
	 1	

Warming	summer	temperatures	are	rapidly	1	

restructuring	North	American	bumble	bee	2	

communities	3	

Jeremy	Hemberger1	*,	Neal	Williams1	4	

	5	
1	Department	of	Entomology	and	Nematology,	University	of	California	Davis.	One	Shields	6	
Ave,	Davis,	CA	95616	USA	7	

	8	

*		Corresponding	author	address:	Department	of	Entomology,	University	of	Wisconsin-9	
Madison.	1630	Linden	Dr,	Madison,	WI	53706	10	

	11	

Phone:	(608)	622-2698	12	

Email	address:	j.a.hemberg@gmail.com	13	
	14	

Running	title:	Warming	restructures	bumble	bee	communities	15	
Keywords:	Climate	change,	bumble	bee,	community	temperature	index,	ecoinformatics,	16	
community	composition	 	17	

mailto:jhemberger@ucdavis.edu


	 2	

Abstract		18	

A	rapidly	warming	climate	is	a	primary	force	driving	changes	in	biodiversity	worldwide.	19	
The	impact	of	warming	temperatures	on	insect	communities	is	of	particular	interest	given	20	
their	importance	for	ecosystem	function	and	service	provision	and	the	uncertainty	around	21	
whether	insect	communities	can	keep	pace	with	the	rate	of	increasing	temperatures.	We	22	
use	a	long-term	dataset	on	bumble	bee	species	occurrence	along	with	summer	maximum	23	
temperature	trends	across	North	America	to	characterize	community-level	responses	to	24	
recent	climate	warming.	We	examined	responses	using	the	community	temperature	index	25	
(CTI)	–	a	measure	of	the	balance	of	cool-	and	warm-adapted	species	within	local	26	
communities.	Starting	in	2010,	bumble	bee	average	CTI	across	North	America	has	rapidly	27	
increased	after	a	period	of	slight	increase	from	1989	to	the	late	2000s.	This	increase	is	28	
strongly	associated	with	recent	increases	in	maximum	summer	temperatures.	The	increase	29	
in	CTI	is	spatially	extensive,	but	the	areas	exhibiting	the	largest	increase	include	mid	to	30	
high	latitudes	as	well	as	low	and	high	elevations	-	areas	relatively	shielded	from	other	31	
intensive	global	changes	(e.g.,	land-use).	On	average,	bumble	bee	CTI	has	increased	0.99°C	32	
from	1989	to	2018,	a	change	of	similar	magnitude	to	the	increase	in	maximum	summer	33	
temperatures.	This	shift	has	been	driven	by	the	rapid	loss	of	cold-adapted	species	and	an	34	
increase	in	warm-adapted	species	within	bumble	bee	communities	across	North	American	35	
ecosystems.	Despite	evidence	that	the	spatial	velocity	of	community	change	is	keeping	pace	36	
with	temperatures,	this	is	a	direct	result	of	the	decline	of	cool-adapted	species.	Our	results	37	
provide	strong	evidence	of	the	pervasive	impacts	posed	to	insect	communities	by	38	
temperature	increases	in	the	last	30	years.	 	39	
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Introduction	40	

Climate	change	is	driving	profound	changes	in	animal	occurrence	and	community	41	
composition	worldwide.	Long-term	increases	in	average	temperature	as	well	as	increases	42	
in	acute,	extreme	weather	events	(e.g.,	heat	waves)	have	been	linked	to	both	positive	43	
(Kammerer	et	al.,	2021;	Crossley	et	al.,	2021)	and	negative	outcomes	for	biodiversity	44	
(Kammerer	et	al.,	2021;	Oliver	et	al.,	2016;	Outhwaite	et	al.,	2022;	Sirois-Delisle	&	Kerr,	45	
2018).	Regardless	of	the	direction	of	such	outcomes,	a	rapidly	changing	climate	has	the	46	
potential	to	fundamentally	alter	biological	processes,	including	ecosystem	services	that	47	
maintain	biodiversity	and	support	global	agricultural	production	(Johnson	et	al.,	2023;	48	
Settele	et	al.,	2016).	49	
Insect	responses	to	climate	change	are	of	specific	interest	given	the	growing	50	
documentation	of	declines	in	a	variety	of	taxa	and	regions	(Halsch	et	al.,	2021;	Raven	&	51	
Wagner,	2021).	Although	several	anthropogenic	drivers	of	global	change	are	at	play	52	
(Goulson	et	al.,	2015;	Hemberger	et	al.,	2021),	a	changing	climate	is	particularly	menacing	53	
given	the	number	of	potential	direct	and	indirect	impacts	it	has	on	insects	and	its	capacity	54	
to	be	a	force-multiplier,	interacting	with	other	factors	to	exacerbate	changes	in	insect	55	
populations	(Hoover	et	al.,	2012;	Forrest	et	al.,	2018;	Kenna	et	al.,	2023).	Like	many	global	56	
change	drivers,	rapidly	increasing	temperatures	may	favor	some	species	while	leading	to	57	
local	extirpations	of	others.	Though	temperatures	above	the	critical	limits	of	species	(e.g.,	58	
CTmax;	Oyen	et	al.,	2018)	are	unlikely,	the	extent	to	which	climate	warming	has	contributed	59	
to	local	shifts	in	insect	abundance	and	community	structure	remains	mostly	unknown.	This	60	
knowledge	gap	places	our	understanding	of	a	host	of	ecological	processes	and	services	in	61	
limbo.	62	
Even	among	the	most	studied	insect	taxa	there	is	debate	about	the	extent,	severity,	and	63	
direction	of	effects	associated	with	climate	change.	Bumble	bees	are	a	prime	example	with	64	
some	studies	revealing	extensive	declines	(Soroye	et	al.,	2020;	but	see	Guzman	et	al.,	2021)	65	
and	others	suggesting	resilience	and	relative	stability	(Guzman	et	al.,	2021;	Maebe	et	al.,	66	
2021)	or	mixed	patterns	of	decline	and	increases	over	time	(Jackson	et	al.,	2022).	Most	67	
current	approaches	examining	the	long-term	influence	of	climate	on	bumble	bees	use	68	
occupancy	models	to	relate	changes	in	species	occurrence	to	trends	in	climate,	such	as	69	
increases	in	temperature	and	changes	in	precipitation	(Janousek	et	al.,	2023).	Although	this	70	
method	yields	valuable	insights,	it	can	be	challenging	to	align	the	framework	with	the	71	
incidental	and	imperfect	occurrence	data	that	abounds	in	large-scale	insect	databases,	72	
making	model	outcomes	sensitive	to	occupancy	assumptions	(Guzman	et	al.,	2021).	73	
Moreover,	the	occupancy	approach	framework	does	not	explicitly	capture	any	74	
physiological	mechanisms	driving	species	responses	to	warming	temperatures.	As	such,	a	75	
more	thorough	understanding	of	where/when	insects	are	most	impacted	by	climate	change	76	
requires	exploring	alternative	analytical	methods	that	better	tie	climatic	changes	to	77	
estimates	of	insect	physiological	temperature	preferences	and	limits.	78	
We	characterize	bumble	bee	community	responses	to	recent	climate	warming	at	the	79	
continental	scale	by	examining	changes	in	the	community	temperature	index	(CTI),	a	80	
physiologically-informed	metric	of	community	responses	to	climate	based	on	the	81	
composition	of	cool-	and	warm-adapted	species.	This	metric	can	be	used	to	assess	the	rate	82	
of	change	in	community	composition	based	on	historical	species	temperature	preferences	83	
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(species	temperature	index,	STI),	as	well	as	the	spatial	velocity	of	community	changes	84	
(Devictor	et	al.,	2008,	2012).	When	examined	over	time	associated	with	temperature,	CTI	85	
can	help	determine	whether	species	are	keeping	pace	with	the	velocity	of	temperature	86	
trends	(i.e.,	an	increase	in	warm-adapted	species	and	a	loss	of	cool-adapted	species	in	87	
rapidly	warming	areas;	Fourcade	et	al.	2019),	or	whether	communities	are	accruing	88	
“climate	debts”,	as	rising	temperatures	outpace	species	turnover	(Devictor	et	al.,	2012).	89	
Using	50	years	of	records	from	the	Bumble	bees	of	North	America	database	(Richardson	90	
2023),	we	test	for	changes	in	bumble	bee	communities	using	CTI	across	North	America	by	91	
quantifying	the	association	between	changes	in	CTI	with	trends	in	maximum	summer	92	
temperature.	Specifically,	we	wanted	to	address	the	following	questions:	(1)	is	there	93	
evidence	of	an	increase	in	bumble	bee	CTI	over	time?	(2)	are	changes	in	CTI	associated	94	
with	increases	in	summer	temperatures?	(3)	are	CTI	changes	greater	in	areas	particularly	95	
vulnerable	to	a	changing	climate	(e.g.,	higher	latitudes	and	elevations)?	and	(4)	is	a	loss	of	96	
cool-adapted	or	an	increase	in	warm-adapted	species	driving	the	observed	changes	in	CTI?	97	
We	predicted	a	steady	increase	in	bumble	bee	CTI	in	accordance	with	documented	98	
increases	in	average	maximum	summer	temperatures	over	the	past	century	and	that	99	
changes	would	be	more	dramatic	at	higher	latitudes	and	elevations.	We	also	expected	that	100	
a	host	of	common,	warm-adapted	species	that	have	increased	in	occurrence	over	the	past	101	
several	decades	would	be	the	strongest	drivers	of	change	in	CTI	across	the	continent.		 	102	
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Methods	103	

