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Abstract1

Many phenotypic traits vary in a predictable way across environments, as captured by their2

norms of reaction. These reaction norms may be discrete or continuous, and can substantially vary3

in shape across organisms and traits, making it difficult to compare amounts and types of plasticity4

among (and sometimes even within) studies. In addition, the evolutionary potential of phenotypic5

traits in heterogeneous environments critically depends on how reaction norms vary genetically,6

but there is no consensus on how this should be quantified. Here, we propose a partitioning of7

phenotypic variance across genotypes and environments that jointly address these challenges. We8

start by distinguishing the components of phenotypic variance arising from the average reaction9

norm across genotypes, (additive) genetic variation in reaction norms, and a residual that cannot10

be predicted from the genotype and the environment. We then further partition the (additive)11

genetic variance of the trait into a component related the marginal (additive) genetic variance in12

the trait and a component due to (additive) genetic variance in plasticity, including for complex,13

non-linear reaction norms. The last step involves estimating contributions from different parameters14

of reaction norm shape to these variance components. This decomposition is general and we show15

how to apply it to various modelling approaches, from the character-state to curve-parameter16

approaches, including polynomial functions, or arbitrary non-linear models. To facilitate the use17

of this variance decomposition, we provide the Reacnorm R package, including a practical tutorial.18

Overall the toolbox we develop should serve as a base for an unifying and deeper understanding19

of the variation and genetics of reaction norms and plasticity, as well as more robust comparative20

studies of plasticity across organisms and traits.21
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Introduction22

The phenotype of a given genotype can vary in response to its environment of development or expres-23

sion, through a phenomenon broadly described as phenotypic plasticity (Schlichting & Pigliucci 1998;24

Bradshaw 1965). Phenotypic plasticity is currently attracting considerable interest in the context of25

rapidly changing natural environments (Gienapp et al. 2008; Chevin et al. 2010; Merilä & Hendry26

2014). While the mere existence (and even prevalence) of phenotypic plasticity is uncontroversial, its27

relative contribution to observed or predicted phenotypic change in the wild (Teplitsky et al. 2008;28

Gienapp et al. 2008; Merilä & Hendry 2014; Bonamour et al. 2019), as well as the extent of its inter-29

play with population-level processes such as natural selection and population dynamics (Reed et al.30

2010; Vedder et al. 2013; Schaum & Collins 2014; de Villemereuil et al. 2020), are very active research31

areas. Answering these questions requires for biologists to be able to dissect and compare phenotypic32

plasticity in detail in a wide range of traits, environmental contexts and species. This requires a33

methodology that is appropriate for each context, while being general enough to be comparable across34

context.35

The relationship between the phenotype and the environment is captured by the reaction norm (or36

norm of reaction), which is defined at the level of genotypes (Woltereck 1909; Schlichting & Pigliucci37

1998). Reaction norms encompass phenotypic responses to both continuous environments (such as38

temperature, salinity, etc.) and categorical/discrete ones (such as host plant for a phytophagous39

insect). Within a simple model of reaction norm, quantifying plasticity may be straightforward. For40

instance, both empirical (Charmantier et al. 2008; Nussey et al. 2005) and theoretical (Gavrilets &41

Scheiner 1993b; Lande 2009) work have extensively relied on the assumption of a linear reaction42

norm, whose slope is used as a metric of plasticity, since it quantifies how much phenotypic change is43

induced per unit environmental change. However, regression slopes are signed and have units of trait44

per environment, so even in this simple case some standardization is needed in order to compare the45

magnitude of plasticity among studies. Beyond this simple scenario, drawing robust conclusions about46

phenotypic plasticity requires being able to quantify and compare its magnitude across organisms,47

traits and environments, in a way that is applicable across the statistical frameworks used to study48

plasticity.49

Beyond how much phenotypes change with the environment, how they change can also be of50

importance. First, different reaction norm shapes may come with different biological interpretations.51

For instance, a bell-shaped (eg quadratic, Gaussian) reaction norm may indicate that some mechanism52

underlying a measured trait is maximized at an intermediate value of the environment. This is often53
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expected for traits that are direct components of fitness, or that can be interpreted as proxys for54

performance, for which the reaction norms are generally termed tolerance or performance curves55

(Lynch & Gabriel 1987; Deutsch et al. 2008; Angilletta 2009). A sigmoid shape, on the other hand,56

may indicate that plasticity is directional but that the range of possible phenotypes is constrained, or57

that selection favors discrete-like variation (Moczek & Emlen 1999; Suzuki & Nijhout 2006; Hammill et58

al. 2008; Chevin et al. 2013). Second, most theoretical models on the evolution of plasticity, especially59

those based on quantitative genetics which are most directly comparable to empirical data, assume60

a given reaction norm shape - often linear for simplicity (Scheiner 1993b; Tufto 2000; Lande 2009).61

The extent to which theoretical predictions on the evolution of plasticity apply to any particular62

empirical system thus depends on how well the reaction norm shape assumed in the models conforms63

to observations in this system. In other words, we need some metric for whether a reaction norm64

is ”mostly linear” or ”mostly curved”, for instance. In addition, when fitting a particular model of65

reaction norm shape to an empirical dataset, we would like to know how well this model captures the66

overall plastic variation of the trait across environments.67

A third crucial question regarding reaction norms is how (and how much) they vary genetically.68

It has long been recognized that plasticity can evolve if reaction norms vary genetically (Bradshaw69

1965), and theory has predicted how different aspects of reaction norm shape are expected to respond70

to selection in a variable environment (de Jong 1990; Gomulkiewicz & Kirkpatrick 1992; Gavrilets &71

Scheiner 1993b). However this theory has been little applied empirically, except for predictions about72

the slope of linear reaction norms (or phenotypic differences between two environments). But beyond73

this, it should also be of interest to identify which aspects of reaction norm shape are more likely74

to evolve, based on how they vary genetically. For instance, a reaction norm may be highly curved75

(e.g. quadratic) but have little genetic variability in curvature, instead mostly varying in position,76

height, or local slope. Distinguishing between the genetic variance of the trait, marginalised across77

environments, and the genetic variance of plasticity itself, can also be a conceptual and methodological78

challenge. There is thus a need to compare genetic variation in different components of reaction norm,79

but previous attempts to do so (in a meta-analysis) were limited by methodological obstacles (Murren80

et al. 2014, see Appendix G). In fact, comparing genetic variation in the slope versus curvature of a81

reaction norm, for instance, is not straightforward, as these parameters have different scales and even82

units (trait per environment, vs trait per squared environment). More, even the notion of average slope83

and curvature can have different meanings depending on the assumed distribution for the environment.84

Genetic variation in reaction reaction norm shape can be analyzed by estimating variation in the85

parameters of a continuous function of the environment, as done by the flexible framework of function-86
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valued traits (Kirkpatrick & Heckman 1989; Gomulkiewicz & Kirkpatrick 1992; Stinchcombe et al.87

2012). In addition, it would be useful to be able to compare the relative contributions of variation in88

different aspects of reaction norm shape to the overall variance in plasticity of a trait.89

We herein propose a theoretically justified and generally applicable framework to estimate and90

partition the phenotypic variance of reaction norms, towards three main goals: (i) quantify the contri-91

bution of plasticity to the total phenotypic variance in reaction norms; (ii) evaluate the contribution92

of different aspects of reaction norm shape, and of the full assumed reaction norm model, to overall93

plastic phenotypic variation; and (iii) quantify heritable variation in the trait and its plasticity, due to94

the different aspects of the reaction norm. We provide this framework as a new R package Reacnorm,95

including a tutorial to guide users in applying it. Our hope is that this will stimulate more quantita-96

tive investigations of the ways in which phenotypic plasticity contributes to phenotypic variation and97

evolutionary change.98

Reaction norm models99

In the broadest sense, a reaction norm is a decomposition of phenotypic variation among known100

(often controlled) versus unknown sources of environmental variation. In this sense, we can start by101

decomposing the phenotypic trait z into two components:102

z = ẑ + z̃. (1)

The first term ẑ is the reaction norm, that is, the component of phenotypic variation that can be103

predicted (hence the hat notation) from knowing both the genotype (which we will note g throughout)104

of an individual and the environment (which we will note ε throughout) in which it developed. Note105

that by “environment”, we mean either an experimentally controlled environmental variable, or a focal106

variable (e.g. temperature) within a naturally occurring environmental context. The second term z̃ is107

the component of the measured phenotype that cannot be predicted from genotype and environment,108

and arises from unknown environmental factors (usually described as micro-environmental variation),109

developmental noise, and measurement error.110

Types of reaction norms ẑ can be further categorised according to the type of environmental111

variation. The environment may be inherently categorical and unordered, such as host plant for a112

herbivore insect. It may be ordered but with no (or unknown) quantitative value, such as low, medium,113

and high treatments. Or it may be ordered quantitatively, with values that are either intrinsically114

discrete, such as habitat quality, or continuous, such as temperature or salinity.115
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Table 1: List of the main notations, as well as their source of variation. We here distinguish the “focal” environment,
which only concerns the environmental variable used to parametrise the reaction norm, from other putative sources
of environmental variation that may influence the phenotypic trait (sometimes described as micro-environmental
variation). “Everything” in the table thus includes all (focal and other) sources of environmental and genetic variation,
developmental noise and measurement error.

Notation Explanation Varies over
z Phenotypic value for the trait Everything
ẑ Phenotype as predicted from the environment and the genotype Focal environment,

genotypes
ε Environmental variable —
µ Vector of the average value of the phenotypic in each environment Focal environment

Gz Additive genetic variance-covariance matrix of trait values across en-
vironments (character states)

—

θg Vector of parameter values of the reaction norm for genotype g Genotypes
θ̄ Vector of mean values of the reaction parameters over the genotypes —

Gθ Additive genetic variance-covariance matrix of the reaction norm pa-
rameters

—

ψε Reaction norm gradient, the vector of partial derivatives of the phe-
notype z against reaction norm parameters θg, averaged over the
genotypes at environment ε

Focal environment

Ψ Variance-covariance matrix of ψε across environments —
VP Total phenotypic variance in the trait z —
VRes Residual variance, not explained by the reaction norm —

VPlas, P 2
RN Phenotypic variance arising from changes in the mean reaction norm

across environments; divided by VP for P 2
RN

—

VGen, H2
RN Total genetic variance in the trait across environments; divided by VP

for H2
RN

—

VAdd, h2RN Total additive genetic variance in the trait across environments; di-
vided by VP for h2RN

—

VA, h2 Marginal additive genetic variance of the trait, i.e. based on the mean
breeding values across environments, divided by VP for h2

—

VA×E, h2I Additive genetic variance in plasticity, i.e variance of the mean-
centred breeding values, divided by VP for h2I

—

πSl, πCv Proportion of VPlas explained by the average slope (πSl) or curvature
(πCv) of the average reaction norm

—

φi, φij Proportion of VPlas explained by parameter i, or by covariation be-
tween parameter i and j for a polynomial reaction norm

—

γi, γij Proportion of VAdd explained by the additive genetic (co)variation in
parameter i (and j)

—

ιi, ιij Proportion of VA×E explained by the additive genetic (co)variation in
parameter i (and j)

—

When environments are categorical, the reaction norm can be studied by treating phenotypic116

values in different environments as alternative ’character states’, considered as different traits in a117

multivariate framework (Via & Lande 1985; Falconer 1952). The mean character state may differ118

among environment if the trait is plastic; phenotypic and genetic variation may be larger in some119

environments; and phenotypes may be more or less correlated across environments (Via & Lande120

1985; Falconer 1952). Such a modelling framework is readily described by Equation 1 for a genotype121

g and environment εk (where the index k is used to reflect the discrete aspect of the environmental122

variable). In practice, such an approach would correspond to an ANOVA (or a mixed model) with123
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discrete environment and genotype-within-environment as (random) effects of the model. In its most124

compact form, such a statistical model can be framed as a multivariate Gaussian distribution, with a125

number of dimensions corresponding to the number of categories in the environment,126

