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Abstract1

Many phenotypic traits vary in a predictable way across environments, as captured by their norms of2

reaction. These reaction norms may be discrete or continuous, and can substantially vary in shape across3

organisms and traits, making it difficult to compare amounts and types of plasticity among (and sometimes4

even within) studies. In addition, genetic variation and evolutionary potential in heterogeneous environ-5

ments critically depends on how reaction norms vary genetically, but there is no consensus on how this6

should be quantified. Here, we propose a partitioning of phenotypic variance across genotypes and envi-7

ronments that jointly address these challenges. We first derive components of phenotypic variance arising8

from the average reaction norm across genotypes, genetic variation in reaction norms (including additive9

genetic variance), and a residual that cannot be predicted by reaction norms. We then further partition the10

first two terms into contributions from parameters of reaction norm shape, such as the mean and variance11

of reaction norm slope and curvature. We show how to implement this approach in practice in various con-12

texts, including the character-state approach, polynomial functions, or arbitrary non-linear models. We13

also show how the combination of character-state and curve-parameter approaches can provide a metric of14

goodness of fit of a given model of reaction norm shape. Overall the toolbox we develop, summarized in an15

online tutorial, should serve as a base for more robust comparative studies of plasticity across organisms16

and traits.17

Introduction18

The phenotype of a given genotype can vary in response to its environment of development or expression,19

and such phenotypic plasticity is currently attracting considerable interest in the context of rapidly changing20
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natural environments (Gienapp et al. 2008; Chevin et al. 2010; Merilä & Hendry 2014). While the mere exis-21

tence (and even prevalence) of phenotypic plasticity is uncontroversial, its relative contribution to observed22

or predicted phenotypic change in the wild (Teplitsky et al. 2008; Gienapp et al. 2008; Merilä & Hendry 2014;23

Bonamour et al. 2019), as well as the extent of its interplay with population-level processes such as natural24

selection and population dynamics (Reed et al. 2010; Vedder et al. 2013; Schaum & Collins 2014; de Ville-25

mereuil et al. 2020), are very active research areas. Answering these questions requires being able to quantify26

phenotypic plasticity at broad taxonomic, ecological, and phenotypic scales.27

The relationship between the phenotype and the environment is captured by the reaction norm (or norm28

of reaction), which is defined at the level of genotypes (Woltereck 1909; Schlichting & Pigliucci 1998). Reaction29

norms encompass phenotypic responses to both continuous environments (such as temperature, salinity, etc.)30

and categorical/discrete ones (such as host plant for a phytophagous insect). Within a simplemodel of reaction31

norm, quantifying plasticity may be straightforward. For instance when a linear reaction norm is assumed,32

the reaction norm slope is generally used as a metric of plasticity in both empirical (Charmantier et al. 2008;33

Nussey et al. 2005) and theoretical (Gavrilets & Scheiner 1993b; Lande 2009) work, since it quantifies how34

much phenotypic change is induced per unit environmental change. However, regression slopes are signed35

and have units of trait per environment, so even in this simple case some standardization is needed in order to36

compare the magnitude of plasticity among studies. Beyond this simple scenario, drawing robust conclusions37

about phenotypic plasticity requires being able to quantify and compare its magnitude across organisms, traits38

and environments, in a way that does not depend on reaction norm shape, and can be applied evenwhen shape39

cannot be simply defined (for instance because environments have no intrinsic order). Such unified measure40

of plasticity seems to be currently lacking.41

How phenotypes change with the environment can also be of importance, beyond how much they change.42

First, different reaction norm shapes may come with different biological interpretations. For instance, a bell-43

shaped (eg quadratic, Gaussian) reaction norm may indicate that some mechanism underlying a measured44

trait is maximized at an intermediate value of the environment. This is often expected for traits that are45

direct components of fitness, or that can be interpreted as proxys for performance, for which the reaction46

norms are generally described as tolerance or performance curves (Lynch & Gabriel 1987; Deutsch et al. 2008;47

Angilletta 2009). A sigmoid shape, on the other hand, may indicate that plasticity is directional but that the48

range of possible phenotypes is constrained, or that selection favors discrete-like variation (Moczek & Emlen49

1999; Suzuki & Nijhout 2006; Hammill et al. 2008; Chevin et al. 2013). Second, most theoretical models on the50

evolution of plasticity, especially those based on quantitative genetics, which are most directly comparable51

to data on phenotypic plasticity, assume a given reaction norm shape - often linear for simplicity (Scheiner52

1993b; Tufto 2000; Lande 2009). The extent to which theoretical predictions on the evolution of plasticity apply53
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to any particular empirical system thus depends on how well the reaction norm shape assumed in the models54

conforms to observations in this system. In other words, we need some metric for whether a reaction norm55

is ”mostly linear” or ”mostly curved”, for instance. In addition, when fitting a particular model of reaction56

norm shape to an empirical dataset, we would like to know how well this model captures the overall plastic57

variation of the trait across environments.58

A third crucial question regarding reaction norms is how they vary genetically. It has long been recog-59

nized that plasticity can evolve if reaction norms vary genetically (Bradshaw 1965), and theory has predicted60

how different aspects of reaction norm shape are expected to respond to selection in a variable environment61

(De Jong 1990; Gomulkiewicz & Kirkpatrick 1992; Gavrilets & Scheiner 1993b). However this theory has been62

little applied empirically, except for predictions about the slope of linear reaction norms (or equivalently, phe-63

notypic differences between two environments), which directly quantifies the degree of plasticity. But beyond64

this, it should also be of interest to find out which aspects of reaction norm shape are more likely to evolve,65

based on how they vary genetically. For instance, a reaction norm may be highly curved (e.g. quadratic) but66

have little genetic variability in curvature, instead mostly varying in position, height, or local slope. There is67

thus a need to compare genetic variation in different components of reaction norm slope, as previously done in68

a meta-analysis (Murren et al. 2014, but see Appendix D). However, comparing genetic variation in the slope69

versus curvature of a reaction norm, for instance, is not straightforward, as these parameters have different70

scales and even units (trait per environment, vs trait per squared environment). Genetic variation in reaction71

reaction norm shape can be analyzed by estimating variation in the parameters of a continuous function of the72

environment (e.g. polynomial), possibly using the flexible framework of function-valued traits (Kirkpatrick &73

Heckman 1989; Gomulkiewicz & Kirkpatrick 1992; Stinchcombe et al. 2012). But even this flexible approach74

generally ”makes the restrictive assumption that all individuals or genotypes are fully characterized by the75

chosen parametric model” (Stinchcombe et al. 2012), and the degree to which the overall plastic variance in76

the trait is explained by this model is rarely evaluated. In addition, it would be useful to be able to compare77

the relative contributions of variation in different aspects of reaction norm shape to the overall variance in78

plasticity of a trait.79

We herein propose a simple framework to estimate and partition the phenotypic variance of reaction80

norms, towards three main goals: (i) quantify plasticity across reaction norm shapes and types; (ii) evaluate81

the contribution of different aspects of reaction norm shape, and of the full assumed reaction norm model,82

to overall plastic phenotypic variation; and (iii) quantify heritable variation in different aspects of reaction83

norm shape. Our hope is that this study will stimulate more quantitative investigations of the ways in which84

phenotypic plasticity contributes to phenotypic variation and evolutionary change.85
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Alternative models of reaction norms86

In the broadest sense, a reaction norm is a decomposition of phenotypic variation among known (often con-87

trolled) versus unknown sources of environmental variation. We can write the measure 𝑖 of phenotypic trait88

𝑧 for genotype 𝑔 developing in environment 𝑘 as89

𝑧𝑔𝑘𝑖 = 𝑧𝑔𝑘 + 𝑧𝑖 . (1)

The first term 𝑧𝑔𝑘 is the reaction norm, that is, the component of phenotypic variation that can be predicted90

(hence the hat notation) from knowing both the genotype of an individual and the environment in which it91

developed. The second term 𝑧𝑖 is the component of the measured phenotype that cannot be predicted from92

genotype and environment, and arises from unknown environmental factors (usually described as micro-93

environmental variation), developmental noise, and measurement error.94

The reaction norm 𝑧𝑔𝑘 can be further categorized according to the type of environmental variation. The95

environment may be inherently categorical and unordered, such as host plant for a herbivore insect. It may96

be ordered but with no (or unknown) quantitative value, such as low, medium, and high treatments. Or it97

may be ordered quantitatively, with values that are either intrinsically discrete (such as number of resource98

items), or continuous (even if sampled at discrete intervals), such as temperature or salinity.99

