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Abstract 12 

Pinniped species undergo uniquely amphibious life histories that make them valuable subjects 13 

for many domains of research. Pinniped research has often progressed hand-in-hand with 14 

technological frontiers of wildlife biology, and drones represent a leap forward for methods of 15 

aerial remote sensing, heralding data collection and integration at new scales of biological 16 

importance. Drone methods and data types provide four key opportunities for wildlife 17 

surveillance that are already advancing pinniped research and management: (1) repeat and on-18 

demand surveillance, (2) high-resolution coverage at large extents, (3) morphometric 19 

photogrammetry, and (4) computer vision and deep learning applications. Drone methods for 20 

pinniped research represent early stages of technological adoption and can reshape the field as 21 

they scale towards the full potential of their techniques. 22 
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Introduction 28 

Pinnipeds embody a variety of qualities that make many species interesting and suitable 29 

subjects for scientific research. As amphibious marine predators, all pinniped species haul out 30 

of the water, on land or ice, to breed or molt (Berta, 2018). This characteristic makes pinnipeds 31 

relatively accessible and observable among marine predators. During these major life history 32 
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events, many species exhibit philopatry (returning to their place of birth), gregariousness 33 

(gathering in large groups) and general site fidelity (revisiting sites that have been visited 34 

before) to various degrees; these qualities enable scientists to reliably access predictable 35 

populations and even individuals within single seasons and across years and generations 36 

(McKnight & Boyd, 2018). Many species occupy terrestrial habitats that are accessible to 37 

humans and topographically open to on-the-ground or aerial surveillance. Finally, select species 38 

can be trained and safely housed in human care, so under appropriate ethical circumstances 39 

some pinnipeds can accommodate uniquely managed behavioral and physiological studies and 40 

assessments. Owing to these distinctive qualities, pinnipeds are often studied as sentinel species 41 

of their marine ecosystems (Bossart, 2011; Fossi & Panti, 2017), as models of marine adaptations 42 

in mammals (Hochachka, 2000), and for a variety of other scientific motivations. The equipment 43 

and methods that are used to study pinnipeds often represent the technological frontiers of 44 

wildlife science, incorporating the ongoing miniaturization of computers and sensors, faster 45 

processing speeds, and growing quantities of ‘big data’ (Corlett, 2017; Lahoz-Monfort & 46 

Magrath, 2021). In this vein, the use of small unoccupied aircraft systems (sUAS), or drones, 47 

represents a major frontier of wildlife technology (Linchant et al., 2015; Wirsing et al., 2022) that 48 

is poised also to unlock new methods in the study of pinnipeds.  49 

The term “drone” most commonly refers to a variety of small robotic autonomous 50 

aircraft that are used increasingly across a variety of disciplines in environmental sciences 51 

(Floreano & Wood, 2015; Jiménez López & Mulero-Pázmány, 2019; Johnston, 2019; Wirsing et 52 

al., 2022). Drones can achieve a variety of in situ environmental techniques by virtue of their 53 
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mobility and precise aerial positioning, including sampling of aerosols (Pirotta et al., 2017), 54 

water, soil, and invertebrates (Robinson et al., 2022), but most applications for environmental 55 

research, and wildlife in particular, use drones as versatile remote sensing platforms (Chabot & 56 

Bird, 2015; Johnston, 2019; Mo & Bonatakis, 2022; Robinson et al., 2022). With increasingly 57 

lightweight sensors and onboard processing computers, drones can collect diverse types of 58 

sensing data at a high-throughput (Jiménez López & Mulero-Pázmány, 2019), expanding both 59 

data collection and post-processing techniques for analyses that require big data. 60 

Drones have several advantages over occupied aircraft, including simpler logistical 61 

requirements, greater safety, and lower costs (Jones et al., 2006; Linchant et al., 2015). Drones 62 

can thereby conduct operations with on-demand or repeat schedules and in sites far removed 63 

from supporting infrastructure. At the same time, low-altitude flights can collect imagery at low 64 

ground sample distances (GSDs) with precise navigation and spatially referenced metadata 65 

from global navigation satellite systems (GNSS) to achieve exhaustive spatial coverage in ultra-66 

high (sub-decimeter) resolutions (Koh & Wich, 2012; Raoult et al., 2020). For pinnipeds, these 67 

specific advantages directly allow researchers to safely study pinnipeds in habitats that are 68 

otherwise inaccessible to alternative methods (Christie et al., 2016; Krause & Hinke, 2021). 69 