ẑ ∼ N (µ,Gz) , (2)

where µ is the vector of expected phenotypic values (across genotypes) within each environment,127

and Gz is the genetic variance-covariance matrix of trait values within and across environments. Note128

that when the environment is quantitative but discrete, one may still use the character-state approach,129

but structuring correlations in Gz by environmental distance, in effect treating the phenotype as a130

stochastic process characterized by its autocovariance function across environments (Pletcher & Geyer131

1999).132

For quantitative environments (both discrete and continuous), the most common approach is to133

model the reaction norm as a function of environment and genotype:134

ẑ = f(ε,θg), (3)

where ε is the environmental value, and θg is a vector that contains the parameters of the function (e.g.135

coefficients associated to each exponent for a polynomial) for each genotype g; these parameters are136

thus genetically variable. The parameters θg are generally assumed to be polygenic and thus follow a137

multivariate Gaussian distribution,138

θg ∼ N (θ̄,Gθ), (4)

where θ̄ is the vector of average parameter values across genotypes and Gθ is the additive genetic139

variance-covariance matrix of the parameters θg. This approach has been described alternatively as140

the “reaction norm” approach, the “polynomial approach”, or a parametric version of function-valued141

traits. To keep it general here and avoid confusion with the general concept of reaction norm as142

defined in Equation 1 (which applies even to categorical environments), we will describe it as the143

“curve-parameter” approach.144

It can be shown that the character-state and curve-parameter approaches are equivalent, following145

the spirit of de Jong (1995), who showed that a polynomial curve of sufficient order is exactly equivalent146

to a character-state model. In particular, the character-state in Equation 2 can be expressed using147

Equation 3 and Equation 4 by letting θ̄ = µ, Gθ = Gz and f a function that outputs the kth value148

of θg when evaluated at εk environment (see Appendix A). In the following, we will derive general149

results using the more general formalism of Equation 3 and Equation 4, and then express them for150
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the particular case of the character-state approach when relevant.151

Partitioning variation in reaction norms152

Complete partition of the variation in reaction norms153

The total phenotypic variance in the reaction norm can be partitioned by isolating independent com-154

ponents of variation. The main reasoning will be summarised here, with more mathematical details155

provided in the Appendix A to Appendix D. For a start, the terms in Equation 1 are assumed to156

be independent, such that the total phenotypic variance V(z) (usually noted VP) is the sum of the157

variance predicted by the genotype and the environment V(ẑ), plus a residual component of variance158

V(z̃i), which we will note VRes. Then, a second distinction can be made between the general, average159

shape of the reaction norm, and the genotype-specific variation surrounding such average, as illus-160

trated in Figure 1 using a quadratic reaction norm. The component of phenotypic variance arising161

from plastic responses to the environment by the mean reaction norm, i.e. after averaging across all162

genotypes (Figure 1), will be denoted VPlas. This variance can be considered as fully ascribed to the en-163

vironmental component of phenotypic variation. The component of phenotypic variation attributable164

to genetic variation in the reaction norm Figure 1 will be denoted VGen. As these two components165

are independent by construction, denoting as Eg|ε(ẑ) the expected value of the reaction norm across166

genotypes at a given environmental value ε, we have167

V(ẑ) = V
(
Eg|ε(ẑ)

)
+ V

(
ẑ − Eg|ε(ẑ)

)
= VPlas + VGen, (5)

such that168

VP = VPlas + VGen + VRes. (6)

Compared to the classical equation VP = VG + VE + VG×E (Falconer & Mackay 1996; Lynch & Walsh169

1998; Des Marais et al. 2013), the correspondence is that VE = VPlas + VRes and VGen = VG + VG×E.170

We have thus decomposed the environmental variance into a component due to phenotypic plasticity171

in response to ε (VPlas) on the one hand, and any other residual source of phenotypic variation (VRes)172

on the other hand, as commonly done in theory (Via & Lande 1985; Gavrilets & Scheiner 1993b) as173

well as in practice.174

The genotypic variance VGen accounts for all sources of genetic variation, including the genotype-175

by-environment interaction. Note that this contrasts with a view where the genotype-by-environment176

interaction is instead associated with the environmental component, e.g. as plastic variance (Scheiner177
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& Lyman 1989; Scheiner 1993a; Falconer & Mackay 1996; Lynch & Walsh 1998).178
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Figure 1: Illustration of the full variance decomposition using quadratic reaction norms. We start from the reaction
norms (left graph, grey lines, the residual variance is not illustrated) and compute its average shape across all
genotypes (left graph, red line). The phenotypic variance arising from this average shape is VPlas. Centring the
reaction norms along this average shape directly yields the distribution of the breeding values along environments
(middle graph, purple lines), because in this quadratic case, the non-additive genetic variance is VNonAdd = 0. The
total variance of the breeding values along the environment is VAdd. The classical, average additive genetic variance
VA is the variance of the average of the breeding values across the environments for each genotype (middle graph,
green dots). The VA×E is the variance of the reminder of the breeding values after mean-centring (right graph, blue
lines).

The genotypic variance VGen can be further decomposed in two steps. First, we can isolate the addi-179

tive genetic variance (VAdd), from the non-additive genetic variance (VNonAdd) arising from dominance180

and epistasis (Lynch & Walsh 1998; Falconer & Mackay 1996). Usually, models like Equation 2 or181

Equation 4 are defined using additive genetic variance-covariance matrices for their basic parameters,182

meaning that VAdd can be directly estimated from the models. As such, we will discard explicit inclu-183

sion of dominance or epistasis variance components in a theoretical or statistical model throughout,184

for the sake of simplicity. However, non-additive genetic variance can still arise from non-linearity185

in the (assumed) developmental system (Rice 2004; Morrissey 2015; de Villemereuil et al. 2016; de186

Villemereuil 2018), meaning that non-additive variance can be generated by the reaction norm itself.187

Looking at Equation 3 and Equation 4, the ultimate source of any additive genetic variation in the188

trait z comes from the additive genetic variation in the parameters θ. As a result, non-additivity in189

the trait arises when the function f(ε,θ) in Equation 3 is non-linear with regard to θ, a situation190

we will refer to as “non-linearity in the parameters”. Importantly, this means that polynomial (e.g.191

quadratic) functions, which are linear in their parameters, are such that VNonAdd = 0 and VGen = VAdd.192

When studying the evolution of plasticity, it proves useful to further decompose VAdd into two193

components. The first is the marginal additive genetic variance of the trait, arising from differences in194

average breeding values between genotypes, and typically equal to the classical VA. In other words, VA195

is the variance of the breeding values after averaging them across environments (Figure 1), as would196
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be obtained if the genotype-by-environment interaction was ignored altogether. For example, it would197

be the output of a simple animal model analysis of repeated measurements of a plastic trait in a wild198

population. The second component of VAdd is the additive genetic variance of plasticity, which we will199

note VA×E (for additive genetic component due to genotype-by-environment interactions). VA×E is200

the remaining additive genetic variance in the reaction norm after removing the mean breeding value201

for each genotype (Figure 1). This definition is akin to the one used by Albecker et al. (2022), but202

here more directly expressed in terms of variance of breeding values, i.e. additive genetic variance. It203

measures the potential for evolution of plasticity in the trait. Notably, if VA×E = 0 but VAdd > 0,204

then the additive genetic variation in the reaction norms is only due to average differences between205

genotypes, i.e. the reaction norms of different genotypes are parallel. The variances VA and VA×E are206

exactly equivalent to the classical decomposition using VG and VG×E, only applied to the heritable207

part of the genetic variance. We show below that it is possible to express VAdd, VA and VA×E in a way208

that encompasses all approaches of reaction norm, from a character-state to a curve that is non-linear209

in its parameters, by computing reaction norm gradients of the trait z with respect to its reaction210

norm parameters θ, in line with previous theoretical results for the quantitative genetics of non-linear211

developmental systems and non-Gaussian traits (Morrissey 2015; de Villemereuil et al. 2016),.212

The complete partition of the phenotypic variance is thus:213

VP = VPlas + VA + VA×E + VNonAdd + VRes. (7)

From this, it is possible to derive unitless quantities of interest, for instance by standardising by the214

phenotypic variance. In particular:215

P 2
RN =

VPlas
VP

, (8)

is the proportion of the phenotypic variance arising from average plastic responses to environments216

(depending on the average reaction norm shape). Variance-standardised additive genetic variances217

are heritabilities. In our case, we can use VAdd, VA or VA×E as the numerator, yielding the following218

relationship:219

h2RN =
VAdd
VP

=
VA
VP

+
VA×E
VP

= h2 + h2I . (9)

In other words, the heritability of the trait when fully accounting for its reaction norm (h2RN) is220

equal to the marginal heritability of the trait (h2, based on the averaged breeding values across221

environments) plus the heritability of plasticity, arising from interaction with the environment (h2I ). If222

it is not possible to measure additive genetic variances due to limitations in the experimental design223

(e.g. when “genotypes” correspond to populations, accessions or clones), it is possible to perform the224
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same decomposition using “broad-sense heritabilities”,225

H2
RN =

VGen
VP

=
VG
VP

+
VG×E
VP

= H2 +H2
I . (10)

In all cases, the quantity:226

T 2
RN =

VPlas + VGen
VP

= P 2
RN +H2

RN (11)

would measure the proportion of the phenotypic variance explained by the (possibly plastic and ge-227

netically variable) reaction norm, and thus our ability to predict the individual phenotype from the228

genotype and the environment. In a linear context with respect to the parameters, when the environ-229

ment is considered a fixed quantity, the quantities P 2
RN and T 2

RN are analogous to the (resp. marginal230

and conditional) coefficient of determination of the reaction norm (Nakagawa & Schielzeth 2013; John-231

son 2014), but their definition here is given beyond that simple context. Importantly, so far we are232

not making any statement about the actual reaction norm shape: P 2
RN captures the contribution of233

the average reaction norm regardless of its shape, and the broad- or narrow-sense heritabilities the234

contribution of various aspects the genetic variation to the phenotypic variance. The contribution of235

detailed aspects of reaction norms shape to phenotypic variation are obtained by further partitioning236

VPlas and the additive genetic variances, as we do below.237

Contributions of reaction norm shape and parameters to the plastic238

variance239

As stated in Equation 5, the general definition of the variance arising from the average reaction norm240

is VPlas = V
(
Eg|ε(ẑ)

)
. Important simplifications arise in more particular cases. For example, when241

the assumed curve is linear in its parameters, Eg|ε(ẑ) = f(ε, θ̄), where θ̄ is the average value of the242

parameters across genotypes. In particular, in the case of a quadratic reaction norm (Scheiner 1993a;243

Gavrilets & Scheiner 1993a; Morrissey & Liefting 2016):244

f(ε, θg) = (ā+ ag) + (b̄+ bg)ε+ (c̄+ cg)ε
2, (12)

where ā, b̄, c̄ are the average intercept, first- and second-order parameters of the model, and ag, bg and245

cg are genotype-specific deviation from these average values for the same parameters, we can express246

VPlas simply as:247

VPlas = b̄2V(ε) + c̄2V(ε2) + 2b̄c̄cov(ε, ε2). (13)
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If the environmental variable ε has been mean-centred and is symmetrical, then cov(ε, ε2) = 0 and248

the third term vanishes. Finally, in the case of a character-state model, the average phenotype in249

each environment εk is readily provided by the µk in Equation 2, so that VPlas = V(µ). Once VPlas is250

computed, its standardised version P 2
RN follows by dividing by the total phenotypic variance.251

Pushing the analysis further, we aim to compute the contributions of different aspect of reaction252

norm shape to the overall environmental plastic variance of the trait, notably the contribution of its253

slope and curvature, which we will denote as πSl and πCv, respectively. For this, at least one of two254

of the following assumptions must valid: (i) ε follows a normal distribution, or (ii) the true reaction255

norm is quadratic. In all cases, it also require that the environmental variable has been mean-centered.256

A last requirement is for f to be at least twice differentiable with respect to ε (which excludes e.g.257

the character-state approach). In this case, these terms simply depend on the average first- and258

second-order derivative of Eg|ε(ẑ) and the variance of ε and ε2 (see Appendix D1):259

πSl =
E
(dEg|ε

dε (ẑ)
)2

V(ε)

VPlas
, πCv =

1
4E
(d2Eg|ε

dε2 (ẑ)
)2

V(ε2)