When environments are purely categorical, the reaction norm can be studied by treating phenotypic100

values in different environments as alternative ’character states’, considered as different traits in amultivariate101

framework (Via & Lande 1985; Falconer 1952). The mean character state may differ among environment if the102

trait is plastic; phenotypic and genetic variation may be larger in some environments; and phenotypes may be103

more or less correlated across environments (Via & Lande 1985; Falconer 1952). Such amodelling framework is104

readily described by Equation 1 for a discrete genotype𝑔 and environment𝑘 . In practice, such approachwould105

correspond to an ANOVA (or a mixed model) with discrete environment and genotype-within-environment106

as (random) effects of the model. In its most compact form, such a statistical model can be framed as a107

multivariate Gaussian distribution, with a number of dimensions corresponding to the number of categories108

in the environment,109

�̂� ∼ N (𝝁,G𝑧) , (2)

where 𝝁 is the vector of expected phenotypic values (across genotypes) within each environment, and G𝑧 is110

the genetic variance-covariance matrix of the phenotype. Note that when the environment is quantitative but111

discrete, one may still use the character state approach, but structuring correlations in G𝑧 by environmental112

distance, in effect treating the phenotype as a stochastic process characterized by its autocovariance function113
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across environments (Pletcher & Geyer 1999).114

For quantitative environments (both discrete and continuous), the most common approach is to use a115

function 𝑓 to model the reaction norm,116

𝑧𝑔𝑘 = 𝑓 (𝜀𝑘 , 𝜽𝑔), (3)

where 𝜽𝑔 is a vector that contains the parameters of the function (e.g. coefficients associated to each expo-117

nent for a polynomial) for each genotype 𝑔; these parameters are thus genetically variable. In practice, such118

approach is implemented through (possibly non-linear) mixed models (Morrissey & Liefting 2016), in which119

genetic variation in 𝑓 is modelled through random effects on its parameters 𝜽 (omitting the subscript 𝑔 for120

simplicity). The 𝜽 are generally assumed to be polygenic and thus follow a multivariate Gaussian distribution,121

𝜽 ∼ N(𝜽 ,Θ), (4)

where 𝜽 is the vector of average parameter values across genotypes and Θ is the additive genetic variance-122

covariance matrix of the parameters 𝜽 . This approach has been described alternatively as the “reaction norm”123

approach, the “polynomial approach”, or a parametric version of function-values traits. To keep it general here124

and avoid confusion with the general concept of reaction norm as defined in Equation 1, we will describe it125

as the “curve parameter” approach. Note that, for a given reaction norm, some parameters in 𝜽 (and/or126

their genetic variation) may depend on how 𝜀 was defined (e.g. whether it was mean-centered or not). For127

instance, changing what environment is chosen as the reference (where 𝜀 = 0) will change the intercept of a128

linear reaction norm and its genetic variance (as explained in more detail in Lande 2009).129

We show below that these modelling choices can be unified under a common framework, following the130

spirit of de Jong (1995). More specifically, common metrics of variance partitioning can be computed regard-131

less of the approach used, and translated from one approach to another, allowing for broad comparison of132

plasticity across organisms, traits, and environments. This also allows highlighting complementary strengths133

and weaknesses of the character-state and curve parameter approaches, when both are available.134

Partitioning variation in reaction norms135

The terms in Equation 1 are assumed to be independent, such that the total phenotypic variance V(𝑧) (usually136

noted𝑉𝑃 ) is the sum of the variance predicted by the genotype and the environment V(𝑧), plus a residual com-137

ponent of variance V(𝑧𝑖), which we will note 𝑉Res. The predicted variance component V(𝑧) can be furthered138

partitioned using the law of total variance across genotypes and environments, leading to139
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V(𝑧) = V𝜀 (E𝑔 |𝜀 (𝑧)) + E𝜀 (V𝑔 |𝜀 (𝑧)), (5)

where E𝑥 and V𝑥 denote expectation and variance along variable 𝑥 (either the environment 𝜀, or the genotype-140

within-environment𝑔|𝜀). Figure 1 illustrates this variance partitioning for a quadratic reaction norm. The first141

term captures howmuch phenotypic variance across environments results fromplasticity in themean reaction142

norm averaged over genotypes (see Figure 1), so we denote it as 𝑉Plas. The second term is the phenotypic143

variance among genotypes within environment averaged across environments, i.e. the variance arising from144

genetic variation around the average reaction norm (Figure 1), so we denote as as𝑉Gen. Overall, we thus have145

for the total phenotypic variance146

𝑉𝑃 = 𝑉Plas +𝑉Gen +𝑉Res (6)

This differs from the classical partitioning into genetic, environmental, and genotype-by-environment inter-147

action effects in quantitative genetics (Falconer & Mackay 1996; Lynch & Walsh 1998; Des Marais et al. 2013).148

The environmental component from this classical partitioning is here split between the𝑉Plas and𝑉Res compo-149

nent, while our 𝑉Gen component accounts for both the genetic and genotype-by-environment effects. Note150

that this is in contrast to another view, where the genotype-by-environment interaction is instead associ-151

ated with the environmental component, e.g. as plastic variance (Scheiner & Lyman 1989; Scheiner 1993a;152

Falconer & Mackay 1996; Lynch & Walsh 1998). Each variance partitioning is relevant in what it can unveil153

and limited by what it hides. We explore here what the partitioning in Equation 6 can bring, both conceptu-154

ally and methodologically. A more detailed and nuanced comparison, with a worked example, is provided in155

Appendix A. The genetic variance can further be decomposed into an additive (heritable) component 𝑉A and156

a non-additive component 𝑉NA, with the latter comprising the dominance and epistasis variance, which are157

not our focus here.158

Contributions from the average plasticity159

We can now proceed to refine the definition of 𝑉Plas and analyze its dependency on reaction norm shape. In160

the character-state approach, the variance partitioning in Equation 5 readily follows from Equation 2 since161

E𝑔 |𝜀𝑘 (𝑧) = 𝜇𝑘 , and we have162

𝑉Plas = V𝜀 (𝜇), (7)

i.e. the plastic variance is the variance in the expected character state 𝜇𝑘 across environmental levels 𝑘 .163

In the curve parameter approach, the first step is to compute the mean phenotypic conditional on the164
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VGen = E𝜀 (V𝑔|𝜀( ̂𝑧))

Each genotype’s
reaction norm

Genetic variance around
the average shape V𝑔|𝜀( ̂𝑧)

VPlas = V𝜀 (E𝑔|𝜀( ̂𝑧))

Avg. shape
E𝑔|𝜀( ̂𝑧)

Environment (𝜀)
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(
̂ 𝑧)

V( ̂𝑧) = V𝜀 (E𝑔|𝜀( ̂𝑧)) + E𝜀 (V𝑔|𝜀( ̂𝑧)) = VPlas + VGen

Figure 1: Schematic illustration of our variance partitioning in the case of a quadratic reaction norm, using the curve
parameter approach. The variance of the expected phenotype according to each genotype’s reaction norm (light blue
lines) is partitioned into the component due to the average plasticity shape (𝑉Plas, in red) and the component due to
genetic variation around this average shape (𝑉Gen, in blue and corresponding to the blue area). For example, if the
genetic variation (blue area) is small comparatively to the “trajectory” of the average shape (red line), then 𝑉Gen will
be small compared to 𝑉Plas, meaning that most of the phenotypic variation comes from the direct effect of plasticity,
rather than from genetic variation in plasticity.

environment,165

E𝑔 |𝜀 (𝑧) =
∫

𝑓 (𝜀, 𝜽𝑔)𝑝 (𝜽𝑔)d𝑔, (8)

where 𝑝 (𝜽𝑔) is the probability density function of the parameters 𝜽𝑔 due to the variability across genotypes.166

From this, 𝑉Plas can be computed as167

𝑉Plas =
∫

(E𝑔 |𝜀 (𝑧) − 𝑧)2𝑝 (𝜀)d𝜀, (9)

where 𝑝 (𝜀) is the probability density function of the environmental variable 𝜀, and 𝑧 is the average phenotype168

among genotypes and environments (i.e., the grandmean phenotype). If the reaction norm function 𝑓 is linear169

in its parameters 𝜽 (not to be confused with linearity with respect to the environment 𝜀, i.e. a linear reaction170

norm) then E𝑔 |𝜀 (𝑧) = 𝑓 (𝜀, 𝜽 ) (noted simply as 𝑓 (𝜀) below), which simplifies the computation.171
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Although the shape of the true reaction norm function 𝑓 cannot be known with certainty and may be172

complex, it is often of interest to fit relatively simple functions with interpretable parameters. For instance,173

first- or second-order approximations to the reaction norm provide information on its slope or curvature.174