However, beyond site access, the advantages of drone surveillance also unlock new possibilities 70 

for study design and data analysis, potentially transforming downstream research and 71 

management capabilities. We discuss four key opportunities of drone methods that are already 72 

being deployed and developed for the study of pinnipeds, as well as future potential and 73 
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limitations of the technology, demonstrating applications with original examples created from 74 

an open dataset of drone imagery over pinniped haul-out sites (Larsen et al., 2022a). 75 

Repeat and on-demand deployment 76 

Pinnipeds experience an annual cycle of physiological changes and life history events 77 

that determines their terrestrial availability to research. The annual cycles of polar species are 78 

often especially coupled to seasonally available resources, such as habitat or prey (Bowen, 79 

2018). The mechanism of such phenology may be triggered or influenced by relatively 80 

predictable environmental attributes, like photoperiod (Temte, 1994; Temte & Temte, 1993; 81 

Trites & Antonelis, 1994), dynamic environmental cues, like climate or sea ice (Hind & Gurney, 82 

1998), and intrinsic factors, like maternal age (Lunn & Boyd, 1993; Trites, 1991). Depending on 83 

the species, pinniped phenology unfolds with different degrees of interannual consistency 84 

(Bowen, 2018), so single scheduled population surveys might not align with their target event, 85 

like maximum on-land abundance, and additional context is often necessary to estimate where 86 

a survey occurs within the annual cycle. This concern is especially relevant for optical imagery 87 

collected by satellites, whose orbital revisit period is further limited by cloud cover (LaRue et 88 

al., 2011, 2017), and imagery collected by occupied aircraft, whose flight schedules require 89 

advanced planning and are limited to longer windows of safe weather (Sweeney et al., 2016). 90 

Drones are less limited by such logistical factors: lower infrastructure requirements allow 91 

operators to deploy drones on a more flexible and ad hoc schedule; rapid on-demand 92 

deployment and recovery can exploit very short weather windows; low-altitude flights can 93 

collect imagery under cloud cover; and repeat surveillance can obtain data series at frequencies 94 



6 

 

and temporal ranges not practical or achievable by occupied aircraft or orbiting satellite 95 

platforms (Christie et al., 2016; Linchant et al., 2015). 96 

On-demand deployment over pinnipeds can target expected phenological events, such 97 

as breeding and molting, or respond to contextual triggers, such as peak counts from a local 98 

index site. Repeat surveys can establish a context for temporally dynamic processes, describing 99 

trends before and after a target survey, and can functionally expand the period of sampling to 100 

increase the likelihood that targeted events are captured within the period (Fig. 1). High-101 

frequency monitoring may also capture short-term temporal factors, like within-day effects of 102 

tide, weather and diel cycle, and multi-day occupancy patterns, like conspecific recruitment to 103 

haul-out sites, time-partitioned occupancy by different age–sex classes (Le Boeuf & Laws, 1994), 104 

and the balance of foraging and fasting activities among territorial males and lactating females 105 

on the rookery (Champagne et al., 2012). These advantages of repeat and on-demand drone 106 

surveys apply most obviously to research questions concerning demography, which often 107 

require temporal and phenological context to interpret counts and surveys, but high-frequency 108 

observations can also reveal the balance and budget of energetically costly behaviors across 109 

aggregated groups of pinnipeds, especially during reproductive periods (Costa, 1991). The 110 

spatial context of repeat drone imagery may still further describe spatiotemporal processes of 111 

on-land behavior, such as territoriality, sociality, and early behavioral ontogeny as they unfold 112 

across land or ice habitats. Drones can record these processes with spatial detail and at 113 

aggregate scales not typically achieved by conventional methods at ground-level. 114 
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Spatial coverage and resolution 115 

Drone imagery expands on the legacy of aerial photography—a long-established tool of 116 

wildlife biology (Jolly, 1969; Leedy, 1948). Occupied aircraft have been used to survey and 117 

estimate pinniped populations since the era of industrial sealing (Bartlett, 1929), exploiting 118 

aerial perspectives to scout large regions of land or ice habitat at a time. Today, high-resolution 119 

satellites provide even greater spatial coverage of pinniped habitats (LaRue et al., 2011; Rodofili 120 

et al., 2022), with advantages that include automated and relatively passive data collection, once 121 

sensors are placed in orbit, and regular coverage that depends on the satellite’s orbit and revisit 122 

period, though this is reduced by coincident cloud cover. Imagery from occupied aircraft 123 

regularly achieves GSDs and quality necessary to distinguish seals in their ice or land habitats 124 