VPlas
. (14)

An important point arising from Equation 14 is that the relative importance of variation in the slope260

and curvature components of reaction norm depend on variation in the environment, respectively261

V(ε) and V
(
ε2
)
. Crucially, we chose to express this partitioning using the mean environment as the262

reference environment (as commonly practiced, e.g. Morrissey & Liefting 2016), but any other choice263

of a reference environment would result in a different π-partition, notably due to a non-null value for264

Cov(ε, ε2). Fortunately, neither VPlas nor P 2
RN are impacted by this choice in the reference environment.265

Furthermore, if the reaction norm is linear on the parameters, the derivatives of Eg|ε(ẑ) can be directly266

taken as the derivatives of f . In particular, for a quadratic reaction norm as in Equation 12, for a267

mean-centred environment, those quantities simply are:268

πSl =
b̄2V(ε)

VPlas
, πCv =

c̄2V
(
ε2
)

VPlas
, (15)

consistent with the fact the first and second order coefficients of a quadratic polynomial correspond269

to its average slope and curvature, respectively. Only in this configuration do we have πSl + πCv = 1.270

Unfortunately, this simple, geometric interpretation of the polynomial coefficients is lost above the271

second-order case (see Appendix D).272

Figure 2 shows the values of πSl and πCv for various quadratic reaction norms, assuming ε follows273

either a normal or uniform distribution, with same mean 0 and variance 1. The values for πSl and274

πCv translate well the perceived “trendiness” (for large πSl) or “curviness” (for large πCv) of reaction275
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norms, but they may also strongly depend on the statistical distribution of the environmental variable276

ε, as shown especially in the third example of Figure 2. In this example, the difference arises because277

the assumed environmental distributions have different kurtosis (the scaled fourth central moment,278

related to V (ε2) in Equation 15). Because V (ε2) is larger for the Gaussian, this distribution leads to279

larger πCv than the uniform.280
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Figure 2: Computation of πSl = πb and πCv = πc, the relative contributions of linear and quadratic terms to
phenotypic variation caused by the mean reaction norm, for different shapes of reaction norms, and two distributions
of the environmental variable ε: a standard Gaussian (of mean 0 and variance 1), and a uniform distribution between
−
√
3 and

√
3 (of mean 0 and variance 1).

When it is not possible to assume that ε is normally distributed (because it is discrete, or experi-281

mentally constrained) and a quadratic assumption is not a good fit to the reaction norm, it is always282

possible to use a higher-order polynomial model to approximate the true reaction norm, in line with283

theoretical work by de Jong (1990), Gavrilets & Scheiner (1993a), and de Jong (1995). In this case, we284

can conduct an alternative decomposition based on the parameters of the polynomial (rather than the285

mean slope and curvature of the function). To distinguish this parameter-based decomposition from286

the specific decomposition in terms of slope and curvature, we use a different notation. The relative287

contribution of a given exponent m in the polynomial to the variance caused by the mean plasticity288

becomes (see Appendix D2)289

φm =
θ̄2mV(εm)

VPlas
, (16)

and the contribution of the covariance between exponents l and m is290

φlm =
2θ̄lθ̄mCov(εl, εm)

VPlas
. (17)

Note that even with a symmetrical and mean-centred environment, the covariance between higher-291

order exponents will not be zero in general, contrary to ε and ε2 in the quadratic case. Using orthogonal292

polynomials would solve this issue of covariances, but at the cost of a more complex interpretation of293
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the coefficients. More generally, this φ-decomposition only relies on the assumption that the reaction294

norm is linear on its parameters, which includes polynomials as a particularly useful special case.295

We summarise the requirements and applications for the π- and φ-decomposition depending on the296

context in Figure 3.297

What is the type of
the environmental

variable?
Categorical
or Ordinal

Discrete
(e.g. controlled environment)

Is a quadratic
curve a good fit?

Continuous
(e.g. wild population)

Is the environment
normally

distributed?

No

Compute VPlas from
the character-state

Compute VPlas from the character-
state and use the φ-decomposition

on a polynomial curve
No

(Discrete)

Compute VPlas from a good
fit curve, optionnally use
the φ-decomposition

using a polynomial curve

No
(Continuous)

Compute VPlas from the
curve parameter and

use the π-decompositionYes

Yes

Figure 3: Decision tree summarising our suggested workflow for the computation and decomposition of VPlas,
depending on the nature of the environmental variable, its normality and the validity of a quadratic approximation
of the reaction norm shape.

Contributions of reaction norm parameters to the genetic variance298

We can expression the variance of the genotypic values of the reaction norms in Equation 5 in a slightly299

different, but more operational, manner:300

VGen = V
(
ẑ − Eg|ε(ẑ)

)
= E

(
Vg|ε(ẑ)

)
, (18)

i.e. the total genotypic variance of the reaction norms is equal to the environment-specific genotypic301

variance averaged across environments. From an evolutionary perspective, the component of main302

interest is rather the total additive genetic variance of the reaction norm VAdd, which will be the main303

focus of this section. As a reminder, we here assume, that the experimental design allows for the304

inference of the additive genetic variance of the parameters of the reaction norm (Gz or Gθ above),305

and that non-additive variance in the trait VNonAdd only arises when the reaction norm is non-linear306

in the parameters (i.e. dominance and/or epistasis were not fitted in the statistical model). This307
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assumption is for the sake of simplicity, as our framework can include such effects into VGen if needed.308

A general way to relate the additive genetic variance of the trait to the additive genetic variances309

of the reaction norm parameters is through a vector that we describe as the reaction norm gradient,310

which we will note ψε (following notations in de Villemereuil et al. 2016),311

ψε = Eg

(
∂z

∂θ

)
ε

, (19)

where the subscript ε makes it clear that ψε will generally be a function of the environment. In the312

case of a quadratic curve, ψε is the (1, ε, ε2)T vector (see Appendix C3 for a polynomial of arbitrary313

order). In the case of a character-state model, ψεk is a vector with 1 for the kth environmental level314

(or character state), and zero elsewhere. Whether or not the reaction norm is linear in its parameters,315

the additive genetic variance of the trait in a given environment ε is (Morrissey 2015; de Villemereuil316

et al. 2016, and see Appendix B),317

VA|ε = ψ
T
ε Gθψε, (20)

where superscript T denotes matrix transposition, Gθ the genetic covariance matrix of reaction norm318

parameters as defined in Equation 4 for the curve-parameter approach, and Gθ is Gz from Equation 2319

for the character-state approach. The total additive genetic variance in the reaction norm, VAdd, is320

the average of VA|ε across environments (see Appendix C1):321

VAdd = E
(
ψT

ε Gθψε

)
. (21)

The marginal additive genetic variance of the trait VA, based on breeding values averaged across322

environments, is (see Appendix C2)323

VA = E(ψε)
TGθE(ψε) (22)

The additive genetic variance in plasticity is thus (see Appendix C2):324

VA×E = VAdd − VA = E
(
ψT

ε Gθψε

)
− E(ψε)

TGθE(ψε). (23)

If we define Ψ = E
(
ψεψ

T
ε

)
− E (ψε)E (ψε)

T , the variance-covariance matrix of the reaction norm325

gradients across environments, then a more intuitive way to express VA×E is as a sum, for all pairs of326

parameters, of the (co)variance of their reaction norm gradient across environments (in Ψ) and their327
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additive genetic (co)variance (in Gθ):328

VA×E =
∑
i,j

Ψ(i,j)Gθ(i,j) = Tr(ΨGθ), (24)

where Tr is the trace of a matrix. All of the quantities above can be divided by VP to get the329

corresponding heritabilities.330

To illustrate with an example, for a quadratic reaction norm with mean-centred environment as331

shown in Figure 1, ψε = (1, ε, ε2) and thus we have (see Appendix C3)332

VAdd = Va + (Vb + 2Cac)E(ε2) + VcE(ε4),

VA = Va + 2CacE(ε2) + VcE(ε2)2,

VA×E = VbV(ε) + VcV(ε2),

(25)

where Va, Vb and Vc are the additive genetic variances in the parameters ag, bg and cg, and Cac333

is the additive genetic covariance between the intercept ag and the second-order effect cg. Those334

expressions are reminiscent of classical results from the theory of evolution of plasticity (e.g. de Jong335

1990; Gavrilets & Scheiner 1993a), especially regarding the crucial role of Cac in the evolution of336

quadratic reaction norms, but here distinguishing three important components of the additive genetic337

variance of reaction norms. In particular, we see how the additive genetic variance in plasticity, VA×E,338

can be simply expressed as the sum of the products of the variances in the reaction norm gradients339

(here the environment and its squared value) and the corresponding additive genetic variance in the340

parameters (here bg and cg in Equation 12). This means that, in the quadratic case, genetic variances341

in slope and curvature directly translate into variance in plasticity, as they should. By contrast, VA342

does not solely depend on the variance in the intercept Va, but also on the quadratic coefficient, more343

specifically its covariance with the intercept.344

The expressions for these variance components in the character-state approach are best described345

directly from the Gz matrix. The total additive genetic variance along the reaction norm, VAdd, is the346

average of the additive genetic variance in each environment, i.e. the average of the diagonal elements of347

the Gz. The marginal additive genetic variance of the trait, VA, is the average of all the elements of the348

Gz matrix. Finally, the variance VA×E is the sum of the products of the (co)variances in the frequency349

of each environment and the additive genetic (co)variances in Gz. We illustrate in Appendix C4350

the relationship between the structure in the Gz matrix and the additive genetic variances, but a351

simplified statement is that VA×E > 0 as soon as the correlation between environments are different352

from 1 or variances in the diagonal are not all equal.353
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To further decompose genetic variation in the reaction norms, we first note that here, the reaction354

norm parameters are the focus of the decomposition, rather than shape characteristics like the slope355

or curvature (with the exception of a quadratic reaction norm, the only case were they are formally356

linked). Because Equation 21 is a sum of products, and since Gθ is a constant, we can isolate each357

term of the resulting sum as:358

γi =
Eε

(
ψ2
ε,i

)
Vg(θi)

VAdd
, γij =

2Eε (ψε,iψε,j)Covg(θi, θj)

VAdd
,

∑
i

γi +
∑
i<j

γij = 1. (26)

Here, γi provides the contribution of the ith parameter in the model to the total additive genetic359

variance VAdd, while γij provides the contribution of the covariation between parameters i and j to360

VAdd. As such, this “γ-decomposition” (where gamma refers to g for Genetics) measures the relative361

importance of genetic variances and covariances of the parameters to the evolvability of the plastic362

trait. Large values of γi indicate that genetic variation in the ith parameter translate into a large363

proportion of the genetic variation in the trait. Also, large positive or negative values for γij indicate364

that covariation between parameters i and j can have a large impact in increasing or reducing genetic365

variation in the trait.366

It is also possible to focus on the additive genetic variation in plasticity, VA×E, rather than the367

reaction norm itself, which yields:368

ιi =
V (ψε,i)Vg(θi)

VA×E
, ιij =

2Covε (ψε,i, ψε,j)Covg(θi, θj)

VA×E
,

∑
i

ιi +
∑
i<j

ιij = 1. (27)

This “ι-decomposition” (where iota refers to i for Interaction) highlights the fact that VA×E is the sum369

of the products of (co)variances in elements of the reaction norm gradient ψε and the additive genetic370

(co)variances in the parameters.371

For a quadratic reaction norm as in Equation 12 with a mean-centred environment, this yields:372

γa =
Va
VAdd

, γb =
VbE(ε2)
VAdd

, γc =
VcE(ε2)2
VAdd

, γac =
2CacE(ε2)
VAdd

, ιb =
VbV(ε)

VA×E
, ιc =

VcV(ε2)

VA×E
.