North	American	bumble	bee	occurrence	and	community	data	104	
We	used	occurrence	records	for	59	species	of	North	American	bumble	bees	from	the	105	
bumble	bees	of	North	America	database	(BBNA;	Richardson	2023).	This	database	106	
composes	781,280	records	from	1805-2020	from	a	variety	of	sources	(e.g.,	natural	history	107	
collections,	research	studies,	citizen	science	programs).	To	match	the	temporal	range	of	108	
available	climate	data,	we	used	bumble	bee	records	collected	between	1960	and	2018.	109	
Because	the	database	consists	of	an	amalgam	of	sources,	we	took	several	steps	to	account	110	
for	known	biases	(Bartomeus	et	al.,	2019;	Gotelli	et	al.,	2021).	The	species	and	community	111	
temperature	indices	at	large	scales	of	our	analysis	are	robust	to	imprecision	in	the	112	
underlying	distributional	data	(Devictor	et	al.,	2008);	nonetheless	we	filtered	the	original	113	
dataset	to	include	only	complete	records	(i.e.,	identified	to	species,	containing	complete	114	
coordinates)	and	unique	collection	events	(distinct	combinations	of	species,	date,	115	
coordinates,	and	observer;	Figure	1A).	This	step	helps	to	minimize	the	bias	associated	with	116	
unequal	sampling	efforts	and	differential	data	collection	methods	across	all	observers.	117	
Moreover,	we	conducted	a	range	of	sensitivity	analyses	(see	below)	to	determine	whether	118	
our	results	were	robust	given	our	assumptions	and	methodological	decisions.		119	

Is	there	evidence	of	an	increase	in	bumble	bee	CTI	over	time?	120	
Calculating	the	CTI	first	requires	us	to	determine	the	species	temperature	index	(STI;	the	121	
historical	average	summertime	temperature	experienced	over	a	species’	approximate	122	
range;	Figure	1B)	for	all	species	present	within	a	given	community.	For	this	calculation,	we	123	
used	summer	maximum	monthly	temperature	as	the	bulk	of	bumble	bee	records	are	124	
collected	during	this	period	corresponding	the	peak	flight	for	most	North	American	species.	125	
To	calculate	the	STI,	we	used	a	subset	of	bee	occurrence	records	from	1960-2000	to	extract	126	
historical	summertime	temperatures	at	these	locations	from	a	global	climate	database.	The	127	
purpose	of	extracting	these	records	is	to	delineate	the	approximate	range	of	each	species.	128	
Because	the	range	estimates	for	North	American	bumble	bees	are	largely	based	on	records	129	
from	this	dataset	(Williams	et	al.	2014),	we	are	confident	that	these	data	capture	the	range	130	
of	almost	all	included	species.	Next,	using	the	`raster`	package	(Hijmans,	2023),	we	131	
calculated	the	historical	average	maximum	summer	temperatures	at	the	specific	location	132	
(i.e.,	raster	pixel)	of	each	occurrence	record	for	that	species	from	the	WorldClim	version	2.1	133	
historical	climate	database	at	30	arc-second	(~1	km2)	resolution	(Fick	&	Hijmans,	2017)	by	134	
averaging	the	maximum	monthly	temperature	for	summer	months	(defined	here	as	June-135	
September)	for	a	historical	period	of	1970	to	2000.	We	used	this	historical	dataset	as	it	is	136	
the	highest	resolution	historical	temperature	raster	available	through	WorldClim.	We	then	137	
used	this	raster	to	extract	mean	summer	maximum	temperature	values	using	our	bumble	138	
bee	occurrence	records.	For	each	species,	we	then	calculated	the	mean	of	the	extracted	139	
values	to	determine	the	STI	estimate.	140	

Use	of	the	CTI	framework	required	us	to	assign	bee	occurrence	records	to	communities	to	141	
calculate	CTI	values	for	given	locations/times	(Devictor	et	al.,	2008;	Figure	1C).	To	do	this,	142	
we	created	a	hexagonal	grid	across	North	America	at	a	broad	spatial	scale	(50	km	143	
hexagonal	grid	resolution,	center	to	side:	~	6600	km2)	to	act	as	stand-in	“community”	144	
boundaries.	We	chose	a	50	km	resolution	to	ensure	we	would	capture	sufficient	records	145	
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within	each	grid	cell	to	robustly	estimate	the	broad	spatiotemporal	trend	of	CTI	(Jackson	et	146	
al.,	2022).	Although	these	species	assemblages	are	considerably	larger	than	the	scale	of	an	147	
ecological	community,	the	analysis	is	ultimately	agnostic	to	this	point,	and	it	does	not	affect	148	
our	specific	questions.	We	refer	to	them	as	communities/CTI	to	maintain	consistency	with	149	
the	existing	literature.	Also,	because	we	used	occurrence	records	from	a	variety	of	sources	150	
whose	spatial	locations	varied	over	time,	using	fixed	sampling	locations	to	delineate	151	
communities	(e.g.,	Prince	and	Zuckerberg	2014)	was	not	possible.	To	determine	if	the	152	
resolution	of	our	grid	cells	impacted	our	results,	we	also	conducted	our	analyses	using	25	153	
and	100	km	center-to-side	hexagonal	grid	cells.	Using	these	grids,	we	assigned	bumble	bee	154	
occurrence	records	to	each	cell	to	create	quasi-communities,	requiring	each	cell	to	contain	155	
at	least	2	species	for	a	given	year	to	calculate	CTI.	We	used	hexagonal	grid	cells	to	minimize	156	
possible	edge	effects	and	provide	a	better	fit	across	the	curvature	of	the	earth	at	large	157	
spatial	scales	(e.g.,	continental;	Birch	et	al.	2007).		158	

Using	STI	values,	we	then	calculated	CTI	within	each	grid	cell	where	at	least	2	species	159	
records	were	present	in	the	grid	using	the	full	set	of	bumble	bee	occurrence	records	from	160	
1989-2018	(Figure	1D).	We	were	limited	to	using	only	CTI	calculations	from	1989	onward	161	
as	1989	was	the	first	year	for	which	we	could	calculate	a	30-year	moving	average	summer	162	
temperature	anomaly	(see	below).	We	calculated	CTI	using	two	different	methods,	first	163	
using	occurrence	records	for	species	i	occurring	within	a	given	community	(grid	cell)	j	164	

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1:	𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒	𝐶𝑇𝐼! =	
∑ 𝑆𝑇𝐼",!$
"%&

𝑛 	165	

and	then	using	abundance	weighted	estimates	of	species	within	each	community:	166	