More generally, polynomial functions allow fitting reaction norms with potentially complex shapes while175

retaining linearity in their parameters, making them popular in studies of reaction norms, both theoretically176

(Scheiner 1993b) and empirically (Morrissey & Liefting 2016). To exemplify how different components of177

reaction norm shape contribute to phenotypic variance, let us first focus on the quadratic case,178

𝑓 (𝜀) = 𝑎 + 𝑏𝜀 + 𝑐𝜀2, (10)

which includes linear reaction norms as a subcase when 𝑐 = 0. In this model, the variance arising from the179

average reaction norm is180

𝑉Plas = 𝑏2V𝜀 (𝜀) + 𝑐2V𝜀

(
𝜀2
)
+ 2𝑏𝑐 Cov𝜀 (𝜀, 𝜀2), (11)

where bars denote averages over genetic variation. If the environmental variable 𝜀 has been mean-centered181

and is symetrical (e.g. Gaussian), then cov(𝜀, 𝜀2) = 0 and the third term vanishes. We may then compute the182

relative contributions of reaction norm slope and curvature to the total variance attributable to the average183

reaction norm as184

𝜋𝑏 =
𝑏2V𝜀 (𝜀)
𝑉Plas

, 𝜋𝑐 =
𝑐2V𝜀

(
𝜀2
)

𝑉Plas
. (12)

An important point arising from Equation 12 is that the relative importances of the linear and quadratic185

components of the curves depends on variation in the environment, respectively V𝜀 (𝜀) and V𝜀
(
𝜀2
)
. Figure 2186

show the values of 𝜋𝑏 and 𝜋𝑐 for various quadratic reaction norms, assuming 𝜀 follows either a normal or187

uniform distribution, with same mean 0 and variance 1. The values for 𝜋𝑏 and 𝜋𝑐 translate well the perceived188

“trendiness” (for large 𝜋𝑏 ) or “curviness” (for large 𝜋𝑐 ) of reaction norms, but theymay also strongly depend on189

the statistical distribution of the environmental variable 𝜀, as shown especially in the third example of Figure 2.190

In this example, the difference arises because the assumed environmental distributions have different kurtosis191

(the scaled fourth central moment, related to𝑉𝜀 (𝜀2) in Equation 12). Because𝑉𝜀 (𝜀2) is larger for the Gaussian,192

this distribution leads to larger 𝜋𝑐 than the uniform.193

To generalise this reasoning to any polynomial order 𝑛, it is convenient to use linear algebra, in line with194

theoretical work by Gavrilets & Scheiner (1993a). A polynomial reaction norm can be written as195

𝑧 = x𝑇𝜽 , (13)

where the column-vector x =
(
1, 𝜀, 𝜀2, . . . , 𝜀𝑛

)𝑇 (where 𝑇 denotes transposition) includes all exponentiation196
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𝜋𝑏 = 0.97, 𝜋𝑐 = 0.03Gauss.

𝜋𝑏 = 0.99, 𝜋𝑐 = 0.01Unif.
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̂ 𝑧)

𝜋𝑏 = 0.03, 𝜋𝑐 = 0.97Gauss.

𝜋𝑏 = 0.07, 𝜋𝑐 = 0.93Unif.

Environment (𝜀)Ex
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e
(
̂ 𝑧)

𝜋𝑏 = 0.33, 𝜋𝑐 = 0.67Gauss.

𝜋𝑏 = 0.56, 𝜋𝑐 = 0.44Unif.

Figure 2: Computation of 𝜋𝑏 and 𝜋𝑐 , the relative contributions of linear and quadratic terms to phenotypic variation
caused by the mean reaction norm, for different shapes of reaction norms, and two distributions of the environmental
variable 𝜀: a standard Gaussian (of mean 0 and variance 1), and a uniform distribution between −

√
3 and

√
3 (of mean

0 and variance 1).

levels (up to 𝑛) of the environmental variable 𝜀. The variance component due to plasticity in the average197

reaction norm is then198

𝑉Plas = 𝜽𝑇X𝜽 , (14)

where X is the variance-covariance matrix of x, recalling that 𝜽 is the average of reaction norm parameters199

across the genotypes. The relative contribution of a given exponent 𝑚 to the variance caused by the mean200

plasticity becomes201

𝜋𝑚 =
𝜃2𝑚X𝑚,𝑚

𝑉Plas
=
𝜃2𝑚V(𝜀𝑚)
𝑉Plas

, (15)

and the contribution of the covariance between exponents 𝑙 and𝑚 is202

𝜋𝑙𝑚 =
2𝜃𝑙𝜃𝑚X𝑙,𝑚

𝑉Plas
=
2𝜃𝑙𝜃𝑚Cov(𝜀𝑙 , 𝜀𝑚)

𝑉Plas
. (16)

Note that even with a symmetrical and mean-centered environment, the covariance between higher-up order203

exponents will not be zero in general, contrary to 𝜀 and 𝜀2 in the quadratic case.204

Contributions from genetic variation205

We now turn to how genetic variation in reaction norms translates into genetic variance of the trait across206

environments. In the character-state approach, the genetic variance within each environment is given by the207

diagonal elements of G𝑧 , so we simply have208

𝑉Gen = E(diag(G𝑧)), (17)
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that is, 𝑉Gen is the average genetic variance of character states across environments. Note however that this209

cannot be directly used to predict the mean response to selection in a variable environment, as the latter210

are also influenced by genetic correlations in character state across environments (Via & Lande 1985; Go-211

mulkiewicz & Kirkpatrick 1992). In addition, whether Equation 17 actually outputs 𝑉Gen, or rather its heri-212

table component 𝑉A, entirely depends on whether the matrix G𝑧 is defined as containing the total genetic213

(co)variances or only the additive genetic (co)variances.214

In the curve parameter approach, expanding the second term in Equation 5 we get215

𝑉Gen =
∫

𝑉𝑔 |𝜀 (𝜀)𝑝 (𝜀)d𝜀. (18)

From the reaction norm function in Equation 3 and under multivariate Gaussian distribution assumed in216

Equation 4, the genetic variance conditional on environment becomes217

𝑉𝑔 |𝜀 (𝜀) =
∫ (

𝑓 (𝜀, 𝜽 ) − E𝑔 |𝜀 (𝑓 (𝜀, 𝜽 ))
)2
𝑝N (𝜽 )d𝑔. (19)

Numerical integration of Equation 19 can be used in any case to obtain 𝑉Gen. However, further analytical218

progress can be made when focusing more specifically on the additive genetic variance 𝑉A, which more di-219

rectly influences responses to selection (Lynch & Walsh 1998). Using the property of additivity of breeding220

values, and relying on a multivariate extension of the framework in de Villemereuil et al. (2016), it is shown221

in Appendix B that the additive genetic variance in environment 𝜀 is222

𝑉A |𝜀 = 𝝍𝑇
𝜀 Θ𝝍𝜀 . (20)

where 𝝍𝜀 is the vector of mean partial derivatives of the reaction norm function 𝑓 with respect to each of223

its parameters. The total additive genetic variance is then obtained by averaging over environments: 𝑉A =224

E𝜀 (𝑉A |𝜀). Terms in the quadratic form of Equation 20 can be expanded to yield a decomposition of the additive225

genetic variance into contributions from (co)variances of different parameters of the reaction norm function,226

𝛾𝑖 =
E𝜀

(
𝜓2
𝜀,𝑖

)
V𝑔 (𝜃𝑖)

𝑉A
, 𝛾𝑖 𝑗 =

2E𝜀
(
𝜓𝜀,𝑖𝜓𝜀,𝑗

)
Cov𝑔 (𝜃𝑖 , 𝜃 𝑗 )

𝑉A
,

∑
𝑖

𝛾𝑖 +
∑
𝑖< 𝑗

𝛾𝑖 𝑗 = 1 (21)

Importantly, when the reaction norm function 𝑓 (and thus 𝑧) is linear in its parameters (which again covers227

many cases of non-linear reaction norms with respect to the environment, including polynomial functions),228

it can be shown that 𝑉Gen = 𝑉A (see Appendix B), so Equation 21 and Equation 20 apply directly to 𝑉Gen,229

providing a simpler way to compute it in this case.230

We can illustrate the general decomposition of 𝑉Gen in the case of polynomial reaction norms (following231
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De Jong 1990; Gavrilets & Scheiner 1993a,b), as done above for𝑉Plas. When the reaction norm is a polynomial232

function of the environment, then the gradient of 𝑧 with respect to reaction norm parameters is simply the233

vector of exponents of the environment defined below Equation 13, 𝝍 = x. Then using Equation 20, we have234