(Johnston et al., 2017) and, under select circumstances, very high-resolution satellite imagery 125 

can enable the same (LaRue et al., 2017). 126 

In this context, the spatial data that drones collect are distinguished chiefly by their 127 

resolution, coverage and topographic accuracy compared to alternative imagery. Densely 128 

structured flight plans, enabled by GNSS and the absence of a human occupant, can rapidly 129 

achieve exhaustive overhead coverage at nadir or near-nadir camera angles over an entire 130 

habitat, reconstructing complex terrain (Kyriou et al., 2021) and reducing animal occlusion 131 

behind terrain relief. Additionally, custom flight plans or manual operation can achieve oblique 132 

camera angles to locate animals inside caves, crevices or overhangs. Such robust coverage is 133 

often impossible from an orbital perspective (LaRue et al., 2017), and uncommon from occupied 134 

aircraft, which are limited by their higher operating altitudes and lower maneuverability. High-135 
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resolution sensors at low altitudes (< 400 m) document habitat, flora and fauna at GSDs 136 

sufficient for visual and automated interpretation (Fig. 2), and overlap between images within a 137 

survey enables structure-from-motion methods that can be used to model high-resolution 3D 138 

surface models of habitats and to orthorectify imagery to more accurately represent locations 139 

and spatial relationships among features of interest (Fig. 3; Nex & Remondino, 2014).  140 

 The spatial qualities of drone data provide clear benefits for demographic and 141 

abundance surveys by obviating the potential bias of undercounting in complex terrain, where 142 

animals may be partially or completely hidden from non-nadir perspectives. Additionally, high-143 

resolution mapping products and orthorectified positional data can reveal precise, fine-scale 144 

relationships between pinnipeds and landcover or physical topography that might not resolve 145 

in comparable stereoscopic products from high-altitude aerial photography or satellite imagery 146 

(Larsen et al., 2022b). Such species–habitat relationships can reveal preferences and limitations 147 

of pinniped habitat selection that might be driven by terrestrial locomotive ability (Beentjes, 148 

1990; Fish, 2018; Garrett & Fish, 2015) or thermoregulatory behaviors (Chaise et al., 2018; 149 

Liwanag et al., 2014; Montero-Serra et al., 2014; White & Odell, 1971), linking individual 150 

energetic costs to emergent patterns of terrestrial occupancy. The higher GSDs of drone imagery 151 

additionally facilitate the location of camouflaged species, morphs and age-classes, and 152 

discrimination between species and age-classes that can appear similar at coarser resolutions 153 

(Johnston et al., 2017; Rexer-Huber & Parker, 2020). At highest image quality, drone imagery 154 

can even be used to locate and quantify marine debris entanglements and interactions with 155 

fishing gear (McIntosh et al., 2018), and depending on animal postures, may enable 156 
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identification of individuals based on brands (Sweeney et al., 2016), scarring, flipper tags 157 

(Hodgson et al., 2020), and pelage characteristics (Fig. 2), or the classification of pups by molt 158 

stage (den Heyer et al., 2021; Johnston et al., 2017). 159 

Morphometric photogrammetry 160 

Photogrammetry—measuring objects from a photograph—is a technique that predates 161 

drones and even digital photography, but has become more common, accessible and advanced 162 

in their wake (Linder, 2009). Simple 2D measurements can be estimated from a photograph, if 163 

the camera’s focal length and distance-from-object are known, and drones enable this process 164 

from aerial perspectives, with distance-from-object informed by the drone’s positional data 165 

from GNSS, triangulation among images with shared features, barometric altimetry, a time-166 

linked laser range-finder, or some combination of these measurements—all of which provide 167 

different degrees of confidence that can be encoded with imagery and spatial data products 168 

(Bierlich et al., 2021). When serial imagery is captured across multiple locations, drones enable 169 

yet more complex photogrammetric analyses from derived products: many 2D measurements 170 

can be estimated from orthomosaics rectified to a known GSD, and 3D volumetry can be 171 

estimated using structure-from-motion models with a stationary individual (Postma et al., 172 