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2:	𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒	𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐶𝑇𝐼! =	
∑ 𝑎",! × 𝑆𝑇𝐼",!$
"%&
∑ 𝑎",!$
"%&

	167	

where	𝑎",! 	is	the	abundance	of	species	i	at	site	j,	and	n	is	the	total	number	of	species	within	168	
a	grid	cell	(Princé	&	Zuckerberg,	2015).	In	our	case,	the	true	abundance	is	not	known,	but	169	
we	use	the	total	number	of	individuals	of	species	i	within	the	community	of	bees	at	site	j,	170	
the	grid	cell,	as	a	proxy	of	abundance.	These	two	approaches,	though	similar,	estimate	the	171	
two	mechanisms	of	change	in	CTI.	Using	occurrence	records	(Equation	1)	allowed	us	to	test	172	
shifts	in	CTI	due	to	changes	in	occurrence	(i.e.,	immigration/extirpation),	while	calculating	173	
CTI	using	abundance	weighting	(Equation	2)	allowed	us	to	understand	shifts	in	CTI	as	a	174	
function	of	changes	in	local	relative	abundance	(i.e.,	species	becoming	more	common/rare	175	
within	a	given	community).	176	
Are	changes	in	CTI	associated	with	increases	in	summer	temperatures?	177	
To	determine	long-term	warming	trends	across	North	America,	we	used	WorldClim	178	
gridded	historical	monthly	weather	data	from	1961-2018	for	our	defined	summer	months	179	
(Fick	&	Hijmans,	2017).	First,	we	averaged	the	maximum	monthly	temperature	for	each	180	
year.	Second,	we	extracted	the	mean	maximum	temperature	within	each	of	the	bumble	bee	181	
community	grid	cells	(Figure	1E).	This	procedure	created	a	time	series	of	the	average	182	
maximum	summer	temperature	for	each	year/grid	cell	from	1961-2018.	Third,	we	183	
calculated	the	average	maximum	summer	temperature	for	a	historical	period	from	1961-184	
2000	for	each	grid	cell;	this	is	our	baseline,	and	we	refer	to	it	as	the	temperature	“normal”.	185	
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Last,	we	calculated	the	summer	maximum	temperature	anomaly	(defined	here	as	the	186	
deviation	from	long-term	normal)	and	averaged	these	using	3	moving-window	scales	of	3,	187	
10,	and	30	years	to	capture	metrics	of	relatively	short-,	medium-,	and	long-term	changes	in	188	
maximum	summer	temperatures,	respectively.	To	illustrate	the	estimated	trends	in	189	
maximum	summertime	temperatures,	we	calculated	the	change	in	our	3	scales	of	190	
anomalies	by	subtracting	the	1989	average	anomaly	(first	possible	year	to	calculate	30-191	
year	average)	from	the	2018	average	anomaly	for	each	grid	cell.	This	meant	that,	when	192	
modeling	change	in	CTI	as	a	function	of	temperature	anomalies,	modeled	from	1989-2018	193	
(i.e.,	where	all	measures	had	maximum	temperature	anomaly	values	for	all	three	scales	(3-,	194	
10-,	and	30-year).	195	
We	used	generalized	additive	models	(GAM)	to	quantify	trends	in	CTI	over	space	and	time	196	
and	determine	whether	changes	in	CTI	were	related	to	short-,	medium-,	and	long-term	197	
trends	in	temperature	anomalies	(Figure	1F).	Generalized	additive	models	provide	a	highly	198	
flexible	computational	framework	to	account	for	variable	trends	in	spatiotemporal	199	
processes	(Pedersen	et	al.,	2019)	and	are	especially	well-suited	for	the	analysis	of	200	
potentially	complex	time	series	and	can	readily	identify	periods	of	significant	change	201	
(Simpson,	2018).	202	
For	each	measure	of	CTI	(occurrence	and	abundance-weighted),	we	fitted	a	GAM	to	model	203	
the	effects	of	spatial	location	(latitude,	longitude,	and	elevation),	long-term	trend	(year),	204	
short-,	medium-,	and	long-term	estimates	of	rising	temperatures	(3,	10,	and	30-year	205	
summertime	maximum	temperature	anomalies).	For	the	remainder	of	this	manuscript,	we	206	
refer	to	this	GAM	as	the	global	model.	207	
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3:	𝐶𝑇𝐼! 	~	𝑠(𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔) + 𝑠(𝑦𝑒𝑎𝑟) + 𝑠(𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛) + 𝑡𝑖(𝑙𝑎𝑡, 𝑙𝑜𝑛𝑔, 𝑦𝑒𝑎𝑟, 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛)208	

+ 𝑠(𝑒𝑐𝑜	𝑟𝑒𝑔𝑖𝑜𝑛, 𝑏𝑠 = "re")	+	s(𝑇L'()*) + 	s(𝑇L'()&+) + 	s(𝑇L'()*+)	209	

We	fit	the	model	using	the	mgcv	package	in	R	(Wood,	2011).	The	goal	of	each	model	was	to	210	
identify	the	spatiotemporal	trend	in	CTI	along	with	its	statistical	association	with	changes	211	
in	summertime	maximum	temperatures.	Because	of	the	differences	in	geography,	land-use,	212	
and	climate	across	North	America,	we	included	a	2-dimensional	smooth	of	latitude	and	213	
longitude,	and	we	allowed	the	estimated	temporal	trend	in	CTI	to	vary	according	to	spatial	214	
location	by	including	a	tensor	product	interaction	of	latitude,	longitude,	elevation,	and	year	215	
(Pedersen	et	al.,	2019;	Equation	3).	We	also	included	a	random	effect	smooth	of	ecological	216	
region	(Omernik,	1987)	to	further	account	for	variation	in	the	response	of	CTI	associated	217	
with	common	biophysical	characteristics	within	ecological	regions,	such	as	commonalities	218	
in	vegetation	and	other	climate	variables	(e.g.,	precipitation).	We	used	the	Level	1	219	
ecoregions	defined	and	maintained	by	the	US	EPA	(Omernik	and	Griffith.	2014).	We	220	
included	smooths	of	3-,	10-,	and	30-year	summertime	maximum	temperature	anomalies	to	221	
determine	whether	changes	in	CTI	were	correlated	with	trends	in	warming	maximum	222	
summer	temperatures.	Including	three	different	anomaly	scales	allowed	us	to	coarsely	223	
estimate	the	temporal	scale	of	temperature	change	to	which	bumble	bee	communities	224	
respond	most	strongly	to.	This	model	was	fit	to	CTI	estimates	from	1989-2018	as	1989	was	225	
the	first	year	for	which	30-year	temperature	anomalies	could	be	calculated	for	each	grid	226	
cell.	We	tested	the	model	for	spatial	and	temporal	autocorrelation	in	the	residuals.	For	227	
spatial	autocorrelation,	we	tested	simulated	residuals	with	a	Moran’s	I	test	using	the	228	
DHARMa	package	(Hartig,	2022).	For	temporal	autocorrelation,	we	visually	examined	the	229	
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autocorrelation	function	using	scaled,	simulated	residuals,	finding	no	evidence	of	230	
problematic	residual	correlation.	231	
To	visualize	the	change	in	CTI	over	time,	we	generated	CTI	predictions	across	the	spatial	232	
and	temporal	extents	of	our	dataset	using	the	global	model	for	each	grid	cell.	We	then	233	
determined	the	change	in	CTI	from	1989-2018	by	subtracting	the	modeled	CTI	estimate	for	234	
1989	from	that	of	2018	for	each	grid	cell.	To	visualize	model	uncertainty,	we	calculated	the	235	
average	standard	error	of	global	model	predictions	for	each	grid	cell	from	1989-2018.	We	236	
visualized	the	effect	of	the	three	moving-average	temperature	anomalies	on	CTI	by	plotting	237	
the	partial	effects	(prediction	of	CTI	as	a	function	of	temperature	holding	other	variables	238	
are	at	their	mean	value)	of	each	anomaly	from	the	global	model	using	the	gratia	(Simpson,	239	
2023)	package.	240	
Are	CTI	changes	greater	in	areas	particularly	vulnerable	to	a	changing	climate	(e.g.,	241	
higher	latitudes	and	elevations)?	242	

