑁Gen407

individual measures for each genotype within an environment. For the continuous environment, we drew408

𝑁Env = 10 or 4 values from a normal distribution for each of the 𝑁Gen = 200 or 50 genotypes, without repeats409

contrary to the discrete case. In both cases, a residual noise was applied around each measure with a residual410

variance 𝑉Res = 0.25. In all cases, we defined a quadratic curve with average parameters 𝜽 = (1.5, 0.5,−0.5)411

for intercept, slope and curvature. We then drew 𝑁Gen different genotype-specific vectors of curve-parameter412

𝜽 from a multivariate normal distribution with mean 𝜽 and (genotypic) variance-covariance matrix413

G𝜃 =

©­­­­­«
0.090 −0.024 −0.012

−0.024 0.160 0.008

−0.012 0.008 0.040

ª®®®®®¬
.

Figure 1 displays examples of curves resulting from these parameters. The simulation process was repeated414

1000 times for each scenario, and for each simulated dataset, we ran estimations using the lme4 R package415

(Bates et al. 2015) under the curve-parameter (for discrete and continuous environment) and character-state416

(only for discrete environment) approaches, in order to check how these approaches compare in practice.417

From the curve-parameter models, we computed 𝑉Plas (accounting for the uncertainty in fixed effects),418

then 𝑃2RN. We also computed the 𝜋-decomposition (𝜋Sl and 𝜋Cv, Equation 14), since the true reaction norm419

is quadratic here, as well as ℎ̂2RN, ℎ̂
2 and ℎ̂2I as in Equation 9. We then applied the 𝛾-decomposition to ℎ̂2RN420

(Equation 26): 𝛾𝑎 (impact of the genetic variation of the intercept), 𝛾𝑏 (for the slope), 𝛾𝑐 (for of the curvature)421

and 𝛾𝑎𝑐 (for the covariance between the intercept and curvature). Similarly, we applied the 𝜄-decomposition422

to ℎ2I (Equation 27): 𝜄𝑏 (for the slope) and 𝜄𝑐 (for the curvature). From the character-state model, we computed423

only 𝑃2RN, ℎ̂
2
RN, ℎ̂

2 and ℎ̂2I .424

The yellow boxes in Figure 4 display the theoretical expected values for the different parameters for three425

scenarios of environmental variation (two discrete, one continuous; other scenarios are shown in Appendix F).426

Using the first discrete scenario as a reference for now, most of the total phenotypic variance comes from the427

average plasticity (𝑃2RN = 0.55). This, in turns, includes a large contribution from the curvature (𝜋Cv = 0.56) of428

the average reaction norm, more than from its slope (𝜋Sl = 0.44). The total heritability of the reaction norm is429

substantial (ℎ2RN = 0.3), but interestingly most of it is due to the heritability from plasticity (ℎ2I = 0.21), while430

the environment-blind heritability of the trait is only ℎ2 = 0.08. Contrary to the average shape, most of the431

additive genetic variation comes from the slope, both when considering the total reaction norm (𝛾𝑏 = 0.52),432

or plasticity alone (𝜄𝑏 = 0.76). All scenarios share the same underlying parameters 𝜽 and G𝜃 , resulting in433

very comparable values for our variance decomposition (i.e. 𝑃2RN and the heritabilities) across the different434
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environmental sampling scheme. By contrast, the environemental sampling scheme (especially discrete v.435

continuous distribution) can substantially impact the expected values of the 𝜋-, 𝛾- and 𝜄-decompositions. This436

is especially true when switching from the discrete to the continous scenarios (e.g. 𝜋Sl = 0.44 for the first437

discrete scenario while 𝜋Sl = 0.33 for the continuous scenario).438

Switching to the error in the estimation of the parameters (left panels of Figure 4), we see first that both the439

character-state and curve-parameter approaches allow for unbiased inference (Wilcoxon’s rank test, 𝑝 > 0.05),440

apart from a slight bias in the heritabilities (ℎ̂2RN, ℎ̂
2 and ℎ̂2I ) and some of their𝛾 and 𝜄 components in the discrete441

scenarios (< 5% relative bias, Wilcoxon’s rank test, 𝑝 < 0.05), notably due to a slight overestimation of the442

genetic variance of the intercept (visible in the top row of Figure 4). For the discrete case, the precision of443

the estimates was not much influenced by the number of environments and depended more on the number444

of genotypes (see Figure S1). For the continuous case, both the number of environments and genotypes445

influenced the precision of estimates (see Figure S2). As a sanity check, we also verified that𝑉Tot (not shown in446

Figure 4) reflected the raw phenotypic variancewith extreme precision (correlation > 99%) in the discrete case447

and very good precision (correlation > 87%) in the continuous case. The difference between these two types448

of scenarios is explained by how the stochasticity in environmental values differs among them. Importantly,449

the results in Figure 4) also illustrate the exact equivalence, in the discrete case, between the curve-parameter450

and character-state approaches, as the distributions of 𝑃2RN and ℎ̂2RN were nearly identical (Figure 4, correlation451

> 99%) between the two approaches. This means that our variance partitioning is not impacted by which452

approach is chosen to study plasticity, as long as the curve-parameter approach captures the true reaction453

norm shape. When this does not hold, the differences between estimates from these alternative approaches454

can be exploited efficiently, as we describe below.455

Imperfect modelling of a non-polynomial reaction norm456

The true shapes of reaction norms are generally unknown andmay be complex, such that any curve-parameter457

model is likely to be mis-specified to some extent. In the case of a discrete environment, the character-state458

approach is arguably more general, as it does not assume anything about the “true” shape of the reaction459

norm (as pointed out previously by de Jong 1995). Nonetheless, having access to curve-parameters is often460

very interesting and more actionable (even in cases where the linear and quadratic components cannot be461

interpreted as the average slope and curvature), especially to predict evolution of phenotypic plasticity (see462

also de Jong 1995). To get the best of both worlds, we rely on the ability of the character-state approach463

to recover 𝑃2RN, using it as an “anchor”, to assess the performance of a given curve. Note that, under these464

circumstances, it is not possible to obtain the most natural 𝜋-decomposition in Equation 14, so we instead rely465

on the 𝜑-decomposition in Equation 16 (here taken at the second order). Because of this, we need to assess466
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Figure 5: Estimation of the variance of the reaction normwhen the true shape (sigmoid on the left, Gompertz-Gaussian
performance curve on the right, red lines on top graphs) is unknown and approximated from a polynomial function. The
estimated reaction norms using a polynomial function (black line, top graphs) only account for a part of the reaction
norm shape, while the ANOVA estimation (pink dots, top graphs) fit the true shape more accurately. As a result, the
model is expected to explain only a part 𝑀2

Plas of phenotypic variance due to plasticity. On the bottom rows, the error
distribution are shown for 𝑀2

Plas, 𝑃
2
Plas, 𝜑1 and 𝜑2 (grey dots are the average estimated values, black crosses are the

expected true values).

how “bad” our simplification using an imperfect curve is. To do so, we compute the ratio of the variance467

21



modelled by the polynomial curve to the total variance due to phenotypic plasticity:468

𝑀2
Plas =

𝑉mod

𝑉Plas
, (30)

where both 𝑉mod and 𝑉Plas are bias-corrected. It is important to note here that 𝑀2
Plas is just a convenient way469

to quantify the amount of𝑉Plas explained by the chosen parametric curve, and should not be used to perform470

model selection. Model selection is a complex matter and we refer the readers to published reviews on this471

subject (e.g. Johnson & Omland 2004; Tredennick et al. 2021).472

In order to demonstrate the soundness and usefulness of this approach, we simulated datasets following473

relatively common curves that are not well-captured by a second order polynomial: a logistic sigmoid (here-474

after sigmoid scenario), or a Gompertz-Gaussian thermal performance curve (hereafter TPC scenario, see475

Figure 5). We assumed that the environment is sampled at either 10 or 4 values. For each of these conditions,476

we simulated 1000 datasets, with 10 measures per environment (for the sake of simplicity, and given the focus477

on 𝑃2RN here, we did not include different genotypes in these simulations). We estimated the parameters of a478

polynomial model, and computed the relative contributions of the first- and second-order parameters using479

Equation 16. In addition, we computed the unbiased estimates of the variance explained by our polynomial480

or character-state models to obtain𝑀2
Plas.481

Our results show that, as expected, the polynomial function is an imperfect proxy of our complex shapes482