𝑉Gen = 𝑉A = E𝜀 (x𝑇Θx) = x̄𝑇Θx̄ + Tr(ΘX) (22)

where x̄ is the vector of the average of the exponentiated environments, X their covariance matrix defined235

in Equation 14 and Tr stands for the trace of a matrix. Note that the trace of a matrix product is the sum of236

element-wise products of their terms. With a quadratic reaction norm as in Equation 10, this becomes237

𝑉Gen = 𝑉𝑎 + 2𝐶𝑎𝑏E(𝜀) + 2𝐶𝑎𝑐E(𝜀2) +𝑉𝑏E(𝜀2) + 2𝐶𝑏𝑐E(𝜀3) +𝑉𝑐E(𝜀4), (23)

where terms in 𝑉 and 𝐶 denote additive genetic variances and covariances of the reaction norm parameters238

defined in Equation 10. If the environmental variable is symmetrical and has been mean-centred, then E(𝜀) =239

E(𝜀3) = 0, such that240

𝑉Gen = 𝑉𝑎 + 2𝐶𝑎𝑐E(𝜀2) +𝑉𝑏E(𝜀2) +𝑉𝑐E(𝜀4) (24)

Note the importance of the genetic covariance between the intercept and the curvature component𝐶𝑎𝑐 , which241

can have a critical evolutionary role (Gavrilets & Scheiner 1993b). From Equation 24, we can compute the242

contribution of each component of genetic variance in reaction norm to the total genetic variance (averaged243

across environments):244

𝛾𝑎 =
𝑉𝑎
𝑉A

, 𝛾𝑏 =
𝑉𝑏E(𝜀2)

𝑉A
, 𝛾𝑐 =

𝑉𝑐E(𝜀4)
𝑉A

, 𝛾𝑎𝑐 =
2𝐶𝑎𝑐E(𝜀2)

𝑉A
. (25)

As noted above for components of𝑉Plas in Equation 12, the components of𝑉Gen in Equation 25 depend on the245

distribution of environments, through its moments E(𝜀𝑛).246

Parameter estimation and variance partitioning in practice247

Estimating the parameters248

All the parameters mentioned above can be estimated through commonly used statistical frameworks. A249

tutorial is available at github.com/devillemereuil/TutoPartReacNorm showing how to implement such models250

using e.g. the frequentist lme4 (Bates et al. 2015) and Bayesian brms R packages (Bürkner 2017). For the251

character-state approach (Equation 2), a random-intercept model can be used, or alternatively a “multi-trait”252
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model (Rovelli et al. 2020; Mitchell & Houslay 2021). We will focus here on the former, which is more easily253

implemented while seemingly scarcely used in the literature on plasticity. In a random-intercept model, the254

environment is considered as a categorical variable, to which a random effect is added using the genotype as255

the grouping factor. In the curve parameter approach, the appropriate models will be random-slope models256

for a polynomial approach (as mentioned in Morrissey & Liefting 2016), or non-linear mixed models. Such a257

model is based on the reaction norm function 𝑓 (𝜀, 𝜽 ), possibly written as a linear model (e.g. for a polynomial258

function), to which random effects (with the genotype as grouping factor) are added for all of its parameters,259

e.g. the intercept, slope, and any higher-order effects for a polynomial function.260

Since the parameters are estimated with noise, it is important to account for the impact of estimation261

uncertainty when computing variance components. In particular, while variances directly obtained using262

random effects (e.g. variances related to 𝑉Gen) are expected to be unbiased, the variances arising from fixed263

effects (e.g. variances related to 𝑉Plas) should be corrected for biases due to uncertainty. For example, the264

unbiased estimator of 𝑉Plas in a polynomial model would be:265

𝑉Plas = 𝜽𝑇X𝜽 − Tr(S𝜃X), (26)

where S𝜃 is the variance-covariance matrix of errors around the 𝜽 estimators (see Appendix C). The unbiased266

estimator for a character-state model would be:267

𝑉Plas = V𝜀 (𝜇) − E𝜀 (𝑠2) . (27)

where 𝑠𝑘 is the standard-error of 𝜇𝑘 at environment 𝑘 (see Appendix C).268

Perfect modelling of polynomial curves269

We simulated phenotypic data conforming to a quadratic reaction norm, to evaluate the performance of the270

proposed approach when the true reaction norm is correctly modeled. We considered an environmental271

gradient of 10 values, equally spaced from -2 to 2, over which we defined a quadratic curve with average272

parameters 𝜽 = (1.5, 0.5,−0.5) for intercept, slope and curvature. We then drew 20 different genotype-specific273

vectors of curve parameter 𝜽 from a multivariate normal distribution with mean 𝜽 and (genotypic) variance-274

covariance matrix275

Θ =

©«
0.090 −0.024 −0.012

−0.024 0.160 0.008

−0.012 0.008 0.040

ª®®®®®¬
.

12



Figure 1 displays examples of curves resulting from these parameters. Finally, we sampled 20 individual276

measures for each genotype with a residual variance 𝑉Res = 0.25. This scenario corresponds to expected277

values 𝑉Plas = 0.92 and 𝑉Gen = 0.5, for a total phenotypic variance of 1.67. Our simulated conditions resulted278

in 20×10×20 = 4000 data points per simulation, which is on the higher-end of the realm of practical datasets,279

since the aim was not to perform a power analysis, but to evaluate the soundness of the approach in practice.280

However the results were qualitatively unchanged when using 4 instead of 10 environments. The simulation281

process was repeated 100 times in R, and for each simulated dataset, we ran estimations using the lme4 R282

package (Bates et al. 2015) under both the curve parameter and character-state approaches, in order to check283

how these approaches compare in practice.284

Curve Parameter Character-State
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VPlas = 0.92
πb = 0.44
πc = 0.56
VGen = 0.5
γa = 0.18
γb = 0.52
γc = 0.38

γac = − 0.08
VTot = 1.67

Figure 3: Distribution of the relative error (difference between the inferred and true value, divided by the true value)
for each the inferred variance components. Estimates are for 𝑉Plas, 𝑉Gen and 𝑉Tot for both the curve parameter and
character-state approaches. For the parameter curve, the 𝜋-decomposition of 𝑉Plas into 𝜋𝑏 (contribution of the slope)
and 𝜋𝑐 (contribution of the curvature) and the 𝛾-decomposition of 𝑉Gen into 𝛾𝑎 (genetic contribution of the intercept),
𝛾𝑏 (genetic contribution of the slope), 𝛾𝑐 (genetic contribution of the curvature) and 𝛾𝑎𝑐 (genetic contribution of the
covariance between the intercept and the curvature) is also shown. The red dots correspond to the average over the
1000 simulations. The yellow box provides the expected values for all of the estimates.

From the curve parameter models, we computed 𝑉Plas as in Equation 26, as well as its 𝜋-decomposition285

(Equation 12) into 𝜋𝑏 (part explained by the average linear trend) and 𝜋𝑐 (part explained by the average286

curvature). We also computed𝑉Gen as in Equation 22 and its 𝛾-decomposition (Equation 25) into 𝛾𝑎 (impact of287

the genetic variation of the intercept), 𝛾𝑏 (for the slope), 𝛾𝑐 (for of the curvature) and 𝛾𝑎𝑐 (for the covariance288

between the intercept and curvature). From the character-state model, we computed 𝑉Plas as in Equation 27289

and 𝑉Gen as in Equation 17. Finally for both models, we computed the total inferred variance as the sum290
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𝑉Plas +𝑉Gen +𝑉Res, and compared it to the sample phenotypic variance, to verify the ability of both approaches291

to implement the variance partitioning in Equation 6.292

The results of the inferences are available in Figure 3. First, they show that both methods allow for unbi-293

ased inference (Wilcoxon’s rank test, 𝑝 > 0.05 for all components) of all estimates, showing that our variance294

partitioning is easily implemented with existing tools. There was, however, considerable uncertainty in the295

estimation of 𝛾𝑎𝑐 , as covariances are typically more difficult to estimate. Second, and as a consequence, 𝑉Tot296

retrieved the total phenotypic variance with extreme precision (correlation > 99%). Third, and most inter-297

estingly, the results illustrate the equivalence between the curve parameter and character-state approches, as298

the distributions of𝑉Plas and𝑉Gen were correlated at > 99% between the two approaches. This means that our299

variance partitioning is not impacted by which approach is chosen to study plasticity, as long as the curve300

parameter approach captures the true reaction norm shape. When this does not hold, the differences between301

estimates from these alternative approaches can be exploited efficiently, as we describe below.302