To	determine	whether	CTI	changes	were	most	drastic	(i.e.,	greater	slope	in	fitted	GAM)	in	243	
areas	known	to	be	experiencing	accelerated	climatic	changes,	we	examined	the	rate	of	244	
change	in	the	slope	(i.e.,	derivative)	of	our	fitted	model	smooth	(Figure	S1).	To	do	this,	we	245	
first	fitted	a	GAM	to	CTI	predictions	with	a	single	smooth	of	year	to	create	a	spatially	246	
explicit,	estimated	trend	of	CTI	for	each	grid	cell.	Then,	for	each	grid	cell’s	fitted	GAM	year	247	
smooth,	we	extracted	the	first	derivative	with	respect	to	time	(1990-2018)	using	the	248	
derivatives()	function	from	the	gratia	package	(Simpson,	2023).	For	elevation	and	latitude,	249	
we	calculated	the	mean	derivative	value	for	each	grid	cell	(i.e.,	the	average	rate	of	change	of	250	
the	CTI	of	a	grid	cell	from	1989-2018)	and	then	plotted	this	against	the	mean	elevation	and	251	
latitude	of	the	grid	cell.	We	visualized	the	relationship	with	a	GAM	fit	using	the	252	
geom_smooth()	function	in	the	ggplot	(Wickham	et	al.,	2019)	package.	To	determine	253	
whether	CTI	changes	were	consistent	or	have	accelerated	over	time,	we	calculated	the	254	
derivative	values	for	the	year	smooth	for	each	grid	cell	and	plotted	these	values	against	the	255	
year.	Like	elevation,	this	relationship	was	visualized	with	a	simple	GAM	fit.	256	

Which	species	are	driving	any	observed	changes	in	CTI?	257	
Although	quantifying	the	trend	in	CTI	provides	evidence	for	whether	communities	are	258	
being	restructured	in	response	to	a	changing	climate,	the	procedure	does	not	identify	the	259	
mechanism	driving	changes.	For	example,	for	areas	where	CTI	is	observed	to	increase,	is	it	260	
an	increase	in	warm-adapted	or	a	decrease	in	cool-adapted	driving	the	change?	To	address	261	
this,	we	modeled	the	trend	in	the	relative	abundance	of	cool-	and	warm-adapted	species	to	262	
generalize	the	mechanism	underlying	the	observed	changes	in	CTI	across	North	America.	263	
First,	we	assigned	species	as	either	cool-	or	warm-adapted	within	each	grid	cell	by	264	
comparing	species	STI	values	against	the	average	of	STI	values	(i.e.,	the	CTI)	across	all	265	
species	present	within	the	cell.	STI	values	above	the	community	mean	were	assigned	266	
“warm-adapted”	while	those	below	were	assigned	“cool-adapted”.	This	approach	allowed	267	
species	identified	as	cool-	or	-warm	adapted	to	change	based	on	the	location	and	268	
community	composition,	which	we	felt	was	more	realistic	than	assigning	cool-	or	warm-269	
adapted	based	on	a	range-wide	assessment	given	that	some	species	have	extensive	ranges	270	
that	cover	large	swaths	of	North	America.	Next,	we	calculated	the	relative	abundance	of	271	
each	species	in	each	grid	cell	within	3	temporal	bins	(each	with	~	equal	numbers	of	272	
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observations).	For	each	species,	we	then	fit	a	binomial	GLMM	with	a	fixed	effect	of	the	year	273	
bin	and	a	random	effect	of	ecological	region	to	estimate	the	temporal	trend	in	relative	274	
abundance	across	all	grid	cells	where	the	species	was	present.	Modeling	relative	275	
abundance	in	this	way	is	a	useful	proxy	to	determine	approximate	trends	in	species	276	
occurrence	and	abundance	(Hemberger	et	al.,	2021,	Gotelli	et	al.,	2021).	Next,	we	extracted	277	
the	model	coefficient	for	the	year	bin	term	and	combined	these	estimates	with	species	278	
occurrence	records	that	were	assigned	as	either	cool-	or	warm-adapted.	We	then	fit	a	279	
subsequent	GLM	that	predicted	the	estimated	relative	abundance	trend	as	a	function	of	280	
species	thermal	group	(cool-	or	warm	adapted)	and	its	interaction	with	the	latitude	of	the	281	
grid	cell	of	the	observation	and	an	error	propagation	term.	Because	this	model	was	fit	using	282	
coefficients	from	the	species-specific	relative	abundance	trend	models,	we	included	the	283	
error	propagation	term	(coefficient	standard	error	/	coefficient	estimate)	to	help	account	284	
for	the	uncertainty	in	the	underlying	coefficient	estimates.	This	model	allowed	us	to	285	
determine	whether	the	rate	of	change	in	relative	abundance	among	the	two	species	groups	286	
varied	from	South	to	North	given	known	trends	in	increasing	temperatures	across	287	
latitudes.	288	

Model	validation	289	
We	performed	cross	validation	on	our	global	model	using	testing	data	that	was	filtered	out	290	
of	the	full	BBNA	database.	These	collection	events,	while	not	“unique”	(i.e.,	not	necessarily	291	
fully	independent	given	our	strict	definition),	were	still	valid	records	that	could	be	used	to	292	
calculate	the	CTI	for	any	given	location.	Upon	calculating	the	CTI	for	grid	cells	using	these	293	
records,	we	compared	the	values	against	predictions	from	the	global	model	by	using	the	294	
coefficient	of	determination	(R2),	root	mean	square	error	(RMSE)	and	mean	absolute	error	295	
(MAE).	296	
Despite	the	vast	number	of	individual	occurrence	records	within	our	dataset,	there	were	297	
many	grid	cells	that	did	not	contain	species	occurrence	data	for	fitting	the	model.	Given	298	
that	we	explicitly	model	CTI	over	space,	we	presented	our	results	above	using	predictions	299	
within	all	grid	cells	given	the	strength	of	our	global	model	fits.	However,	we	also	assessed	300	
the	results	when	using	model	predicted	values	of	CTI	only	for	grid	cells	containing	301	
occurrence	data.	This	approach	was	primarily	meant	to	provide	conservative	estimates	of	302	
CTI	changes,	particularly	where	in	space	(i.e.,	latitude,	elevation)	and	time	changes	have	303	
been	the	largest.	304	
We	conducted	all	data	wrangling,	GIS	operations,	modeling,	and	visualization	using	R	(R	305	
Core	Team,	2017)	using	the	aforementioned	and	following	packages:	tidyverse	(Wickham	306	
et	al.,	2019),	raster	(Hijmans,	2023),	sf	(Pebesma,	2018),	performance	(Lüdecke	et	al.,	307	
2021),	janitor	(Firke,	2021),	paletteer	(Hvitfeldt,	2021),	exactextractr	(Daniel	Baston,	308	
2022),	foreach	(Microsoft	&	Weston,	2022),	and	data.table	(Dowle	&	Srinivasan,	2023)	309	
packages.		 	310	
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Results	311	