(28)

Note that since the environment has been mean-centred, we have V(ε) = E(ε2) since E(ε)2 = 0, and373

thus γb = ιb, i.e. in the quadratic case, all of the genetic variation in the slope contributes to the374

genetic variance in plasticity. Note also that genetic variance in reaction norm intercept a does not375

contribute to the heritability of plasticity (ιa = 0).376

For the character-state, such decomposition can be performed but yields as many parameters as377

there are environments for γ, and pairwise combinations of environments for ι. They directly depend on378
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the additive genetic variance in each environment, weighed by its frequency in the experimental setting379

for γ; and on the product between the (co)variance in frequency of the environment and the additive380

genetic (co)variance in or between environments for ι. While these quantities can be informative about381

particular (couple of) environment (e.g. large γk would sign that the kth environment is associated382

with a large genetic variance, compared to the others), they are certainly not summary quantities of383

the Gz matrix and are difficult to easily relate to evolvability and constraints on reaction norms shape.384

The variances VAdd, VA and VA×E are more interesting summary statistics in this particular context.385

Another interesting summary quantity can be provided by the toolbox of multivariate quantitative386

genetics. Following (Kirkpatrick 2009), we can define the effective number of character states as387

ne =
∑
i

λi
λ1
, (29)

where λi is the ith eigenvalue of Gz ranked by size (i.e., λ1 is the largest eigenvalue). Large ne close388

to the actual number of assayed environments means that genetic variance is well balanced and little389

correlated across environments. Conversely, ne near 1 means that most genetic variation lies along a390

single combination of character states, such that reaction norm evolution is highly constrained, i.e. the391

genetic correlations are very high between the environments. However, it would be wrong to equate392

ne = 1 with an absence of genetic variance in plasticity: if the genetic variances within environments393

(i.e. the diagonal elements of Gz) are variable while ne = 1, this results in more evolvability in some394

environments, thus VA×E > 0. Reciprocally, a maximal value for ne (i.e. equal to the number of395

environments) does not mean that the genetic variance in plasticity is maximised at the expense of396

additive genetic variance in the trait: for example, when there is no genetic covariances between397

environments and equal genetic variances within environments, ne is maximised, but VA is not zero.398

As a result, a combined interpretation of ne and the ratio VA×E/VAdd (i.e. how much of the total399

genetic variance in the reaction norm consists of genetic variance in plasticity) generates an interesting400

summary of the main properties of the Gz matrix in the context of a character-state.401

Parameter estimation and variance partitioning in practice402

Estimating the parameters403

All the parameters mentioned in the previous section can be estimated through commonly used sta-404

tistical frameworks. For the character-state approach (Equation 2), a random-intercept model can405

be used, or alternatively a “multi-trait” model (Rovelli et al. 2020; Mitchell & Houslay 2021). We406
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will focus here on the former, which is more easily implemented while seemingly scarcely used in the407

literature on plasticity. In a random-intercept model, the environment is considered as a categorical408

variable, to which a random effect is added using the genotype as the grouping factor. In the curve-409

parameter approach, the appropriate models will be random-slope models for a polynomial approach410

(as mentioned in Morrissey & Liefting 2016), or non-linear mixed models, fitting the reaction norm411

function f(ε,θ) to the data. Random effects are fitted to the parameters of this function (with the412

genotype as grouping factor), e.g. the intercept, slope, and any higher-order effects for a polynomial413

function.414

Since the parameters are estimated with noise, it is important to account for the impact of es-415

timation uncertainty when computing variance components. In particular, while variances directly416

obtained using random effects (e.g. genetic variances) are expected to be unbiased, the variances aris-417

ing from fixed effects (e.g. variances related to VPlas) should be corrected for biases due to uncertainty418

(as the adjusted R2 does for example). Details are provided in Appendix E.419

To compute the total phenotypic variance required to get the estimates P̂ 2
RN, Ĥ2

RN and ĥ2RN, we420

advise using the sum of all estimated components rather the raw sample variance. The former is421

common practice in most quantitative genetics inference to account for potential imbalance in the422

experimental or sampling design (Wilson et al. 2010; de Villemereuil et al. 2018).423

We provide an R package, named Reacnorm github.com/devillemereuil/Reacnorm, providing func-424

tions implementing the variancce decomposition based on raw outputs of statistical models. A tuto-425

rial is shipped with the package, as an R vignette, showing how to implement such models using the426

Bayesian brms R packages (Bürkner 2017), along with Reacnorm.427

Perfect modelling of quadratic curves428

We simulated phenotypic data conforming to a quadratic reaction norm, to evaluate the performance429

of the proposed approach when the reaction norm truly is quadratic. We considered both a discrete430

and continuous environment. For the discrete environment, we considered NGen = 20 or 5 different431

genotypes and an environmental gradient of NEnv = 10 or 4 values, equally spaced from -2 to 2. We432

sampled NRep = NGen individual measures for each genotype with a residual variance VRes = 0.25. For433

the continuous environment, we drew NEnv = 10 or 4 values from a normal distribution for each of the434

NGen = 200 or 50 genotypes. Residual noise was applied around each measure for each genotype with435

a residual variance VRes = 0.25. In all cases, we defined a quadratic curve with average parameters436

θ̄ = (1.5, 0.5,−0.5) for intercept, slope and curvature. We then drew NGen different genotype-specific437

vectors of curve-parameter θ from a multivariate normal distribution with mean θ̄ and (genotypic)438
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Figure 4: Distribution of the error (difference between the inferred and true value) for each the inferred variance
components for three scenarios: two discrete (Nenv: number of environments, NGen: number of different genotypes,
NRep: number of replicates per genotype) and one continuous (Nenv: number of environment tested per genotype,
NGen: number of different genotypes). The grey dots correspond to the average over the 1000 simulations. The
character-state approach was impossible for the continuous environment scenario. The yellow boxes on the right show
the estimates for P̂ 2

RN (proportion of variance generated by the plasticity in the mean reaction norm), ĥ2RN (total
heritability of the reaction norm), ĥ2 (heritability based on average breeding values) and ĥ2I (heritability of plasticity)
for both the curve-parameter and character-state approaches. For the curve-parameter, the π-decomposition of P̂ 2

RN
into πSl (contribution of the slope) and πCv (contribution of the curvature); the γ-decomposition of ĥ2RN into γa
(genetic contribution of the intercept), γb (genetic contribution of the slope), γc (genetic contribution of the curvature)
and γac (genetic contribution of the covariance between the intercept and the curvature) and the ι-decomposition of
h2I into ιb (slope) and ιc (curvature) are also shown. The effective number of dimensions ne from the character-state
is not shown, due to an important bias impacting the comparison with the other parameters.

variance-covariance matrix439

Gθ =


0.090 −0.024 −0.012

−0.024 0.160 0.008

−0.012 0.008 0.040

 .

Figure 1 displays examples of curves resulting from these parameters. The simulation process was440

repeated 1000 times for each scenario, and for each simulated dataset, we ran estimations using the441

lme4 R package (Bates et al. 2015) under the curve-parameter (for discrete and continuous environ-442
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ment) and character-state (only for discrete environment) approaches, in order to check how these443

approaches compare in practice.444

From the curve-parameter models, we computed V̂Plas (accounting for the uncertainty in fixed445

effects), then P̂ 2
RN. We also computed the π-decomposition (π̂Sl and π̂Cv, Equation 14), since the true446

reaction norm is quadratic here, as well as ĥ2RN, ĥ2 and ĥ2I as in Equation 9. We then applied the447

γ-decomposition to ĥ2RN (Equation 26): γ̂a (impact of the genetic variation of the intercept), γ̂b (for448

the slope), γ̂c (for of the curvature) and γ̂ac (for the covariance between the intercept and curvature).449

Similarly, we applied the ι-decomposition to h2I (Equation 27): ιb (for the slope) and ιc (for the450

curvature). From the character-state model, we computed only P̂ 2
RN, ĥ2RN, ĥ2 and ĥ2I .451

The yellow boxes in Figure 4 display the theoretical expected values for the different parameters452

for three scenarios of environmental variation (two discrete, one continuous; other scenarios are shown453

in Appendix F). Using the first discrete scenario as a reference for now, most of the total phenotypic454

variance comes from the average plasticity (P 2
RN = 0.55). This, in turns, includes a large contribution455

from the curvature (πCv = 0.56) of the average reaction norm, more than from its slope (πSl = 0.44).456

The total heritability of the reaction norm is substantial (h2RN = 0.3), but interestingly most of it457

is due to the heritability of plasticity (h2RN = 0.21), while the marginal heritability of the trait is458

only h2 = 0.08. Contrary to the average shape, most of the additive genetic variation comes from459

the slope, both when considering the total reaction norm (γb = 0.52), or plasticity alone (ιb = 0.76).460

All scenarios share the same underlying parameters θ and Gθ, resulting in very comparable values461

for our variance decomposition (i.e. P 2
RN and the heritabilities) across the different environmental462

sampling scheme. By contrast, the environemental sampling scheme (especially discrete v. continuous463

distribution) can substantially impact the expected values of the π-, γ- and ι-decompositions. This is464

especially true when switching from the discrete to the continous scenarios (e.g. πSl = 0.44 for the first465

discrete scenario while πSl = 0.33 for the continuous scenario). Interestingly, the theoretical effective466

number of environment ne is very stable when comparing the first (4 environments) and second (10467

environments) discrete scenarios (ne = 2 v. ne = 1.9), which is due to the constraining shape of the468

quadratic reaction norm.469

Switching to the error in the estimation of the parameters (left panels of Figure 4), we see first470

that both the character-state and curve-parameter approaches allow for unbiased inference (Wilcoxon’s471

rank test, p > 0.05), apart from a slight bias in the heritabilities (ĥ2RN, ĥ2 and ĥ2I ) and some of their472

γ and ι components in the discrete scenarios (< 5% relative bias, Wilcoxon’s rank test, p < 0.05),473

notably due to a slight overestimation of the genetic variance of the intercept (visible in the top row474

of Figure 4). A notable exception, not shown in the graphics of Figure 4, was the effective number of475
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dimensions, ne, for the character-state. The relative bias was between −12% and −35% (Wilcoxon’s476

rank test, p < 0.05), and was mainly explained by an overestimation of the dominant eigenvalue477

λ1 in Equation 29. For the discrete case, the precision of the estimates was not much influenced478

by the number of environments and depended more on the number of genotypes (see Figure S1).479

For the continuous case, both the number of environments and genotypes influenced the precision480

of estimates (see Figure S2). As a sanity check, we also verified that V̂Tot (not shown in Figure 4)481

reflected the raw phenotypic variance with extreme precision (correlation > 99%) in the discrete case482

and very good precision (correlation > 87%) in the continuous case. The difference between these483

two types of scenarios is explained by how the stochasticity in environmental values differs among484

them. Importantly, the results in Figure 4) also illustrate the exact equivalence, in the discrete case,485

between the curve-parameter and character-state approaches, as the distributions of P̂ 2
RN and ĥ2RN486

were nearly identical (Figure 4, correlation > 99%) between the two approaches. This means that487

our variance partitioning is not impacted by which approach is chosen to study plasticity, as long488

as the curve-parameter approach captures the true reaction norm shape. When this does not hold,489

the differences between estimates from these alternative approaches can be exploited efficiently, as we490

describe below.491

Imperfect modelling of a non-polynomial reaction norm492

The true shapes of reaction norms are generally unknown and may be complex, such that any curve-493

parameter model is likely to be mis-specified to some extent. In the case of a discrete environment, the494

character-state approach is arguably more general, as it does not assume anything about the “true”495

shape of the reaction norm (as pointed out previously by de Jong 1995). Nonetheless, having access496

to curve-parameters is often very interesting and more actionable (even in cases where the linear497

and quadratic components cannot be interpreted as the average slope and curvature), especially to498

predict evolution of phenotypic plasticity (see also de Jong 1995). To get the best of both worlds,499

we rely on the ability of the character-state approach to recover P 2
RN, using it as an “anchor”, to500

assess the performance of a given curve. Note that, under these circumstances, it is not possible to501

obtain the most natural π-decomposition in Equation 14, so we instead rely on the φ-decomposition502

in Equation 16 (here taken at the second order). Because of this, we need to assess how “bad” our503

simplification using an imperfect curve is. To do so, we compute the ratio of the variance modelled504

by the polynomial curve to the total variance due to phenotypic plasticity:505

M2
Plas =

V̂mod

V̂Plas
. (30)
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Figure 5: Estimation of the variance of the reaction norm when the true shape (sigmoid on the left, Gompertz-
Gaussian performance curve on the right, red lines on top graphs) is unknown and approximated from a polynomial
function. The estimated reaction norms using a polynomial function (black line, top graphs) only account for a part
of the reaction norm shape, while the ANOVA estimation (pink dots, top graphs) fit the true shape more accurately.
As a result, the model is expected to explain only a part M2

Plas of phenotypic variance due to plasticity. On the
bottom rows, the error distribution are shown for M2

Plas, P 2
Plas, φ1 and φ2 (grey dots are the average estimated values,

black crosses are the expected true values).