Assessing goodness-of-fit under imperfect modelling303

The true shapes of reaction norms are generally unknown andmay be complex, such that any curve parameter304

model is likely to be mis-specified to some extent. The character-state approach is arguable more general, as305

it does not assume anything about the “true” shape of the reaction norm (as pointed out previously by de306

Jong 1995). Nonetheless, having access to curve parameters is often very interesting and more actionable and307

interpretable, especially to predict evolution of phenotypic plasticity (see also de Jong 1995). To get the best308

of both worlds, we offer to rely on the robust ability of the character-state approach to recover 𝑉Plas, using it309

as an “anchor” to test the goodness-of-fit of an assumed curve.310

In order to demonstrate the soundness and usefulness of this approach, we simulated datasets following311

relatively common curves that are not well-captured by a second order polynomial: a logistic sigmoid, or a312

Gompertz-Gaussian performance curve (see Figure 4). We assumed that the environment is sampled at either313

10 or 4 values. For each of these conditions, we simulated 1000 datasets, with 10 measures per environment314

(for the sake of simplicity, and given the focus on 𝑉Plas here, we did not include different genotypes in these315

simulations). We estimated the parameters of a polynomial model, and computed the relative contributions316

of the slope and curvature using Equation 12. In addition, we computed the variance explained by our poly-317

nomial model as in Equation 26 (here specifically termed 𝑉mod), and compared it to 𝑉Plas estimated from a318

character-state model (here a simple ANOVA, since genotypes are not modelled).319

As a measure of goodness-of-fit, we computed the ratio of the variance explained by the polynomial curve320
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Figure 4: Estimation of the variance of the reaction normwhen the true shape (sigmoid on the left, Gompertz-Gaussian
performance curve on the right, red lines on top graphs) is unknown and approximated from a polynomial function.
The estimated reaction norms using a polynomial function (blue line, top graphs) only account for a part of the reaction
norm shape, while the ANOVA estimation (green dots, top graphs) fit the true shape more accurately. As a result, the
model is expected to explain only a part 𝑉mod of phenotypic variance due to plasticity (see 𝑅2

Mod). The part of the total
phenotypic variance explained by overall plasticity, 𝑅2

Plas = 𝑉Plas/V(𝑧), is also provided for information. Replicating
the simulation 1000 times shows that our estimation process is without bias (red dots: average estimated values; black
crosses: expected values) and produce reasonable sampling variance, even if only 4 environment values are used (bottom
graphs). For better readability, the 𝜋-decomposition of 𝑉mod is provided on the scale of the original variance as the
products 𝜋𝑏𝑉mod and 𝜋𝑐𝑉mod.
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to the total variance due to phenotypic plasticity:321

𝑅2
mod = 𝑉mod/𝑉plas. (28)

Our results show that, as expected, the polynomial function is an imperfect proxy of our complex shapes322

(Figure 4, 𝑅2
mod = 0.89 for the sigmoid and 𝑅2

mod = 0.65 for the performance curve), but using the character-323

state approach allows retrieving the total plastic variance without bias. The approach described here is thus324

useful to compute a measure of goodness-of-fit of a given reaction normmodel (e.g. a polynomial function) to325

an unknown true shape of the reaction norm. Here, while a linear functionmight be acceptable for the sigmoid326

curve, with 𝑅2
mod = 0.89, even a quadratic function can be considered as a bad fit to the Gompertz-Gaussian327

performance curve (𝑅2
mod = 0.65). In more details, the average slope was the most important component to328

explain the phenotypic variation for the sigmoid curve (𝜋𝑏 = 0.89, same as the total model). This was because,329

as the average curvature of a sigmoid is zero, the quadratic component was always estimated close to zero330

(< 10−3), resulting in no variance explained by the curvature in this case (𝜋𝑐 = 0). Of course, the sigmoid is331

not a straight line either, and some remaining variance unexplained by the polynomial curve (1−0.89 = 0.11)332

could have been explained by higher-order effects (e.g. cubic effect). By contrast, for the Gompertz-Gaussian333

performance curve, while the average slope was an important factor (𝜋𝑏 = 0.47), the average curvature also334

explained quite a lot of the variance as well (𝜋𝑐 = 0.2). Again, higher-order effect, including at least a cubic335

effect, would have explained more of the variance arising from the average shape of plasticity.336

This example illustrates the usefulness of a combined curve parameter and character-state approach to337

study the shape of reaction norms. While the character-state approach provides a robust estimation of 𝑉Plas,338

the curve parameter approach provides interpretable information about the average slope and curvature (and339

higher-orders if needed) of the reaction norm, which helps describing where most phenotypic variance lies.340

Using our measure of goodness-of-fit 𝑅2
mod, this analysis can be performed to assess howwell a chosen polyno-341

mial function models an actual reaction norm. Note that 𝑅2
mod is not penalised for the number of parameters,342

and thus should not be used for model selection.343

Estimation of non-linear models344

Although we have focused so far on models that are linear in the parameters to estimate (e.g., the coefficients345

associated to each exponent of the environment for a polynomial reaction norm), the approach we propose346

can also be applied to arbitrary functions. This requires numerically computing the integrals in the most347

general definitions of 𝑉Plas and 𝑉Gen above, but this can be solved with efficient algorithms. We illustrate this348

here using the sigmoid and performance curve shapes above, introducing genetic variation in the parameters,349
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beyond the mean curves illustrated in Figure 4 (top panels). Instead of fitting polynomials as in Figure 5, we350

estimated the actual functions used to generate the datasets, using the non-linear modelling function of nlme351

package (Pinheiro et al. 2009). We used the cubature package (Narasimhan et al. 2023), as in the QGglmm352

package (de Villemereuil et al. 2016), to compute 𝝍𝜀 and 𝑉A |𝜀 . We simulated 1000 datasets for each scenario,353

consisting of 100 individuals (i.e. the “genotype”) measured in each of 10 environments (say at 10 different354

temperatures).355

We retrieved our simulated parameters without bias using the nlme function. As a result, we successfully356

recovered all the variance components defined in Equation 6 (Figure 5, bottom panels). This includes the357

estimation of the total additive genetic variance of the trait 𝑉A. Indeed, almost all components of variance358

were unbiased (Wilcoxon’s rank test, all 𝑝 > 0.05 but one). The only exceptions (𝑝 < 0.05) were 𝑉Gen and359

𝑉A in the Performance Curve case, although the relative bias is extremely small (resp. 1.20% and 1.13%),360

especially with regard to the uncertainty surrounding the estimates. This results from a slight bias in the361

estimation of the Θ matrix by the nlme function. Because of this, there is a slighter bias in 𝑉Tot (0.39%).362

Moreover, the sum of variance components (𝑉Tot in Figure 5) successfully reflects the total phenotypic363

variance, with a correlation between the two quantities > 99.9%. One unfortunate aspect of running a non-364

linear model is that the correction method offered in Equation 26 no longer holds, precisely because of non-365

linearity in the model. However, this bias is generally small provided the standard error is small for most366

parameters, and the resulting bias in 𝑉Plas is extremely small, especially with regard to the imprecision, as367

can be seen in Figure 5 and the non-significant result of Wilcoxon’s rank test. In general, this bias will be368

small in regards to other sources of imprecision, unless the standard error of the estimates is extremely large369

(e.g. for very small sample size). An important distinction here is the difference between the curve defined370

by the average parameters 𝑓 (𝜀, 𝜽 ) (Figure 5, top panel, black curve) and the one defined by the local average371

phenotype E𝑔 |𝜀 (𝑧) (Figure 5, top panel, red curve), recalling that𝑉Plas is linked to the latter. While the two are372

very close for the sigmoid case, their differ quite strongly for the performance curve one.373

Although the variation between individuals (i.e. genotypes in this simulation) in the top panel of Figure 5374

seems quite large, the variance due to the average plasticity𝑉Plas is two to four times higher than the genetic375

variance 𝑉Gen (Figure 5, yellow box in top panels). This occurs because the genetic variance is actually very376

low in most environments (Figure 5, blue violins of the middle panels), and scarcely as high as 𝑉Plas. This377

illustrates how our variance partitioning can quantify and objectify variations that may be counter-intuitive378

for the human eye, notably because of non-linearities.379

An important aspect of such modelling of the reaction norm is that there is no longer an equivalence380

between the genetic variance𝑉Gen and the additive genetic variance𝑉A, due to the non-linearity of the system381