Bumble	bee	community	temperature	index	has	increased	across	a	majority	of	North	312	
America	313	
From	1989-2018	bumble	bee	CTI	increased	substantially	across	most	of	North	America.	314	
Overall,	CTI	increased	on	average	0.99	±	1.98	°C	(mean	±	SD).	The	magnitude	of	change	in	315	
CTI	was	spatially	variable,	ranging	from	a	decrease	of	6.30	°C	to	an	increase	of	7.99	°C	316	
(Figure	2A).	The	predictions	were	most	certain	across	the	coterminous	United	States	317	
where	there	is	a	high	density	of	bumble	bee	records	and	less	certain	in	the	most	northern	318	
grid	cells	of	our	study	region	in	the	high	Tundra	and	Queen	Elizabeth	Islands	as	well	as	in	319	
the	tropical	wet	forests	of	Mexico	(Figure	2B).	The	spatial	trends	of	the	increase	in	CTI	320	
were	nearly	identical	between	occurrence	and	abundance-weighted	CTI;	however,	changes	321	
in	occurrence	CTI	were	marginally	smaller	(0.78	±	1.75	°C).	The	global	model,	which	322	
quantified	the	change	in	CTI	as	a	function	of	space,	time,	and	changes	in	short-,	medium-,	323	
and	long-term	temperature	increases,	explained	a	substantial	portion	of	the	deviance	in	324	
both	the	abundance-weighted	(Table	S1;	86.0%,	adj-R2	=	0.849)	and	occurrence	models	325	
(Table	S1;	86.3%,	adj-R2	=	0.851).	326	
The	results	of	our	analysis	were	consistent	irrespective	of	the	grid	scale	used	in	327	
aggregating	communities	(Figure	S2;	Table	S2).	The	exception	was	in	areas	of	British	328	
Columbia	and	Alaska	where	a	highly	concentrated	spatial	pattern	of	bumble	bee	records	329	
likely	led	to	a	predicted	decrease	in	CTI	in	grid	cells	when	aggregated	at	the	50	and	25	km	330	
grid	scale.	Aggregating	at	the	largest	scale	(100	km	center-to-side	hexagonal	grid)	revealed	331	
the	most	wide-spread	increases	in	CTI,	with	nearly	all	grid	cells	exhibiting	an	increase	in	332	
CTI	from	1989	to	2018.	333	
Our	models	performed	well	when	cross-validated	using	withheld	data	from	the	BBNA	334	
database	(Figure	S3).	Coefficient	of	determination	(R2)	values	ranged	from	0.79-0.81;	root	335	
mean	squared	error	(RMSE)	ranged	from	1.22-1.31;	and	mean	absolute	error	(MAE)	336	
ranged	from	0.91-0.96.	In	addition,	our	model	performance	was	consistent	across	the	three	337	
tested	grid	scales.	Predictions	were	most	accurate	for	CTI	values	ranging	from	23-28°C	338	
which	corresponded	to	the	regions	where	the	bulk	of	the	occurrence	records	were	339	
collected.	Prediction	accuracy	was	most	variable	among	cool	regions	in	the	north	and	sub-340	
arctic	(CTI	<	23°C).	341	

Shifts	in	CTI	are	strongly	related	to	long-term	increases	in	summer	temperature	342	
Summertime	maximum	temperatures	have	increased	by	1989-2018	(Fig.	2C-E),	with	343	
increases	most	apparent	at	10-	(0.630	±	0.405	°C)	and	30-year	average	anomalies	(0.969	±	344	
0.342°C;	Figure	1D,	E;	Figure	S4).	Increases	in	the	30-year	summertime	maximum	345	
temperature	anomaly	showed	a	strong	statistical	association	with	increases	in	bumble	bee	346	
CTI	(Figure	2C;	F	=	4.561,	p	=	0.002).	Increases	in	the	30-year	temperature	anomaly	347	
between	0-0.5°C	had	no	impact	on	CTI.	However,	increases	of	over	0.5°C	were	associated	348	
with	a	rapid	increase	of	up	to	1°C	in	bumble	bee	CTI	(partial	effect	due	solely	to	30-year	349	
temperature	anomaly).	Beyond	a	1°C	change	in	the	30-year	temperature	anomaly	the	350	
changes	in	CTI	rapidly	increase,	with	gains	of	1	to	6.8°C.	The	relationship	of	CTI	with	short	351	
term,	3-year	moving	average	shifts	in	summer	temperature	anomalies,	while	statistically	352	
supported,	was	weak	and	variable	over	the	range	of	the	anomalies	(Figure	3A;	F	=	2.584,	p	353	
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=	0.032).	There	was	no	statistically	supported	relationship	between	the	10-year	average	354	
anomaly	and	bumble	bee	CTI	(Figure	3B;	F	=	0.064,	p	=	0.802).	355	
CTI	is	increasing	fastest	at	low	and	high	elevations,	high	latitudes,	and	more	recent	356	
years	357	
We	examined	patterns	in	the	rate	of	change	in	CTI	across	the	continent	to	determine	where	358	
and	when	the	most	extreme	changes	in	CTI	were	occurring	and	whether	these	areas	359	
overlapped	with	areas	known	to	be	heavily	impacted	by	a	warming	climate	(Janousek	et	al.,	360	
2023).	The	rate	of	change	in	CTI	was	greatest	at	low	(<	800	m)	and	high	elevations	(>	2000	361	
m;	Figure	5A)	and	increased	with	increasing	latitude	(Figure	5B).	CTI	increases	predicted	362	
at	high	elevations	also	had	greater	uncertainty	than	those	at	low	elevations,	due	in	part	to	a	363	
higher	concentration	of	occurrence	records	at	lower	elevations.	Moreover,	the	rate	of	364	
change	in	CTI	has	increased	from	1989-2018,	with	CTI	increasing	most	rapidly	after	2010	365	
(Figure	5C).	These	results	varied	slightly	when	analyzed	with	predictions	from	only	grid	366	
cells	containing	occurrence	records,	with	changes	in	CTI	being	greatest	at	high	elevations	367	
(Figure	S5A;	>	2000	m)	and	mid-high	latitudes	(Figure	S5B;	35	–	60°).	The	temporal	368	
patterns	of	the	rate	of	change	were	largely	similar	but	were	positive	only	from	2003	and	369	
beyond	(Figure	S5C),	confirming	the	accelerating	rate	of	CTI	change	from	2010	onward	370	
that	is	exhibited	when	using	predictions	from	all	grid	cells	(Figure	5C).	371	
CTI	changes	driven	by	loss	of	cool-adapted	and	increase	in	warm-adapted	species	372	
In	the	model	predicting	the	temporal	trend	coefficient	for	species	relative	abundance,	there	373	
was	a	significant	interaction	between	species	thermal	niche,	latitude,	and	propagated	error	374	
(c2	=	14.53,	p	<	0.001,	Table	S3).	The	relative	abundance	of	cool-adapted	species	has	375	
declined	across	North	America,	with	the	rate	of	decrease	(i.e.,	binomial	model	coefficient	376	
estimates)	lowest	at	high	latitudes	(Figure	6).	In	contrast,	the	relative	abundance	of	warm-377	
adapted	species	has	increased	across	all	areas	south	of	~50°	latitude.	Beyond	this	50°	378	
parallel,	warm-adapted	species	are	also	decreasing	in	relative	abundance.	This	general	379	
trend,	a	consistent	loss	of	cold-adapted	species	and	increase	in	warm-adapted	species	380	
across	most	latitudes	was	broadly	consistent	across	ecological	regions	(Figure	S6).	 	381	
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Discussion	382	