(Figure 5, 𝑀2
Plas = 0.89 for the sigmoid and 𝑀2

Plas = 0.65 for the TPC), but using the character-state approach483

allows retrieving the total plastic variance without bias. The approach described here is thus useful to compare484

a given reaction norm model (e.g. a polynomial function) to an unknown true shape of the reaction norm,485

in a case where environment is discretised. In more detail, the linear component was the most important486

component to explain the phenotypic variation for the sigmoid scenario (𝜑1 = 0.89, same as the total model).487

This was because the quadratic component was always estimated close to zero (< 10−3), thus no variance488

was explained by the quadratic component (𝜑2 = 0). Of course, the sigmoid is not a straight line either, and489

some remaining variance unexplained by the polynomial curve (1 − 0.89 = 0.11) could have been explained490

by higher-order effects (e.g. cubic effect and higher). By contrast, for the TPC scenario, while the linear491

component was an important factor (𝜑1 = 0.47), the quadratic component also explained quite a lot of the492

variance as well (𝜑2 = 0.2). Again, higher-order effect, including at least a cubic effect, would have explained493

more of the variance arising from the average shape of plasticity.494

This example illustrates the usefulness of a combined curve-parameter and character-state approach to495

study the shape of reaction norms of a discretely sampled environment. While the character-state approach496

provides a widely applicable estimation of 𝑃2RN (if the environment is discretised), the curve-parameter ap-497

proach provides interpretable information about (at least) first- and second-order parameters of the reaction498
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norm (although they might depart more or less strongly from its average slope and curvature), which helps499

describing where most phenotypic variance lies. Our ratio 𝑀2
Plas can then be used to evaluate how well a500

chosen polynomial function models an actual reaction norm.501

Estimation of non-linear models502

Althoughwe have focused so far onmodels that are linear in its parameters, themain strength of our approach503

is its generality: it can be applied to any arbitrary functions (provided it is differentiable). This requires504

numerically computing integrals for𝑉Plas (for 𝑃2RN), 𝜋Sl, 𝜋Cv and 𝝍𝜀 (for the heritabilities), but this can be solved505

with efficient algorithms. We illustrate this by introducing genetic variation in the parameters of the sigmoid506

and TPC reaction norms illustrated in Figure 5 (top panels). We used a non-zero, but small, residual variance507

(𝑉R = 0.0001) to avoid numerical issues typical when running thousands of non-linear models. We focused508

on a continuous environment, and estimated the actual functions used to generate the datasets, using the non-509

linear modelling function of nlme package (Pinheiro et al. 2009). We used the cubature package (Narasimhan510

et al. 2023), as in the QGglmm package (de Villemereuil et al. 2016), to compute parameters linked to the511

variance decomposition, and, further, the 𝜋-, 𝛾- and 𝜄-decomposition. We simulated 1000 datasets for each512

scenario, consisting of 200 genotypes measured each in 10 different environments, randomly sampled from a513

normal distribution.514

We retrieved our simulated parameters without bias using the nlme function, except for a slight bias515

(Wilcoxon’s rank test, 𝑝 < 0.05) in the variance of 𝑟 (latent slope) in the sigmoid model and in 𝐶 (height516

of the peak) in the TPC model. This translated into significant (Wilcoxon’s rank test, 𝑝 < 0.05), but very517

limited bias (relative bias < 5%) in our derived parameters (Figure 6, bottom panels). Moreover, the sum of518

variance components (𝑉Tot) successfully reflects the total phenotypic variance, with a correlation between the519

two quantities > 91%.520

First focusing on the average shape of the reaction norm (Figure 6, top panel), one unfortunate aspect of521

running a non-linear model is that our bias correction described in Appendix E can no longer be applied. How-522

ever, this bias is generally small provided the standard error is small for most parameters, and the resulting523

bias in 𝑃2RN is extremely small, and even non-significant for the sigmoid model. This could of course be partly524

explained by a favourable context here, especially since the residual variance is relatively small. An important525

distinction here is the difference between the curve defined by the average parameters 𝑓 (𝜀, 𝜽 ) (Figure 6, top526

panel, black curve) and the one defined by the local average phenotype E𝑔 |𝜀 (𝑧) (Figure 6, top panel, red curve),527

recalling that 𝑃2RN is linked to the latter. While the two are very close for the sigmoid case, they differ quite528

visibly for the TPC one, due to a more pronounced non-linearity in the parameters in the latter. The average529

slope contributed the most to the overall plastic variance of the mean reaction norm for the sigmoid shape530
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Figure 6: Scenarios and results of non-linear modelling of phenotypic plasticity in a continuous environment. On
the left: results corresponding to a sigmoid curve scenario; on the right: results corresponding to a TPC scenario.
First row: example of the individual curves (each curve corresponds to one individual) simulated in each scenario;
yellow box: true parameters for the model and average shape; black curve : 𝑓 (𝜀, 𝜽 ); red curve : E𝑔 |𝜀 (𝑧). Second row:
distribution of the estimations of𝑉G,𝜀 (brown) and𝑉A,𝜀 (purple), along the environment; solid line: average value across
simulations; pale ribbon: 95%CI across simulations; yellow box: true values for the genetic variance partition. Third row:
𝛾-decomposition of 𝑉A,𝜀 along the environment, for each parameter and their covariation. Fourth row: distribution of
the error for each component of our variance partition (“Variances”) or for the 𝜋- and𝛾-decomposition (“Components”),
red dot is the average of estimates over all simulations. 24



(𝜋Sl = 0.88), with no impact of average curvature (𝜋Cv = 0), close to the 𝜑-decomposition in Figure 5. For the531

TPC scenario, the contribution of the average slope (𝜋Sl = 0.31) and curvature (𝜋Cv = 0.35) are similar. In this532

case, the values are very different from the 𝜑-decomposition in Figure 5 (although note that the distribution533

of the environment is different between these two scenarios). It might appear as counter-intuitive that the534

slope contributes so much to variance, since the curve increases from 0 and then decreases toward 0, but this535

is linked to the fact that the environment is normally distributed, so most values are near 𝜀 = 0, an area where536

the slope of the curve is close to being maximised.537

Although the variation between genotypes in the top panel of Figure 6 seems quite large, the contribution538

from the average plasticity 𝑃2RN is 1.7 to 3.4 times higher than the one of the genetic variance 𝐻2
RN (Figure 6,539

yellow box in first- and second-row panels). This occurs because the genetic variance is actually very low in540

most environments (Figure 6, brown and purple lines of the second-row panels), and scarcely as high as𝑉Plas.541

As mentioned above, non-linearity in the parameters is less strong for the sigmoid case than for the TPC case,542

resulting in almost exactly equal values for 𝐻2
RN and ℎ̂2RN for the former, while they are slightly different for543

the latter. In both cases, the small difference between 𝐻2
RN and ℎ̂2RN can be explained by the disproportionate544

importance in the 𝛾-decomposition of parameters that are actually linearly related to the trait (𝛾𝐿 = 0.98 for545

the sigmoid and 𝛾𝐶 = 0.81 for the TPC scenarios). In terms of heritability from plasticity, it is substantial in546

both cases (ℎ2I = 0.081 for the sigmoid and ℎ2I = 0.133 for the TPC scenario), as can be expected from the547

non-parallel reaction norms (Figure 6). However, it remains smaller than the environment-blind heritability548

of the trait in both cases (ℎ2 = 0.143 for the sigmoid and ℎ2 = 0.216 for the TPC scenarios). Interestingly, for549

the TPC scenario, and contrary to what happens with the 𝛾-decomposition, a majority of the additive genetic550

variance arising from plasticity comes from the variation in the location of the optimum (𝜄𝜀0 = 0.525). This is551

because variation in the location of the optimum shifts the reaction norm along the environment axis (i.e. on552

the “x-axis”), meaning that even a small shift can generate considerable variation that is non-parallel along553

the phenotype axis (i.e. along the “y-axis”).554

An interesting aspect of our framework is that we can explore the variation of 𝑉Gen,𝜀 , 𝑉A,𝜀 and the 𝛾-555

decomposition of𝑉A,𝜀 along the environmental gradient, which can be very informative from an evolutionary556

perspective. In the case of the sigmoid curve (Figure 6, second and third rows, left panels), the analysis is557

relatively simple : as the value of the environment increases, the parameter 𝐿 is multiplied by an increased558

value (going from 0 to 1 due to the sigmoid function) and thus its genetic variance plays a stronger role. This559

translates into𝑉Gen,𝜀 and𝑉A,𝜀 increasing with the environment, and 𝛾𝐿 accounting for almost all of the genetic560

variance after the sigmoid inflexion point in 0. The TPC scenario is even more interesting. First, we can see561

that both 𝑉Gen,𝜀 and 𝑉A,𝜀 (Figure 6, second row, right panels) are close to zero in the extreme environments562