(de Villemereuil et al. 2016). In this regard the sigmoid model does unexpectedly yield extremely close values382
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Figure 5: Scenarios and results of non-linear modelling of phenotypic plasticity. On the left: results corresponding to a
sigmoid curve scenario; on the right: results corresponding to a performance curve scenario. Top panels: example of the
individual curves (each curve corresponds to one individual) simulated in each scenario; yellow box: true parameters;
black curve : 𝑓 (𝜀, 𝜽 ); red curve : E𝑔 |𝜀 (𝑧). Middle panels: distribution of the estimations of𝑉Gen (blue) and𝑉A (green), for
each environment; red dot is the average of estimates over all simulations; blue and green solid lines are the true values
for𝑉Gen and𝑉A in each environment (the lines are shifted horizontally for more clarity); yellow box: expected values for
the variance partition. Bottom panels: distribution of the relative error (error divided by the expected value) for each
component of our variance partition and the total variance, red dot is the average of estimates over all simulations.
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for𝑉Gen and𝑉A (Figure 5, yellow box in top panels, blue and green violins in middle panels). This is the result383

of the disproportionate importance of the genetic variation in the 𝐿 parameter is this model (𝛾𝐿 = 0.99), even384

though the genetic variance in 𝐿 is only twice that in 𝑟 in the Θ matrix. Since 𝐿 is only a mere scaling factor385

for the model, its relation with the phenotype is linear and thus 𝑉Gen ≃ 𝑉A. On the contrary, 𝑉Gen and 𝑉A386

differ for the performance curve model, especially in parts of the model where the local shape differs strongly387

between individuals (e.g. the two last environmental values, Figure 5, right middle panel). In this case, 𝑉A388

depends less exclusively on variation in the scaling factor𝐶 (𝛾𝐶 = 0.68), with 𝛾𝜀0 = 0.33. Hence in this model,389

the non-linearity due to the exponential function of 𝜀0 causes more substantial difference between 𝑉Gen and390

𝑉A.391

Despite being slightly more complex to implement, this non-linear approach can be highly relevant in392

practice, as it offers an in-depth analysis of the shape and genetic features of phenotypic plasticity. Moreover,393

although the environment simulated here was discretised for the sake of simplicity (and to favour good con-394

vergence in nlme), this approach would be most relevant when the (measured) environment is continuous395

rather than discretised, as in analysis of natural, uncontrolled environments.396

Discussion397

The variance partitioning that we implement here has several conceptual and practical advantages. First,398

being based on the law of total variance, it is very general and does not rely on any particular assump-399

tions, such as Independence between the genotype and the environment. Note that contrary to the common400

genotype/environment/genotype-by-environment partition, the law of total variance is not symmetrical. In-401

deed, Equation 5 takes averages and variances first over genotypes, and then over environments. This allows402

recovering intuitive metrics of the influence of the average reaction norm (VPlas), and the average genetic403

variance (VGen).404

Second, in combination with polynomial modelling (or other forms of parametric approaches), this parti-405

tioning allows quantifying the impacts of different aspects of reaction norm shape on the mean plastic vari-406

ance, versus the genetic variance of the trait. This should prove especially relevant with respect to responses407

to selection. For instance if a given selection episode concerns individuals that all experienced the same408

plasticity-inducing environment (i.e. when spatial environmental variation is negligible reltive to temporal409

variation), using the multivariate breeder’s equation (Lande 1979) the response to selection for the expressed410

plastic trait 𝑧 is411

Δ𝑧 =
∑
𝑖

𝛾𝑖𝛽𝑉A +
∑
𝑖< 𝑗

𝛾𝑖 𝑗𝛽𝑉A, (29)

where 𝛽 is the selection gradient on the expressed trait, and the 𝛾𝑖 and 𝛾𝑖 𝑗 are defined in Equation 21. In412
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other words, the contributions of responses to selection by different reaction norm parameters (e.g. slope,413

curvature, etc) to overall response to selection by the plastic trait 𝑧 is directly proportional to their contribution414

to its genetic variance. Importantly, these contributions will depend on the environment, as illustrated in415

Equation 21. In fact, the environment-specific additive genetic variance 𝑉A,𝜀 is a critical piece of information416

regarding evolutionary potential. For example, in the Performance Curve scenario investigated above, there417

is a peak of additive genetic variance close to the performance optimum, followed by a sharp decrease at418

higher temperatures (Figure 5, middle right panel). In the context of predicting eco-evolutionary response419

to warming, this would mean that a slight temperature rise above the optimum would provide a very short420

window of higher evolvability, but followed by a sharp decrease thereof if warming persists. Beyond these421

simple scenarios, how selection acts on reaction norms and plasticity depends on how the environment varies422

in space and/or time (Scheiner 1993b; De Jong 1999) [add ref: Tufto 2015 Evolution, king & Hadfield 2019 Evol423

Lett], but an in-depth exploration of how to estimate these selection responses is beyond the scope of the424

present work.425

Third, our general framework treats the curve-parameter and character-state approaches under the same426

umbrella, allowing evaluation of any chosen parametrical model through the goodness-of-fit parameter 𝑅2
mod.427

This also opens the door to better commensurability and comparatibility across studies, which can be a chal-428

lenge in meta-analyses of plasticity. Murren et al. (2014) performed such a meta-analysis, comparing genetic429

variation in different parameters of reaction norm shape across published datasets. However they (i) com-430

puted these parameters using only extreme environmental values, instead of thewhole range of environments;431

(ii) did not account for uneven spacing between environments where relevant; (iii) did not account for un-432

certainty in estimations of reaction norms (as previously highlighted by Morrissey & Liefting 2016); and (iv)433

assumed the modeled reaction norm shape is true. More detail about the analyses in that study is provided in434

Appendix D. Our approach overcomes all these issues (some of which had been dealt with already by Morris-435

sey & Liefting 2016). Unfortunately the dataset compiled by Murren et al. (2014) does not provide information436

on uncertainty of phenotypic estimates (related to 𝑉Res), precluding proper meta-analysis of reaction norm437

shape variation.438

Fourth and finally, our variance partitioning can be implemented through commonly used statistical mod-439

els, notably linear mixed models. Furthermore, we showed that even complex non-linear modelling can per-440

form well, only at the cost of using dedicated libraries to compute integrals numerically. This means that441

biologists can readily seize all the modelling tools introduced here. In particular, although a character-state442

approach can be performed using a simple random-intercept model, studies of genetic variance in plasticity443

seem to rather use a multi-trait model, which offers more control, but is more difficult to implement (but444

see Stirling & Roff 2000). In order to make the variance partitioning introduced here more accessible, we445
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provide a tutorial on how to use linear and non-linear modelling to analyse data at the following address:446

github.com/devillemereuil/TutoPartReacNorm. We have also implemented the computation of𝑉plas,𝑉Gen and447

𝑉A for non-linear models as a new feature of the QGglmm R package (de Villemereuil et al. 2016). We hope448

that this will further stimulate interest in investigating variation and evolutionary potential of reaction norms.449

Code availability The code for the data simulation and analyses performed in this article is available at450

the following repository: github.com/devillemereuil/CodePartReacNorm451
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Appendix579

A Comparison between alternative variance partitionings580

A schematic example581

To illustrate the difference between the variance partitioning in Equation 6 and the ‘classical’ variance par-582

titioning between 𝑉G, 𝑉E and 𝑉G×E, we will first consider a very schematic example. Let us consider two583

scenarios with 3 genotypes in 2 environments. For now, we will consider the environmental variable is mean-584

centered, so that the zero for the environment is exactly at mid-value between the two environments. In the585

first scenario, all of the reaction norms are parallel between each genotype, such that this is a typical case586

where there is no genotype-by-environment interaction (Figure S1, left panel). In the second scenario, we587

invert the values of the most extremes genotypes in the second environment, so that the reaction norms are588

now crossing with considerable genotype-by-environment interaction (Figure S1, right panel). An interesting589

feature of such scenarios is that, since we only reassigned values to different genotypes, we conserved the590

genetic variance within each environments. Note that the reaction norms are directly considered here, so591

that 𝑉Res is ignored in this section. Also, in the second scenario, since all reaction norms cross exactly at the592

mid-point between environments, there is no variation in the intercept.593

Env. 1 Env. 2

0

1

2 ̂𝑧

𝑉G = 0.167, 𝑉E = 0.25, 𝑉G×E = 0

𝛾𝑎 = 1
𝛾𝑏 = 0
𝛾𝑎𝑏 = 0

𝑉Plas = 0.25
𝑉Gen = 0.167

Env. 1 Env. 2

0

1

2 ̂𝑧

𝑉G = 0, 𝑉E = 0.25, 𝑉G×E = 0.167

𝛾𝑎 = 0
𝛾𝑏 = 1
𝛾𝑎𝑏 = 0

Figure S1: Two different scenarios with the same total variance. On the left: all reaction norms are parallel, so that
𝑉G×E = 0, by definition. On the right, the two extreme values on the second environment were switched, resulting in
the crossing of reaction norms and thus substantial 𝑉G×E, at the full expanse of 𝑉G. Our variance partition in 𝑉Plas and
𝑉Gen is equal in both scenarios, however, the 𝛾-decomposition (where 𝑎 stands for the intercept and 𝑏 for the slope)
of the genetic variance 𝑉Gen is completely different, reflecting the (co)variation of the intercept and slope of reaction
norms on the second scenario (right).