It is important to note here that M2
Plas is just a convenient way to quantify the amount of V̂Plas506

explained by the chosen parametric curve, and should not be used to perform model selection. Model507
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selection is a complex matter and we refer the readers to published reviews on this subject (e.g.508

Johnson & Omland 2004; Tredennick et al. 2021).509

In order to demonstrate the soundness and usefulness of this approach, we simulated datasets510

following relatively common curves that are not well-captured by a second order polynomial: a logistic511

sigmoid (hereafter sigmoid scenario), or a Gompertz-Gaussian thermal performance curve (hereafter512

TPC scenario, see Figure 5). We assumed that the environment is sampled at either 10 or 4 values.513

For each of these conditions, we simulated 1000 datasets, with 10 measures per environment (for514

the sake of simplicity, and given the focus on P̂ 2
RN here, we did not include different genotypes in515

these simulations). We estimated the parameters of a polynomial model, and computed the relative516

contributions of the first- and second-order parameters using Equation 16. In addition, we computed517

the unbiased estimates of the variance explained by our polynomial or character-state models to obtain518

M2
Plas.519

Our results show that, as expected, the polynomial function is an imperfect proxy of our complex520

shapes (Figure 5, M2
Plas = 0.89 for the sigmoid and M2

Plas = 0.65 for the TPC), but using the character-521

state approach allows retrieving the total plastic variance without bias. The approach described here522

is thus useful to compare a given reaction norm model (e.g. a polynomial function) to an unknown523

true shape of the reaction norm, in a case where environment is discretised. In more detail, the linear524

component was the most important component to explain the phenotypic variation for the sigmoid525

scenario (φ1 = 0.89, same as the total model). This was because the quadratic component was always526

estimated close to zero (< 10−3), thus no variance was explained by the quadratic component (φ2 = 0).527

Of course, the sigmoid is not a straight line either, and some remaining variance unexplained by the528

polynomial curve (1− 0.89 = 0.11) could have been explained by higher-order effects (e.g. cubic effect529

and higher). By contrast, for the TPC scenario, while the linear component was an important factor530

(φ1 = 0.47), the quadratic component also explained quite a lot of the variance as well (φ2 = 0.2).531

Again, higher-order effect, including at least a cubic effect, would have explained more of the variance532

arising from the average shape of plasticity.533

This example illustrates the usefulness of a combined curve-parameter and character-state approach534

to study the shape of reaction norms of a discretely sampled environment. While the character-535

state approach provides a widely applicable estimation of P̂ 2
RN (if the environment is discretised), the536

curve-parameter approach provides interpretable information about (at least) first- and second-order537

parameters of the reaction norm (although they might depart more or less strongly from its average538

slope and curvature), which helps describing where most phenotypic variance lies. Our ratio M2
Plas539

can then be used to evaluate how well a chosen polynomial function models an actual reaction norm.540
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Estimation of non-linear models541

Although we have focused so far on models that are linear in its parameters, the main strength of542

our approach is its generality: it can be applied to any arbitrary functions (provided it is differen-543

tiable). This requires numerically computing integrals for VPlas (for P̂ 2
RN), πSl, πCv and ψε (for the544

heritabilities), but this can be solved with efficient algorithms. We illustrate this by introducing ge-545

netic variation in the parameters of the sigmoid and TPC reaction norms illustrated in Figure 5 (top546

panels). We used a non-zero, but small, residual variance (VR = 0.0001) to avoid numerical issues547

typical when running thousands of non-linear models. We focused on a continuous environment, and548

estimated the actual functions used to generate the datasets, using the non-linear modelling function549

of nlme package (Pinheiro et al. 2009). We used the cubature package (Narasimhan et al. 2023), as550

in the QGglmm package (de Villemereuil et al. 2016), to compute parameters linked to the variance551

decomposition, and, further, the π-, γ- and ι-decomposition. We simulated 1000 datasets for each552

scenario, consisting of 200 genotypes measured each in 10 different environments, randomly sampled553

from a normal distribution.554

We retrieved our simulated parameters without bias using the nlme function, except for a slight555

bias (Wilcoxon’s rank test, p < 0.05) in the variance of r (latent slope) in the sigmoid model and556

in C (height of the peak) in the TPC model. This translated into significant (Wilcoxon’s rank test,557

p < 0.05), but very limited bias (relative bias < 5%) in our derived parameters (Figure 6, bottom558

panels). Moreover, the sum of variance components (V̂Tot) successfully reflects the total phenotypic559

variance, with a correlation between the two quantities > 91%.560

First focusing the average shape of the reaction norm (Figure 6, top panel), one unfortunate aspect561

of running a non-linear model is that our bias correction described in Appendix E can no longer be562

applied. However, this bias is generally small provided the standard error is small for most parameters,563

and the resulting bias in P̂ 2
RN is extremely small, and even non-significant for the sigmoid model. An564

important distinction here is the difference between the curve defined by the average parameters f(ε, θ̄)565

(Figure 6, top panel, black curve) and the one defined by the local average phenotype Eg|ε(ẑ) (Figure 6,566

top panel, red curve), recalling that P̂ 2
RN is linked to the latter. While the two are very close for the567

sigmoid case, their differ quite visibly for the TPC one, due to a more pronounced non-linearity in the568

parameters in the latter. The average slope contributed the most to the overall plastic variance of the569

mean reaction norm for the sigmoid shape (πSl = 0.88), with no impact of average curvature (πCv = 0),570

close to the φ-decomposition in Figure 5. For the TPC scenario, the contribution of the average slope571

(πSl = 0.31) and curvature (πCv = 0.35) are similar. In this case, the values are very different from572
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Figure 6: Scenarios and results of non-linear modelling of phenotypic plasticity in a continuous environment. On
the left: results corresponding to a sigmoid curve scenario; on the right: results corresponding to a TPC scenario.
First row: example of the individual curves (each curve corresponds to one individual) simulated in each scenario;
yellow box: true parameters for the model and average shape; black curve : f(ε, θ̄); red curve : Eg|ε(ẑ). Second row:
distribution of the estimations of VG,ε (brown) and VA,ε (purple), along the environment; solid line: average value
across simulations; pale ribbon: 95% CI across simulations; yellow box: true values for the genetic variance partition.
Third row: γ-decomposition of VA,ε along the environment, for each parameter and their covariation. Fourth row:
distribution of the error for each component of our variance partition (“Variances”) or for the π- and γ-decomposition
(“Components”), red dot is the average of estimates over all simulations.25



the φ-decomposition in Figure 5 (although note that the distribution of the environment is different573

between these two scenarios). It might appear as counter-intuitive that the slope contributes so much574

to variance, since the curve increases from 0 and then decreases toward 0, but this is linked to the fact575

that the environment is normally distributed, so most values are near ε = 0, an area where the slope576

of the curve is close to be maximised.577

Although the variation between genotypes in the top panel of Figure 6 seems quite large, the578

contribution from the average plasticity P̂ 2
RN is 1.7 to 3.4 times higher than the one of the genetic579

variance Ĥ2
RN (Figure 6, yellow box in first- and second-row panels). This occurs because the genetic580

variance is actually very low in most environments (Figure 6, brown and purple lines of the second-row581

panels), and scarcely as high as VPlas. As mentioned above, non-linearity in the parameters is less582

strong for the sigmoid case than for the TPC case, resulting in almost exactly equal values for Ĥ2
RN583

and ĥ2RN for the former, while they are slightly different for the latter. In both cases, the low difference584

between Ĥ2
RN and ĥ2RN can be explained by the disproportionate importance in the γ-decomposition of585

parameters that are actually linearly related to the trait (γL = 0.98 for the sigmoid and γC = 0.81 for586

the TPC scenarios). In terms of heritability of plasticity, it is substantial in both cases (h2I = 0.081 for587

the sigmoid and h2I = 0.133 for the TPC scenario), as can be expected from the non-parallel reaction588

norms (Figure 6). However, it remains smaller than the marginal heritability of the trait in both589

cases (h2 = 0.143 for the sigmoid and h2 = 0.216 for the TPC scenarios). Interestingly, for the TPC590

scenario, and contrary to what happens with the γ-decomposition, a majority of the additive genetic591

variance in plasticity comes from the variation in the location of the optimum (ιε0 = 0.525). This592

is because variation in the location of the optimum shifts the reaction norm along the environment593

axis (i.e. on the “x-axis”), meaning that even a small shift can generate considerable variation that is594

non-parallel along the phenotype axis (i.e. along the “y-axis”).595

An interesting aspect of our framework is that we can explore the variation of VGen,ε, VA,ε and596

the γ-decomposition of VA,ε along the environmental gradient, which can be very informative from597

an evolutionary perspective. In the case of the sigmoid curve (Figure 6, second and third rows, left598

panels), the analysis is relatively simple : as the value of the environment increases, the parameter L599

is multiplied by an increased value (going from 0 to 1 due to the sigmoid function) and thus its genetic600

variance plays a stronger role. This translates into VGen,ε and VA,ε increasing with the environment,601

and γL accounting for almost all of the genetic variance after the sigmoid inflexion point in 0. The602

TPC scenario is even more interesting. First, we can see that both VGen,ε and VA,ε (Figure 6, second603

row, right panels) are close to zero in the extreme environments and maximised in a region between604

the optimum and critical maximal temperature, where the reaction norm suddenly drops after the605
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optimum. This maximum also corresponds to the region where VGen,ε and VA,ε are the most different606

(and where the red and black departs the most in Figure 6, top row, right panel). Regarding the607

γ-decomposition (Figure 6, third row, right panels), the influence of the location of the optimum (γε0)608

is maximised at extreme environments, while the influence of the maximum value at the peak (γC) is609

exactly maximised at the average location of the peak. The influence of the covaration between both610

(γCε0) is negative before the peak and positive after.611

As these simulations illustrate, our framework allows very finely describing the characteristics of612

reaction norms, such as how its average shape (slope/curvature) and genetic variation in the parameters613

influence the phenotypic variance in the trait, while discriminating between total genetic variation of614

the trait and genetic variation exclusively linked with plasticity itself.615

Discussion616

The variance decomposition in Equation 7 is very general, and applicable to any approach used617

to estimate a reaction norm. In particular, it applies equally well to both the character-state and618

curve-parameter approaches. Each component and its variance-standardisation provide a different619

information on the reaction norms: P 2
RN quantifies the proportion of phenotypic variance due to the620

average plastic response across genotypes, while H2
RN or h2RN quantify the contributions from (broad or621

additive) genetic variance in the reaction norms. Further, these genetic components can be separated622

into the marginal heritability of the trait (h2) based on the average breeding values across environments,623

and the heritability of plasticity (h2I ) which is solely based on the gene-by-environment interactions at624

the level of breeding values. Finally, the sum T 2
RN = P 2

RN+H2
RN quantifies how well we can predict the625

individual phenotypes based on their genotypes and environments (i.e. genetically variable reaction626

norms). Those components are efficient summary statistics yielding important information regarding627

the evolutionary potential of both the trait and its plasticity. Importantly, they are very generally628

applicable, with a strict equivalence between e.g. a character-state or a curve-parameter approach.629

However, they do not provide information regarding the actual shape of the reaction norms. To that630

end, we further decomposed some of these components in terms of characteristics of the shape or631

parameters of reaction norms.632

The most difficult problem is to decompose the average plastic variance P 2
RN into terms arising633

either from the linear trend (πSl) or from the curvature (πCv) of the reaction norm, which we called634