and maximised in a region between the optimum and critical maximal temperature, where the reaction norm563
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suddenly drops after the optimum. This maximum also corresponds to the region where 𝑉Gen,𝜀 and 𝑉A,𝜀 are564

the most different (and where the red and black departs the most in Figure 6, top row, right panel). Regarding565

the 𝛾-decomposition (Figure 6, third row, right panels), the influence of the location of the optimum (𝛾𝜀0 ) is566

maximised at extreme environments, while the influence of the maximum value at the peak (𝛾𝐶 ) is exactly567

maximised at the average location of the peak. The influence of the covaration between both (𝛾𝐶𝜀0 ) is negative568

before the peak and positive after.569

As these simulations illustrate, our framework allows very finely describing the characteristics of reaction570

norms, such as how its average shape (slope/curvature) and genetic variation in the parameters influence the571

phenotypic variance in the trait, while discriminating between total genetic variation of the trait and genetic572

variation exclusively linked with plasticity itself.573

Discussion574

The variance decomposition in Equation 7 is very general, and applicable to any approach used to estimate575

a reaction norm. In particular, it applies equally well to both the character-state and curve-parameter ap-576

proaches. Each component and its variance-standardisation provide a different information on the reaction577

norms: 𝑃2RN quantifies the proportion of phenotypic variance due to the average plastic response across geno-578

types, while 𝐻2
RN or ℎ2RN quantify the contributions from (broad or additive) genetic variance in the reaction579

norms. Further, these genetic components can be separated into the environment-blind heritability of the580

trait (ℎ2) based on the average breeding values across environments, and the heritability from plasticity (ℎ2I )581

which is solely based on the gene-by-environment interactions at the level of breeding values. Finally, the582

sum𝑇 2
RN = 𝑃2RN +𝐻2

RN quantifies how well we can predict the individual phenotypes based on their genotypes583

and environments (i.e. genetically variable reaction norms). Those components are efficient summary statis-584

tics yielding important information regarding the evolutionary potential of both the trait and its plasticity.585

Importantly, they are very generally applicable, with a strict equivalence between e.g. a character-state or586

a curve-parameter approach. However, they do not provide information regarding the actual shape of the587

reaction norms. To that end, we further decomposed some of these components in terms of characteristics of588

the shape or parameters of reaction norms.589

Themost difficult problem is to decompose the average plastic variance 𝑃2RN into terms arising either from590

the linear trend (𝜋Sl) or from the curvature (𝜋Cv) of the reaction norm, which we called 𝜋-decomposition.591

Unfortunately, our estimates for 𝜋Sl and 𝜋Cv are only valid if the environment is normally distributed, or the592

true reaction norm is quadratic. In other cases, mean slope and curvature loose their simple interpretation,593

preventing a meaningful 𝜋-decomposition. Nonetheless, for polynomial reaction norms of higher order, we594
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described an alternative decomposition, based on the polynomial coefficients rather than actual slope and595

curvature, which we called 𝜑-decomposition. While not as interpretable as the 𝜋-decomposition, this decom-596

position can serve as a way to compare polynomial shapes across contexts. Based on the equivalence between597

the curve-parameter and character-state, we introduced𝑀2
Plas as a way to quantify the ability of a polynomial598

model to recover𝑉Plas compared to an “agnostic” model such as the character-state. Our proposed framework599

is summarised in Figure 3.600

Decomposingℎ2RN andℎ2𝐼 is comparatively easier, because themodel assumed in Equation 3 and Equation 4601

ensures that we can always translate additive genetic variance in the parameters 𝜽 into additive genetic vari-602

ance in the trait 𝑧, even if the function 𝑓 is not linear in its parameters. Decomposition of the total heritability603

of the reaction norm ℎ2RN into the impact of the parameters 𝜽 leads to the 𝛾-decomposition. It quantifies the604

relative importance of genetic variance in different reaction norm parameters to the evolvability of the trait.605

For instance if a given selection episode concerns individuals that all experienced the same plasticity-inducing606

environment (i.e. when spatial environmental variation is negligible relative to temporal variation), using the607

multivariate breeder’s equation (Lande 1979), the relative contribution of genetic variation in parameter 𝜃𝑖 to608

the response to selection for the trait 𝑧 is609

Δ𝜃𝑖𝑧

Δ𝑧
= 𝛾𝑖 +

1

2

∑
𝑖≠𝑗

𝛾𝑖 𝑗 , (31)

where the 𝛾𝑖 and 𝛾𝑖 𝑗 are defined in Equation 26. In other words, the contributions of responses to selection610

by different reaction norm parameters to overall response to selection by the plastic trait 𝑧 is directly pro-611

portional to their contribution to its genetic variance. Importantly, these contributions will depend on the612

reaction norm gradient 𝝍𝜀 defined in Equation 19, and thus on the environment, as illustrated in Equation 26.613

In fact, the environment-specific additive genetic variance 𝑉A,𝜀 is a critical piece of information regarding614

evolutionary potential, and we can apply the 𝛾-decomposition within each environment as well. For example,615

in the TPC scenario investigated above (Figure 6, right panels), the contribution of the peak height parameter616

𝐶 is maximised at the average location of the optimum, where it accounts for 100% of the additive genetic617

variance. On the contrary, the influence of additive genetic variation in the location of the optimum 𝜀0 is more618

important in extreme environments. The complex interaction between the role of 𝐶 and 𝜀0 generates a peak619

for𝑉A,𝜀 in the area between the peak and critical maximal value for the environment (where the performance620

curve reaches zero). In the context of predicting eco-evolutionary response to warming, this would mean621

that a slight temperature rise above the optimum would provide a very short window of higher evolvability,622

but followed by a sharp decrease thereof if warming persists. Beyond these simple scenarios, how selection623

acts on reaction norms and plasticity depends on how the environment varies in space and/or time (Scheiner624

1993b; de Jong 1999; Tufto 2015; King & Hadfield 2019), and how the reaction norm gradient 𝝍𝜀 and direction625
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selection on the expressed trait 𝑧 covary across environments. However, an in-depth exploration of how to626

estimate these selection responses is beyond the scope of the present work.627

While the 𝛾-decomposition is key to understanding and predicting evolution of the trait, it is based on628

the total heritability of the reaction norm ℎ2RN, which combines additive genetic variation in the trait and its629

plasticity. To study plasticity in isolation from the environment-blind additive genetic variance in the trait,630

we decomposed ℎ2I in a similar fashion as ℎ2RN, which we called the 𝜄-decomposition. The components of the631

𝜄-decomposition measure the contribution of each parameter to the evolutionary potential of plasticity, i.e. to632

the evolvability of reaction norm shape. In our thermal performance case (TPC) example, the 𝜄 associated to𝐶633

and 𝜀0 were close to 0.5, meaning that evolution can roughly equally impact the peak height𝐶 or the location634

of the optimum 𝜀0, should selection on the shape of reaction norms occur.635

The detailed decomposition that we propose open the door to better comparatibility across studies, which636

can be a challenge in meta-analyses of plasticity. Murren et al. (2014) performed such a meta-analysis, com-637

paring genetic variation in different parameters of reaction norm shape across published datasets. However638

they (i) computed these parameters using only extreme environmental values, instead of the whole range of639

environments; (ii) did not account for uneven spacing between environments where relevant; (iii) did not640

account for uncertainty in estimations of reaction norms (as previously highlighted by Morrissey & Liefting641

2016); and (iv) assumed the modeled reaction norm shape is true. More details about the analyses in that study642

are provided in Appendix G. Our approach overcomes all these issues (some of which had been dealt with643

already by Morrissey & Liefting 2016; Pélabon et al. 2020). Unfortunately the dataset compiled by Murren644

et al. (2014) does not provide information on uncertainty of phenotypic estimates (related to𝑉Res), precluding645

proper meta-analysis of reaction norm shape variation.646

Importantly, our variance partitioning can be implemented through commonly used statistical models,647

notably (non-)linear mixed models. We showed that even complex non-linear modelling can perform well,648

only at the cost of using dedicated libraries to compute integrals numerically. This means that biologists649

can readily seize all the modelling tools introduced here. In particular, although a character-state approach650

can be performed using a simple random-intercept model, studies of genetic variance in plasticity seem to651

rather use a multi-trait model, which offers more control, but is more difficult to implement (but see Stir-652

ling & Roff 2000). In order to make the variance partitioning introduced here more accessible, we have653

implemented the computation of all the decomposition mentioned here as an R package named Reacnorm654

github.com/devillemereuil/Reacnorm, including cases where more than the genetic effect is assumed affect-655

ing variation in 𝜽 . The package also provides a tutorial as a vignette, showing how to implement the models656

in the Bayesian package brms and use functions from Reacnorm to study the properties of reaction norms. We657

hope that this will further stimulate interest in investigating variation and evolutionary potential of reaction658
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norms.659