In the first scenario, since all reaction norms are parallel we have 𝑉G×E = 0, and there is a perfect cor-594

respondence between terms in both partitionings, with that 𝑉Plas = 𝑉E and 𝑉Gen = 𝑉G (Figure S1, left and595
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center). All of the genetic variance in the trait comes from variation in the intercept of reaction norms, which596

is reflected by the 𝛾-decomposition from Equation 21 (Figure S1, left).597

In contrast in the second scenario, all genotypes have the same mean phenotype averaged across environ-598

ments, leading to𝑉G = 0 in the classical partitioning. However,𝑉Gen is not zero, and is in fact exactly equal to599

that in the first scenario, in this example. In other words, both scenarios lead to the same amount of genetic600

variation available for responding to selection across the two environments where phenotypes have been601

measured. The only thing that differs between these scenarios is the constraints they impose on evolution of602

reaction norms. Scenario 1 facilitates responses to phenotypic selection that goes in the same direction in both603

environments, while scenario 2 facilitates responses to selection in opposite directions across environments.604

Although the value for 𝑉Gen is unchanged, these constraints are adequately reflected by the 𝛾-decomposition605

of 𝑉Gen, for which we now have 𝛾𝑎 = 0 and 𝛾𝑏 = 1. Note that in this scenario, we instead have 𝑉Plas = 𝑉E and606

𝑉Gen = 𝑉G×E.607

As a final note on this example, let us imagine that, instead of choosing the mid-point between environ-608

ments as reference (set to zero), we choose the first environment. In this case, the intercept is defined in609

this first environment, and there is now considerable variation in the intercept. Such arbitrary choice has no610

impact on the values of neither 𝑉Plas and 𝑉Gen, nor on 𝑉G, 𝑉E and 𝑉G×E. However, this new definition of the611

intercept and its variation leads to a different 𝛾-decomposition: 𝛾𝑎 = 1, 𝛾𝑏 = 4 and 𝛾𝑎𝑏 = −4. In other words,612

redefining the zero in the scale of the environment changed the definition of the parameter “intercept”, and613

made apparent the negative genetic correlation between the intercept and slope (a perfect one in this sce-614

nario), whereby steeper negative slopes are associated with higher intercept (phenotype in environment 1).615

Nevertheless, the evolutionary dynamics are not sensitive to the arbitrary choice of a zero in the environ-616

mental scale, as the distribution of genetic variation along environments is the same in both versions of the617

second scenario.618

General comparison619

This example illustrates how our variance partitioning differs from the classical one with genotype, environ-620

ment, and genotype-by-environment interaction effects.621

In particular, there is no distinction between𝑉G and𝑉G×E in our partitioning, as𝑉Gen = 𝑉G +𝑉G×E. This is622

due to our use of the total variance, which integrates over genotypes in each environment, before integrating623

over environments. However, this does not mean that our framework is degenerate and looses information on624

how genetic variance is distributed across environments, and how this constrains evolution of reaction norm625

shape. Instead, these aspects are captured by two things. The first is the 𝛾-decomposition in Equation 21,626

which provides an explicit measure of genetic variation in different components of reaction norm shape. The627
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second is the environment-specific amount of genetic variance, as detailed in our worked example of non-628

linear reaction norm models (Figure 5).629

Regarding the environmental variance 𝑉E and 𝑉Plas, there were considered equal on our example, but630

this is because we considered directly the reaction norms, and thus ignored 𝑉Res. In many contexts, we can631

consider 𝑉Plas and 𝑉Res as respectively measuring the general (environment shared by a group of individuals)632

and specific (environment specific to an individual) environmental variance as defined by Falconer (Falconer633

&Mackay 1996; Lynch &Walsh 1998). A complication is that, in reality,𝑉Plas is not defined relative to groups634

of individuals (or genotype), but rather to a singled-out environmental variable. In that regard, 𝑉Res contains635

the part of what could be considered the general environment, which results from the influence of other636

environmental variable. In any case, if no distinction is made between general and specific environment637

components in 𝑉E and the phenotypic trait is under consideration rather than reaction norms themselves,638

then we can write 𝑉E = 𝑉Plas +𝑉Res.639

B Computation of the additive genetic variance640

Multiple regression from variance-covariance matrix Let us assume a multiple regression between a641

random variable 𝑦 and a series a random variables x = (𝑥1, . . . , 𝑥𝑛) such that:642

𝑦 = 𝜇 + x𝑇 𝛽 + 𝑒, (S1)

where 𝜇 is the intercept and 𝑒 is the residual of the model. Note that in practical regression, the realised643

sampling of x will be contained in the design matrix of the model. If it exists and is unique, the solution for644

𝛽 can be formulated in terms variance-covariance matrices (see e.g. p.179, Lynch & Walsh 1998):645

𝛽 = V(x)−1cov(x, 𝑦), (S2)

whereV(x) is the variance-covariance matrix of x and cov(x, 𝑦) is the column-vector of covariances between646

the 𝑥𝑖 and 𝑦.647

Multivariate version of Stein’s lemma Let us assume that y = (𝑥1, . . . , 𝑥𝑝𝑦 ) follows amultivariate normal648

distribution, that x = (𝑥1, . . . , 𝑥𝑝𝑥 ) follows a multivariate normal distribution and that 𝑔 is a differentiable,649

R𝑝𝑥 → R function such that E (▽𝑔), where ▽𝑔 is the gradient of 𝑔 (the vector of partial differentials), is a650

vector of finite values, then (Landsman & Nešlehová 2008; Landsman et al. 2013):651

cov (𝑔(x), y) = cov(x, y)E (▽𝑔) . (S3)
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In the case where 𝑝𝑦 = 1, then y = 𝑦 follows a normal distribution and:652

cov (𝑔(x), 𝑦) = cov(𝑦, x)E (▽𝑔) . (S4)

Note that cov(𝑦, x) is a row-vector and cov(x, 𝑦) is a column-vector by convention.653

Linear relationship between breeding values The additive genetic variance 𝑉A is the variance of the654

breeding values 𝑎𝑧 of the phenotypic trait 𝑧. Let us note 𝑎𝜃,𝑖 as the breeding value of the parameter 𝜃𝑖 . Here,655

we will assume that we are working within a given (and fixed) environment 𝜀. We will follow the same656

demonstration as in de Villemereuil et al. (2016), which starts from the point that, by definition, breeding657

values are linked through a linear relationship. More precisely, the breeding value the trait 𝑎𝑧 of an individual658

linearily depends on a linear combination of the breeding values of the parameters 𝑎𝜃,𝑖 of the same individual,659

so that:660

𝑧 = 𝑎𝑧 + 𝑒 = 𝜇𝑎 + 𝒂𝑇𝜽𝝍 + 𝑒 (S5)

where 𝑒 is the residual variance of the regression (assumed independent of the breeding values), 𝝍 is a vector661

containing the slopes and 𝒂𝜽 is a vector containing the breeding values for all parameters of the reaction662

norm.663

Defining the value of 𝝍 To compute the value of 𝝍, we can solve the linear equation in Equation S5 using664

Equation S2:665

𝝍 = Θ−1cov(𝒂𝜽 , 𝑧) (S6)

Noting that 𝑧 = 𝑓 (𝜀, 𝜽 ), we can apply the multivariate version of Stein’s lemma (Equation S3):666

𝝍 = Θ−1cov(𝒂𝜽 , 𝜽 )E(▽𝜃 𝑓 ) = Θ−1ΘE(▽𝜃 𝑓 ) = E(▽𝜃 𝑓 ) . (S7)

Additive genetic variance From Equation S5, the additive genetic variance of the trait 𝑉A is given by:667

𝑉A = V(𝒂𝑇𝜽𝝍) = 𝝍𝑇Θ𝝍 . (S8)

We worked at a given environment, and to reflect this, these quantities are named 𝝍𝜀 and 𝑉A |𝜀 in the main668

text.669
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C Correcting for uncertainty in the estimation of fixed670

effects671

Character-state approach It is easier to start with the character-state approach and the ANOVA model672

it is based on. We want to compute 𝑉Plas as the variance of the group-level effects 𝜇 (see Equation 2 and673