2015).  173 

 Photogrammetry has been applied to pinnipeds at ground-level under a variety of 174 

scenarios for both 2D and 3D measurements (reviewed in Hodgson et al., 2020), but drone-175 

specific applications remain few and experimental. First attempts have demonstrated success 176 

with 2D measurements from single photographs (Alvarado et al., 2020; Krause et al., 2017), 2D 177 
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measurements from orthomosaics (Fig. 4, Allan et al., 2019; Hodgson et al., 2020; Infantes et al., 178 

2022), and 3D measurements from structure-from-motion models (Hodgson et al., 2020; Shero et 179 

al., 2021). Such studies generally require validation against conventional ground-truth 180 

measurements with captured animals to confirm the veracity of photogrammetric methods 181 

(Alvarado et al., 2020; Krause et al., 2017)—though, at sufficient sample-sizes, UAS-derived 182 

measurements have been validated against archival ground-truth measurements of a 183 

comparable sample (Allan et al., 2019). Critically, most measurements are sensitive to animal 184 

posture and, depending on the technique and number of photographs needed, animal activity 185 

(Shero et al., 2021), and care is required when relating 2D indices or 3D volumetry to mass, 186 

body condition, and physiological attributes (Hodgson et al., 2020; Shero et al., 2021). Within 187 

these provisions, however, drone imagery encodes an abundance of morphometric information 188 

about imaged animals, and with increased image quality, refined photogrammetric modeling 189 

algorithms, calibrated relationships among morphometric indices, and dynamic physiological 190 

models, drone photogrammetry may become an increasingly valuable method of non-191 

invasively canvassing pinniped populations for both focal and aggregate distributions of size 192 

and condition. 193 

Computer vision and deep learning 194 

Drone surveys of wildlife produce abundant, high-resolution image-type data that are 195 

conventionally interpreted visually by humans, but computer vision techniques can ease the 196 

burden of image interpretation (Weinstein, 2018), especially where deep learning methods can 197 

capitalize on growing archival collections for training data. Early computer-aided wildlife 198 
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surveys exploited high contrast between select species and their backgrounds to locate and 199 

count animals using a simple thresholding technique (Bajzak & Piatt, 1990). Today, similar 200 

thresholding methods can be used with thermal (Beaver et al., 2020) and multispectral sensors 201 

(Colefax et al., 2021) to overcome potential lack of contrast in the visible-light spectrum, and are 202 

facilitated by the capacity of drone platforms to support modular or customizable payloads. In 203 

the absence of suitably high contrast, however, convolutional neural networks (CNNs) can be 204 

trained to detect focal objects in remotely sensed data with high success (Zhu et al., 2017), 205 

leveraging spatial context and multiscalar feature representation to extract and discriminate 206 

targets from background and alternative classes. There are many bespoke examples of CNNs 207 

achieving satisfactory or higher success in tasks of wildlife detection (reviewed in Corcoran et 208 

al., 2021; Kellenberger et al., 2018), and generalizable workflows are beginning to emerge for 209 

diverse wildlife research scenarios (Kellenberger et al., 2020; Koger et al., 2023), but 210 

implementation is often still hindered by a high threshold of requisite technological ability and 211 

mismatches of scale between demonstration scenarios and practical applications (Lyons et al., 212 

2019). 213 

 Some current drone applications with pinnipeds leverage thermal or multispectral 214 

imagery to facilitate detection by high contrast in drone imagery (Larsen et al., 2022b; Seymour 215 

et al., 2017; Sweeney et al., 2019), but many more studies rely exclusively on visible-light 216 

photography to detect pinnipeds. With visible-light aerial imagery, deep learning techniques 217 

have already been applied to estimate aggregate pinniped counts (Hoekendijk et al., 2021), 218 

detect individual pinnipeds (Dujon et al., 2021), and classify pinnipeds by age-class (Infantes et 219 
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al., 2022; Salberg, 2015), though success and generalizability vary widely between examples. 220 

Upcoming applications also include deep learning for photogrammetry, as has been 221 

demonstrated with drone-based photography of cetaceans (Gray et al., 2019) and recently with 222 

harbor seals (Infantes et al., 2022), and deep learning for individual identification, as has been 223 

demonstrated with ground-based photography of harbor seals (Birenbaum et al., 2022; 224 