Code availability The code for the data simulation and analyses performed in this article is available at660

the following repository: github.com/devillemereuil/CodePartReacnorm661
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Appendix831

A A unified formalism for the curve-parameters and832

character-state approaches833

Despite having different mechanics, the curve-parameter and character-state approaches can be shown to834

be mathematically equivalent de Jong (1995). We can use this to express both approaches under the same,835

unified formalism. More precisely, we can express the character-state approach as being a special case of the836

curve-parameters approach. Under a curve-parameters approach, the reaction norm is seen as a function 𝑓837

of the environment 𝜀 and a vector of parameters 𝜽𝑔:838

𝑧 = 𝑓 (𝜀, 𝜽𝑔) . (S1)

The 𝜽𝑔’s covary across genotypes with a variance-covariance matrix G𝜃 :839

𝜽𝑔 ∼ N(𝜽 ,G𝜃 ) . (S2)

By contrast, in a character-state approach, the reaction norm values of different genotypes across environ-840

ments are directly provided by sampling from a multivariate normal distribution:841

�̂� ∼ N (𝝁,G𝑧) . (S3)

One way to express the character-state using the same formalism as the curve-parameter is to recognise that842

Equation S3 can be written as843

𝑧 = 𝝁𝑇𝑔 𝒖𝑘 ,

𝝁𝑔 ∼ N(𝝁,G𝑧),
(S4)

where 𝒖𝑘 is the unit vector with 1 at the 𝑘th value (corresponding to environment 𝜀𝑘 ) and 0 elsewhere. Thus,844

the character-state model can be expressed using the formalism of Equation S1 and Equation S2, where 𝝁𝑔 in845

Equation S4 plays the role of 𝜽𝑔, and thus G𝑧 plays the role of G𝜃 . In this case, the function 𝑓 is a function846

taking the level 𝑘 of the environment and the parameters 𝝁𝑔 of the genotype 𝑔 as input, and yielding the847

evaluated reaction norm 𝑧 as the output. Evidently, this function 𝑓 is not continuous and not differentiable848

along the (categorical) environment. However, it is a continuous, differentiable and even linear function849

along the (continuous) parameters 𝝁𝑔. As such, all properties mentioned in the main text and the Appendices850

pertaining to reaction norms that are “linear in its parameters” also apply to the character-state approach.851
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B Computation of the additive genetic variance holding852

environment constant853

B1 Preliminary results854

Multiple regression slopes expressed using a variance-covariance matrix Let us assume a multiple855

regression between a random variable 𝑦 and a set of random variables x = (𝑥1, . . . , 𝑥𝑛)𝑇 such that:856

𝑦 = 𝜇 + x𝑇 𝜷 + 𝑒, (S5)

where 𝜇 is the intercept and 𝑒 is the residual of the model. Note that in practical regression, the realised857

sampling of x will be contained in the design matrix of the model. If it exists and is unique, the solution for858

the vector of multiple regression slopes 𝜷 can be formulated in terms variance-covariance matrices (see e.g.859

p.179, Lynch & Walsh 1998):860

𝜷 = V(x)−1cov(x, 𝑦), (S6)

where V(x) is the variance-covariance matrix of x, , V(x)−1 is its inverse matrix and cov(x, 𝑦) is the column-861

vector of covariances between the 𝑥𝑖 and 𝑦.862

Multivariate version of Stein’s lemma Let us assume that x = (𝑥1, . . . , 𝑥𝑝𝑥 ) and y = (𝑦1, . . . , 𝑦𝑝𝑦 ) follow863

multivariate normal distributions, and that 𝑔 is a differentiable, 𝑅𝑝𝑥 → 𝑅 function such that E (▽𝑔), where864

▽𝑔 is the gradient of 𝑔 (the vector of partial derivatives), is a vector with finite values, then it can be shown865

(Landsman & Nešlehová 2008; Landsman et al. 2013) that:866

cov (𝑔(x), y) = cov(x, y)E (▽𝑔) . (S7)

Note that covariance matrices of vectors (also known as cross-covariance matrices) are not commutative, but867

are such that cov(x, y) = cov(y, x)𝑇 . In the case where 𝑝𝑦 = 1, then y = 𝑦 follows a normal distribution and:868

cov (𝑔(x), 𝑦) = cov(𝑦, x)E (▽𝑔) . (S8)

Note that cov(𝑦, x) is a row-vector and cov(x, 𝑦) is a column-vector by convention.869
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B2 Breeding values in a given environment870

Genetics of reaction norms As mentioned in the main text, a general formalism (including the character-871

state as a special case) for the reaction norm 𝑧 is given by Equation 3 in the main text, i.e.872

𝑧 = 𝑓 (𝜀, 𝜽𝑔) . (S9)

The phenotype predicted by the reaction norm 𝑧 thus depends on the environmental value 𝜀, and the reac-873

tion norm parameters 𝜽𝑔 specific to the genotype 𝑔. When holding the environment 𝜀 constant, the genetic874

variance is simply the variance of reaction norms across genotypes:875

𝑉G |𝜀 = V𝑔 |𝜀
(
𝑓 (𝜀, 𝜽𝑔)

)
(S10)

If the reaction norms are estimated in such a way that non-additive genetic variance can be separated out from876

additive genetic variance (e.g. if “genotype” refers to individuals) or are known to be negligible on the one877

hand; and if the reaction norm is linear in its parameters (i.e. 𝑓 is a linear function of 𝜽𝑔, as for a polynomial878

function) on the other hand, then the additive genetic variance conditional on the environment is readily879

given by Equation S10, i.e. 𝑉A |𝜀 = 𝑉G |𝜀 . In the case where 𝑓 is not linear in its parameters, it is necessary to880

rely on the theory in non-linear quantitative genetics (Morrissey 2015; de Villemereuil et al. 2016), as we do881

below.882

Linear relationship between breeding values The relationship between the breeding value of the trait883

A𝑧 and the breeding values of the reaction norm parameters 𝜽𝑔 is the key towards developing a framework884

that works for any reaction norm, linear in its parameters or not. Let us note A𝜃 the vector of breeding values885

of all the parameters in 𝜽 . We will follow the same demonstration as in de Villemereuil et al. (2016), which886

starts from the point that, by definition, breeding values are all linked through linear relationships (see also887

Robertson 1966), since they are all linearly linked to the genotype (Lynch & Walsh 1998). More precisely, the888

breeding value A𝑧 of the phenotypic trait 𝑧 of an individual linearly depends on a linear combination of its889

breeding values for the reaction norm parameters A𝜃 , so that:890

A𝑧 = 𝜇A + A𝑇
𝜃 𝝍 (S11)

where 𝜇𝑎 is a constant chosen such that E(A𝑧) = 0, 𝝍 is a vector of slopes that we will shortly describe as the891

reaction norm gradient.892
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Derivation of 𝝍 To derive an expression of 𝝍, we can apply the results in Equation S6 to Equation S11,893

yielding894

𝝍 = G−1
𝜃 cov(A𝜃 , 𝑧). (S12)

This assumes that cov(A𝜃 ,A𝑧) = cov(A𝜃 , 𝑧), i.e. that there is no covariance between the environmental895

values of the phenotype as predicted by the reaction norm and the breeding values of the parameters. This896

results also assumes that G𝜃 is inversible. However, such assumption is already necessary to most statistical897

algorithms available to inferG𝜃 in practice, so that this assumption is not limiting here. Noting that 𝑧 = 𝑓 (𝜀, 𝜽 ),898

we can apply the multivariate version of Stein’s lemma (Equation S7):899

𝝍 = G−1
𝜃 cov(A𝜃 , 𝜽𝑔)E(▽𝜃 𝑓 ) = G−1

𝜃 G𝜃E(▽𝜃 𝑓 ) = E(▽𝜃 𝑓 ), (S13)

where we have used the fact that the covariance of breeding values of reaction norm parameters with their900

breeding values is their additive genetic covariance matrixG𝜃 . Again, note that this assumes that 𝑓 is partially901

differentiable with respect to all elements of 𝜽𝑔. Given that this demonstration was applied when holding the902

environment constant, the values in 𝝍 generally depend on the environment 𝜀, so below and in the main text,903

we use the notation 𝝍𝜀 .904

Values of 𝝍𝜀 in specific contexts When the reaction norm is linear in its parameters, the values in 𝝍𝜀 are905