Equation 7 in the main text) :674

𝑉Plas = V(𝜇) (S9)

However, we do not have access to the real-world values for 𝜇, instead, we have access to the estimated 𝜇 from675

the model. Such estimates, if unbiased, have an expected value of 𝜇𝑘 at environment 𝑘 and a standard-error676

(i.e. the estimation of the sampling standard deviation) 𝑠𝑘 . In other words, we can state that 𝜇𝑘 is equal to 𝜇𝑘677

up to an additive error:678

𝜇𝑘 = 𝜇𝑘 + 𝜇𝑘 (S10)

where 𝜇 is of mean 0 and variance 𝑠2
𝑘
. Considering each sampling 𝑟 , we can apply the law of total variance,679

although in a different context than in the main text:680

V(𝜇) = V𝜀 (E𝑟 |𝜀 (𝜇)) + E𝜀 (V𝑟 |𝜀 (𝜇)) = V𝜀 (𝜇) + E𝜀 (𝑠2). (S11)

We thus have:681

𝑉Plas = V𝜀 (𝜇) = V𝜀 (𝜇) − E𝜀 (𝑠2) (S12)

This result is equivalent to e.g. the classical computation of the “sire variance” in sire models in quantitative682

genetics (Lynch & Walsh 1998), although this later is generally expressed using sums-of-squares.683

Parameter curve approach There is unfortunately no simple solution to the problem of accounting for the684

uncertainty of fixed effects in the general context of non-linear modelling. However, for the particular case685

where the model can be framed as a linear model, as is the case for the polynomial function (see Equation 13,686

𝑧 = X𝜽 ). In this case, we can define 𝑉Plas as (Equation 14):687

𝑉Plas = V(x𝑇𝜽 ) = 𝜽𝑇X𝜽 . (S13)

Again, the problem is that 𝜽 is unknown, we only have access to the estimated values of the parameters, 𝜽 ,688

that are inferred with an error provided by the variance-covariance matrix of standard errors, S𝜃 . We can689
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write again:690

𝜽 = 𝜽 + 𝜽 , (S14)

where 𝜽 has a null mean and a variance-covariance matrix S𝜃 . Noting that the error is independent from the691

true value, we have:692

V(x𝑇𝜽 ) = 𝜽𝑇X𝜽 = V(x𝑇𝜽 ) + V(x𝑇𝜽 ), (S15)

To express the variance V(X𝜽 ), it is important to note that 𝑆𝜃,𝑖 𝑗 = E(𝜃𝑖𝜃 𝑗 ), since E(𝜽 ) = 0. Then, we can note693

that, the error being unknown, we actually want to compute E𝑟 (V(x𝑇𝜽 )) taken across all possible sampling694

𝑟 :695

E𝑟 (V(x𝑇𝜽 )) = E𝑟 (𝜽𝑇X𝜽 ) = E𝑟 (
∑
𝑖 𝑗

𝜃𝑖𝜃 𝑗𝑋𝑖, 𝑗 ) =
∑
𝑖 𝑗

E𝑟 (𝜃𝑖𝜃 𝑗 )𝑋𝑖, 𝑗 =
∑
𝑖 𝑗

𝑆𝜃,𝑖 𝑗𝑉X,𝑖 𝑗 = Tr(S𝜃X) (S16)

This is similar to the result of Brown & Rutemiller (1977). Finally, we have proven Equation 26:696

𝑉Plas = 𝜽𝑇X𝜽 − Tr(S𝜃X). (S17)

D Comparison with the approach from Murren et al. (2014)697

The first step in the approach of Murren et al. (2014) is to choose a reference reaction norm in each of the698

studies and compute contrasts to that particular reaction norm. The contrasts are then analysed, rather than699

the norms themselves. For the sake of simplicity, and because this does not (or marginally) impact our com-700

ments on this approach, we will overlook that step and consider reaction norms directly.701

For each genotype 𝑘 and from its given reaction norm (or contrast) z𝑘 = {𝑧𝑘,1, . . . , 𝑧𝑘,𝑛}, Murren et al. (2014)702

compute four statistics (we removed the absolute values for the sake of simplicity here):703

1. The offset, 𝑂M, measures the “location” of the reaction norm, i.e. its mean. Comparison of the offsets704

allows detecting wether reaction norms are “shifted” toward higher or lower values. It is computed, for705

each genotype 𝑘 , as the absolute value of the average of the norm across environments:706

𝑂M,𝑘 =

∑𝑛
𝑖 𝑧𝑘,𝑖
𝑛

. (S18)

2. The slope, 𝑆M, measures the linear trend of the norms. Formally, it is the absolute sum of the differences707

between two consecutive environments, divided by the number of intervals (𝑛 − 1):708

𝑆M,𝑘 =

∑𝑛−1
𝑖 𝑧𝑘,𝑖+1 − 𝑧𝑘,𝑖

𝑛 − 1
. (S19)
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3. The curvature, 𝐶M, is computed as the absolute value of the average change in norms between two709

consecutive couples of environments:710

𝐶M,𝑘 =

∑𝑛−2
𝑖 (𝑧𝑘,𝑖+2 − 𝑧𝑘,𝑖+1) − (𝑧𝑘,𝑖+1 − 𝑧𝑘,𝑖)

𝑛 − 2
. (S20)

4. The wiggle,𝑊M, is, according to the authors the “the variability in shape not described by any of the711

previous three measures”:712

𝑊M,𝑘 =

∑𝑛−2
𝑖

��(𝑧𝑘,𝑖+2 − 𝑧𝑘,𝑖+1) − (𝑧𝑘,𝑖+1 − 𝑧𝑘,𝑖)
��

𝑛 − 2
−𝐶M,𝑘 . (S21)

Given the lower interest in this statistics, we will not comment on it any further. Most of the comments713

on the other statistics also apply to this one.714

One strong assumption underlying the calculations above is that environmental values x = {𝑥1, . . . , 𝑥𝑛} on715

which the reaction norms were evaluated are evenly spaced, e.g. that the differences 𝑥𝑖+1 −𝑥𝑖 are equal for all716

possible values of 𝑖 . More, this calculation assumes that the space between two measures is equal to 1 (which,717

admittedly, is only a matter of rescaling when evenly-spaced values are already assumed). If this is case, then718

there is indeed no loss in generality in using the number of components (𝑛, 𝑛− 1 and 𝑛− 2) rather than actual719

values of 𝑥 in the denominator. Although it is common for studies on reaction norms to use evenly-spaced720

environmental values, it is an unnecessary assumption that shall not be satisfied by all studies.721

Another issue does not specifically stems from assumptions underlying the estimators, but rather from the722

fact that these estimators are applied to the estimated values themselves, rather than on a fitted function for723

the reaction norms. Indeed, developing the sums in 𝑆M and𝐶M above show that the intermediate values cancel724

each other out, leaving only the values at each extreme of the environmental range in the estimate:725

𝑆M,𝑘 =
𝑧𝑘,𝑛 − 𝑧𝑘,1
𝑛 − 1

,

𝐶M,𝑘 =
(𝑧𝑘,𝑛 − 𝑧𝑘,𝑛−1) − (𝑧𝑘,2 − 𝑧𝑘,1)

𝑛 − 2
.

(S22)

The issue here is double. First, the estimation is highly sensitive to the random noise coming from a small726

number of values (two or three/four). Second, the intermediate values in the reaction norm are simply thrown727

out and not used for a more robust estimation. In other words, it would have been exactly the same to not728

measure the reaction norm at these intermediate values, since they are not accounted for in the calculation.729

Afinal issue, closely related to the second one, is that using themeasured values of the reaction normswithout730

accounting for the uncertainty in their estimation (i.e. standard-deviation and sample size for each genotype731

and environmental value) poses the well-known issue of non-propagation of the error when doing “statistics732
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on statistics”.733

Although we also provide estimators of the impact of the intercept, slope and curvature of reaction norms734

on the phenotypic variation, our approach differs from the one from Murren et al. (2014) by many aspects.735

First, using the law of total variance, we make the explicit distinction between the average shape of the736

reaction norm and the genetic variance surrounding it. As such, to𝑂𝑀 , 𝑆𝑀 and𝐶𝑀 corresponds not only the737

genetic component 𝑟2𝑔𝑎 , 𝑟2𝑔𝑏 and 𝑟2𝑔𝑐 , but also the average plasticity components (𝑟2
𝑝𝑏

and 𝑟2𝑝𝑐 ). We also account738

for possible genetic correlation between components. Second, we use the whole of the statistical inference to739

define our estimates of contribution of intercept, slope and curvature to the phenotypic variance. Third, we740

explicitly account for the uncertain estimation of reaction norms.741
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