π-decomposition. Unfortunately, our estimates for πSl and πCv are only valid if the environment635

is normally distributed, or the true reaction norm is quadratic. In other cases, mean slope and636
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curvature loose their simple interpretation, preventing a meaningful π-decomposition. Nonetheless,637

for polynomial reaction norms of higher order, we described an alternative decomposition, based on638

the polynomial coefficients rather than actual slope and curvature, which we called φ-decomposition.639

While not as interpretable as the π-decomposition, this decomposition can serve as a way to com-640

pare polynomial shapes across contexts. Based on the equivalence between the curve-parameter and641

character-state, we introduced M2
Plas as a way to quantify the ability of a polynomial model to re-642

cover VPlas compared to an “agnostic” model such as the character-state. Our proposed framework is643

summarised in Figure 3.644

Decomposing h2RN and h2I is comparatively easier, because the model assumed in Equation 3645

and Equation 4 ensures that we can always translate additive genetic variance in the parameters θ646

into additive genetic variance in the trait z, even if the function f is not linear in its parameters.647

Decomposition of the total heritability of the reaction norm h2RN into the impact of the parameters648

θ leads to the γ-decomposition. It quantifies the relative importance of genetic variance in different649

reaction norm parameters to the evolvability of the trait. For instance if a given selection episode650

concerns individuals that all experienced the same plasticity-inducing environment (i.e. when spatial651

environmental variation is negligible relative to temporal variation), using the multivariate breeder’s652

equation (Lande 1979), the relative contribution of genetic variation in parameter θi to the response653

to selection for the trait z is654

∆θi z̄

∆z̄
= γi +

1

2

∑
i ̸=j

γij , (31)

where the γi and γij are defined in Equation 26. In other words, the contributions of responses to655

selection by different reaction norm parameters to overall response to selection by the plastic trait z656

is directly proportional to their contribution to its genetic variance. Importantly, these contributions657

will depend on the reaction norm gradient ψε defined in Equation 19, and thus on the environment,658

as illustrated in Equation 26. In fact, the environment-specific additive genetic variance VA,ε is a659

critical piece of information regarding evolutionary potential, and we can apply the γ-decomposition660

within each environment as well. For example, in the TPC scenario investigated above (Figure 6, right661

panels), the contribution of the peak height parameter C is maximised at the average location of the662

optimum, where it accounts for 100% of the additive genetic variance. On the contrary, the influence of663

additive genetic variation in the location of the optimum ε0 is more important in extreme environments.664

The complex interaction between the role of C and ε0 generates a peak for VA,ε in the area between665

the peak and critical maximal value for the environment (where the performance curve reaches zero).666

In the context of predicting eco-evolutionary response to warming, this would mean that a slight667

temperature rise above the optimum would provide a very short window of higher evolvability, but668
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followed by a sharp decrease thereof if warming persists. Beyond these simple scenarios, how selection669

acts on reaction norms and plasticity depends on how the environment varies in space and/or time670

(Scheiner 1993b; de Jong 1999; Tufto 2015; King & Hadfield 2019), and how the reaction norm gradient671

ψε and direction selection on the expressed trait z covary across environments. However, an in-depth672

exploration of how to estimate these selection responses is beyond the scope of the present work.673

While the γ-decomposition is key to understanding and predicting evolution of the trait, it is based674

on the total heritability of the reaction norm h2RN, which combines additive genetic variation in the675

trait and its plasticity. To study plasticity in isolation from the marginal additive genetic variance in676

the trait, we decomposed h2I in a similar fashion as h2RN, which we called the ι-decomposition. The677

components of the ι-decomposition measure the contribution of each parameter to the evolutionary678

potential of plasticity, i.e. to the evolvability of reaction norm shape. In our thermal performance case679

(TPC) example, the ι associated to C and ε0 were close to 0.5, meaning that evolution can roughly680

equally impact the peak height C or the location of the optimum ε0, should selection on the shape of681

reaction norms occur.682

The detailed decomposition that we propose open the door to better commensurability and com-683

paratibility across studies, which can be a challenge in meta-analyses of plasticity. Murren et al. (2014)684

performed such a meta-analysis, comparing genetic variation in different parameters of reaction norm685

shape across published datasets. However they (i) computed these parameters using only extreme686

environmental values, instead of the whole range of environments; (ii) did not account for uneven687

spacing between environments where relevant; (iii) did not account for uncertainty in estimations688

of reaction norms (as previously highlighted by Morrissey & Liefting 2016); and (iv) assumed the689

modeled reaction norm shape is true. More detail about the analyses in that study is provided in690

Appendix G. Our approach overcomes all these issues (some of which had been dealt with already691

by Morrissey & Liefting 2016). Unfortunately the dataset compiled by Murren et al. (2014) does692

not provide information on uncertainty of phenotypic estimates (related to VRes), precluding proper693

meta-analysis of reaction norm shape variation.694

Importantly, our variance partitioning can be implemented through commonly used statistical695

models, notably (non-)linear mixed models. We showed that even complex non-linear modelling can696

perform well, only at the cost of using dedicated libraries to compute integrals numerically. This697

means that biologists can readily seize all the modelling tools introduced here. In particular, although698

a character-state approach can be performed using a simple random-intercept model, studies of genetic699

variance in plasticity seem to rather use a multi-trait model, which offers more control, but is more diffi-700

cult to implement (but see Stirling & Roff 2000). In order to make the variance partitioning introduced701
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here more accessible, we have implemented the computation of P̂ 2
RN and the heritabilities, as well as702

their different decompositions as an R package named Reacnorm github.com/devillemereuil/Reacnorm.703

The package also included a tutorial as a vignette, showing how to implement the models in the704

Bayesian package brms and use functions from Reacnorm to study the properties of reaction norms.705

We hope that this will further stimulate interest in investigating variation and evolutionary potential706

of reaction norms.707

Code availability The code for the data simulation and analyses performed in this article is available708

at the following repository: github.com/devillemereuil/CodePartReacnorm709
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Appendix887

A A unified formalism for the curve-parameters and888

character-state approaches889

Despite having different mechanics, the curve-parameter and character-state approaches can be shown890

to be mathematically equivalent de Jong (1995). We can use this to express both approaches under891

the same, unified formalism. More precisely, we can express the character-state approach as being892

a special case of the curve-parameters approach. Under a curve-parameters approach, the reaction893

norm is seen as a function f of the environment ε and a vector of parameters θg:894

ẑ = f(ε,θg). (S1)

The θg’s covary across genotypes with a variance-covariance matrix Gθ:895

θg ∼ N (θ̄,Gθ). (S2)

By contrast, in a character-state approach, the reaction norm values of different genotypes across896

environments are directly provided by sampling from a multivariate normal distribution:897

ẑ ∼ N (µ,Gz) . (S3)

One way to express the character-state using the same formalism as the curve-parameter is to recognise898

that Equation S3 can be written as899

ẑ = µT
g uk,

µg ∼ N (µ,Gz),
(S4)

where uk is the unit vector with 1 at the kth value (corresponding to environment εk) and 0 elsewhere.900

Thus, the character-state model can be expressed using the formalism of Equation S1 and Equation S2,901

where µg in Equation S4 plays the role of θg, and thus Gz plays the role of Gθ. In this case, the902

function f is a function taking the level k of the environment and the parameters µg of the genotype903

g as input, and yielding the evaluated reaction norm ẑ as the output. Evidently, this function f is904

not continuous and not differentiable along the (categorical) environment. However, it is a continuous,905

differentiable and even linear function along the (continuous) parameters µg. As such, all properties906

mentioned in the main text and the Appendices pertaining to reaction norms that are “linear in its907
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parameters” also apply to the character-state approach.908

B Computation of the additive genetic variance holding909

environment constant910

B1 Preliminary results911

Multiple regression slopes expressed using a variance-covariance matrix Let us assume a multiple912

regression between a random variable y and a set of random variables x = (x1, . . . , xn)
T such that:913

y = µ+ xTβ + e, (S5)

where µ is the intercept and e is the residual of the model. Note that in practical regression, the realised914

sampling of x will be contained in the design matrix of the model. If it exists and is unique, the solution915

for the vector of multiple regression slopes β can be formulated in terms variance-covariance matrices916

(see e.g. p.179, Lynch & Walsh 1998):917

β = V(x)−1cov(x, y), (S6)

where V(x) is the variance-covariance matrix of x, , V(x)−1 is its inverse matrix and cov(x, y) is the918

column-vector of covariances between the xi and y.919

Multivariate version of Stein’s lemma Let us assume that x = (x1, . . . , xpx) and y = (y1, . . . , ypy)920

follow multivariate normal distributions, and that g is a differentiable, Rpx → R function such that921

E (▽g), where ▽g is the gradient of g (the vector of partial derivatives), is a vector with finite values,922

then it can be shown (Landsman & Nešlehová 2008; Landsman et al. 2013) that:923

cov (g(x),y) = cov(x,y)E (▽g) . (S7)

Note that covariance matrices of vectors (also known as cross-covariance matrices) are not commuta-924

tive, but are such that cov(x,y) = cov(y,x)T . In the case where py = 1, then y = y follows a normal925

distribution and:926

cov (g(x), y) = cov(y,x)E (▽g) . (S8)

Note that cov(y,x) is a row-vector and cov(x, y) is a column-vector by convention.927
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B2 Breeding values in a given environment928

Genetics of reaction norms As mentioned in the main text, a general formalism (including the929

character-state as a special case) for the reaction norm ẑ is given by Equation 3 in the main text, i.e.930

ẑ = f(ε,θg). (S9)

The phenotype predicted by the reaction norm ẑ thus depends on the environmental value ε, and the931

reaction norm parameters θg specific to the genotype g. When holding the environment ε constant,932

the genetic variance is simply the variance of reaction norms across genotypes:933

VG|ε = Vg|ε (f(ε,θg)) (S10)

If the reaction norms are estimated in such a way that non-additive genetic variance can be separated934

out from additive genetic variance (e.g. if “genotype” refers to individuals) or are known to be negligible935

on the one hand; and if the reaction norm is linear in its parameters (i.e. f is a linear function of θg,936

as for a polynomial function) on the other hand, then the additive genetic variance conditional on the937

environment is readily given by Equation S10, i.e. VA|ε = VG|ε. In the case where f is not linear in its938

parameters, it is necessary to rely on the theory in non-linear quantitative genetics (Morrissey 2015;939

de Villemereuil et al. 2016), as we do below.940

Linear relationship between breeding values The relationship between the breeding value of the941

trait Az and the breeding values of the reaction norm parameters θg is the key towards developing942

a framework that works for any reaction norm, linear in its parameters or not. Let us note Aθ the943

vector of breeding values of all the parameters in θ. We will follow the same demonstration as in944

de Villemereuil et al. (2016), which starts from the point that, by definition, breeding values are all945

linked through linear relationships (see also Robertson 1966), since they are all linearly linked to the946

genotype (Lynch & Walsh 1998). More precisely, the breeding value Az of the phenotypic trait z of947

an individual linearly depends on a linear combination of its breeding values for the reaction norm948

parameters Aθ, so that:949

Az = µA +AT
θ ψ (S11)

where µa is a constant chosen such that E(Az) = 0, ψ is a vector of slopes that we will shortly describe950

as the reaction norm gradient.951
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Derivation of ψ To derive an expression of ψ, we can apply the results in Equation S6 to Equa-952

tion S11, yielding953

ψ = G−1
θ cov(Aθ, ẑ). (S12)

This assumes that cov(Aθ,Az) = cov(Aθ, ẑ), i.e. that there is no covariance between the environmental954

values of the phenotype as predicted by the reaction norm and the breeding values of the parameters.955

This results also assumes that Gθ is inversible. However, such assumption is already necessary to956

most statistical algorithms available to infer Gθ in practice, so that this assumption is not limiting957

here. Noting that ẑ = f(ε,θ), we can apply the multivariate version of Stein’s lemma (Equation S7):958

ψ = G−1
θ cov(Aθ,θg)E(▽θf) = G−1

θ GθE(▽θf) = E(▽θf), (S13)

where we have used the fact that the covariance of breeding values of reaction norm parameters with959

their breeding values is their additive genetic covariance matrix Gθ. Again, note that this assumes960

that f is partially differentiable with respect to all elements of θg. Given that this demonstration was961

applied when holding the environment constant, the values in ψ generally depend on the environment962