(trivially) the linear coefficients of such relation. For a quadratic reaction norm, where 𝑧 = (Ā+𝑎𝑔)+(𝑏+𝑏𝑔)𝜀+906

(𝑐 + 𝑐𝑔)𝜀2, such linear coefficients are respectively 1, 𝜀 and 𝜀2 for 𝑎𝑔, 𝑏𝑔 and 𝑐𝑔. It results that 𝝍𝜀 = (1, 𝜀, 𝜀2)𝑇907

as mentioned in the main text. More generally, if 𝑓 is a polynomial of order 𝑁 , then 𝝍𝜀 = (1, 𝜀, . . . , 𝜀𝑁 )𝑇 . In908

the context of a character-state, it can be seen from Equation S4 that the gradient 𝝍𝜀 in the parameters will be909

equal to 𝒖𝑘 , i.e. a vector of 1 for the 𝑘th value (corresponding to the environment chosen to be hold constant)910

and 0 elsewhere.911

B3 Additive genetic variance912

By definition, the additive genetic variance of the trait conditional on the environment𝑉A |𝜀 is the variance of913

the breeding values defined in Equation S11. We can thus express it from the breeding values of the reaction914

norm parameters (right hand side of Equation S11) as915

𝑉A |𝜀 = V𝑔 |𝜀 (A𝑇
𝜃 𝝍𝜀) = 𝝍𝑇𝜀 G𝜃𝝍𝜀 . (S14)

This formula holds whether the reaction norm is linear on its parameters or not, and also holds for the916

character-state approach (although in this case, this formula merely selects the 𝑘th element of the diagonal917
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of G𝑧).918

C Derivation of the general decomposition of variance919

C1 Distinguishing between 𝑉Plas, 𝑉Gen and 𝑉Add920

The phenotype predicted by the reaction norm 𝑧 depends on the environment, and the reaction norm param-921

eters 𝜽𝑔 specific to the genotype 𝑔. The impacts of environment and genotype are intricately related via the922

reaction norm shape, but in a given environment, one can still isolate the average impact of the environment923

from variation among genotypes by computing the average value of the reaction norm across genotypes con-924

ditional on the environment, i.e. E𝑔 |𝜀 (𝑧). The variance of E𝑔 |𝜀 (𝑧), taken across environments, is the component925

𝑉Plas = V(E𝑔 |𝜀 (𝑧)) in the main text, i.e. the phenotypic variance arising from plasticity after averaging across926

genotypes. The genotypic value G𝑧 of genotype 𝑔 within the environment 𝜀 is then given by927

G𝑧 = 𝑧 − E𝑔 |𝜀 (𝑧). (S15)

Note that, althoughwe removed the average effect of the environment, the genotypic valueG𝑧 still depends on928

both the genotype𝑔 and the environement 𝜀, because genotypes can vary in their response to the environment.929

The total genetic variance in the reaction norm is thus𝑉Gen = V(G𝑧). It is possible to get to the breeding values930

of the trait in each environmentA𝑧 following the process described in Appendix B, i.e.A𝑧 = 𝜇𝑎 +A𝑇
𝜃 𝝍𝜀 . The931

total additive genetic variance in the reaction norm is then932

𝑉Add = V(A𝑧) = E
(
V𝑔 |𝜀 (A𝑧)

)
+ V

(
E𝑔 |𝜀 (A𝑧)

)
= E(𝝍𝑇𝜀 G𝜃𝝍𝜀), (S16)

using the law to total variance and noting that E𝑔 |𝜀 (A𝑧) = 0 by construction. In Figure 1 in the main text,933

the average E𝑔 |𝜀 (𝑧) corresponds to the red line in the left panel of Figure Figure 1 in the main text, while A𝑧934

corresponds to the purple lines in the middle panel.935

C2 Distinguishing between 𝑉Add, 𝑉A and 𝑉A×E936

We can separate the total additive genetic variance of the reaction norm, 𝑉Add, into two components: the937

environment-blind additive genetic variance of the trait 𝑉A and the additive genetic variance arising from938

plasticity𝑉A×E. The first component is given by considering, for a given genotype, its average breeding value939

across environment:940

Ā = E𝜀 |𝑔 (A𝑧) . (S17)

39



This average corresponds to the breeding value that would be predicted for the same genotype present in all941

environments (or moving across them, beingmeasured several times), ignoring the impact of the environment.942

In other words, this average is the predicted breeding value after the impact of the environment has been943

marginalised. Graphically, it depicts the average shift in the 𝑦-axis of the reaction norm, as can be seen in the944

middle panel of Figure 1 in the main text. The environment-blind additive genetic variance of the trait is945

𝑉A = V(Ā) = E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) (S18)

𝑉A is here defined as a variance, but there are negative elements in E(𝝍𝜀) and G𝜃 , so in theory, their product946

could happen to be a negative scalar. This is not so here, because G𝜃 being a variance-covariance matrix, it947

must be positive semi-definite. By definition of positive semi-definiteness, the product E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) will948

be positive (or null) for any real vector E(𝝍𝜀).949

The remaining additive genetic variation after accounting for the marginal breeding value is linked to the950

impact of genetic variation arising from plasticity, i.e. genotype-by-environment interactions. We can define951

the part of the breeding values strictly linked to that genotype-by-environment interaction by mean-centring952

the breeding values, for each genotype:953

AI = A𝑧 − Ā . (S19)

The right panel of Figure 1 depicts these interaction breeding values. The additive genetic variance linked to954

genotype-by-environment, and thus to variation arising from plasticity, is:955

𝑉A×E = V(AI) = V(A𝑧) + V(Ā) − 2cov(A𝑧, Ā) = V(A𝑧) − V(Ā) = 𝑉Add −𝑉A, (S20)

noting that, by construction, cov(A𝑧, Ā) = cov(Ā, Ā) = V(Ā). By substituting 𝑉Add and 𝑉A with their956

values in Equation S16 and Equation S18, we obtain957

𝑉A×E = E(𝝍𝑇𝜀 G𝜃𝝍𝜀) − E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) = tr(ΨG𝜃 ) =
∑
𝑙,𝑘

Ψ𝑙,𝑘G𝜃 (𝑙,𝑘 ) , (S21)

whereΨ is the variance-covariance matrix of the reaction norm gradient 𝝍𝜀 across the environment. In other958

words, 𝑉A×E is the sum of the products, for all pairs of parameters, of the (co)variance in the reaction norm959

gradient and the additive genetic (co)variance. The 𝛾- and 𝜄-decomposition directly comes from dividing each960

elements of the sums in Equation S16 and Equation S21 respectively by𝑉Add and𝑉A×E, so that the total sums961

to 1.962
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C3 Variance decomposition for a polynomial model963

In this section, we will assume a polynomial reaction norm:964

𝑧 =
𝑁∑
𝑛=0

(𝜃𝑛 + 𝜃𝑛,𝑔)𝜀𝑛 (S22)

where 𝜃𝑛 = 𝜃𝑛 + 𝜃𝑛,𝑔 is the 𝑛th order coefficient of the polynomial. In this form, it is easy to remark that965

polynomial reaction norms are linear in their parameters, i.e. there is a linear relationship between the 𝜃𝑛’s966

and 𝑧, so that G𝑧 = A𝑧 . It results that:967

G𝑧 = A𝑧 = 𝑧 − E𝑔 |𝜀 (𝑧) =
𝑁∑
𝑛=0

(𝜃𝑛 + 𝜃𝑛,𝑔)𝜀𝑛 −
𝑁∑
𝑛=0

𝜃𝑛𝜀
𝑛 =

𝑁∑
𝑛=0

𝜃𝑛,𝑔𝜀
𝑛 . (S23)

Taking the derivative of this expression with respect to each of 𝜃𝑛,𝑔 in a given environment 𝜀 would yield a968

reaction norm gradient equal to the value of each exponent of 𝜀, i.e. 𝝍𝜀 = (1, 𝜀, . . . , 𝜀𝑁 )𝑇 . The total (additive)969

genetic variance is thus:970

𝑉Gen = 𝑉Add = E(𝝍𝑇𝜀 G𝜃𝝍𝜀) =
∑
𝑛

𝑉𝑛E(𝜀2𝑛) + 2
∑
𝑛<𝑚

𝐶𝑛𝑚E(𝜀𝑛+𝑚), (S24)

where𝑉𝑛 is the additive genetic variance for 𝜃𝑛,𝑔 and𝐶𝑛𝑚 is the additive genetic covariance between 𝜃𝑚,𝑔 and971