We	documented	significant,	rapid	spatially	extensive	shifts	in	the	thermal	composition	of	383	
North	American	bumble	bee	communities	in	response	to	long-term	increases	in	summer	384	
temperatures.	Over	the	last	29	years	across	the	continent,	bumble	bee	community	385	
assemblages	increasingly	consist	of	fewer	cool-adapted	and	more	warm-adapted	species	386	
with	resultant	increases	in	the	community	temperature	index,	a	measure	of	the	balance	of	387	
warm-	and	cool-adapted	species,	most	pronounced	at	mid-	to	high	latitudes,	and	high	388	
elevations	in	the	American	Rockies,	Intermountain	West,	and	central	Mexico.	We	also	389	
document	an	alarming	trend	suggesting	that	above	50°N,	both	cool-	and	warm-adapted	390	
species	are	declining	in	relative	abundance,	indicating	that	warming	temperatures	are	391	
outpacing	the	capacity	of	bumble	bee	species	to	respond	or	adapt	(Kerr	et	al.,	2015).	The	392	
community	temperature	index	increased	according	to	both	occurrence	and	abundance-393	
weighted	indices,	suggesting	that	shifts	in	both	local	abundance	(i.e.,	loss	of	cool-adapted	394	
species)	and	broader	changes	in	species	occurrence	(i.e.,	range	shifts)	underlie	the	395	
observed	changes	in	community	composition.	Our	model	results	are	consistent	with	396	
occupancy	patterns	that	reveal	both	winners	and	losers	among	bumble	bee	species	in	397	
response	to	anthropogenic	climate	change	(Jackson	et	al.,	2022).	Overall,	our	work	398	
provides	strong	evidence	of	the	pervasive	impacts	a	warming	planet	has	for	insect	399	
biodiversity,	particularly	for	historically	cool-adapted	species,	and	identifies	regions	of	400	
concern	where	anthropogenic	climate	warming	is	rapidly	restructuring	the	communities	of	401	
an	ecologically	important	group	of	insects.	402	
An	increase	in	species	turnover	within	biological	communities	is	a	logical	consequence	of	a	403	
rapidly	warming	climate	(Tingley	&	Beissinger,	2013).	Similar	shifts	in	community	404	
composition	have	been	observed	in	bird	communities	in	response	to	both	warming	405	
summer	(Devictor	et	al.,	2008,	2012)	and	winter	(Princé	&	Zuckerberg,	2015)	406	
temperatures.	Because	insects	are	ectotherms,	temperature-induced	shifts	in	range	and	407	
abundance	may	be	even	more	pronounced.	Indeed,	large	changes	in	insect	CTI	have	been	408	
observed	for	both	bumble	bees	(Fourcade	et	al.,	2019)	and	butterflies	(Devictor	et	al.,	409	
2012);	however,	trends	in	CTI	are	often	not	explicitly	tied	to	spatial	and	temporal	patterns	410	
of	warming	temperatures.	Our	results	explicitly	link	these	two	phenomena	–	revealing	a	411	
clear	statistical	relationship	between	increases	in	CTI	and	long-term	increases	in	maximum	412	
summer	temperatures	across	North	America.	Areas	experiencing	a	30-year	temperature	413	
anomaly	of	greater	than	or	equal	to	0.5°C	strongly	associated	with	a	rapid	increase	in	414	
bumble	bee	CTI	(Figure	2;	dark	orange	and	red	areas).	It	is	worth	noting	that	the	historical	415	
baseline	period	we	choose	for	calculating	species	STI	values	is	due	to	the	availability	of	416	
interpolated	climate	data.	Choosing	an	earlier	baseline	period	could	reveal	different	417	
patterns	in	community	change,	however	this	is	unlikely	given	the	stability	of	summer	418	
temperatures	relative	to	the	dramatic	increases	observed	in	recent	decades.		419	

The	frontline	of	species’	responses	to	climate	have	tended	to	be	at	high	latitudes.	Northern	420	
regions	have	experienced	rapid	increases	in	temperature	leading	to	pronounced	421	
phenological	shifts	across	taxa	(Parmesan,	2007).	Our	results	support	this	trend,	finding	422	
greatest	rates	of	bumble	bee	CTI	change	at	higher	latitudes	and	high	elevation.	The	bumble	423	
bee	species	in	these	locations	tend	to	have	narrower	ranges	and	be	cold-adapted,	traits	424	
identical	to	other	insect	taxa	that	have	exhibited	declines	due	to	climate	(Engelhardt	et	al.,	425	



	 13	

2022;	Halsch	et	al.,	2021;	Neff	et	al.,	2022).	Alarmingly,	our	results	found	that	even	warm-426	
adapted	species	are	struggling	to	respond	to	the	pace	of	warming	temperatures	at	higher	427	
latitudes	(CITE).	We	found	that	both	cool-	and	warm-adapted	bumble	bee	species	north	of	428	
50°N	have	exhibited	significant	declines	in	relative	abundance.	This	result	supports	429	
previous	work	describing	the	limited	capacity	of	bumble	bees	to	track	their	northern	range	430	
limits	in	accordance	with	warming	temperatures	(Kerr	et	al.,	2015).	Though	additional	431	
confirmation	is	needed,	our	results	suggest	that	northern	bumble	bee	communities	are	in	432	
crisis,	with	significant	species	turnover	and	declines	in	abundance	that	may	threaten	the	433	
persistence	of	populations	in	the	coming	decades.	434	
Rapidly	increasing	CTI	at	high	elevations	suggests	that	cold-adapted	species	are	being	435	
displaced	by	warm-adapted,	low-elevation	species.	This	phenomenon	has	been	observed	in	436	
the	US	Rocky	Mountains	where	bumble	bee	communities	are	increasingly	dominated	by	437	
low-elevation	species	using	high-elevation	habitats	as	a	thermal	refugia	(Miller-Struttmann	438	
et	al.,	2022).	An	upslope	range	expansion	appears	to	be	a	common	response	of	bumble	bee	439	
communities	to	warming	temperatures	rather	than	expansions	of	northern	ranges	(Kerr	et	440	
al.,	2015;	Sirois-Delisle	&	Kerr,	2018).	Despite	the	rapid	changes	observed	at	higher	441	
latitudes,	biological	communities	in	southern	latitudes	and	lower	elevations	are	not	442	
protected	from	a	changing	climate	(Dillon	et	al.,	2010),	and	we	documented	some	shifts	in	443	
CTI	in	central	Mexico	and	at	low	elevations.	That	said,	if	species	lost	from	communities	444	
have	STI	values	comparable	to	those	species	remaining,	shifts	in	CTI	and	community	445	
composition	may	be	effectively	masked,	highlighting	a	limitation	of	our	approach.	446	