Nepovinnykh et al., 2018, 2022). In this early stage of its technological deployment, deep 225 

learning for computer vision remains an experimental technique in pinniped research, and still 226 

few examples characterize its error and generalizability across large-scale applications. As 227 

implementations coalesce around useful software and prioritized research objectives, 228 

researchers will need to establish best practices to guide data acquisition and curation for model 229 

training, tuning model performance, and accurately estimating model error. In the absence of 230 

such guidance, deep learning can still enhance accuracy and efficiency by complementing, 231 

rather than replacing, human interpretation. 232 

Future potential 233 

New drone methodologies for pinniped research will undoubtedly emerge from these 234 

strengths and others yet to be recognized. Considering this ongoing evolution of the technology 235 

and its applications, a particular strength of drone methods is that they record a wealth of 236 

information, often far exceeding a mission’s precise objective. Spatially referenced images with 237 

metadata and flight logs encode rich contextual information in digital formats that are often 238 

ready for archival or distribution before processing. If preserved, raw data products can be 239 

reprocessed and reanalyzed as downstream methods continue to improve. Best practices and 240 
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standards are still emerging for collection, storage and distribution of drone data, but even 241 

within local repositories, growing collections of drone imagery and products can facilitate new 242 

analyses across spatial and temporal dimensions, satisfying methods that require large datasets 243 

for model training or rigorous statistical tests. 244 

Limitations 245 

 Amid their promising potential, drones are not appropriate for all scenarios, and, 246 

notably, drone applications often complement rather than replace conventional and alternative 247 

methodologies. Remote sensing methods, by definition, collect data at a distance through the 248 

spectra and media that they monitor (Campbell & Wynne, 2011), and cannot replace many in 249 

situ methods. Drone methods have recently accomplished scientific interactions with large 250 

animals at short distances, such as tag deployment (Zak et al., 2022) and blow sampling from 251 

whales (Pirotta et al., 2017); but similar techniques have not been demonstrated for pinnipeds 252 

and would likely incur significant disturbance to target and nearby animals from a drone’s 253 

acoustic and visual profile at close proximity in open air (Duporge et al., 2021). 254 

The risk of wildlife disturbance represents a major concern in drone applications 255 

(Mulero-Pázmány et al., 2017); however, multiple studies have demonstrated drone surveillance 256 

over pinnipeds while noting little or no disturbance (Arona et al., 2018; McIntosh et al., 2018). 257 

Experimental exposures suggest that flights above 30 m are unlikely to cause significant 258 

disturbance to many species (Krause et al., 2021; Laborie et al., 2021; Mustafa et al., 2018; 259 

Pomeroy et al., 2015), and increasingly quiet drones may further reduce disturbance at closer 260 

distances (Duporge et al., 2021). Ultimately, advisable altitudes depend on the choice of drone 261 
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and the choice of species, accounting for the potential sensory and behavioral sensitivity of an 262 

individual in its environment and life history stage (Duporge et al., 2021). In all scenarios, the 263 

risk of disturbance from drones should be weighed against the risk from alternative possible 264 

methodologies (Krause et al., 2021; Laborie et al., 2021; McIntosh et al., 2018; Moreland et al., 265 

2015), and aspects of study design can further reduce the risk of disturbance from drones (Mo & 266 

Bonatakis, 2021). 267 

 Beyond potential disturbance, many other factors can disqualify drones from a study’s 268 

design. Battery life limits the range and duration of drone flights, such that most cannot achieve 269 

the larger range and extent that is commonly collected from occupied aircraft (Colefax et al., 270 

2021). Drones often must be transported to survey sites or adjacent launch sites by boat or 271 

aircraft, potentially incurring costs and disturbance beyond that of the drone. Where drones are 272 

scientifically appropriate, local regulations may restrict the airspace, pilot qualification, or 273 

choice of aircraft for a study (Crutsinger et al., 2016; Floreano & Wood, 2015; Linchant et al., 274 