𝜃𝑛,𝑔. For the quadratic case, if 𝜀 has been mean-centred and is symmetrical, we have E(𝜀) = E(𝜀3) = 0 and the972

expression reduces to973

𝑉Gen = 𝑉Add = 𝑉0 + (𝑉1 +𝐶03)E(𝜀2) +𝑉3E(𝜀4). (S25)

For a given genotype, its average breeding value across environments is974

Ā = E𝜀 |𝑔 (A𝑧) = E𝜀 |𝑔

(
𝑁∑
𝑛=0

𝜃𝑛,𝑔𝜀
𝑛

)
=

𝑁∑
𝑛=0

𝜃𝑛,𝑔E(𝜀𝑛) (S26)

The environment-blind (additive) genetic variance of the trait is975

𝑉G = 𝑉A = E(𝝍𝜀)𝑇G𝜃E(𝝍𝜀) =
∑
𝑛

𝑉𝑛E(𝜀𝑛)2 + 2
∑
𝑛<𝑚

𝐶𝑛𝑚E(𝜀𝑛)E(𝜀𝑚) (S27)

For the quadratic case with mean-centred and symmetrical 𝜀, this yields:976

𝑉A = 𝑉0 + 2𝐶02E(𝜀2) +𝑉2E(𝜀2)2 (S28)
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Finally, the additive genetic variance arising from plasticity itself is977

𝑉A×E = 𝑉Add −𝑉A =
∑
𝑛

𝑉𝑛E(𝜀2𝑛) + 2
∑
𝑛<𝑚

𝐶𝑛𝑚E(𝜀𝑛+𝑚) −
∑
𝑛

𝑉𝑛E(𝜀𝑛)2 + 2
∑
𝑛<𝑚

𝐶𝑛𝑚E(𝜀𝑛)E(𝜀𝑚) . (S29)

By recognising that V(𝜀𝑛) = E(𝜀2𝑛) −E(𝜀𝑛)2 and cov(𝜀𝑛, 𝜀𝑚) = E(𝜀𝑛+𝑚) −E(𝜀𝑛)E(𝜀𝑚), we can further simplify978

this expression as:979

𝑉A×E =
∑
𝑛

𝑉𝑛𝑉 (𝜀𝑛) + 2
∑
𝑙𝑘

𝐶𝑛𝑚cov(𝜀𝑛, 𝜀𝑚) . (S30)

For the quadratic case, for a mean-centred and symmetrical 𝜀, all the covariances between the different expo-980

nents of 𝜀 are 0, yielding981

𝑉A×E = 𝑉1V(𝜀) +𝑉2V(𝜀2) . (S31)

C4 Variance decomposition for the character-state approach982

As mentioned in Appendix A, the character-state can be written using a function 𝑓 such that in environment983

𝜀𝑘 and for genotype 𝑔, we have984

𝑧 = 𝑓 (𝝁𝑔, 𝜀𝑘 ) = 𝝁𝑇𝑔 𝒖𝑘 . (S32)

In a given environment 𝜀𝑘 , the unit vector 𝒖𝑘 is equal to 1 at the 𝑘th index and 0 elsewhere. The reaction985

norm gradient is equal to this unit vector, i.e. 𝝍𝜀𝑘 = 𝒖𝑘 . In the first environment, for example, we have986

𝝍𝜀1 = 𝒖1 = (1, 0, . . . )𝑇 . As mentioned in Appendix A, the character-state approach is linear in its parameters.987

We can thus compute the genotypic/breeding values in a given environment 𝜀𝑘 as988

G𝑧 = A𝑧 = 𝑧 − E𝑔 |𝜀 (𝑧) = 𝝁𝑇𝑔 𝒖𝑘 − 𝝁𝑇 𝒖𝑘 = 𝜇𝑔,𝑘 − 𝜇 𝑗 , (S33)

where 𝜇𝑔,𝑘 and 𝜇 𝑗 are the 𝑘th values of the vectors 𝝁𝑔 and 𝝁. The total (additive) genetic variance is the989

variance of the breeding values across environments:990

𝑉Gen = 𝑉Add = V(A𝑧) = V(𝜇𝑔,𝑘 ). (S34)

Since the variance-covariance matrix of 𝝁𝑔 is the G𝑧 matrix, the variance of all elements 𝜇𝑔,𝑘 taken together991

is the average of the diagonal elements of G𝑧 , which we will note 𝑉𝑘 . Assuming that all environments are992

equiprobable for the sake of simplicity (releasing this assumption merely requires to use weighted average),993

we have994

𝑉Add =
1

𝐾

𝐾∑
𝑘=1

𝑉𝑘 . (S35)

In other words, 𝑉Add is the average of the diagonal elements of the G𝑧 matrix.995
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The environment-blind (additive) genetic variance of the trait depends on the average of the breeding996

values across environment for a given genotype:997

Ā =
1

𝐾

∑
𝑘

A𝑧,𝑘 , (S36)

where A𝑧,𝑘 is the breeding value evaluated at the 𝑘th environment for a given genotype, still assuming998

equiprobable environments. It results that the environment-blind (additive) genetic variance of the trait is999

𝑉G = 𝑉A =
1

𝐾2

(∑
𝑘

𝑉𝑘 + 2
∑
𝑘<𝑙

𝐶𝑘𝑙

)
, (S37)

where𝐶𝑘𝑙 is the genetic covariance between the environment 𝑘 and 𝑙 . In other words,𝑉A is the average of all1000

the elements of the G𝑧 matrix.1001

Finally, the (additive) genetic variance arising from plasticity can be computed as the difference between1002

𝑉Add and 𝑉A:1003

𝑉G×E = 𝑉A×E = 𝑉Add −𝑉A =
1

𝐾2

(
(𝐾 − 1)

∑
𝑘

𝑉𝑘 − 2
∑
𝑘<𝑙

𝐶𝑘𝑙

)
(S38)

A few particular cases are important to note here. The first case is when all environments harbour the1004

same additive genetic variance, say 𝑉 , and are all perfectly correlated with one another. This is a situation1005

generally describe as a total absence of genetic variation in plasticity. In our framework, this situation would1006

indeed result in 𝑉Add = 𝑉A = 𝑉 and, indeed, no genetic variation arising from plasticity with 𝑉A×E = 0. Note1007

that uneven additive genetic variances across environments, even if genetic correlation are kept perfect across1008

environments, would result in slightly positive genetic variance arising from plasticity with 𝑉A×E > 0. This1009

is because, in such context, the trait can still evolve faster in some environments compared to other, hence1010

plasticity can evolve. The second extreme case, is when the environment-blind additive genetic variance of1011

the trait is null, i.e.𝑉A = 0, while all the additive genetic variance in reaction norm is composed of the additive1012

genetic variance arising from plasticity, i.e.𝑉Add = 𝑉A×E. This happens when the sum of covariances (the total1013

of which must be negative) exactly compensates the sum of diagonal variances in the G𝑧 , meaning that neg-1014

ative genetic correlation between environments are maximised. In this case, its is impossible for directional1015

selection to act on average value of the trait across all environments, but the evolvability of plasticity is max-1016

imal. A third, interesting case is when there is absolutely no genetic correlation between environments, i.e.1017

the off-diagonal elements of G𝑧 are all equal to 0. In such case, it is important to note that, because evolution1018

can freely operate across environments, then both 𝑉A = 1
𝐾2

∑
𝑘 𝑉𝑘 and 𝑉A×E = 𝐾−1

𝐾2

∑
𝑘 𝑉𝑘 are non-zero.1019
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C5 Decomposition of variance for individual-based reaction norms1020

In Equation 4, we assumed that the only source of variation in 𝜽 is of genetic origin. This is a classical1021

assumption both in the empirical and theoretical literature (de Jong 1990; Gavrilets & Scheiner 1993a; Via &1022

Lande 1985), but in many cases, it can be useful or needed to include further sources of variation in 𝜽 . This is1023

for example the case when studying reaction norms using repeated measurements of the same individual in1024

different environments. In particular, this may require including a further “permanent environment” effect1025

to account for multiple repeats (Wilson et al. 2010) on the same individual, and also allows for the modelling1026

of the reaction norm at the individual level (individual plasticity, Nussey et al. 2007). When other random1027

effects are assumed in the model, we can write the full variation of 𝜽 as:1028

𝜽 ∼ N(𝜽 ,V𝜃 ), (S39)

where V𝜃 is the total variance-covariance matrix of 𝜽 . Note that Equation 4 is still valid to model the genetic1029

component of 𝜽 which we named 𝜽𝑔. In such case, the heritability of the 𝑘th component of 𝜽 can be com-1030

puted as the ratio of the 𝑘th diagonal element of G𝜃 to the 𝑘th element of V𝜃 , i.e. ℎ2𝜃,𝑘 = 𝐺𝜃,𝑘,𝑘