An	increase	in	CTI	could	be	the	result	of	two	mechanisms.	First,	shifts	in	the	occurrence	of	447	
bees	within	a	community	(i.e.,	immigration/extirpation	of	warm-/cool-adapted	species	via	448	
range	expansion/contraction)	and	second,	changes	in	the	local	abundance	of	warm-/cool-449	
adapted	species.	We	found	evidence	supporting	both	mechanisms	by	modeling	occurrence	450	
and	abundance-weighted	measures	of	CTI.	Shifts	in	local	relative	abundance	align	with	451	
existing	research	(Cameron	et	al.,	2011;	J.	Hemberger	et	al.,	2021);	however,	substantial	452	
range	expansion	of	warm-adapted	bumble	bees	has	not	been	described	(Kerr	et	al.,	2015)	453	
and	may	be	unlikely	given	bumble	bee	dispersal	capacities	(Fijen,	2021).	That	said,	select	454	
species	of	bumble	bees	may	be	capable	of	long-distance	dispersal	(Fijen,	2021),	and	455	
significant	range	shifts	in	other	insect	taxa	have	been	observed	(Warren	et	al.,	2001;	456	
Hinckling.2005).	Regardless,	our	thermal	niche	analysis	revealed	there	are	a	host	of	warm-457	
adapted	species	whose	relative	abundance	is	increasing	significantly.	This	result	indicates	458	
that	certain	species	are	sensitive	to	and	more	capable	of	effectively	tracking/adapting	to	459	
ideal	climatic	conditions	(Maebe	et	al.,	2021).	Indeed,	several	bumble	bee	species	have	460	
exhibited	both	range	increases	(Looney	et	al.,	2019;	e.g.,	B.	impatiens	Palmier	et	al.,	2019)	461	
and	increases	in	local	abundance.	However,	other	species	(e.g.,	B.	occidentalis)	are	not	able	462	
to	successfully	track	warming	and	are	likely	to	suffer	substantial	reductions	in	range	as	a	463	
result	(Janousek	et	al.,	2023).	Moreover,	our	analysis	found	that,	north	of	the	US/Canadian	464	
border,	even	warm-adapted	species	are	at	risk,	with	negative	trends	in	species’	relative	465	
abundance.	Such	contrasts	highlight	the	species-specific	nature	of	bumble	bee	responses	to	466	
a	rapidly	changing	climate	(Jackson	et	al.,	2022;	Whitehorn	et	al.,	2022).	Additional	467	
research	is	needed	detailing	species-specific	responses	to	warming	conditions	–	focusing	468	
on	identifying	the	physiological	and	evolutionary	mechanisms	that	drive	species’	plasticity	469	
to	changing	environmental	conditions.	470	
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An	increase	in	the	occurrence	and	abundance	of	warm	adapted	species	does	suggest	a	471	
physiological/climate	preference	mechanism	is	at	play	(i.e.,	direct	effect).	Several	studies	472	
document	significant,	direct	effects	of	warming	on	insect	pollinators	(CaraDonna	et	al.,	473	
2018;	Hemberger	et	al.,	2023;	Kenna	et	al.,	2021),	however	indirect	effects	mediated	474	
through	biotic	interactions	may	be	just	as	if	not	more	important	(Ockendon	et	al.,	2014,	but	475	
see	Iler	et	al.,	2021).	In	the	context	of	our	study,	such	indirect	effects	imply	that	shifts	in	476	
bumble	bee	community	composition	are	occurring	in	part	in	response	to	climate-induced	477	
changes	in	the	resource	landscape	(i.e.,	indirect	effects).	For	example,	warming	climates	478	
can	widen	the	temporal	availability	of	resources	due	to	earlier	snowmelts,	which	in	turn	479	
lead	to	an	increase	in	bumble	bee	abundance	(Ogilvie	et	al.,	2017).	Warming	may	also	480	
create	phenological	mismatches	that	reduce	available	forage	for	bees	(Pyke	et	al.	2016,	but	481	
see	Bartomeus	et	al.,	2011).	Similarly,	an	increase	in	hot,	dry	summer	conditions	can	482	
significantly	reduce	floral	resources	and	the	bumble	bees	that	depend	on	them	(Iserbyt	&	483	
Rasmont,	2013),	and	similar	patterns	have	been	observed	for	butterflies	(Crossley	et	al.,	484	
2021).	Unfavorable	conditions,	often	a	result	of	extreme	weather	events	such	as	heat	waves	485	
and	droughts,	can	create	resource	bottlenecks	that	have	the	potential	to	lead	to	population	486	
declines	and	local	extirpation	(Maron	et	al.,	2015).	Heat	waves,	for	example,	are	expected	to	487	
increase	significantly	in	the	coming	century	(Lopez	et	al.,	2018;	Meehl	&	Tebaldi,	2004;	488	
Thompson	et	al.,	2022).	Because	our	study	could	not	differentiate	between	direct	and	489	
indirect	pathways,	parsing	their	relative	impacts	on	bumble	bees	and	other	taxa	is	a	critical	490	
research	need.	In	the	meantime,	supporting	bumble	bees	in	the	face	of	both	direct	and	491	
indirect	effects	may	be	accomplished	by	maintaining	climate	refugia,	such	as	heterogeneity	492	
in	vegetation	structure,	that	can	provide	microclimatic	respite	from	temperature	extremes	493	
to	bees	(Pincebourde	&	Woods,	2020)	and	other	taxa	(e.g.,	birds,	Kim	et	al.,	2022)	in	494	
addition	to	increasing	spatial/temporal	resource	continuity	to	minimize	negative	indirect	495	
effects	(Maron	et	al.,	2015).	496	

Given	the	spatiotemporal	extent	of	our	study,	it	is	likely	that	warming	summer	497	
temperatures	and	the	temperature	profile	of	a	given	bumble	bee	assemblage	may	co-vary	498	
with	other,	known	factors	of	bumble	bee	community	composition	and	occurrence.	For	499	
example,	losses	in	certain	species	across	their	range	may	be	linked	to	disease	(Szabo	et	al.,	500	
2012).	Additionally,	at	large-scales,	a	loss	of	suitable	habitat	via	land-use	intensification	501	
and	change	is	also	of	concern.	However,	when	examined	together	with	shifts	in	land-use,	502	
climatic	variables	(and	their	associated	indirect	effects)	tend	to	have	as	much	or	more	503	
power	to	explain	long-term	species	trends	than	land-use	or	resource	availability	in	bumble	504	
bees	(Kerr	et	al.	2015)	and	other	wild	bee	species	(Duchenne	et	al.,	2020).	Moreover,	the	505	
areas	of	greatest	increase	in	CTI	are	in	areas	removed	from	the	most	significant	effects	of	506	
land-use	change	(e.g.,	high	latitudes	and	elevations;	Halsch	et	al.,	2021).	Regardless,	507	
managing	habitat	offers	a	critical	tool	that	can	be	used	to	mitigate	the	impacts	of	a	changing	508	
climate	(Kim	et	al.,	2022;	Oliver	et	al.,	2016;	Oliver	et	al.,	2015;	Outhwaite	et	al.,	2022).	509	

Conclusions	510	
Climate	change	is	poised	to	have	significant,	cross-scale	impacts	on	insect	behavior,	511	
populations,	and	communities	(Halsch	et	al.,	2021;	Høye	et	al.,	2021;	Lehmann	et	al.,	2020;	512	
Raven	&	Wagner,	2021).	In	this	paper,	we	document	a	substantial	shift	in	the	functional	513	
composition	of	bumble	bee	communities	with	respect	to	climate	that	is	tied	to	a	long-term	514	
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increase	of	summer	temperatures	in	North	America.	Due	to	changes	in	both	occurrence	and	515	
abundance,	several	species	appear	to	be	tracking	climate	warming,	however	we	found	that	516	
cold-adapted	species	appear	lack	the	adaptive	capacity	to	cope	with	rapidly	climbing	517	
temperatures	and	are	being	lost	from	bumble	bee	communities	across	the	continent.	518	
Although	the	exact	mechanisms	of	these	community-level	shifts	remain	unknown	(i.e.,	519	
direct	vs.	indirect	effect	of	warming),	our	work	adds	to	a	growing	body	of	evidence	that	520	
suggests	climate	change	is	having	a	significant,	negative	impact	on	many	species	with	521	
unknown	consequences	for	ecosystems.	It	is	critical	that	we	focus	on	designing	adaptation	522	
measures,	such	as	climate	refugia	and	climate-focused	habitat	conservation,	to	help	combat	523	
the	ongoing	direct	and	indirect	impacts	a	rapidly	warming	planet	threatens.	However,	such	524	
efforts	will	only	be	successful	in	conjunction	with	substantial	decreases	in	emissions	525	
(Oliver	et	al.,	2015)	–	an	essential	solution	to	safeguard	the	planet’s	biodiversity	for	526	
generations	to	come.	 	527	
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Figures	and	Tables	536	