ε, so below and in the main text, we use the notation ψε.963

Values of ψε in specific contexts When the reaction norm is linear in its parameters, the values964

in ψε are (trivially) the linear coefficients of such relation. For a quadratic reaction norm, where965

ẑ = (Ā + ag) + (b̄ + bg)ε + (c̄ + cg)ε
2, such linear coefficients are respectively 1, ε and ε2 for ag, bg966

and cg. It results that ψε = (1, ε, ε2)T as mentioned in the main text. More generally, if f is a967

polynomial of order N , then ψε = (1, ε, . . . , εN )T . In the context of a character-state, it can be seen968

from Equation S4 that the gradient ψε in the parameters will be equal to uk, i.e. a vector of 1 for the969

kth value (corresponding to the environment chosen to be hold constant) and 0 elsewhere.970

B3 Additive genetic variance971

By definition, the additive genetic variance of the trait conditional on the environment VA|ε is the972

variance of the breeding values defined in Equation S11. We can thus express it from the breeding973

values of the reaction norm parameters (right hand side of Equation S11) as974

VA|ε = Vg|ε(AT
θ ψε) = ψ

T
ε Gθψε. (S14)

This formula holds whether the reaction norm is linear on its parameters or not, and also holds for975

the character-state approach (although in this case, this formula merely selects the kth element of the976
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diagonal of Gz).977

C Derivation of the general decomposition of variance978

C1 Distinguishing between VPlas, VGen and VAdd979

The phenotype predicted by the reaction norm ẑ depends on the environment, and the reaction norm980

parameters θg specific to the genotype g. The impacts of environment and genotype are intricately981

related via the reaction norm shape, but in a given environment, one can still isolate the average982

impact of the environment from variation among genotypes by computing the average value of the983

reaction norm across genotypes conditional on the environment, i.e. Eg|ε(ẑ). The variance of Eg|ε(ẑ),984

taken across environments, is the component VPlas = V(Eg|ε(ẑ)) in the main text, i.e. the phenotypic985

variance arising from plasticity after averaging across genotypes. The genotypic value Gz of genotype986

g within the environment ε is then given by987

Gz = ẑ − Eg|ε(ẑ). (S15)

Note that, although we removed the average effect of the environment, the genotypic value Gz still988

depends on both the genotype g and the environement ε, because genotypes can vary in their response989

to the environment. The total genetic variance in the reaction norm is thus VGen = V(Gz). It is possible990

to get to the breeding values of the trait in each environment Az following the process described in991

Appendix B, i.e. Az = µa +AT
θ ψε. The total additive genetic variance in the reaction norm is then992

VAdd = V(Az) = E
(
Vg|ε(Az)

)
+ V

(
Eg|ε(Az)

)
= E(ψT

ε Gθψε), (S16)

using the law to total variance and noting that Eg|ε(Az) = 0 by construction. In Figure 1 in the main993

text, the average Eg|ε(ẑ) corresponds to the red line in the left panel of Figure Figure 1 in the main994

text, while Az corresponds to the purple lines in the middle panel.995

C2 Distinguishing between VAdd, VA and VA×E996

We can separate the total additive genetic variance of the reaction norm, VAdd, into two components:997

the marginal additive genetic variance of the trait VA and the additive genetic variance of plasticity998

VA×E. The first component is given by considering, for a given genotype, its average breeding value999
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across environment:1000

Ā = Eε|g(Az). (S17)

This average corresponds to the breeding value that would be predicted for the same genotype present1001

in all environments (or moving across them, being measured several times), ignoring the impact of1002

the environment. In other words, this average is the predicted breeding value after the impact of1003

the environment has been marginalised. Graphically, it depicts the average shift in the y-axis of the1004

reaction norm, as can be seen in the middle panel of Figure 1 in the main text. The marginal additive1005

genetic variance of the trait is1006

VA = V(Ā) = E(ψε)
TGθE(ψε) (S18)

The remaining additive genetic variation after accounting for the marginal breeding value is linked1007

to the impact of genetic variation in plasticity, arising from genotype-by-environment interactions. We1008

can define the part of the breeding values strictly linked to that genotype-by-environment interaction1009

by mean-centring the breeding values, for each genotype:1010

AI = Az − Ā. (S19)

The right panel of Figure 1 depicts these interaction breeding values. The additive genetic variance1011

linked to genotype-by-environment, and thus to variation in plasticity, is:1012

VA×E = V(AI) = V(Az) + V(Ā)− 2cov(Az, Ā) = V(Az)− V(Ā) = VAdd − VA, (S20)

noting that, by construction, cov(Az, Ā) = cov(Ā, Ā) = V(Ā). By substituting VAdd and VA with1013

their values in Equation S16 and Equation S18, we obtain1014

VA×E = E(ψT
ε Gθψε)− E(ψε)

TGθE(ψε) = tr(ΨGθ) =
∑
l,k

Ψl,kGθ(l,k), (S21)

where Ψ is the variance-covariance matrix of the reaction norm gradient ψε across the environment.1015

In other words, VA×E is the sum of the products, for all pairs of parameters, of the (co)variance in1016

the reaction norm gradient and the additive genetic (co)variance. The γ- and ι-decomposition directly1017

comes from dividing each elements of the sums in Equation S16 and Equation S21 respectively by1018

VAdd and VA×E, so that the total sums to 1.1019
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C3 Variance decomposition for a polynomial model1020

In this section, we will assume a polynomial reaction norm:1021

ẑ =
N∑

n=0

(θ̄n + θn,g)ε
n (S22)

where θn = θ̄n + θn,g is the nth order coefficient of the polynomial. In this form, it is easy to remark1022

that polynomial reaction norms are linear in their parameters, i.e. there is a linear relationship between1023

the θn’s and ẑ, so that Gz = Az. It results that:1024

Gz = Az = ẑ − Eg|ε(ẑ) =
N∑

n=0

(θ̄n + θn,g)ε
n −

N∑
n=0

θ̄nε
n =

N∑
n=0

θn,gε
n. (S23)

Taking the derivative of this expression with respect to each of θn,g in a given environment ε would1025

yield a reaction norm gradient equal to the value of each exponent of ε, i.e. ψε = (1, ε, . . . , εN )T . The1026

total (additive) genetic variance is thus:1027

VGen = VAdd = E(ψT
ε Gθψε) =

∑
n

VnE(ε2n) + 2
∑
n<m

CnmE(εn+m), (S24)

where Vn is the additive genetic variance for θn,g and Cnm is the additive genetic covariance between1028

θm,g and θn,g. For the quadratic case, if ε has been mean-centred and is symmetrical, we have1029

E(ε) = E(ε3) = 0 and the expression reduces to1030

VGen = VAdd = V0 + (V1 + C03)E(ε2) + V3E(ε4). (S25)

For a given genotype, its average breeding value across environments is1031

Ā = Eε|g(Az) = Eε|g

(
N∑

n=0

θn,gε
n

)
=

N∑
n=0

θn,gE(εn) (S26)

The marginal (additive) genetic variance of the trait is1032

VG = VA = E(ψε)
TGθE(ψε) =

∑
n

VnE(εn)2 + 2
∑
n<m

CnmE(εn)E(εm) (S27)

For the quadratic case with mean-centred and symmetrical ε, this yields:1033

VA = V0 + 2C02E(ε2) + V2E(ε2)2 (S28)
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Finally, the additive genetic variance in plasticity itself is1034

VA×E = VAdd−VA =
∑
n

VnE(ε2n)+2
∑
n<m

CnmE(εn+m)−
∑
n

VnE(εn)2+2
∑
n<m

CnmE(εn)E(εm). (S29)

By recognising that V(εn) = E(ε2n)−E(εn)2 and cov(εn, εm) = E(εn+m)−E(εn)E(εm), we can further1035

simplify this expression as:1036

VA×E =
∑
n

VnV (εn) + 2
∑
lk

Cnmcov(εn, εm). (S30)

For the quadratic case, for a mean-centred and symmetrical ε, all the covariances between the different1037

exponents of ε are 0, yielding1038

VA×E = V1V(ε) + V2V(ε2). (S31)

C4 Variance decomposition for the character-state approach1039

As mentioned in Appendix A, the character-state can be written using a function f such that in1040

environment εk and for genotype g, we have1041

ẑ = f(µg, εk) = µ
T
g uk. (S32)

In a given environment εk, the unit vector uk is equal to 1 at the kth index and 0 elsewhere. The1042

reaction norm gradient is equal to this unit vector, i.e. ψεk = uk. In the first environment, for example,1043

we have ψε1 = u1 = (1, 0, . . . )T . As mentioned in Appendix A, the character-state approach is linear1044

in its parameters. We can thus compute the genotypic/breeding values in a given environment εk as1045

Gz = Az = ẑ − Eg|ε(ẑ) = µ
T
g uk − µTuk = µg,k − µj , (S33)

where µg,k and µj are the kth values of the vectors µg and µ. The total (additive) genetic variance is1046

the variance of the breeding values across environments:1047

VGen = VAdd = V(Az) = V(µg,k). (S34)

Since the variance-covariance matrix of µg is the Gz matrix, the variance of all elements µg,k taken1048

together is the average of the diagonal elements of Gz, which we will note Vk. Assuming that all1049

environments are equiprobable for the sake of simplicity (releasing this assumption merely requires to1050
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use weighted average), we have1051

VAdd =
1

K

K∑
k=1

Vk. (S35)

In other words, VAdd is the average of the diagonal elements of the Gz matrix.1052

The marginal (additive) genetic variance of the trait depends on the average of the breeding values1053

across environment for a given genotype:1054

Ā =
1

K

∑
k

Az,k, (S36)

where Az,k is the breeding value evaluated at the kth environment for a given genotype, still assuming1055

equiprobable environments. It results that the marginal (additive) genetic variance of the trait is1056

VG = VA =
1

K2

(∑
k

Vk + 2
∑
k<l

Ckl

)
, (S37)

where Ckl is the genetic covariance between the environment k and l. In other words, VA is the average1057

of all the elements of the Gz matrix.1058

Finally, the (additive) genetic variance of plasticity can be computed as the difference between1059

VAdd and VA:1060

VG×E = VA×E = VAdd − VA =
1

K2

(
(K − 1)

∑
k

Vk − 2
∑
k<l

Ckl

)
(S38)

A few particular cases are important to note here. The first case is when all environments harbour1061

the same additive genetic variance, say V , and are all perfectly correlated with one another. This is1062

a situation generally decribe as a total absence of genetic variation in plasticity. In our framework,1063

this situation would indeed result in VAdd = VA = V and, indeed, no genetic variation in plasticity1064

with VA×E = 0. Note that uneven additive genetic variances across environments, even if genetic1065

correlation are kept perfect across environments, would result in slightly positive genetic variance in1066

plasticity with VA×E > 0. This is because, in such context, the trait can still evolve faster in some1067

environments compared to other, hence plasticity can evolve. The second extreme case, is when the1068

marginal additive genetic variance of the trait is null, i.e. VA = 0, while all the additive genetic1069

variance in reaction norm is composed of the additive genetic variance in plasticity, i.e. VAdd = VA×E.1070

This happens when the sum of covariances (the total of which must be negative) exactly compensates1071

the sum of diagonal variances in the Gz, meaning that strong negative genetic correlation must exist1072

between environments. In this case, its is impossible for directional selection to act on average value of1073

the trait across all environments, but the evolvability of plasticity is maximised. A third, interesting1074

case is when there is absolutely no genetic correlation between environments, i.e. the off-diagonal1075
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elements of Gz are all equal to 0. In such case, it is important to note that, because evolution can1076

freely operate across environments, then both VA = 1
K2

∑
k Vk and VA×E = K−1

K2

∑
k Vk are non-zero.1077

D Derivation of π- and φ-partition of VPlas1078

D1 The π-decomposition1079

We have seen in Appendix C how to compute the variance arising from the average shape of reaction1080

norm VPlas. In order to go further, we now separate this into a component linked to the average slope1081

of the reaction norm and another linked to the average curvature. For this, we need one or two of1082

the following assumptions to hold true: (i) the environment ε follows a normal distribution; or (ii)1083

the function f is quadratic. In such context, we can isolate the contribution of the slope, VSl, from1084

the contribution of the curvature, VCv to VPlas, based on the best quadratic approximation of Eg|ε(ẑ)1085