𝑉𝜃,𝑘,𝑘
. Because the1031

modelling of 𝜽𝑔 remains unchanged, all our computations of (additive) genetic variances and their decompo-1032

sition remains completely identical. However, there are two important changes. The first change is that the1033

definition of𝑉Plas does not only depend on averaging over 𝑔 any more, but on other sources of variations in 𝜽1034

as well, i.e. 𝑉Plas = V
(
E𝜃 |𝜀 (𝑧)

)
. This means that the marginalisation step conditional to the environment now1035

implies the full V𝜃 rather only its subcomponent G𝜃 . The second change is that it is not possible to write the1036

total variance of the reaction norm as the sum of 𝑉Plas and 𝑉Gen anymore, because the latter is only a partial1037

reflection of the full variation in 𝜽 . Instead, we need to introduce the phenotypic variation in the trait arising1038

from the full sources of variation in 𝜽 , which we denote here 𝑉Param:1039

𝑉Param = V
(
𝑧 − E𝜃 |𝜀 (𝑧)

)
= E

(
V𝜃 |𝜀 (𝑧)

)
. (S40)

Then, we can write the correct formulae for 𝑉P and 𝑇 2
RN:1040

𝑉P = 𝑉Plas +𝑉Param +𝑉Res, 𝑇 2
RN =

𝑉Plas +𝑉Param
𝑉P

. (S41)

The Reacnorm package was designed to be able to input V𝜃 to compute those quantities if needed.1041
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D Derivation of 𝜋- and 𝜑-partition of 𝑉Plas1042

D1 The 𝜋-decomposition1043

We have seen in Appendix C how to compute the variance arising from the average shape of reaction norm1044

𝑉Plas. In order to go further, we now separate this into a component linked to the average slope of the reaction1045

norm and another linked to the average curvature. For this, we need one or two of the following assumptions1046

to hold true: (i) the environment 𝜀 follows a normal distribution; or (ii) the function 𝑓 is quadratic. In such1047

context, we can isolate the contribution of the slope, 𝑉Sl, from the contribution of the curvature, 𝑉Cv to 𝑉Plas,1048

based on the best quadratic approximation of E𝑔 |𝜀 (𝑧) (akin to the reasoning in Lande & Arnold 1983, for1049

estimates of selection gradients), as:1050

𝑉Sl = E
(dE𝑔 |𝜀

d𝜀 (𝑧)
)2

V(𝜀), 𝑉Cv =
1

4
E

(
d2E𝑔 |𝜀
d𝜀2

(𝑧)
)2

V(𝜀2) . (S42)

As an illustration of why the assumptions above are needed, if 𝜀 follows a uniform distribution between -21051

and 2; and the average shape of plasticity is the following cubic function, 𝑓 (𝜀) = 2𝜀 − 0.5𝜀2 − 𝜀3, then the1052

average slope is -2, while the slope from the best quadratic approximation of E𝑔 |𝜀 (𝑧) is -0.4. In such cases,1053

the decomposition in Equation S42 is not valid anymore, due to (i) the impossibility to apply Stein’s lemma1054

to a non-normal distribution and (ii) strong covariation between the slope and curvature. This means that1055

whenever the environment is non-normal and the reaction norm is non-quadratic, the 𝜋-decomposition can1056

bear little meaning (in the cubic example above,𝑉Sl would be 5.4, while𝑉Plas = 2.0, so that 𝜋Sl would be largely1057

above 1). A truly quadratic reaction norm is the only case where 𝜋Sl + 𝜋Cv = 1.1058

D2 The 𝜑-decomposition1059

In such cases where the environment is non-normal and the reaction norm is non-quadratic, it is always1060

possible to approximate the true shape of the reaction norm using a polynomial function:1061

𝑧 =
𝑁∑
𝑛=0

(𝜃𝑛 + 𝜃𝑛,𝑔)𝜀𝑛 (S43)

In the context of decomposing 𝑉Plas, such polynomial approximation provides a possibility to isolate the (co-1062

)contribution of the (pairs of) coefficients in E𝑔 |𝜀 (𝑧) =
∑𝑁
𝑛=0 𝜃𝑛𝜀

𝑛 :1063

𝑉Plas = V(E𝑔 |𝜀 (𝑧)) =
∑
𝑛

𝜃2𝑛V(𝜀𝑛) + 2
∑
𝑛<𝑚

𝜃𝑛𝜃𝑚cov(𝜀𝑛, 𝜀𝑚) (S44)
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From this, we suggest the alternative 𝜑-decomposition of 𝑉Plas, with 𝜑𝑛 = 𝜃2𝑛V(𝜀𝑛 )
𝑉Plas

and 𝜑𝑛𝑚 = 2𝜃𝑛𝜃𝑚cov(𝜀𝑛,𝜀𝑚 )
𝑉Plas

.1064

It is important to note that this decomposition is based on the coefficients of the polynomial function and, thus,1065

it is unfortunately impossible to simply interpret the 𝜑𝑛 in terms of slope (for 𝜑1), curvature (for 𝜑2), and so1066

on. The only exception is when the reaction norm shape is quadratic, in which case 𝜋Sl = 𝜑1 and 𝜋Cv = 𝜑2.1067

E Correcting for uncertainty in the estimation of fixed1068

effects1069

Character-state approach It is easier to start with the character-state approach based on the ANOVA1070

model. We want to compute 𝑉Plas as the variance of the group-level effects 𝜇:1071

𝑉Plas = V(𝜇) (S45)

However, we do not have access to the real-world values for 𝜇, but only to the estimated 𝜇 from the model.1072

Such estimates, if unbiased, have an expected value of 𝜇𝑘 in environment 𝑘 and a standard-error (i.e. the1073

estimation of the sampling standard deviation) 𝑠𝑘 . In other words, we can state that 𝜇𝑘 is equal to 𝜇𝑘 up to an1074

additive error:1075

𝜇𝑘 = 𝜇𝑘 + 𝜇𝑘 (S46)

where 𝜇 is of mean 0 and variance 𝑠2
𝑘
. Considering each virtual repeat 𝑟 of the experiment, we can apply the1076

law of total variance:1077

V(𝜇) = V𝜀 (E𝑟 |𝜀 (𝜇)) + E𝜀 (V𝑟 |𝜀 (𝜇)) = V𝜀 (𝜇) + E𝜀 (𝑠2). (S47)

We thus have:1078

𝑉Plas = V𝜀 (𝜇) = V𝜀 (𝜇) − E𝜀 (𝑠2) (S48)

This result is equivalent to e.g. the classical computation of the “sire variance” in sire models in quantitative1079

genetics (Lynch & Walsh 1998), although the latter is generally expressed using sums-of-squares.1080

Curve-parameter approach There is unfortunately no simple solution to the problem of accounting for1081

the uncertainty of fixed effects in the general context of non-linear modelling. However, for the particular1082

case where the model can be framed as a linear model, as is the case for the polynomial function, then 𝑧 = X𝜽 ,1083

where X is the design matrix containing the values for the environment. Noting Σ𝑋 the variance-covariance1084

matrix of X, we can define 𝑉Plas as:1085

𝑉Plas = 𝜽𝑇Σ𝑋𝜽 . (S49)
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Again, the problem is that 𝜽 is unknown, we only have access to the estimated values of the parameters, 𝜽 ,1086

that are inferred with an error provided by the variance-covariance matrix of standard errors, S𝜃 . We can1087

write again:1088

𝜽 = 𝜽 + 𝜽 , (S50)

Noting that the error is independent from the true value, we have:1089

𝜽𝑇Σ𝑋𝜽 = 𝜽𝑇Σ𝑋𝜽 + 𝜽𝑇Σ𝑋𝜽 (S51)

To express 𝜽𝑇Σ𝑋𝜽 , it is important to note that 𝑆𝜃,𝑖 𝑗 = E(𝜃𝑖𝜃 𝑗 ), since E(𝜽 ) = 0. Then, we can note that, the error1090

being unknown, we actually want to compute E𝑟 (𝜽𝑇Σ𝑋𝜽 ) taken across virtual repeats 𝑟 of the experiment:1091

E𝑟 (𝜽𝑇Σ𝑋𝜽 ) = E𝑟 (
∑
𝑖 𝑗

𝜃𝑖𝜃 𝑗Σ𝑋,𝑖, 𝑗 ) =
∑
𝑖 𝑗

E𝑟 (𝜃𝑖𝜃 𝑗 )Σ𝑋,𝑖, 𝑗 =
∑
𝑖 𝑗

𝑆𝜃,𝑖 𝑗Σ𝑋,𝑖, 𝑗 = Tr(S𝜃Σ𝑋 ) (S52)