	537	
Figure	1:	Conceptual	figure	of	data	cleaning	(A),	STI	calculation	(B),	community	538	
assignment	(C),	CTI	calculation	(D),	temperature	anomaly	calculations	(E)	and	modeling	539	
procedures	used	in	our	analyses	(F).	540	
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	541	
Figure	2:	(A)	Extrapolated	spatial	projection	of	the	estimated	change	in	community	542	
temperature	index	from	1990-2018	across	North	America.	Differences	in	CTI	were	543	
calculated	for	each	grid	cell	by	subtracting	the	model	predicted	CTIt	=	1989	from	predicted	544	
CTIt	=	2018.	(B)	Spatial	projection	of	the	mean	uncertainty	estimates	across	years	from	545	
1989-2018.	(C)	Spatial	projection	of	the	change	in	the	3-year,	10-year	(D)	and	30-year	(E)	546	
average	temperature	anomaly.	Differences	were	calculated	by	subtracting	the	1989	547	
anomaly	from	the	2018	anomaly	for	each	grid	cell.	Hexagonal	grid	cells	are	100	km	from	548	
side	to	side	(~8600	km2).	 	549	
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		550	
Figure	3:	Generalized	additive	model	partial	plots	(i.e.,	marginal	effects)	show	the	model	551	
predicted	effect	of	(A)	3,	(B)	10,	and	(C)	30-year	moving	average	temperature	anomalies	on	552	
the	community	temperature	index.	Positive	values	on	the	y-axes	indicate	an	increase	in	CTI,	553	
while	positive	values	on	the	x-axes	indicate	an	increase	in	the	average	temperature	relative	554	
to	the	long-term	average.	Solid	line	indicates	strong	evidence	of	a	relationship.		 	555	
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	556	
Figure	4:	A	significant	increase	in	bumble	bee	CTI	is	strongly	associated	with	long-term	557	
warming	and	has	accelerated	in	the	last	15	years.	(A)	Biplot	of	change	in	30-year	558	
temperature	anomaly	and	change	in	bumble	bee	CTI	for	each	grid	cell	across	North	559	
America.	Trendline	is	a	GAM	fit	including	the	95%	confidence	interval.	Dashed	lines	560	
indicate	no	change	in	anomaly	or	CTI	for	the	X	and	Y	axes,	respectively.	(B)	Model	561	
estimated	temporal	trend	in	CTI	across	North	America.	Yearly	predictions	are	calculated	562	
from	the	global	model	for	each	grid	cell,	and	the	trend	within	each	region	is	illustrated	with	563	
a	GAM	fit	including	the	95%	confidence	interval.		 	564	
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	565	
Figure	5:	Estimates	of	the	rate	of	change	in	CTI	over	time	across	(A)	elevation,	(B)	latitude,	566	
and	(C)	year.	Yearly	predictions	of	CTI	are	calculated	from	the	global	model	for	each	grid	567	
cell	using	a	generalized	additive	model	with	a	single	smooth	of	year	to	determine	the	568	
temporal	trend	in	CTI	within	the	grid	cell.	For	each	fitted	smooth	(except	for	the	year,	C),	569	
we	then	calculated	the	mean	derivative	across	its	range	(1989-2018)	for	each	grid	cell.	We	570	
then	plotted	these	derivative	estimates	against	elevation	and	latitude	to	explore,	across	the	571	
extent	of	North	America,	where	the	rate	CTI	change	is	greatest.	We	visualized	the	572	
relationships	(red	lines)	using	a	simple	GAM.	Model	fits	include	the	95%	confidence	573	
interval.		#	References	574	

	 	575	
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	576	
Figure	6:	Marginal	effect	plots	describing	predicted	coefficients	for	the	temporal	trend	in	577	
warm-	and	cool-adapted	species	relative	abundance	across	latitude	in	North	America	(±	578	
95%	CI).	Values	above	zero	indicate	an	increase	in	relative	abundance	from	1989-2018,	579	
while	values	below	zero	indicate	a	decrease.	 	580	
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Supplementary	Materials	581	

	582	

	583	
Figure	S1:	Conceptual	diagram	of	the	derivative	calculations	conducted	to	determine	584	
whether	the	rate	of	increase	(i.e.,	derivative)	of	bumble	bee	CTI	has	remained	steady	or	585	
accelerated	over	space	and	time.	(1)	We	use	the	global	model	to	predict	the	CTI	in	each	grid	586	
cell	for	each	year	of	the	study,	from	1989-2018.	(2)	For	each	grid	cell,	we	fit	a	GAM	through	587	
the	predicted	points	to	visualize	and	quantify	the	trend	in	CTI	from	1989-2018.	From	these	588	
data,	we	also	calculated	the	change	in	CTI	from	1989-2018	(change	in	CTI)	which	is	plotted	589	
in	Fig.	1A.	The	overall	change,	however,	tells	us	nothing	of	the	functional	form	of	the	590	
relationship	between	CTI	and	time,	elevation,	etc.	To	address	this,	we	calculated	the	first	591	
derivative	across	the	fitted	smooth	to	determine	how	the	rate	of	change	in	CTI	varied	592	
across	time,	elevation,	and	latitude	(Fig.	2).	(3)	For	each	grid	cell’s	fitted	GAM,	we	593	
calculated	the	derivative	of	the	year	smooth	at	a	range	of	values	between	1989-2018.	In	594	
this	example,	because	CTI	is	increasing	throughout	the	entire	study	period,	the	derivative	is	595	
>	0	at	all	years.	(4)	We	then	took	the	derivative	estimates	for	all	grid	cells	and	fit	a	GAM	to	596	
visualize	the	trend	between	the	derivative	and	time.	For	elevation	(5)	and	latitude	(6),	we	597	
first	averaged	the	derivative	value	from	1989-2018	to	determine	the	mean	slope	for	each	598	
grid	cell	before	plotting	that	against	the	mean	elevation	and	latitude	of	each	grid	cell	and	599	
visualizing	the	relationship	with	a	GAM.	Transparent	points	are	illustrative	(not	actual	600	
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values)	of	individual	hex	grid	derivative	values	across	the	range	of	elevation	and	latitude.	601	
The	black	star	represents	a	hypothetical	mean	derivative	value	from	the	example	plot	in	602	
(3)	to	illustrate	how	mean	derivative	values	are	used	to	assess	the	trend.		 	603	
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	604	
Figure	S2:	Predicted	change	in	bumble	bee	CTI	across	North	America	between	1989-2018	605	
at	three	different	spatial	resolutions	of	hexagonal	grid	(distance	indicates	side-to-side):	(A)	606	
50	km;	(B)	100	km;	(C)	200	km;	along	with	the	mean	prediction	uncertainty	at	the	same	607	
resolutions.		 	608	
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	609	
Figure	S3:	Abundance-weighted	global	model	cross	validation	results	at	three	different	610	
scales	of	(A)	25	km,	(B)	50	km,	and	(C)	100	km	center-to-edge	hexagonal	grids.	Cross	611	
validation	metrics	are	given	in	the	top	left	of	each	panel	including	coefficient	of	612	
determination	(R2),	root	mean	squared	error	(RMSE),	and	mean	absolute	error	(MAE).		 	613	
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	614	
Figure	S4:	Trend	in	summer	(June	–	September)	maximum	temperature	anomalies	at	(A)	615	
3-year,	(B)	10-year,	and	(C)	30-year	moving	averages.	Transparent	points	are	raw	values	616	
and	red	lines	are	GAM	trendlines.		 	617	
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		618	
Figure	S5:	Estimates	of	the	rate	of	change	in	CTI	over	time	across	(A)	elevation,	(B)	619	
latitude,	and	(C)	year	using	predictions	only	from	grid	cells	containing	occurrence	records	620	
(conservative	approach).	Yearly	predictions	are	calculated	from	the	global	model	for	each	621	
grid	cell	using	simple	generalized	additive	models	with	a	single	smooth	of	year	to	622	
determine	CTI	trend	within	the	grid	cell.	For	each	fitted	smooth	(except	for	the	year,	C),	we	623	
then	calculated	the	mean	derivative	across	its	range	(1989-2018)	for	each	grid	cell.	We	624	
then	plotted	these	derivative	estimates	to	explore,	across	the	extent	of	North	America,	625	
whether	increases	in	CTI	were	varied	with	elevation	or	over	time.	We	calculated	626	
predictions	(red	lines)	from	a	generalized	additive	model	using	a	thin-plate	basis	function	627	
and	3	knots	for	visual	purposes	only.	Estimates	include	the	95%	confidence	interval.		 	628	
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	629	
Figure	S6:	Marginal	effect	plots	describing	predicted	coefficients	for	the	temporal	trend	in	630	
warm-	and	cool-adapted	species	relative	abundance	across	latitude	in	North	America	(±	631	
95%	CI)	for	each	ecological	region.	Values	above	zero	indicate	an	increase	in	relative	632	
abundance	from	1989-2018,	while	values	below	zero	indicate	a	decrease.	 	633	
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Table	S1:	Results	from	a	generalized	additive	model	for	CTI	using	occurrence-only	and	634	
abundance-weighted	records	from	1989-2018.	635	

		 	636	



	 31	

Table	S2:	Results	from	a	generalized	additive	model	for	CTI	using	occurrence-only	records	637	
at	three	different	spatial	resolutions	(community	grid	scale)	at	25,	50,	and	100	km	from	638	
1989-2018.	639	

			640	
	 	641	
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Table	S3:	Type	III	Wald	Chi-squared	effect	test	results	from	a	generalized	linear	model	for	642	
the	temporal	trend	in	species	relative	abundance	for	two	thermal	niche	groups:	cool-	and	643	
warm-adapted.	644	

	 	645	
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