(akin to the reasoning in Lande & Arnold 1983, for estimates of selection gradients), as:1086

VSl = E
(dEg|ε

dε (ẑ)

)2

V(ε), VCv =
1

4
E
(

d2Eg|ε

dε2 (ẑ)

)2

V(ε2). (S39)

As an illustration of why the assumptions above are needed, if ε follows a uniform distribution between1087

-2 and 2; and the average shape of plasticity is the following cubic function, f(ε) = 2ε − 0.5ε2 − ε3,1088

then the average slope is -2, while the slope from the best quadratic approximation of Eg|ε(ẑ) is -0.4.1089

In such cases, the decomposition in Equation S39 is not valid anymore, due to (i) the impossibility1090

to apply Stein’s lemma to a non-normal distribution and (ii) strong covariation between the slope1091

and curvature. This means that whenever the environment is non-normal and the reaction norm is1092

non-quadratic, the π-decomposition can bear little meaning (in the cubic example above, VSl would1093

be 5.4, while VPlas = 2.0, so that πSl would be largely above 1). A truly quadratic reaction norm is1094

the only case where πSl + πCv = 1.1095

D2 The φ-decomposition1096

In such cases where the environment is non-normal and the reaction norm is non-quadratic, it is always1097

possible to approximate the true shape of the reaction norm using a polynomial function:1098

ẑ =
N∑

n=0

(θ̄n + θn,g)ε
n (S40)
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In the context of decomposing VPlas, such polynomial approximation provides a possibility to isolate1099

the (co-)contribution of the (pairs of) coefficients in Eg|ε(ẑ) =
∑N

n=0 θ̄nε
n:1100

VPlas = V(Eg|ε(ẑ)) =
∑
n

θ̄2nV(εn) + 2
∑
n<m

θ̄nθ̄mcov(εn, εm) (S41)

From this, we suggest the alternative φ-decomposition of VPlas, with φn = θ̄2nV(εn)
VPlas

and φnm =1101

2θ̄nθ̄mcov(εn,εm)
VPlas

. It is important to note that this decomposition is based on the coefficients of the1102

polynomial function and, thus, it is unfortunately impossible to simply interpret the φn in terms of1103

slope (for φ1), curvature (for φ2), and so on. The only exception is when the reaction norm shape is1104

quadratic, in which case πSl = φ1 and πCv = φ2.1105

E Correcting for uncertainty in the estimation of fixed1106

effects1107

Character-state approach It is easier to start with the character-state approach based on the1108

ANOVA model. We want to compute VPlas as the variance of the group-level effects µ:1109

VPlas = V(µ) (S42)

However, we do not have access to the real-world values for µ, but only to the estimated µ̂ from the1110

model. Such estimates, if unbiased, have an expected value of µk in environment k and a standard-1111

error (i.e. the estimation of the sampling standard deviation) sk. In other words, we can state that1112

µ̂k is equal to µk up to an additive error:1113

µ̂k = µk + µ̃k (S43)

where µ̃ is of mean 0 and variance s2k. Considering each virtual repeat r of the experiment, we can1114

apply the law of total variance:1115

V(µ̂) = Vε(Er|ε(µ̂)) + Eε(Vr|ε(µ̂)) = Vε(µ) + Eε(s
2). (S44)

We thus have:1116

VPlas = Vε(µ) = Vε(µ̂)− Eε(s
2) (S45)
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This result is equivalent to e.g. the classical computation of the “sire variance” in sire models in1117

quantitative genetics (Lynch & Walsh 1998), although the latter is generally expressed using sums-of-1118

squares.1119

Curve-parameter approach There is unfortunately no simple solution to the problem of accounting1120

for the uncertainty of fixed effects in the general context of non-linear modelling. However, for the1121

particular case where the model can be framed as a linear model, as is the case for the polynomial1122

function, then ẑ = Xθ, where X is the design matrix containing the values for the environment.1123

Noting ΣX the variance-covariance matrix of X, we can define VPlas as:1124

VPlas = θ
TΣXθ. (S46)

Again, the problem is that θ is unknown, we only have access to the estimated values of the parameters,1125

θ̂, that are inferred with an error provided by the variance-covariance matrix of standard errors, Sθ.1126

We can write again:1127

θ̂ = θ̄ + θ̃, (S47)

Noting that the error is independent from the true value, we have:1128

θ̂TΣX θ̂ = θTΣXθ + θ̃TΣX θ̃ (S48)

To express θ̃TΣX θ̃, it is important to note that Sθ,ij = E(θ̃iθ̃j), since E(θ̃) = 0. Then, we can note1129

that, the error being unknown, we actually want to compute Er(θ̃
TΣX θ̃) taken across virtual repeats1130

r of the experiment:1131

Er(θ̃
TΣX θ̃) = Er(

∑
ij

θ̃iθ̃jΣX,i,j) =
∑
ij

Er(θ̃iθ̃j)ΣX,i,j =
∑
ij

Sθ,ijΣX,i,j = Tr(SθΣX) (S49)

This is similar to the result of Brown & Rutemiller (1977). Finally, we have:1132

VPlas = θ̂
TΣX θ̂ − Tr(SθΣX). (S50)
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F Full results for the section “Perfect modelling of1133

quadratic curves”1134

This section provides the full results corresponding to the section “Perfect modelling of quadratic1135

curves” in the main text. The results of all investigated values for the number of environments (101136

or 4) and number of genotypes (20 or 5 for the discrete case, 200 or 50 for the continuous case) are1137

provided for the discrete and continuous cases.1138
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Figure S1: Distribution of the error (difference between the inferred and true value) for each the inferred variance
components for three discrete scenarios: Nenv: number of environments, NGen: number of different genotypes,
NRep: number of replicates per genotype. Estimates are for P̂ 2

RN (proportion of variance generated by plasticity
after averaging across genotypes), ĥ2RN (total heritability of the reaction norm), ĥ2 (heritability based on average
breeding values) and ĥ2I (heritability of plasticity) for both the curve-parameter and character-state approaches. For
the curve-parameter, the π-decomposition of P̂ 2

RN into πSl (contribution of the slope) and πCv (contribution of the
curvature); the γ-decomposition of ĥ2RN into γa (genetic contribution of the intercept), γb (genetic contribution of
the slope), γc (genetic contribution of the curvature) and γac (genetic contribution of the covariance between the
intercept and the curvature) and the ι-decomposition of h2I into ιb (slope) and ιc (curvature) are also shown. The
grey dots correspond to the average over the 1000 simulations. The effective number of dimensions ne from the
character-state is not shown, due to an important bias impacting the comparison with the other parameters.
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Figure S2: Distribution of the error (difference between the inferred and true value) for each the inferred variance
components for four continous scenarios: Nenv: number of environment tested per genotype, NGen: number of
different genotypes. The character-state approach was impossible for the continuous environment scenario. Estimates
are for P̂ 2

RN (proportion of variance generated by plasticity after averaging across genotypes), ĥ2RN (total heritability
of the reaction norm), ĥ2 (heritability based on average breeding values) and ĥ2I (heritability of plasticity) for both
the curve-parameter and character-state approaches. For the curve-parameter, the π-decomposition of P̂ 2

RN into πSl
(contribution of the slope) and πCv (contribution of the curvature); the γ-decomposition of ĥ2RN into γa (genetic
contribution of the intercept), γb (genetic contribution of the slope), γc (genetic contribution of the curvature) and
γac (genetic contribution of the covariance between the intercept and the curvature) and the ι-decomposition of h2I
into ιb (slope) and ιc (curvature) are also shown. The grey dots correspond to the average over the 1000 simulations.
The effective number of dimensions ne from the character-state is not shown, due to an important bias impacting
the comparison with the other parameters.

G Comparison with the approach from Murren et al. (2014)1139

Murren et al. (2014) studied variation of the reaction norm shapes across different datasets, using1140

their own metrics. We argue in the main text that our variance decomposition is more appropriate1141

than the ones suggested by Murren et al. (2014), and we develop here why.1142

The first step in the approach of Murren et al. (2014) is to choose a reference reaction norm in1143

each of the studies and compute contrasts (i.e. difference with) to that particular reaction norm. The1144
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contrasts are then analysed, rather than the reaction norms themselves. For the sake of simplicity,1145

and because this does not (or marginally) impact our comments on this approach, we will overlook1146

that step and consider reaction norms directly.1147

For each genotype k and from its given reaction norm (or contrast) zk = {zk,1, . . . , zk,n}, Murren et al.1148

(2014) compute four statistics (we removed the absolute values for the sake of simplicity here):1149

1. The offset, OM, measures the “location” of the reaction norm, i.e. its mean. Comparison of1150

the offsets allows detecting wether reaction norms are “shifted” toward higher or lower values.1151

It is computed, for each genotype k, as the absolute value of the average of the norm across1152

environments:1153

OM,k =

∑n
i |zk,i|
n

. (S51)

2. The slope, SM, measures the linear trend of the reaction norms. Formally, it is the absolute sum1154

of the differences between two consecutive environments, divided by the number of intervals1155

(n− 1):1156

SM,k =

∑n−1
i |zk,i+1 − zk,i|

n− 1
. (S52)

3. The curvature, CM, is computed as the absolute value of the average change in phenotype1157

between two consecutive pairs of environments:1158

CM,k =

∑n−2
i |(zk,i+2 − zk,i+1)− (zk,i+1 − zk,i)|

n− 2
. (S53)

4. The wiggle, WM, is, according to the authors the “the variability in shape not described by any1159

of the previous three measures”:1160

WM,k =

∑n−2
i |(zk,i+2 − zk,i+1)− (zk,i+1 − zk,i)|

n− 2
− CM,k. (S54)

Given the lower interest in this latter statistics, we will not comment on it any further. Most of1161

the comments on the other statistics also apply to this one.1162

One strong assumption underlying the calculations above is that environmental values ε = {ε1, . . . , εn}1163

on which the reaction norms were evaluated are evenly spaced, e.g. that the differences εi+1 − εi are1164

equal for all possible values of i. The assumption is actually that the space between two measures1165

is equal to 1 (which, admittedly, is only a matter of rescaling when evenly-spaced values are already1166

assumed). If this is the case, then there is indeed no loss in generality in using the number of1167

components (n, n − 1 and n − 2) rather than actual values of x in the denominator. Although it is1168

50



common for studies on reaction norms to use evenly-spaced environmental values, it is an unnecessary1169

assumption that shall not be satisfied by all studies.1170

Second, developing the sums in SM and CM above show that the intermediate values cancel each other1171

out, leaving only the values at each extreme of the environmental range in the estimate:1172

SM,k =
zk,n − zk,1
n− 1

,

CM,k =
(zk,n − zk,n−1)− (zk,2 − zk,1)

n− 2
.

(S55)

The issue here is double: (i) the estimation is highly sensitive to the random noise coming from a1173

small number of values (two or three/four); and (ii) the intermediate values in the reaction norm are1174

simply thrown out and not used for a more robust estimation. In other words, it would have been1175

exactly the same to not measure the reaction norm at these intermediate values, since they are not1176

accounted for in the calculation.1177

A final issue is that the approach uses the measured values of the reaction norms without accounting1178

for the uncertainty in their estimation (i.e. standard-deviation and sample size for each genotype and1179

environmental value) which poses the well-known issue of non-propagation of the error when doing1180

“statistics on statistics”.1181

Although we also provide estimators of the impact of several aspects of reaction norms on the1182

phenotypic variation, our approach differs from the one from Murren et al. (2014) by many aspects.1183

First, our variance decomposition makes the explicit distinction between the average shape of the1184

reaction norm and the genetic variance surrounding it. As such, to OM , SM and CM corresponds not1185

only the π-, but also the γ- and ι-decomposition. We clearly delimit the domain of validity of each of1186

these decomposition. We also account for possible correlation between those components. Second, we1187

use the whole of the statistical inference to define our variance decomposition estimates. Third, we1188

explicitly account for the uncertain estimation of reaction norms.1189
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