This is similar to the result of Brown & Rutemiller (1977). Finally, we have:1092

𝑉Plas = 𝜽𝑇Σ𝑋𝜽 − Tr(S𝜃Σ𝑋 ) . (S53)

F Full results for the section “Perfect modelling of quadratic1093

curves”1094

This section provides the full results corresponding to the section “Perfect modelling of quadratic curves” in1095

the main text. The results of all investigated values for the number of environments (10 or 4) and number of1096

genotypes (20 or 5 for the discrete case, 200 or 50 for the continuous case) are provided for the discrete and1097

continuous cases.1098
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Figure S1: Distribution of the error (difference between the inferred and true value) for each the inferred variance com-
ponents for three discrete scenarios: 𝑁env: number of environments,𝑁Gen: number of different genotypes,𝑁Rep: number
of replicates per genotype. Estimates are for 𝑃2RN (proportion of variance generated by plasticity after averaging across
genotypes), ℎ̂2RN (total heritability of the reaction norm), ℎ̂2 (environment-blind heritability) and ℎ̂2I (heritability from
plasticity) for both the curve-parameter and character-state approaches. For the curve-parameter, the 𝜋-decomposition
of 𝑃2RN into 𝜋Sl (contribution of the slope) and 𝜋Cv (contribution of the curvature); the 𝛾-decomposition of ℎ̂2RN into 𝛾𝑎
(genetic contribution of the intercept), 𝛾𝑏 (genetic contribution of the slope), 𝛾𝑐 (genetic contribution of the curvature)
and 𝛾𝑎𝑐 (genetic contribution of the covariance between the intercept and the curvature) and the 𝜄-decomposition of
ℎ2I into 𝜄𝑏 (slope) and 𝜄𝑐 (curvature) are also shown. The grey dots correspond to the average over the 1000 simulations.
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Figure S2: Distribution of the error (difference between the inferred and true value) for each the inferred variance
components for four continous scenarios: 𝑁env: number of environment tested per genotype, 𝑁Gen: number of different
genotypes. The character-state approach was impossible for the continuous environment scenario. Estimates are
for 𝑃2RN (proportion of variance generated by plasticity after averaging across genotypes), ℎ̂2RN (total heritability of the
reaction norm), ℎ̂2 (environment-blind heritability) and ℎ̂2I (heritability fromplasticity) for both the curve-parameter and
character-state approaches. For the curve-parameter, the 𝜋-decomposition of 𝑃2RN into 𝜋Sl (contribution of the slope)
and 𝜋Cv (contribution of the curvature); the 𝛾-decomposition of ℎ̂2RN into 𝛾𝑎 (genetic contribution of the intercept),
𝛾𝑏 (genetic contribution of the slope), 𝛾𝑐 (genetic contribution of the curvature) and 𝛾𝑎𝑐 (genetic contribution of the
covariance between the intercept and the curvature) and the 𝜄-decomposition of ℎ2I into 𝜄𝑏 (slope) and 𝜄𝑐 (curvature) are
also shown. The grey dots correspond to the average over the 1000 simulations.

G Comparison with the approach from Murren et al. (2014)1099

Murren et al. (2014) studied variation of the reaction norm shapes across different datasets, using their own1100

metrics. We argue in the main text that our variance decomposition is more appropriate than the ones sug-1101

gested by Murren et al. (2014), and we develop here why.1102

The first step in the approach of Murren et al. (2014) is to choose a reference reaction norm in each of the1103

studies and compute contrasts (i.e. difference with) to that particular reaction norm. The contrasts are then1104

analysed, rather than the reaction norms themselves. For the sake of simplicity, and because this does not (or1105
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marginally) impact our comments on this approach, we will overlook that step and consider reaction norms1106

directly.1107

For each genotype 𝑘 and from its given reaction norm (or contrast) z𝑘 = {𝑧𝑘,1, . . . , 𝑧𝑘,𝑛}, Murren et al. (2014)1108

compute four statistics (we removed the absolute values for the sake of simplicity here):1109

1. The offset, 𝑂M, measures the “location” of the reaction norm, i.e. its mean. Comparison of the offsets1110

allows detecting wether reaction norms are “shifted” toward higher or lower values. It is computed, for1111

each genotype 𝑘 , as the absolute value of the average of the norm across environments:1112

𝑂M,𝑘 =

∑𝑛
𝑖

��𝑧𝑘,𝑖 ��
𝑛

. (S54)

2. The slope, 𝑆M, measures the linear trend of the reaction norms. Formally, it is the absolute sum of the1113

differences between two consecutive environments, divided by the number of intervals (𝑛 − 1):1114

𝑆M,𝑘 =

∑𝑛−1
𝑖

��𝑧𝑘,𝑖+1 − 𝑧𝑘,𝑖 ��
𝑛 − 1

. (S55)

3. The curvature,𝐶M, is computed as the absolute value of the average change in phenotype between two1115

consecutive pairs of environments:1116

𝐶M,𝑘 =

∑𝑛−2
𝑖

��(𝑧𝑘,𝑖+2 − 𝑧𝑘,𝑖+1) − (𝑧𝑘,𝑖+1 − 𝑧𝑘,𝑖)
��

𝑛 − 2
. (S56)

4. The wiggle,𝑊M, is, according to the authors the “the variability in shape not described by any of the1117

previous three measures”:1118

𝑊M,𝑘 =

∑𝑛−2
𝑖

��(𝑧𝑘,𝑖+2 − 𝑧𝑘,𝑖+1) − (𝑧𝑘,𝑖+1 − 𝑧𝑘,𝑖)
��

𝑛 − 2
−𝐶M,𝑘 . (S57)

Given the lower interest in this latter statistics, we will not comment on it any further. Most of the1119

comments on the other statistics also apply to this one.1120

One strong assumption underlying the calculations above is that environmental values 𝜀 = {𝜀1, . . . , 𝜀𝑛} on1121

which the reaction norms were evaluated are evenly spaced, e.g. that the differences 𝜀𝑖+1 − 𝜀𝑖 are equal for1122

all possible values of 𝑖 . The assumption is actually that the space between two measures is equal to 1 (which,1123

admittedly, is only a matter of rescaling when evenly-spaced values are already assumed). If this is the case,1124

then there is indeed no loss in generality in using the number of components (𝑛, 𝑛 − 1 and 𝑛 − 2) rather than1125

actual values of 𝑥 in the denominator. Although it is common for studies on reaction norms to use evenly-1126

spaced environmental values, it is an unnecessary assumption that shall not be satisfied by all studies.1127

50



Second, developing the sums in 𝑆M and 𝐶M above show that the intermediate values cancel each other out,1128

leaving only the values at each extreme of the environmental range in the estimate:1129

𝑆M,𝑘 =
𝑧𝑘,𝑛 − 𝑧𝑘,1
𝑛 − 1

,

𝐶M,𝑘 =
(𝑧𝑘,𝑛 − 𝑧𝑘,𝑛−1) − (𝑧𝑘,2 − 𝑧𝑘,1)

𝑛 − 2
.

(S58)

The issue here is double: (i) the estimation is highly sensitive to the random noise coming from a small number1130

of values (two or three/four); and (ii) the intermediate values in the reaction norm are simply thrown out and1131

not used for a more robust estimation. In other words, it would have been exactly the same to not measure1132

the reaction norm at these intermediate values, since they are not accounted for in the calculation.1133

A final issue is that the approach uses the measured values of the reaction norms without accounting for the1134

uncertainty in their estimation (i.e. standard-deviation and sample size for each genotype and environmental1135

value) which poses the well-known issue of non-propagation of the error when doing “statistics on statistics”.1136

Although we also provide estimators of the impact of several aspects of reaction norms on the phenotypic1137

variation, our approach differs from the one from Murren et al. (2014) by many aspects. First, our variance1138

decomposition makes the explicit distinction between the average shape of the reaction norm and the genetic1139

variance surrounding it. As such, to 𝑂𝑀 , 𝑆𝑀 and 𝐶𝑀 corresponds not only the 𝜋-, but also the 𝛾- and 𝜄-1140

decomposition. We clearly delimit the domain of validity of each of these decomposition. We also account1141

for possible correlation between those components. Second, we use the whole of the statistical inference to1142

define our variance decomposition estimates. Third, we explicitly account for the uncertain estimation of1143

reaction norms.1144
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