2015; Newman, 2017). Like any complex technology, drones also require training and expertise 275 

for safe operation and maintenance. The selection of a drone-based methodology should follow 276 

careful consideration of research objectives, available expertise and resources, regulatory 277 

context, and potential risks to researchers, animals—both focal and non-target individuals—and 278 

the environment. 279 

Conclusions 280 

Drones constitute a new frontier in wildlife biology that, like other recent technological 281 

advancements, heralds transformative, transdisciplinary opportunities for both methods and 282 
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theory in the study of pinnipeds. Though increasingly common, many drone applications 283 

remain at the scale of ‘proofs of concept’ or direct substitution for conventional research 284 

methods, like annual population counts. As practitioners refine and scale drone techniques 285 

toward their logistical and technological limits, pinniped researchers can begin to fully utilize 286 

the advantages of drone systems: their unique combination of large spatial coverage, ultra-fine 287 

resolution, simple and rapid deployment, and ease of customization. Downstream 288 

opportunities of drone imagery include structure-from-motion and orthorectified spatial 289 

products, precise 2D and 3D photogrammetry, computer vision and yet-to-be imagined 290 

applications for data with such rich abundance, detail, metadata, and archival potential. These 291 

advancements will complement other research themes by integrating previously independent 292 

data-streams from complementary measurement and monitoring techniques, pioneering new 293 

syntheses and transforming the field toward further integrated, multiscalar themes of research 294 

and management. Such integration is already taking place in the adjacent field of cetacean 295 

research, where drone measurements have been calibrated and integrated alongside biologging 296 

and biomechanical models to reveal new evolutionary and ecological insights (Cade et al., 2023; 297 

Goldbogen et al., 2019; Savoca et al., 2021). As new methods and standards emerge for the use 298 

of drones in research, scientists must advance applications toward the scales of management 299 

objectives and statistical rigor by validating potential methods, highlighting current limitations, 300 

and testing new applications beyond the current frontiers of pinniped research. 301 
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Figures 618 

 619 

FIGURE 1 | Example drone orthomosaics (top) describe changes in abundance and occupancy 620 

of Antarctic fur seals (Arctocephalus gazella, orange squares) on Torgersen Island, Antarctica (64° 621 

44' 49"S, 64° 4' 24"W) in summer 2020. Orthomosaics show imagery from February 22 and 622 

March 9 with total counts (bottom) from 11 drone surveys during January– March 2020 . Repeat 623 

drone surveys, here, provide temporal context that informs estimates of both the timing and 624 

abundance of seals at this site. 625 
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 626 

FIGURE 2 | Near-contemporaneous satellite, drone and ground photography demonstrate 627 

differences in resolution and spatial context between imaging modes. A PlanetScope image (top 628 

left) describes Humble Island (64°44' 20”S, 64°5'9”W) in 3.125 m GSD, here subset from a 25-km 629 

swath-width that can provide regional context. A drone orthomosaic (top right) describes 630 

landforms, flora and Antarctic fur seals (orange boxes) in 1.3 cm GSD, here subset from a survey 631 

of the entire island . A ground-level photograph, captured on a Samsung Galaxy S9+ 632 

smartphone camera, shows Antarctic fur seals within the landscape at varying distances. 633 

Individual seals can be identified with high confidence in both drone imagery and ground 634 

imagery (orange dashed lines) based on their pelage and locations. PlanetScope image ID: 635 

3226192_2009012_2020-03-13_1054. 636 
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 637 

FIGURE 3 | Unprocessed drone imagery and corrected photogrammetric products illustrate 638 

orthorectification at ultra-fine scales. Uncorrected photographs (top) show visible displacement 639 

of seals from their true locations (orange boxes) resulting from the parallax between different 640 

camera perspectives. Insets shows the subset location (black square) within the footprint of its 641 

source photograph (gray dashed rectangle). Orthorectified imagery (bottom left) shows the true 642 

relationships among features in Euclidean space. A derived DEM (bottom right) describes the 643 

topography of those features. Imagery is subsetted from a survey of Torgersen Island (64° 44' 644 

49"S, 64° 4' 24"W), captured on March 23, 2020 . 645 
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 646 

FIGURE 4 | Example orthomosaic imagery (top) describes the presence and approximate 647 

lengths of southern elephant seals (Mirounga leonina) across multiple drone surveys of Amsler 648 

Island, Antarctica (64° 44' 16"S, 64° 3' 55"W) in summer 2020 . Orthomosaics allow 649 

measurements of seals, here a coarse snout–tail straight line, based on the known GSD of the 650 

imagery. Repeat measurements at the same site reveal potential differences in occupancy with 651 

respect to abundance and age-classes as the region shifted from the peak molting period of 652 

cows and juveniles (late-December to early-February) toward the peak molting period of bulls 653 

(early-March to late April), as has been described previously for more northerly rookeries .  654 


